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Abstract. We prove that rooted divergence-preserving branching bisimilarity is a congru-
ence for the process specification language consisting of nil, action prefix, choice, and the
recursion construct.

1. Introduction

Branching bisimilarity [GW96] is a behavioural equivalence on processes that is compatible
with abstraction from internal activity, while at the same time preserving the branching
structure of processes in a strong sense [Gla01]. Branching bisimilarity abstracts to a large
extent from divergence (i.e., infinite internal activity). For instance, it identifies a process,
say P , that may perform some internal activity after which it returns to its initial state (i.e.,
P has a τ -loop) with a process, say P ′, that admits the same behaviour as P except that it
cannot perform the internal activity leading to the initial state (i.e., P ′ is P without the
τ -loop).

In situations where fairness principles apply, abstraction from divergence is often
desirable. But there are circumstances in which abstraction from divergence is undesirable:
A behavioural equivalence that abstracts from divergence is not compatible with any temporal
logic featuring an eventually modality: for any desired state that P ′ will eventually reach,
the mentioned internal activity of P may be performed forever, and thus prevent P from
reaching this desired state. It is also generally not compatible with a process-algebraic priority
operator (cf. [Vaa90, pp. 130–132]) or sequencing operator [BLY17]. Since a divergence
may be exploited to simulate recursively enumerable branching in a computable transition
system [Phi93], a divergence-insensitive behavioural equivalence may be considered too
coarse for a theory that integrates computability and concurrency [BLvT13]. Preservation
of divergence is widely considered an important correctness criterion when studying the
relative expressiveness of process calculi [Gor10, Xu12, Fu16].
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The notion of branching bisimilarity with explicit divergence, also stemming from [GW96],
is a suitable refinement of branching bisimilarity that is compatible with the well-known
branching-time temporal logic CTL∗ without the nexttime operator X (which is known
to be incompatible with abstraction from internal activity). In fact, in [GLT09b] we have
proved that it is the coarsest semantic equivalence on labelled transition systems with
silent moves that is a congruence for parallel composition (as found in process algebras like
CCS, CSP or ACP) and only equates processes satisfying the same CTL∗−X formulas. In
[BLvT13], for stylistic reasons, branching bisimilarity with explicit divergence was named
divergence-preserving branching bisimilarity ; we shall henceforth use this term.

Divergence-preserving branching bisimilarity is the finest behavioural equivalence in the
linear time – branching time spectrum [Gla93b]. It is the principal behavioural equivalence
underlying the theory of executability [BLvT12, BLvT13, LY15, LY16]. Reduction modulo
divergence-preserving branching bisimilarity is a part of methods for formal verification and
analysis of the behaviour of systems [MW14, WE13, dPW17, ZSW+16]. In [dFEKW16] a
game-based characterisation of divergence-preserving branching bisimilarity is presented.

Processes are usually specified in some process specification language. For compositional
reasoning it is then important that the behavioural equivalence used is a congruence
with respect to the constructs of that language. Following Milner [Mil89], we consider the
language basic CCS with recursion, i.e., the language consisting of 0, action prefix, and choice,
extended with the recursion construct µX. ; this language precisely allows the specification
of finite-state behaviours. As for other weak behavioural equivalences, divergence-preserving
branching bisimilarity is not a congruence for that language; in fact, it is not a congruence for
any language that includes choice. The goal of this paper is to prove that adding the usual
root condition suffices to obtain a congruence—and, in fact, the coarsest congruence—for the
language under consideration that is included in divergence-preserving branching bisimilarity.
Interestingly, the root condition is not only necessary to get a congruence for choice, but also
for recursion: τ.X is divergence-preserving branching bisimilar to X, yet µX.τ.X diverges
whereas µX.X does not.

Recently, a congruence format was proposed for (rooted) divergence-preserving branch-
ing bisimilarity [FvGL19]. The operational rules for action prefix and choice are in this
format. Unfortunately, however, this format does not support the recursion construct µX. .
Interestingly, as far as we know, the recursion construct has not been covered at all in the
rich literature on congruence formats, with the recent exception of [Gla17]. (The article
[Gla17] differentiates between lean and full congruences for recursion; in this article we
consider the full congruence.)

The congruence result obtained in this paper should serve as a stepping stone towards a
complete axiomatisation of divergence-preserving branching bisimilarity for basic CCS with
recursion. Such work, inspired by Milner’s complete axiomatisation of weak bisimilarity
[Mil89], would combine the adaptations of [Gla93a] to branching bisimilarity, and of [LDH05]
to several divergence-sensitive variants of weak bisimilarity.

We originally thought that congruence for recursion could be obtained in the same spirit
as Milner’s ingenious proof in [Mil90] for strong bisimilarity, which cleverly makes use of an
up-to technique. The proofs for weak and branching bisimilarity essentially reuse this idea
[Mil90, Gla93a], but require the use of a weak step in the antecedent of the transfer condition.
We were not able to generalise the idea to divergence-preserving branching bisimilarity until
we included the root condition in the up-to technique.
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We believe that the proofs of Corollaries 3.3 and 3.4, Propositions 3.7 and 3.11, and
Lemma 3.16 contain novel twists. Although the other proofs are either routine or adaptations
of the ones in [Mil90], we have included them for the convenience of the reader.

In this paper we do not study the CCS constructs for parallel composition, restriction
and relabelling. However, combining our results with those of [FvGL19] yields a congruence
result for full CCS with the proviso that parallel composition, restriction and relabelling
are not allowed in the scope of a recursion. This spans most practical applications. The
method employed in this paper does not generalise to obtain a congruence result for full
CCS, featuring parallel composition in the scope of recursion. Although we conjecture that
such a congruence result holds, proving it remains an open problem.

2. Rooted divergence-preserving branching bisimilarity

Let A be a non-empty set of actions, and let τ be a special action not in A. Let Aτ = A∪{τ}.
Furthermore, let V be a set of recursion variables. The set of process expressions E is generated
by the following grammar:

E ::= 0 | X | α.E | µX.E | E + E (α ∈ Aτ , X ∈ V) .

An occurrence of a recursion variable X in a process expression E is bound if it is in the
scope of a µX. , and otherwise it is free. We denote by FV (E) the set of variables with a

free occurrence in E. If ~X = X0, . . . , Xn is a sequence of variables, and ~F = F0, . . . , Fn is a

sequence of process expressions of the same length, then we write E[~F/~X] for the process
expression obtained from E by replacing all free occurrences of Xi in E by Fi (i = 0, . . . , n),
applying α-conversion to E if necessary to avoid capture.

