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ARTICLE

Complex small-world regulatory networks emerge
from the 3D organisation of the human genome
C. A. Brackley 1, N. Gilbert 2, D. Michieletto1,2, A. Papantonis3, M. C. F. Pereira1, P. R. Cook 4 &

D. Marenduzzo 1✉

The discovery that overexpressing one or a few critical transcription factors can switch cell

state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide

association studies (GWAS) point to complex phenotypes being determined by hundreds of

loci that rarely encode transcription factors and which individually have small effects. Here,

we use computer simulations and a simple fitting-free polymer model of chromosomes to

show that spatial correlations arising from 3D genome organisation naturally lead to sto-

chastic and bursty transcription as well as complex small-world regulatory networks (where

the transcriptional activity of each genomic region subtly affects almost all others). These

effects require factors to be present at sub-saturating levels; increasing levels dramatically

simplifies networks as more transcription units are pressed into use. Consequently, results

from GWAS can be reconciled with those involving overexpression. We apply this pan-

genomic model to predict patterns of transcriptional activity in whole human chromosomes,

and, as an example, the effects of the deletion causing the diGeorge syndrome.
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Transcription—the copying of DNA into RNA—is tightly
regulated. Early insights into regulatory mechanisms came
from work on binary on/off genetic switches controlled by

one or just a few transcription factors such as the lambda and lac
repressor in Escherichia coli1. Similar regulatory mechanisms are
present in eukaryotes, albeit with additional complexity. For
instance, a fibroblast cell can be reprogrammed into a muscle cell
by a single master regulator (MYOD)2,3 or into pluripotent stem
cells by four Yamanaka factors (Oct4, Sox2, c-Myc, Klf4)4.

Genome-wide association studies (GWAS) lead to quite a dif-
ferent view: gene regulation is widely distributed and involves
interactions between hundreds (perhaps thousands) of loci scat-
tered around the genome5,6. GWAS allow quantitative trait loci
(QTLs) affecting any measurable genetic trait to be ranked in an
unbiased way. With complex traits like human height, and dis-
eases such as schizophrenia and type II diabetes, the top ten QTLs
in the rank order combine to yield only modest effects, while the
top one-hundred still account for less than half of the total genetic
effect. Hundred more QTLs are expected to be identified as sample
sizes and data resolution improve5–7. Expression QTLs (eQTLs)
are QTLs affecting transcription of other DNA regions. Perhaps
surprisingly, these are rarely found in genes encoding transcrip-
tion factors or other proteins; instead, they usually involve single-
nucleotide changes in non-coding elements that bind transcription
factors such as active enhancers and promoters8–10.

Results from GWAS lead to the view that most gene-regulatory
networks are incredibly complex, with the activity of a given gene
being affected by a panoply of eQTLs, each having a tiny effect.
This is captured by the “omnigenic” model, which is based on a
set of gene-interaction equations5,6 such that the activity of
almost any gene affects that of almost every other one. This
model provides a useful and appealing framework to view GWAS
results. However, it is difficult to compare its outputs with
experimental data because it contains many parameters that are
currently unknown and require fitting to training datasets.

In general, existing models for gene regulation traditionally
assume post-transcriptional and biochemically mediated inter-
actions between different genes11,12, and disregard the role of
three-dimensional (3D) chromatin structure. Here we propose an
alternative but complementary framework that links transcrip-
tional regulation directly to 3D genome structure, deliberately
neglecting downstream biochemical regulation to enable unam-
biguous interpretation of our results. This framework is moti-
vated by experiments showing that chromatin folding can lead to
contacts between enhancers and promoters affecting transcrip-
tion, and that 3D structure changes in disease13,14. Additionally,
because our modelling is essentially fitting-free, its output can be
directly compared to experiments. When the agreement is good,
our model is validated; when poor, it points to some missing
ingredient (such as biochemical feedback) that could be included
in future models.