On E we define an Aτ -labelled transition relation −→ ⊆ E ×Aτ ×E as the least ternary
relation satisfying the following rules for all α ∈ Aτ , X ∈ V, and process expressions E, E′,
F and F′:

1
α.E

α−→ E
2
E[µX.E/X]

α−→ E′

µX.E
α−→ E′

3
E

α−→ E′

E + F
α−→ E′

4
F

α−→ F′

E + F
α−→ F′

We write E
α−→ E′ for (E,α,E′) ∈ −→ (as we already did in the rules above) and we

abbreviate the statement ‘E
α−→ E′ or (α = τ and E = E′)’ by E

(α)−→ E′. Furthermore, we

write −� for the reflexive-transitive closure of
τ−→, i.e., E−�E′ if there exist E0, E1, . . . , En ∈

E such that E = E0
τ−→ E1

τ−→ · · · τ−→ En = E′.
A process expression is closed if it contains no free occurrences of recursion variables; we

denote by P the subset of E consisting of all closed process expressions. It is easy to check

that if P is a closed process expression and P
α−→ E, then E is a closed process expression

too. Hence, the transition relation restricts in a natural way to closed process expressions,
and thus associates with every closed process expression a behaviour. We proceed to define
when two process expressions may be considered to represent the same behaviour.

Definition 2.1. A symmetric binary relation R on P is a branching bisimulation if it
satisfies the following condition for all P,Q ∈ P and α ∈ Aτ :

(T) if P R Q and P
α−→ P′ for some closed process expression P′, then there exist closed

process expressions Q′ and Q′′ such that Q −�Q′′
(α)−→ Q′, P R Q′′ and P′ R Q′.

We say that a branching bisimulation R preserves (internal) divergence if
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(D) if P R Q and there is an infinite sequence of closed process expressions (Pk)k∈ω such

that P = P0, Pk
τ−→ Pk+1 and Pk R Q for all k ∈ ω, then there is an infinite sequence

of closed process expressions (Q`)`∈ω such that Q = Q0, Q`
τ−→ Q`+1 and Pk R Q`

for all k, ` ∈ ω.

We write P ↔∆
b Q if there exists a divergence-preserving branching bisimulation R such that

P R Q. The relation ↔∆
b was introduced in [GW96] under the name branching bisimilarity

with explicit divergence and is here referred to as divergence-preserving branching bisimilarity.

The relation↔∆
b was studied in detail in [GLT09a]; we recap some of the facts established

ibidem.
First, the relation ↔∆

b is an equivalence relation. Second, the relation ↔∆
b satisfies the

condition (T), with the following generalisation as a straightforward consequence.

Lemma 2.2. Let P and Q be closed process expressions. If P ↔∆
b Q and P −� P′′

α−→ P′

for some closed process expressions P′ and P′′, then there exist closed process expressions Q′

and Q′′ such that Q −�Q′′
α−→ Q′, P′′ ↔∆

b Q′′ and P′ ↔∆
b Q′.

Third, ↔∆
b also satisfies (D). In [GLT09a] several alternative definitions of divergence

preservation are studied, which, in the end, all give rise to the same notion of divergence-
preserving branching bisimilarity. In particular, the following alternative relational charac-
terisations will be useful tools in the remainder.

Proposition 2.3. Let P and Q be closed process expressions. Then

• P ↔∆
b Q if, and only if, P and Q are related by some branching bisimulation R satisfying

(D′) if P R Q and there is an infinite sequence of closed process expressions (Pk)k∈ω such

that P = P0 and Pk
τ−→ Pk+1, then there is an infinite sequence of closed process

expressions (Q`)`∈ω and a mapping σ : ω → ω such that Q = Q0, Q`
τ−→ Q`+1

and Pσ(`) R Q` for all ` ∈ ω; and

• P ↔∆
b Q if, and only if, P and Q are related by some branching bisimulation R satisfying

(D′′) if P R Q and there is an infinite sequence of closed process expressions (Pk)k∈ω
such that P = P0 and Pk

τ−→ Pk+1, then there exists a closed process expression

Q′ such that Q
τ−→ Q′ and Pk R Q′ for some k ∈ ω.

Moreover, ↔∆
b itself satisfies (D′) and (D′′).

Proof. See [GLT09a]; condition (D′) is (D3) and condition (D′′) is (D2).

And finally, it was proved in [GLT09a] that↔∆
b satisfies the following so-called stuttering

property.

Proposition 2.4. Let P be a closed process expression and let Q0, . . . , Qk be closed process

expressions such that Q0
τ−→ · · · τ−→ Qk. If P ↔∆

b Q0 and P ↔∆
b Qk, then P ↔∆

b Qi for all
0 ≤ i ≤ k.

As for all variants of bisimilarity that take some form of abstraction from internal activity
into account, the relation↔∆

b is not compatible with + (0↔∆
b τ.0 but 0+a.0 6↔∆

b τ.0+a.0),
and hence not a congruence for the language we are considering. In contrast to its divergence-
insensitive variant, divergence-preserving branching bisimilarity is not compatible with the
recursion construct either, as we will argue below. Similarly as for the divergence-insensitive
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variant of branching bisimilarity, it suffices to add a root condition to obtain the coarsest
congruence for our language that is contained in ↔∆

b , as we shall prove in the remainder of
this paper.

Definition 2.5. Let P and Q be closed process expressions. We say that P and Q are
rooted divergence-preserving branching bisimilar (notation: P ↔∆

rb Q) if for all α ∈ Aτ the
following holds:

(R1) if P
α−→ P′, then there exists a Q′ such that Q

α−→ Q′ and P′ ↔∆
b Q′; and

(R2) if Q
α−→ Q′, then there exists a P′ such that P

α−→ P′ and P′ ↔∆
b Q′.

The following proposition is a straightforward consequence of the fact that ↔∆
b is an

equivalence.

Proposition 2.6. The relation ↔∆
rb is an equivalence relation on P.

Moreover, it is immediate that ↔∆
rb ⊆ ↔∆

b . It is well known, and follows immediately

from the definition, that P ↔∆
rb Q iff P + f.0↔∆

b Q+ f.0 for a fresh action f , not occurring
in P or Q. Using this, the problem of checking rooted divergence-preserving branching
bisimilarity reduces trivially to that of checking divergence-preserving branching bisimilarity.

We have defined the notions of ↔∆
b and ↔∆

rb on closed process expressions because
those are thought of as directly representing behaviour. Due to the presence of the binding
construct µX. it is, however, necessary to lift these notions to expressions with free variables
even if the goal is simply to establish behavioural equivalence of closed process expressions.