We use stochastic computer simulations of a polymer model
for chromosome organization, in which a chain of beads repre-
sents a chromatin fibre, and a set of spheres complexes of tran-
scription factors and RNA polymerases—which we will call “TFs”
for short. Some chromatin beads are identified as transcription
units (TUs), and we call them TU beads. They contain binding
sites for TFs, and can be sites of transcriptional initiation (we do
not discriminate between genic and non-genic promoters). As a
simple starting point we only consider one type of TF that binds
specifically and multivalently to TU beads, and non-specifically
(i.e., with weak affinity) to every other bead. We perform 3D
Brownian dynamics simulations that evolve the diffusive
dynamics of the chain and associated factors. We previously
showed that similar polymer models yield structures resembling
those seen using chromosome–conformation–capture (3C)15–19

and microscopy20. Here, we link 3D structure to expression and
transcriptional dynamics by measuring how often a TU bead is
transcribed—which we do by computing the fraction of time it
binds a TF. To establish the methodology, we model a 3Mbp
chromatin fragment, before going on to simulate whole human
chromosomes.

Our simulations capture many features of eukaryotic regula-
tion. For example, transcription is stochastic and bursty (in
agreement with single-cell transcriptomics data), and the pre-
dicted pattern of transcriptional activity in human chromosomes
correlates significantly with that observed experimentally. We
also find that small-world (percolating) networks that encapsulate
much of the rich complexity observed in GWAS emerge through
spatial effects alone. In other words, the activity of most (probably
all) TUs in our model is affected by the activity of most (probably
all) other segments in the genome. We find such pan-genomic
regulation critically requires non-saturating concentrations of TFs
—as normally found in vivo—and that increasing concentrations
dramatically simplifies the networks. This enables us to reconcile
the GWAS-based view that regulatory networks are complicated
with the observation that overexpressing one or a few TFs can
decisively alter cell state.

Results
We first consider a simple system where a 3Mbp chromatin
fragment is represented by a chain of 1000 beads (each 30 nm in
diameter, and corresponding to 3 kbp). We select at random
N= 39 beads and identify them as TUs (Fig. 1a; see “Methods”
and Supplementary Note 1 for more details). The linear density of
TUs in the fragment is similar to that in human chromosome 22.
Additionally, n spheres (also 30 nm in diameter) represent TFs
(recall these are complexes of transcription factors and RNA
polymerase II). TFs bind reversibly to TUs via a strong attractive
interaction, and to all other beads weakly and non-specifically. An
important feature is that TFs switch between active (binding) and
inactive (non-binding) state at rate α. Many factors switch like
this in vivo (e.g., due to phosphorylation and de-phosphoryla-
tion), and switching is required to account for the rapid exchange
of factors and polymerases between bound and free states seen in
live-cell photobleaching experiments21. As ~7 out of 8 poly-
merases attempting to initiate at promoters dissociate with a half-
life of ~2.4 s22, our complexes generally behave like those in vivo.

While our results refer to a single patterning of TUs along the
fibre, they are representative of any arbitrary random positioning
of TUs: in other words the qualitative trends we present below are
robust and do not depend on the particular choice of the 1D
pattern of TUs along the fibre in any way.

We say a TU bead is transcribed whenever a TF lies close to it
(see “Methods”), and the transcriptional activity of a TU is then
the fraction of time it is transcribed during a simulation. To
reflect the situation in mammalian cells (Supplementary Note 3
and ref. 23), we typically assume there are fewer TFs than TU
beads (i.e., n= 10 TFs in the active binding state at any time,
compared to 39 TUs).

By interrogating TF-chromatin interactions at regular time
intervals over hundreds of simulations, we build up a population
picture of transcription. A typical configuration of the 3Mbp
fragment is shown in Fig. 1B. Strikingly, bound TFs sponta-
neously cluster, despite there being no attractive interactions
between TUs or between TFs. Such clustering is driven by the
“bridging-induced attraction”16,24,25 that arises due to a positive
feedback: when a TF forms a molecular bridge between two
chromatin regions and forms a loop, the local chromatin con-
centration increases, making further TF binding more likely.
Clusters then grow until limited by entropic costs of crowding
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(Fig. S1A). Most of the non-trivial phenomena described below
result from such clustering. Clustering requires TF multivalency,
as monovalent factors do not cluster24. However, the assumption
of multivalency, which is common in the polymer physics
literature15, is well-founded. Several TFs are known to be bivalent
or multivalent26, and, more importantly, our spheres represent
complexes of TFs and polymerases, so they will behave as mul-
tivalent binders even when the individual TFs in the complex are
monovalent. Although clustering does not require any interac-
tions between TFs, adding a weak attraction between them, as
might arise for instance due to macromolecular crowding or
electrostatic interactions between intrinsically disordered regions,
should not qualitatively change any of the results discussed here
(at least as long as TFs still microphase separate into clusters
rather than undergoing macroscopic phase separation).