Definition 2.7. Let E and F be process expressions, and let the sequence ~X of variables
at least include all the variables with a free occurrence in E or F. We write E ↔∆

rb F

(E ↔∆
b F) if E[~P/~X] ↔∆

rb F[~P/~X] (E[~P/~X] ↔∆
b F[~P/~X]) for every sequence of closed

process expressions ~P of the same length as ~X.

It is clear from the definition above that, since ↔∆
b and ↔∆

rb are equivalence relations

on P, their lifted versions are equivalence relations on E . Note that ↔∆
b is not compatible

with the recursion construct: we have that X ↔∆
b τ.X, whereas µX.X 6↔∆

b µX.τ.X. We

shall prove that its rooted variant ↔∆
rb is, however, compatible with all the constructs of the

syntax, i.e., if E ↔∆
rb F, then α.E ↔∆

rb α.F for all α ∈ Aτ , µX.E ↔∆
rb µX.F for all X ∈ V,

E +H ↔∆
rb F +H and H + E ↔∆

rb H + F for all process expressions H. To prove that ↔∆
rb

is compatible with α. and + is straightforward, but for µX. this is considerably more work.

3. The congruence proof

Our proof that ↔∆
rb is compatible with µX. relies on the following observation: If ~Y is some

sequence of variables and ~P is a sequence of closed terms of the same length, then, on the

one hand, E ↔∆
rb F implies E[~P/~Y]↔∆

rb F[~P/~Y] by the definition of ↔∆
rb on E , and, on the

other hand, if X does not occur in ~Y, then from µX.E[~P/~Y]↔∆
rb µX.F[~P/~Y] it follows that

(µX.E)[~P/~Y]↔∆
rb (µX.F)[~P/~Y] by the definition of substitution. Therefore, as formalised in

the proof of Proposition 3.19, it is enough to establish that E ↔∆
rb F implies µX.E ↔∆

rb µX.F
in the special case that E and F are process expressions with no other free variables than X;
such process expressions will be called X-closed.

The rest of this section is organised as follows.
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We shall first characterise, in Section 3.1, the relation↔∆
rb onX-closed process expressions

in terms of the transition relation on X-closed process expressions.
Then, in Section 3.2, we shall present a suitable notion of rooted divergence-preserving

branching bisimulation up to ↔∆
rb, and we shall prove that every pair of rooted divergence-

preserving branching bisimilar X-closed process expressions (E,F) gives rise to a relation
Ru of which we can show that it is a rooted divergence-preserving branching bisimulation up
to ↔∆

rb. The relation Ru will be defined in such a way that it relates µX.E and µX.F and
thus allows us to conclude that these process expressions are rooted divergence-preserving
bisimilar.

In Section 3.3, we shall then put the pieces together and prove ↔∆
rb is the coarsest

congruence contained in ↔∆
b for basic CCS with recursion.

3.1. ↔∆
rb on X-closed process expressions. We say that a process expression E is X-

closed if FV (E) ⊆ {X}; the set of all X-closed process expressions is denoted by PX . Note

that if E is X-closed and E
α−→ E′, then E′ is X-closed too, and so the Aτ -labelled transition

relation restricts in a natural way to X-closed process expressions.

Definition 3.1. We define when X is exposed in a (not necessarily X-closed) process
expression E by induction on the structure of E:

(1) if E = X, then X is exposed in E;
(2) if E = µY.E′, Y is a recursion variable distinct from X and X is exposed in E′, then X

is exposed in E;
(3) if E = E1 + E2 and X is exposed in E1 or E2, then X is exposed in E.

Note that the variable X is exposed in E if, and only if, E has an unguarded occurrence of
X in the sense of [Mil89].

We establish a relationship between the transitions of a closed process expression E[P/X]
that is obtained by substituting a closed process expression P for the variable X in an
X-closed process expression E, and the transitions of E and P.

Lemma 3.2. Let E be an X-closed process expression, and let P be a closed process
expression.

(1) If E
α−→ E′, then E[P/X]

α−→ E′[P/X], and if X is exposed in E and P
α−→ P′, then

E[P/X]
α−→ P′.

(2) If E[P/X]
α−→ P′ for some (closed) process expression P′, then either there exists an

X-closed process expression E′ such that E
α−→ E′ and P′ = E′[P/X], or X is exposed

in E, P
α−→ P′ and every derivation of E[P/X]

α−→ P′ has a derivation of P
α−→ P′ as

a subderivation.

Proof. Statement 1 of the lemma is established with straightforward inductions on a deriva-

tion of E
α−→ E′ and on the structure of E.

We proceed to establish by induction on a derivation of E[P/X]
α−→ P′ that there exists

an X-closed process expression E′ such that E
α−→ E′ and P′ = E′[P/X], or X is exposed

in E, P
α−→ P′ and a derivation of P

α−→ P′ appears as a subderivation of the considered

derivation of E[P/X]
α−→ P′. This implies statement 2.

We distinguish cases according to the structure of E:



Vol. 16:3 ROOTED DIVERGENCE-PRESERVING BRANCHING BISIMILARITY IS A CONGRUENCE 14:7

• Clearly, E cannot be 0, for if E = 0, then E[P/X] = 0, and 0 does not admit any
transitions.
• If E = X, then X is exposed in E and P = E[P/X]

α−→ P′. It is then also immediate that

the considered derivation of E[P/X]
α−→ P′ has a derivation of P

α−→ P′ as a subderivation.
• If E = β.E′ for some β ∈ Aτ and some X-closed process expression E′, then β = α and

E
β−→ E′. Since E[P/X] = β.(E′[P/X]), rule 1 is the last rule applied in the derivation

of the transition E[P/X]
α−→ P′, so P′ = E′[P/X].

• If E = µY.F for some process expression F with FV (F) ⊆ {X,Y}, then there are two
subcases:

On the one hand, if Y = X, then, since X has no free occurrence in E, we have

E = E[P/X]
α−→ P′. We take E′ = P′, and since E′ is closed we have E′[P/X] = E′ = P′.

On the other hand, if Y 6= X, then E[P/X] = µY.(F[P/X]), and therefore the last

rule applied in the considered derivation of the transition E[P/X]
α−→ P′ is rule 2.

Consequently, the considered derivation has a proper subderivation of the transition

F[P/X][µY.(F[P/X])/Y]
α−→ P′. Note that F[P/X][µY.(F[P/X])/Y] = (F[µY.F/Y])[P/X].

Hence, by the induction hypothesis, either there exists an E′ such that F[µY.F/Y]
α−→ E′

and P′ = E′[P/X], or X is exposed in F[µY.F/Y], P
α−→ P′, and the derivation of

F[µY.F/Y][P/X]
α−→ P′ has a derivation of P

α−→ P′ as a subderivation. In the first case,

it follows from F[µY.F/Y]
α−→ E′, by rule 2, that E = µY.F

α−→ E′ and P′ = E′[P/X].
In the second case, it suffices to note that X is exposed in F, hence also in E, and

that a derivation of P
α−→ P′ appears as a subderivation of the considered derivation of

E[P/X]
α−→ P′.

• If E = E1 + E2, then E[P/X] = E1[P/X] + E2[P/X].

The last rule applied in the considered derivation of the transition E[P/X]
α−→ P′ is

either rule 3 or rule 4.
If it is rule 3, then E1[P/X]

α−→ P′, and since this transition has a derivation that is

a proper subderivation of the considered derivation of E[P/X]
α−→ P′, by the induction

hypothesis it follows that either E1
α−→ E′ and P′ = E′[P/X], or X is exposed in E1,

P
α−→ P′, and a derivation of P

α−→ P′ appears as a subderivation the derivation of

E1[P/X]
α−→ P′.

In the first case, it remains to note that then also E
α−→ E′, and in the second case, it

remains to note that X is also exposed in E.
If the last rule applied in the considered derivation is rule 4, then the proof is analogous.

Corollary 3.3. Let E be an X-closed process expression. If E[µX.E/X]
α−→ P′ for some

(closed) process expression P′, then there exists an X-closed process expression E′ such that

E
α−→ E′ and P′ = E′[µX.E/X].

Proof. Consider a derivation of E[µX.E/X]
α−→ P′ that is minimal in the sense that it does

not have a derivation of E[µX.E/X]
α−→ P′ as proper subderivation. Let P = µX.E. Since

every derivation of P
α−→ P′ has a derivation of E[P/X]

a−→ P′ as a proper subderivation
(see the operational rules, and rule 2 in particular), it follows that the considered derivation of

E[µX.E/X]
α−→ P′ does not have a subderivation of P

α−→ P′. Hence, by Lemma 3.2.2 there

exists an X-closed process expression E′ such that E
α−→ E′ and P′ = E′[µX.E/X].
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Corollary 3.4. Let G0 and E be X-closed process expressions. If there is an infinite
sequence of closed process expressions (Pk)k∈ω such that G0[µX.E/X] =P0 and Pk

τ−→ Pk+1

for all k ∈ ω, then there is an infinite sequence of X-closed process expressions (Gk)k∈ω
such that Pk = Gk[µX.E/X] and, for all k ∈ ω, either Gk

τ−→ Gk+1 or X is exposed in Gk
and E

τ−→ Gk+1.

Proof. We construct (Gk)k∈ω by induction on k. Suppose that Gk with Gk[µX.E/X] = Pk
has already been constructed. Since Pk

τ−→ Pk+1, by Lemma 3.2.2 there are two cases: either

there is a Gk+1 with Gk
τ−→ Gk+1 and Pk+1 = Gk+1[µX.E/X], in which case we are done,

or X is exposed in Gk and µX.E
τ−→ Pk+1. In the latter case E[µX.E/X]

τ−→ Pk+1 (see
the operational rules, and rule 2 in particular). By Corollary 3.3 there exists an X-closed

process expression Gk+1 such that E
τ−→ Gk+1 and Pk+1 = Gk+1[µX.E/X].

Let E and E′ be process expressions. We write E −→ E′ if there exists an α ∈ Aτ such

that E
α−→ E′, and denote by −→∗ the reflexive-transitive closure of −→. If E−→∗E′, then

we say that E′ is reachable from E.

Proposition 3.5 ([Gla93a, Proposition 1]). If E is a process expression, then the set of all
expressions reachable from E is finite.

We now characterise the relation ↔∆
rb on E from Definition 2.7 in the same style as

Definition 2.1, but on an enriched transition system. To this end, we first define on E a
V ] Aτ -labelled transition relation −→ ⊆ E × (V ] Aτ ) × E as the least ternary relation
satisfying, besides the four rules of Section 2, also the rule

5

X
X−→ 0

for each X ∈ V . Intuitively, the V]Aτ -labelled transition relation treats a process expression
E as the closed term obtained from E by replacing all free occurrences of the variable X
by the closed process expression X.0 in which X is interpreted as an action instead of as
a recursion variable. Note that a variable X is exposed in an expression E according to
Definition 3.1 iff ∃F. E X−→ F , which is the case iff E

X−→ 0. Now let ↔∆
bX and ↔∆

rbX be

defined exactly like ↔∆
b and ↔∆

rb, but using the V ] Aτ -labelled transition relation instead
of the Aτ -labelled one, and applying all definitions directly to expressions with free variables,
instead of applying the lifting of Definition 2.7. We proceed to show that on X-closed
process expressions ↔∆

bX coincides with ↔∆
b , and ↔∆

rbX with ↔∆
rb. This characterisation,

for weak and branching bisimilarity without preservation of divergence, stems from [Mil89]
and [Gla93a]. Here we use it solely to obtain Corollaries 3.8 and 3.9.

Lemma 3.6. The relation

B = {(E[P/X], F[P/X]) | E,F are X-closed, E ↔∆
bX F, P is closed}

is a branching bisimulation satisfying (D′′) of Proposition 2.3.

Proof. It is immediate from its definition that B is symmetric.
We show it satisfies (T). Suppose E,F are X-closed, E ↔∆

bX F and P closed. Let

E[P/X]
α−→ P ′ for some α ∈ Aτ . By Lemma 3.2.2 either there exists an X-closed process ex-

pression E′ such that E
α−→ E′ and P′ = E′[P/X], or X is exposed in E and P

α−→ P′. In the
first case, since E ↔∆

bX F, there exist process expressions F′ and F′′ such that F −� F′′
(α)−→ F′,

E ↔∆
bX F′′ and E′ ↔∆

bX F′. By Lemma 3.2.1 F[P/X]−� F′′[P/X]
(α)−→ F′[P/X]. Further-

more, E[P/X] B F′′[P/X] and P ′ = E′[P/X] B F′[P/X]. In the second case, since X
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is exposed in E, we have that E
X−→ 0 and hence, since E ↔∆

bX F, there exist process

expressions F′ and F′′ such that F −� F′′
X−→ F′, E ↔∆

bX F′′ and 0↔∆
bX F′. Moreover, since

F′′
X−→ F′, X is exposed in F′′, so by Lemma 3.2.1 F[P/X]−� F′′[P/X]

α−→ P ′. Furthermore,
E[P/X] B F′′[P/X] and P ′ B P ′.