The clusters we observe, and which emerge through the
bridging-induced attraction, are qualitatively similar to those seen
in vivo, which are variously described as transcriptional com-
partments, hubs, super-enhancer (SE) clusters, phase-separated
droplets/condensates, and factories7,10,27–29. They are also similar
to the contact domains seen in microC30, which are formed by

accessible DNA sites clustering together in 3D space. Clustering
arising through the bridging-induced attraction has recently been
found in vitro for systems of DNA and cohesin (which binds
multivalently to DNA)31.

Transcriptional activity varies along the chromatin fibre and is
highly stochastic. As TFs have the same affinity for all TUs, one
might expect each TU to be bound with equal likelihood; how-
ever, transcriptional activity (the fraction of time a TU is tran-
scribed) varies from ~10–90% (Fig. 1C). What causes this
variation? As TF copy number is limiting, and as bound TFs
cluster, most transcription occurs in clusters—as is the case
in vivo7,32–34. Since TUs are positioned irregularly along the
fragment, some have closer neighbours in 1D sequence space
than others, and these are inevitably the ones most likely to
cluster and be transcribed. Instead, those far from their neigh-
bours are less likely to cluster and are less active. Accordingly, the
transcriptional activity of a TU anticorrelates with distance to the
nearest TU along the fibre (Fig. S1B; the Spearman correlation is
r≃−0.94, p value p < 10−12).

Fig. 1 Patterns of transcriptional activity. A Schematic of the model. Twenty TFs (pink) that switch between on/off states at rate α= 10−5τ�1
B (with τB the

Brownian time, see “Methods”) or 0.001 s−1 bind specifically to 39 TUs (red beads) randomly positioned along the chain, and non-specifically to other
beads (blue). A TU is considered transcriptionally active if associated with a TF. B Example conformation (TFs not shown). Some beads cluster and form
loops; one TU not in a cluster (and not transcribed) is green, and another that is in a cluster (and transcribed) is yellow. Inset: zoom of boxed region.
C Transcriptional activity for each TU bead averaged over 1000 simulations (each lasting 105τB). TUs are grouped according to activity, with red, green, and
blue bars showing high (>70%), medium (20–70%) and low (<20%) activity, respectively. This gives a population-level measure of activity. D Variation of
activity across simulations (reflecting cell-to-cell variation) for three representative TUs with high (red), medium (green), or low (blue) average activity
(defined as in C).
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While Fig. 1C pertains to population averages of 1000 simula-
tions, it is informative to consider each simulation independently
(as in single-cell transcriptomics). Such analysis shows that
transcriptional activity is stochastic, varying substantially from
simulation to simulation: a TU active in some simulations may be
silent in others (Fig. 1D).

Transcriptional bursting. During a simulation, chromatin con-
formation can change dramatically (Fig. 2A). Such changes often
yield transcriptional “bursts”—periods of continued activity fol-
lowed by silent periods (Fig. 2B)—as TUs with intermediate levels
of activity repeatedly join a cluster to give a burst and then dis-
sociate. Notably, TUs lying close to each other in sequence space
often start and stop bursts coordinately due to the intrinsic
positive feedback in the system (Fig. S1A).

These results are consistent with experimental observations:
single cell Hi-C35 and transcriptomics36 show that the structure
and function of each individual cell is unique, and bursting is well
documented37–40 with nearby promoters often firing together38.

Local chromatin architecture creates small-world percolating
transcription networks. To investigate correlations between
transcriptional activities of different TUs, we compute the Pear-
son correlation matrix between the activities of all possible TU
pairs, and identify an emergent regulatory network in which TUs
form nodes (Figs. 3A and S2). Specifically, we draw an edge
between two TUs whenever there is a statistically significant
positive or negative correlation between their transcriptional
dynamics (Fig. 3A). This network arises only due to spatial
interactions, as we assume no underlying biochemical regulation.

The network shows a striking property. With n= 10 active
TFs, most nodes are connected (Fig. 3Aii), and the fraction of
TUs participating in the largest connected component is close to
1 (Fig. 3B). Such a network is said to be “percolating”, which

means that any two nodes are connected by a path along edges.
Our percolating networks are also “small-world”, which means
that most nodes can be reached from every other node by a small
number of steps41—we provide quantitative measurements of the
small world-ness of our networks in the SI (Supplementary
Note 4). The small-world phenomenology is consistent with the
multitude of small-effect eQTLs detected by GWAS5,6. Notably,
the regulation we observe acts at the transcriptional level, and not
post-transcriptionally as envisaged by the omnigenic model5,6.

How might our simple model give rise to complex regulatory
networks? By analysing simulation trajectories, we noted that TUs
lying near each other in 1D sequence space often joined the same
cluster in 3D. As a result, the activity of these clustered beads is
highly positively correlated. At the same time, cluster formation
sequesters TFs and so reduces the likelihood that another cluster
forms elsewhere. As a result, most long-range correlations are
negative (Fig. 3A).

Crucially, these network properties depend on there being a
low TF copy-number (as in vivo23) so TU beads do not become
saturated. We therefore reasoned that increasing copy number
should suppress correlations as more rarely transcribed TUs are
pressed into use. Indeed, increasing n reduces long-range negative
correlations (Fig. 3Aiii,iv), and the fraction of nodes in the
largest-connected component falls (Fig. 3B). Another way to
think about this result is: if resources are plentiful, there is no
need for sharing or competition, and all TUs can bind a TF
independently of each other. If TFs do not switch and are
permanently in the binding state (and n= 10), the network
becomes even more highly connected (Fig. 3Ai).

Modelling effect of mutations and SNPs in regulatory ele-
ments. GWAS reveals that single-nucleotide polymorphisms
(SNPs) in regulatory elements and TUs can lead to many small
changes in transcriptional activity across the genome. To model

Fig. 2 Transcriptional bursting. A Snapshots showing a 100-bead section of the simulated chain taken at different times. Initially, none of the 5 TUs (red)
are in clusters and they are all inactive; later, 4 TUs join a cluster and are close to TFs—and so are transcribed. B Kymograph where each row shows the
changing transcription state of one TU during a simulation; pixels are colored red if the bead is associated with a TF and so transcribed, or black otherwise.
White rectangle: example of bursts.
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this, we abrogate TF binding to one TU in the chain. Bead 930 is
chosen first because it is usually highly active (Fig. 1C). This
single “knock-out” affects in a statistically significant way the
activity of almost half of the other TUs, both near and far away in
sequence space (Fig. 4Aii). The immediately adjacent TU (i.e.,
bead 931) is down-regulated the most, while more distant ones
are up-regulated (due to loss of a strong competitor). This knock-
out also rewires the whole network, even though it still retains its
small-world character (Fig. 4Aiii). Both positive and negative
interactions are affected along the whole chain, as shown by a
heat map of the change in Pearson correlation between TU
transcriptional activities (Fig. 4Aiv).

We next systematically knock out each TU in turn. To quantify
global effects, we define a “transcriptional difference” between the
wild type and each knock-out based on a standard Euclidian-
distance metric (SI, Supplementary Note 2); the larger this
quantity, the more different the two states are. This difference
varies >10-fold between different mutations (Fig. 4Bi).

Together, these observations are reminiscent of the behaviour
of SNPs and eQTLs. Thus, each TU mutant can be seen as a SNP
underlying an eQTL; then, those with low and high transcrip-
tional differences (Fig. 4Bi,ii) are low- and high-effect eQTLs
(low-effect mutants are often isolated in sequence space), and
those with wide effects (e.g., bead 930 in Fig. 4A) may be viewed
as omnigenic.