It remains to show that B satisfies (D′′). Suppose E,F are X-closed, E ↔∆
bX F and P

is closed, and there is an infinite sequence of closed process expressions (Pk)k∈ω such that
E[P/X] = P0 and Pk

τ−→ Pk+1. By Lemma 3.2.2 either there exists an infinite sequence of X-
closed process expressions (Ek)k∈ω such that E0 = E, Ek

τ−→ Ek+1 and Pk+1 = Ek+1[P/X]
for all k ∈ ω, or there exists a finite sequence of X-closed process expressions (Ei)i≤k for some

k ∈ ω such that E0 = E, Ei
τ−→ Ei+1 and Pi+1 = Ei+1[P/X] for all i < k, Ek

X−→ 0 and
P

τ−→ Pk+1. In the first case, since E ↔∆
bX F, using (D′′), there exist a process expression F′

such that F
τ−→ F′ and Ek ↔∆

bX F ′ for some k ∈ N . By Lemma 3.2.1 F[P/X]
τ−→ F′[P/X].

Furthermore, Ek[P/X] B F′[P/X]. In the second case, since E ↔∆
bX F, by induction on i

there exists a sequence F0, . . . , Fm, Fm+1 and a mapping ρ : {0, . . . ,m} → {0, . . . , k} with

ρ(m) = k such that F = F0
τ−→ · · · τ−→ Fm

X−→ Fm+1 and Eρ(j) ↔∆
b Fj for all j = 0, . . . ,m.

If m = 0, then X is exposed in F , so by Lemma 3.2.1 F[P/X]
τ−→ Pk+1. Furthermore,

Pk+1 B Pk+1. If m>0, then let F ′=F1. By Lemma 3.2.1 F[P/X]
τ−→ F′[P/X]. Furthermore,

Eρ(1)[P/X] B F′[P/X].

For every α ∈ Aτ and n ∈ ω, we define the closed process expression αn inductively by
α0 = 0 and αn+1 = α.αn. Note that, if α 6= τ , then αi ↔∆

b αj implies i = j. Recall that we
have assumed that A is non-empty; we now fix, for the remainder of this section, a particular
action a ∈ A.

Proposition 3.7. Let E and F be X-closed process expressions. Then E ↔∆
bX F iff E ↔∆

b F,

and E ↔∆
rbX F iff E ↔∆

rb F.

Proof. We need to show that E ↔∆
bX F iff E[P/X] ↔∆

b F[P/X] for each closed process

expression P , and likewise E ↔∆
rbX F iff E[P/X] ↔∆

rb F[P/X] for each closed process
expression P .

“Only if”: Lemma 3.6 immediately yields that E ↔∆
bX F implies E[P/X]↔∆

b F[P/X] for

each closed process expression P. Now let E ↔∆
rbX F and E[P/X]

α−→ P ′. By Lemma 3.2.2
either there exists an X-closed process expression E′ such that E

α−→ E′ and P′ = E′[P/X],
or X is exposed in E and P

α−→ P′. In the first case, since E ↔∆
rbX F, there exists a process

expression F′ such that F
α−→ F′ and E′ ↔∆

bX F′. By Lemma 3.2.1 F[P/X]
α−→ F′[P/X].

Furthermore, by Lemma 3.6 P ′ = E′[P/X] ↔∆
b F′[P/X]. In the second case, since X is

exposed in E we have that E
X−→ 0, and hence, since E ↔∆

rbX F, there exists a process
expression F′ such that F

X−→ F′. By Lemma 3.2.1 F[P/X]
α−→ P ′. Furthermore, P ′ ↔∆

b P ′.

The other clause follows by symmetry, thus yielding E[P/X]↔∆
rb F[P/X].

“If”: Let E and F be X-closed process expressions. Since by Proposition 3.5 the set of all
process expressions reachable from E and F is finite, there exists a natural number n ∈ ω such
that for all G reachable from E or F it holds that G 6↔∆

b an, and thus G[an+1/X] 6↔∆
b an.

Let

R = {(E′, F′) | E −→∗ E′, F −→∗ F′, E′[an+1/X]↔∆
b F′[an+1/X]}.

Claim: The symmetric closure of R is a branching bisimulation satisfying (D′′) w.r.t. the
V ] Aτ -labelled transition relation.
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Proof of the claim: To prove that R satisfies condition (T) of Definition 2.1, let E′ and

F′ be such that E′ R F′, and suppose that E′
α−→ E′′. Then E′[an+1/X] ↔∆

b F′[an+1/X]

and, using Lemma 3.2.1, E′[an+1/X]
α−→ E′′[an+1/X]. Since E′[an+1/X]↔∆

b F′[an+1/X]

there exist closed process expressions Q′′′ and Q′′ such that F′[an+1/X] −� Q′′
(α)−→ Q′′′,

E′[an+1/X] ↔∆
b Q′′ and E′′[an+1/X] ↔∆

b Q′′′. By Lemma 3.2.2, using that a 6= τ , there
exists a X-closed process expression F′′ such that F′−�F′′ and Q′′ = F′′[an+1/X]; moreover,
either there exists an X-closed process expression F′′′ such that F′′

(α)−→ F′′′ and Q′′′ =
F′′′[an+1/X], or X is exposed in F′′ and an+1 α−→ Q′′′. In the latter case we would have
E′′[an+1/X]↔∆

b Q′′′ = an, which is impossible by the choice of n. So the former case applies:

we have F′ −� F′′
(α)−→ F′′′, E′ R F′′ and E′′ R F′′′. The case that F′

α−→ F′′ proceeds by
symmetry, so the symmetric closure of R satisfies condition (T).

To show that R (and its symmetric closure) satisfies (D′′), let (Ek)k∈ω be an infinite

sequence of X-closed process expressions such that Ek
τ−→ Ek+1 for all k ∈ ω, and let F0 be

such that E0 R F0. Then E0[an+1/X]↔∆
b F0[an+1/X] and by Lemma 3.2.1 Ek[an+1/X]

τ−→
Ek+1[an+1/X] for all k ∈ ω. Using (D′′), there exist a process expression Q′ such that
F0

τ−→ Q′ and Ek[a
n+1/X] ↔∆

b Q′ for some k ∈ N . By Lemma 3.2.2, using that a 6= τ ,

there exists a X-closed process expression F′ such that F0
τ−→ F′ and Q′ = F′[an+1/X].

Furthermore, Ek R F′.

Application of the claim: Let E[P/X] ↔∆
b F[P/X] for each closed process expression P .

Then E[an+1/X]↔∆
b F[an+1/X]. The claim yields E ↔∆

bX F.

Now let E[P/X] ↔∆
rb F[P/X] for each closed P . Then E[an+1/X] ↔∆

rb F[an+1/X].
Suppose that E

α−→ E′ with α ∈ Aτ . Then E[an+1/X]
α−→ E′[an+1/X] by Lemma 3.2.1. So

there exists a Q′ with F[an+1/X]
α−→ Q′ and E′[an+1/X]↔∆

b Q′. By Lemma 3.2.2 either
there exists an X-closed process expression F′ such that F

α−→ F′ and Q′ = F′[an+1/X], or X
is exposed in F and an+1 α−→ Q′. In the latter case we would have E′[an+1/X]↔∆

b Q′ = an,
which is impossible by the choice of n. So the former case applies, and E′ R F′. The claim
yields E′ ↔∆

bX F′. The other clause follows by symmetry, so E ↔∆
rbX F.

The following is an immediate corollary of Propositions 3.7, 2.3 and 2.4.

Corollary 3.8. Let E and F be X-closed process expressions such that E ↔∆
b F.

(1) If E
α−→ E′, then there exist X-closed process expressions F0, . . . , Fn and F′ such that

F = F0
τ−→ · · · τ−→ Fn

(α)−→ F′ such that E ↔∆
b Fi (0 ≤ i ≤ n) and E′ ↔∆

b F′.
(2) If X is exposed in E, then there exist k ≥ 0 and X-closed process expressions F0, . . . , Fk

such that F = F0
τ−→ · · · τ−→ Fk, E ↔∆

b Fi (0 ≤ i ≤ k), and X is exposed in Fk.
(3) If there is an infinite sequence of X-closed process expressions (Ek)k∈ω such that E = E0

and Ek
τ−→ Ek+1, then there exists an X-closed process expression F′ such that F

τ−→ F′

and Ek ↔∆
b F′ for some k ∈ ω.

Similarly, by combining Propositions 3.7 and Definition 2.5 we get the following corollary.

Corollary 3.9. Let E and F be X-closed process expressions such that E ↔∆
rb F. If

E
α−→ E′, then there exists an X-closed process expression F′ such that F

α−→ F′ and
E′ ↔∆

b F′.
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3.2. Rooted divergence-preserving branching bisimulation up to ↔∆
b . As was al-

ready illustrated by Milner [Mil90], a suitable up-to relation is a crucial tool in the proof that
a behavioural equivalence is compatible with the recursion construct. In [Gla93a], Milner’s
notion of weak bisimulation up to weak bisimilarity is adapted to branching bisimulation up
to branching bisimilarity. Here we make two further modifications. Not only do we add a
divergence condition; we also incorporate rootedness into the relation.

Definition 3.10. Let R be a symmetric binary relation on P , and denote by Ru the relation
↔∆
b ;R ;↔∆

b . We say that R is a rooted divergence-preserving branching bisimulation up to
↔∆
b if for all P,Q ∈ P such that P R Q the following three conditions are satisfied:

(U1) if P
α−→ P′, then there exists Q′ such that Q

α−→ Q′ and P′ Ru Q′.
(U2) if P−�P′′

(α)−→ P′, then there exist Q′ and Q′′ such that Q−�Q′′
(α)−→ Q′, P′′ Ru Q′′

and P′ Ru Q′.
(U3) if there exists an infinite sequence of closed process expressions (Pk)k∈ω such that

P = P0, and Pk
τ−→ Pk+1 for all k ∈ ω, then there also exists an infinite sequence of

closed process expressions (Q`)`∈ω and a mapping σ : ω → ω such that Q = Q0, and

Q`
τ−→ Q`+1 and Pσ(`) Ru Q` for all ` ∈ ω.

Proposition 3.11. Let P and Q be closed process expressions and let R be a rooted
divergence-preserving branching bisimulation up to ↔∆

b . If P R Q, then P ↔∆
rb Q.

Proof. If P R Q and P
α−→ P′, then since R satisfies condition (U1) of Definition 3.10, there

exists a Q′ such that Q
α−→ Q′ and P′ Ru Q′. Furthermore, since R is symmetric, whenever

P R Q also Q R P, so if Q
α−→ Q′, then by condition (U1) of Definition 3.10 there exists a

P′ such that P
α−→ P′ and Q′ Ru P′. It remains to establish that P′ ↔∆

b Q′, and for this, it
suffices by Proposition 2.3 to prove that Ru is a branching bisimulation satisfying (D′).

Note that, since ↔∆
b and R are both symmetric, also Ru is symmetric.

To prove that Ru satisfies (T), let P0, P1, Q0 and Q1 be closed process expressions

such that P1 ↔∆
b P0 R Q0 ↔∆

b Q1, and suppose that P1
α−→ P ′1. Since P1 ↔∆

b P0 and ↔∆
b

satisfies (T), there exist P ′0 and P ′′0 such that P0 −� P ′′0
(α)−→ P ′0, P1 ↔∆

b P ′′0 and P ′1 ↔∆
b P ′0.

So it follows by condition (U2) of Definition 3.10 that there exist Q′0 and Q′′0 such that
Q0 −�Q′′0

(α)−→ Q′0, P ′′0 Ru Q′′0 and P ′0 Ru Q′0. Hence, since Q0 ↔∆
b Q1, by Lemma 2.2

there exist closed process expressions Q′1 and Q′′1 such that Q1 −�Q′′1
(α)−→ Q′1, Q′′0 ↔∆

b Q′′1
and Q′0 ↔∆

b Q′1. Note, moreover, that P1 ↔∆
b P ′′0 Ru Q′′0 ↔∆

b Q′′1 whence P1 Ru Q′′1, and

P ′1 ↔∆
b P ′0 Ru Q′0 ↔∆

b Q′1 whence P ′1 Ru Q′1.
It remains to prove that Ru satisfies (D′) of Proposition 2.3. To this end, let P0, P1,

Q0 and Q1 be closed process expressions such that P1 ↔∆
b P0 R Q0 ↔∆

b Q1, and suppose
that there exists an infinite sequence of closed process expressions (P1,k)k∈ω such that

P1 = P1,0 and P1,k
τ−→ P1,k+1. Then, since P1 ↔∆

b P0, by Proposition 2.3, there exists an
infinite sequence of closed process expressions (P0,`)`∈ω and a mapping σP : ω → ω such

that P0 = P0,0, P0,`
τ−→ P0,`+1 and P1,σP (`) ↔∆

b P0,` for all ` ∈ ω. Hence, since P0 R Q0

and R is a divergence-preserving branching bisimulation up to ↔∆
b , there exists an infinite

sequence of closed process expressions (Q0,m)m∈ω and a mapping σP,Q : ω → ω such that
Q0 = Q0,0, Q0,m

τ−→ Q0,m+1 and P0,σP,Q (m) Ru Q0,m for all m ∈ ω. Hence, since Q0 ↔∆
b Q1,

by Proposition 2.3, there exists an infinite sequence of closed process expressions (Q1,n)n∈ω
and a mapping σQ : ω → ω such that Q1 = Q1,0, Q1,n

τ−→ Q0,n+1 and Q0,σQ (n) ↔∆
b Q1,n for
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all n ∈ ω. We define

σ = σP ◦ σP,Q ◦ σQ ,

and then we have that P1,σ(n) ↔∆
b ; Ru ; ↔∆

b Q1,n, and hence P1,σ(n) Ru Q1,n for all
n ∈ ω.