Modelling loops, heterochromatin and euchromatin. In mam-
malian genomes, promoter-enhancer pairs are often contained in
loops stabilized by cohesin and the CCCTC-binding factor
(CTCF)42–44. To investigate how such loops might affect

transcription, we incorporated eight permanent and non-
overlapping loops at different positions in the chain (Fig. 5A,
loops a–h). In reality, such loops may arise from extrusion by
cohesin halted at convergent CTCF loops42. Our assumption of
stable, permanent loops is quantitatively accurate in the limit in
which the interaction between cohesin and CTCF is strong and
long-lived. However, we expect the trends to be qualitatively
similar for more transient loops consistent with the loop extru-
sion model as in refs. 19,43.

The inclusion of stable loops has subtle effects. For example,
loop h encompasses three TUs (beads 905, 907, 930), and
expression of one is slightly boosted compared to the unlooped
case (Fig. 5B, C). This is consistent with the idea that looping
switches on some genes during development45, and can increase
enhancer–promoter interactions46,47. However, up-regulation
requires appropriate positioning of a TU within the loop. For
instance, loop d encompasses two TUs (beads 396 and 404), and
has no effect on their activity. Broadly speaking, looping up-
regulates activity, but not invariably so, and—perhaps surprisingly
—two of the three most up-regulated TUs (beads 33 and 886) are
not contained in loops (Fig. 5C). Looping also extensively rewires
the regulatory network (Fig. 5D, E). Globally, the increase in
activity is modest, as incorporating all beads into closely packed
loops only increases total activity by ~10%, with—once again—
some TUs being down- as well as up-regulated (Fig. S3). This is
consistent with experiments showing that the interplay between
looping and expression is complex48 but slight (e.g., knocking
down human cohesin leaves expression of 87% genes unaffected,
with global levels changing <30%49).

In simulations thus far, TFs bind strongly to TU beads, and
weakly to all others to model binding to open euchromatin19,50. To
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Fig. 3 Regulatory networks formed by TU beads are percolating at low TF concentrations. Simulations (as Fig. 1, with ≥800 simulations/condition) with
different average numbers of active TFs (n) and switching rate (α). Networks were constructed by calculating the Pearson correlation between the
transcription time series for all pairs of TUs; nodes represent each of the 39 TUs and edges are placed between nodes where there is a significant
correlation (>0.15 in absolute value, corresponding to p < 10−6; two-sided Student’s t-test). A Effect of TF concentration and switching. Thirty-nine nodes
are shown around the perimeter, and thick black and grey lines denote positive and negative correlations between transcriptional activities of bead pairs.
B Effect of n on the fraction of nodes in the largest connected component.
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investigate the effects of heterochromatin—which binds few TFs,
carries few histone marks51, and is gene poor and traditionally
viewed as transcriptionally inert—we perform simulations where
four of the most-active TUs (905, 907, 930, and 931) are embedded
in a non-binding segment (running from bead 901–940). This has a
dramatic effect (Fig. 6A–C): the activity of the TU beads now
embedded in the non-binding island are at least halved, some
nearby neighbors are down-regulated, and more distant ones up-
regulated (again due to a reduction in competition; Fig. 6B, C). The
regulatory network is also rewired (Fig. 5D, E).

Just as embedment in a non-binding segment down-regulates a
TU bead, embedment in a weak-binding (euchromatic) one up-
regulates it (Fig. S4). This shows our model effectively captures
position effects where the local chromatin context strongly
influences activity52.

Modelling a whole human chromosome. We next model a
whole mid-sized human chromosome (HSA 14, length 107 Mbp;

Fig. 7A) in a well-characterized and differentiated diploid cell
(HUVEC, human umbilical vein endothelial cell). Now, multi-
valent and switchable TFs (20% active at any moment) at a non-
saturating concentration bind to a string with 35784 beads. As
chromosome territories are often ellipsoidal, simulations
are performed in an ellipsoid of appropriate size7,53; conse-
quently, chromatin density is now higher than in simulations
detailed above, with volume fractions comparable to those in vivo
(~14%).