To prove that ↔∆
rb is compatible with µX. means to prove that if E ↔∆

rb F, then

µX.E ↔∆
rb µX.F. We first do this in the special case that E and F are X-closed. A crucial

step in this proof will be to show that if E ↔∆
rb F for X-closed process expressions E and F,

then the symmetric closure RE,F of the relation

{(G[µX.E/X], G[µX.F/X]) | G ∈ E and G is X-closed} (3.1)

is a rooted branching bisimulation up to ↔∆
b . The result then follows by taking G := X.

Until Corollary 3.18 we fix X-closed process expressions E and F such that E ↔∆
rb F.

For this application of the up-to technique from Definition 3.10, Ru could equally well
have been defined as R ;↔∆

b . This less powerful technique is still valid by Proposition 3.11,
yet is all we need in Lemmas 3.12–3.16.

Lemma 3.12. For all X-closed process expressions G, if G[µX.E/X]
α−→ P, then there

exists a Q such that G[µX.F/X]
α−→ Q and P RE,F ;↔∆

b Q.

Proof. Let G be an X-closed process expression, and suppose that G[µX.E/X]
α−→ P; we

proceed by induction on a derivation of this transition. By Lemma 3.2.2 there are two
cases: either the transition under consideration stems directly from G, i.e., there exists a G′

such that G
α−→ G′ and P = G′[µX.E/X], or X is exposed in G, µX.E

α−→ P and every

derivation of G[µX.E/X]
α−→ P has a derivation of µX.E

α−→ P as a subderivation.

In the first case, we have G[µX.F/X]
α−→ G′[µX.F/X] and P = G′[µX.E/X] RE,F

G′[µX.F/X] by Lemma 3.2.1, so, since ↔∆
b is reflexive, also P RE,F ;↔∆

b G′[µX.F/X].

In the second case, since the considered derivation of the transition G[µX.E/X]
α−→ P

has a derivation of µX.E
α−→ P as a subderivation, and the last rule applied in this

subderivation must be rule 2, it follows that the considered derivation of G[µX.E/X]
α−→ P

has a derivation of E[µX.E/X]
α−→ P as a proper subderivation. So by the induction

hypothesis there exists a Q such that E[µX.F/X]
α−→ Q and P RE,F ;↔∆

b Q. Furthermore,

since E ↔∆
rb F, whence E[µX.F/X]↔∆

rb F[µX.F/X], it follows that there exists an R such

that F[µX.F/X]
α−→ R and Q ↔∆

b R. It follows from F[µX.F/X]
α−→ R that µX.F

α−→ R.

Since X is exposed in G, Lemma 3.2.1 yields G[µX.F/X]
α−→ R. From P RE,F ; ↔∆

b Q

and Q ↔∆
b R it follows that P RE,F ;↔∆

b R.

As an immediate corollary to Lemma 3.12 we get that if E ↔∆
rb F, then RE,F satisfies the

first condition of rooted divergence-preserving branching bisimulations up to ↔∆
b .

Corollary 3.13. RE,F satisfies condition (U1) of Definition 3.10.

With a little more work, Lemma 3.12 can also be used to derive that RE,F satisfies the

second condition of rooted divergence-preserving branching bisimulations up to ↔∆
b . To this

end, we first prove the following lemma.

Lemma 3.14. Let P and Q be closed process expressions. If P RE,F ;↔∆
b Q and P

α−→ P′,

then there exist Q′ and Q′′ such that Q−�Q′′
(α)−→ Q′, P RE,F ;↔∆

b Q′′ and P′ RE,F ;↔∆
b Q′.
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Proof. Suppose that P RE,F ; ↔∆
b Q and P

α−→ P′. Then there exists an R such that

P RE,F R ↔∆
b Q, and according to the definition of RE,F there exists an X-closed process

expression G such that either P = G[µX.E/X] and R = G[µX.F/X] or P = G[µX.F/X]
and R = G[µX.E/X]. Without loss of generality we assume that P = G[µX.E/X] and R =
G[µX.F/X]. By Lemma 3.12, there exists an R′ such that R

α−→ R′ and P′ RE,F ;↔∆
b R′.

Hence, since R ↔∆
b Q, there exist Q′ and Q′′ such that Q −�Q′′

(α)−→ Q′, R ↔∆
b Q′′ and

R′ ↔∆
b Q′. It follows that P RE,F ; ↔∆

b Q′′ and P′ RE,F ; ↔∆
b Q′, so the proof of the

lemma is complete.

Using that P RE,F Q implies P RE,F ; ↔∆
b Q by reflexivity of ↔∆

b , and applying

Lemma 3.14 by induction on the length of a transition sequence that gives rise to P−�P′′
α−→

P′, it is straightforward to establish the following corollary.

Corollary 3.15. RE,F satisfies condition (U2) of Definition 3.10.

It remains to establish that RE,F satisfies the third condition of rooted divergence-

preserving branching bisimulations up to ↔∆
b .

Lemma 3.16. Let G and H be X-closed process expressions such that G ↔∆
b H. If there

exists an infinite sequence of closed process expressions (Pk)k∈ω such that G[µX.E/X] = P0

and Pk
τ−→ Pk+1 for all k ∈ ω, then there also exists an infinite sequence of closed process

expressions (Q`)`∈ω and a mapping σ : ω → ω such that H[µX.F/X] = Q0, Q`
τ−→ Q`+1,

and Pσ(`) RE,F ;↔∆
b Q` for all ` ∈ ω.

Proof. Suppose that there exists an infinite sequence of closed process expressions (Pk)k∈ω
such that G[µX.E/X] = P0 and Pk

τ−→ Pk+1 for all k ∈ ω. By Corollary 3.4 there is an
infinite sequence of X-closed process expressions (Gk)k∈ω such that Pk = Gk[µX.E/X]

and either Gk
τ−→ Gk+1 or E

τ−→ Gk+1 for all k ∈ ω. We shall define simultaneously, by
induction on `, an infinite sequence of X-closed process expressions (H`)`∈ω with H0 = H

and H`[µX.F/X]
τ−→ H`+1[µX.F/X], and a mapping σ : ω → ω, such that Gσ(`) ↔∆

b H`.

This will suffice, because, for all ` ∈ ω, defining Q` as H`[µX.F/X] we obtain Q`
τ−→ Q`+1

and Pσ(`) = Gσ(`)[µX.E/X] RE,F Gσ(`)[µX.F/X]↔∆
b H`[µX.F/X] = Q`.

Suppose, by way of induction hypothesis, that H` and σ(`) have been defined already,
such that Gσ(`) ↔∆

b H`. By Corollary 3.4 there are two cases:

(1) Gσ(`)+k
τ−→ Gσ(`)+k+1 for all k ∈ ω. Then, since Gσ(`) ↔∆

b H`, by Corollary 3.8.3 there

exists an X-closed process expression H′ such that H`
τ−→ H′ and Gσ(`)+k ↔∆

b H′ for

some k ∈ ω. We define H`+1 = H′ and σ(` + 1) = σ(`) + k. Now H`[µX.F/X]
τ−→

H`+1[µX.F/X] by Lemma 3.2.1 and Gσ(`+1) ↔∆
b H`+1.

(2) There is a k ∈ ω such that Gσ(`)+i
τ−→ Gσ(`)+i+1 for all i < k, X is exposed in Gσ(`)+k

and E
τ−→ Gσ(`)+k+1. Then, since Gσ(`) ↔∆

b H`, by Corollary 3.8.1 and by induction
on i there exists a sequence H′0, . . . ,H

′
m and a mapping ρ : {0, . . . ,m} → {0, . . . , k}

with ρ(m) = k such that H` = H′0
τ−→ · · · τ−→ H′m and Gσ(`)+ρ(j) ↔∆

b H′j . Using

Corollary 3.8.2, we may furthermore assume that X is exposed in H ′m.

If m > 0, then we define H`+1 = H′1 and σ(`+1) = σ(`)+ρ(1). Now H`[µX.F/X]
τ−→

H`+1[µX.F/X] by Lemma 3.2.1 and Gσ(`+1) ↔∆
b H`+1.

So it remains to consider the case that m = 0. Since E ↔∆
rb F, there exists, by

Corollary 3.9, an X-closed process expression F′ such that F
τ−→ F′ and Gσ(`)+k+1 ↔∆

b
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F′. We now define H`+1 = F′ and σ(` + 1) = σ(`) + k + 1. We then have that
Gσ(`+1) = Gσ(`)+k+1 ↔∆

b H`+1, and F[µX.F/X]
τ−→ H`+1[µX.F/X] by Lemma 3.2.1.

So µX.F
τ−→ H`+1[µX.F/X] by rule 2, and Lemma 3.2.1 yields H`[µX.F/X]

τ−→
H`+1[µX.F/X], using that X is exposed in H`.

From Lemma 3.16 with G = H we immediately get the following corollary.

Corollary 3.17. RE,F satisfies condition (U3) of Definition 3.10.

The relation RE,F is symmetric by definition and we have now also proved that it
satisfies conditions (U1), (U2) and (U3), so we have established the following result.

Corollary 3.18. RE,F is a rooted divergence-preserving branching bisimulation up to ↔∆
b .

3.3. The main results. We can now establish that↔∆
rb is compatible with α., µX. and +.

Proposition 3.19. If E ↔∆
rb F, then α.E ↔∆

rb α.F for all α ∈ Aτ , E +H ↔∆
rb F +H and

H + E ↔∆
rb H + F for all process expressions H, and µX.E ↔∆

rb µX.F.

Proof. To prove that ↔∆
rb is compatible with α. and + is straightforward. (First, establish

the property for closed terms, and then use that substitution distributes over α. and +.)
It remains to prove that ↔∆

rb is compatible with µX. , i.e., that E ↔∆
rb F implies

µX.E ↔∆
rb µX.F. Note that in the special case that E and F are X-closed this immediately

follows from Corollary 3.18 and Proposition 3.11. Now, for the general case, let E and F be

process expressions and suppose that E ↔∆
rb F. Let X,~Y be a sequence of variables that at

least includes the variables with a free occurrence in E or F, and such that X does not occur
in ~Y. Then, according to the definition of ↔∆

rb on process expressions with free variables
(Definition 2.7), we have that, for every closed process expression P and for every sequence

of closed process expressions ~P of the same length as ~Y , E[P, ~P/X, ~Y] ↔∆
rb F[P, ~P/X, ~Y].

So, clearly, also E[~P/~Y]↔∆
rb F[~P/~Y], and since E[~P/~Y] and F[~P/~Y] are X-closed, it follows

that µX.E[~P/~Y] ↔∆
rb µX.F[~P/~Y]. Since X is not among the ~Y, we may conclude that

(µX.E)[~P/~Y] ↔∆
rb (µX.F)[~P/~Y] for every sequence of closed process expressions ~P of the

same length as ~Y, and hence µX.E ↔∆
rb µX.F.

We have now obtained our main result that ↔∆
rb is a congruence. In fact, it is the coarsest

contained in ↔∆
b .

Theorem 3.20. The relation ↔∆
rb is the coarsest congruence contained in ↔∆

b .

Proof. By Propositions 2.6 and 3.19, the relation ↔∆
rb is a congruence. To prove that it is

the coarsest, it suffices to prove that for every relation R ⊆ ↔∆
b that is compatible with

+ we have that R ⊆ ↔∆
rb. Let P and Q be closed process expressions, and suppose that

P R Q.
Since by Proposition 3.5 the set of closed process expressions reachable from P and Q is

finite and A is non-empty, there exists a natural number n ∈ ω such that for all R reachable
from P or Q it holds that R 6↔∆

b an. This implies that for all R′ reachable from P or Q it

holds that R′ 6↔∆
b P + an+1 and R′ 6↔∆

b Q + an+1; for suppose that, e.g., there exists R′

reachable from P or Q such that R′ ↔∆
b P + an+1, then, since P + an+1 a−→ an, we have

that an is reachable from P or Q.
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SinceR is compatible with +, we have that P+an+1 R Q+an+1, and hence P+an+1 ↔∆
b

Q + an+1. To prove (R1), suppose that P
α−→ P′. Then P + an+1 α−→ P′, so by Lemma 2.2

there exist closed process expressions Q′ and Q′′ such that Q + an+1 −� Q′′
(α)−→ Q′,

P + an+1 ↔∆
b Q′′ and P′ ↔∆

b Q′. Since a 6= τ , we have that Q′′ = Q + an+1, for otherwise

Q′′ is reachable from Q and Q′′ ↔∆
b P + an+1. Moreover, Q′′

α−→ Q′, for otherwise

P′ ↔∆
b Q′ = Q′′ = Q + an+1. Condition (R2) follows by symmetry.
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