Chromatin beads are classified using DNase-hypersensitity
data and ChIP-seq data for H3K27ac. DNase-hypersensitive sites
(DHS) are excellent markers to locate promoters and enhancers
(and so TF-binding sites19,54), whereas H3K27ac modifications
strongly correlate with open chromatin19. Therefore, if the 3 kbp
region corresponding to a chromatin bead has a DHS, then that
bead is a TU; if it has H3K27ac, it is a euchromatin bead, and all
other beads are non-binding (heterochromatic). We call this the
“DHS” model. As properties of different chromatin segments
have been catalogued using “hidden-Markov models” (HMMs)

Fig. 4 Modelling SNPs and eQTL action. Sets of simulations (≥800 simulations/condition) where each of the 39 TU beads is made non-binding in turn (to
represent 39 different SNPs in regulatory elements) are compared with those with the "wild-type'' chain (as Fig. 1). A Chain with mutant (non-binding) TU
bead 930. (i) Snapshot. TFs not shown (inset: same structure without blue beads). (ii) Transcriptional rates of the 17 TUs with significantly different values
in mutant fibre compared with the wild-type one (p≃ 0.046; two-sided Student’s t-test). (iii) Regulatory network inferred from the matrix of Pearson
correlations between activities of TUs. (iv) Change in Pearson correlation between TUs. B Results from simulations where each TU bead is mutated in turn,
and the “transcriptional difference” from the wild type (see text and Supplementary Note 2) determined. (i) Transcriptional difference versus position along
the chain. (ii) Positive correlation of transcriptional difference with TU activity in wild type. The plot shows that if we mutate a TU with high transcriptional
activity, this leads to a larger difference.
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applied to many data sets51, we alternatively classify beads
according to HMM state; we call this the “HMMmodel” (Fig. S5).
For more details, see Supplementary Note 3.

Simulations using the DHS model again yield clusters enriched
in TUs and TFs (Fig. 7B). As before, aggregating data from many
simulations allow determination of transcriptional activities of
every bead, which we compare with those of corresponding
regions determined experimentally55 by GRO-seq (global run-on
sequencing56); activities of all 3 kbp regions are ranked from high
to low, binned into quintiles, and compared. In Fig. 7C, squares
near the diagonal from bottom-left to top-right have high ranks
(shown as red and yellow) compared to those off-diagonal (blue
and purple) indicating good concordance between simulations
and data. A specific sub-set of beads corresponding to SEs—
which are highly active in vivo57—are also highly active in
simulations (shown as white dots concentrated at top right). Plots
showing the rank of transcriptional activities in simulations and
experiments in selected genomic regions are shown in Fig. S6.
Simulations yield patterns qualitatively closer to those obtained
with GRO-seq than those given by poly(A)+ RNA-seq, as the
latter only include genic transcription. Concordance between
results from simulations and GRO-seq is confirmed by the
Spearman rank correlation (~0.38 for all beads; p < 10−12; this
measure is used because it is less sensitive to outliers; Fig. 7D).
Restricting analysis just to TUs provides a more stringent

comparison (as all TUs bind TFs with equal affinity); it still
yields a significant correlation (r≃ 0.32, p < 10−12; Fig. 7D). As
neighbouring high-affinity regions tend to have roughly similar
transcriptional rates in both simulations and data, we also average
rates found in active “patches” (contiguous sets of beads which
are either all TUs or all labelled as euchromatin), but found this
has no significant effect (Fig. 7D). Concordance was confirmed
using our HMM model (Fig. 7D, right, and Fig. S5). Adding
cohesin-mediated looping to simulations involving the DHS
model did not significantly change agreement with experimental
data (e.g., for TUs only, r≃ 0.33, p < 10−12). Similar agreement
with GRO-seq data was obtained from simulations applied to the
H1 human embryonic stem-cell line (for TUs using the DHS
model, r≃ 0.29, p < 10−12), and to the GM12878 cell line (DHS
model, r≃ 0.33, p < 10−12).

As in the chromosome fragment simulations (Fig. S1B), the
transcriptional activity of a TU in our model anticorrelates with
the distance to the nearest TU. In our HSA14 simulations, the
presence of heterochromatin slightly reduces the absolute value of
the correlation, which however remains highly significant
(Spearman correlation r≃−0.83, p < 10−12). Interestingly, the
experimental GRO-seq signal of a DHS also anticorrelates with
the distance to the nearest DHS in a significant way, although
more weakly than in simulations (Fig. S7; over the whole genome
the Spearman correlation is r ~−0.23, p < 10−12).

Fig. 5 Looping subtly affects transcriptional activity. Results of two sets of simulations are compared; one set as Fig. 1, in the other the chain contains
eight permanent loops (to represent convergent loops stabilized by cohesin/CTCF). A Snapshot (beads within loops are magenta; TFs not shown; inset—
same structure with only TUs shown). B Average transcriptional activity for each TU in the looped chain (magenta bars—values for TUs in loops; magenta
arcs—loop positions). C Comparison between activity in wild type and looped configuration for the 25 TUs with significantly different values in the two sets
(p≃ 0.003; two-sided Student’s t-test). D Regulatory network inferred from the matrix of Pearson correlations between expression levels of TUs (as
Fig. 3A). E Change in Pearson correlation between TUs due to loops.
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Networks inferred from simulations are qualitatively similar to
experimental ones. Regulatory networks emerging from our
whole-chromosome simulations are again small-world and highly
connected (Fig. S8 and Supplementary Note 4). To facilitate
comparison with previous results, we select four segments of
HSA14 that have the same length as the one considered in Fig. 3
(i.e., 3 Mbp), and roughly the same density of TUs; all four seg-
ments again have highly connected components (compare Fig. S8
and Fig. 3). However, patterns in real chromosomes and artificial
fragments are quite different. In HSA14 networks, there are more
positive interactions between sets of adjacent TUs and other sets
that are >10 beads distant in sequence space (black lines across
the middle of circles in Fig. S8).

Whole-chromosome networks also have the following statis-
tical properties. First, their node-degree distribution decays
exponentially (Fig. S9A)—as found in gene networks58 but not
in transcription factor interaction networks, which are often
scale-free59. Second, they are modular (as clusters arising due to
the bridging-induced attraction are the basic co-regulated

building blocks)—again as found in gene58 and eQTL60 networks.
[Modularity is apparent from the blocks visible in the correlation
matrices, such as in Fig. S2.] Third, node degree broadly
correlates with transcriptional activity (Spearman correlation
0.59, p value < 10−12)—as in gene coregulation networks58.

Contact maps found by simulations are qualitatively similar to
Hi-C. We previously showed16 that simulations involving two
different TFs (binding to active and inactive regions, respec-
tively) yield contact maps much like those found with Hi-C42.
Therefore, we expected the present simulations to reflect Hi-C
data poorly as they involve only one TF binding to the minor
(i.e., active) fraction of the genome, so contacts made by this
structured minority would be obscured by those due to the
unstructured majority. Even so, simulations yield contact maps
broadly similar to those obtained by Hi-C (Fig. 7E). To measure
the agreement, we use a comparison based on contact maps
restricted to TUs as anchors—which may be considered as
equivalent to interactions obtained by promoter-capture HiC61.

Fig. 6 Neighboring heterochromatin affects transcriptional activity. Results from two sets of simulations (at least 800 runs for each condition) are
compared; one set as Fig. 1, in the other beads around TU beads 905, 907, 930, and 931 (from bead 901 to 940) are non-binding (to represent embedding
the TU beads in heterochromatin). A Snapshot with heterochromatic beads shown in gray (TFs not shown; inset—the same structure with only TUs).
B Average transcriptional activity for each TU. C Comparison of average transcriptional activity with respect to wild type for the 22 TUs with significantly
different values in the two sets (p≃ 0.003; two-sided Student’s t-test). D Regulatory network inferred from the matrix of Pearson correlations between
activities of TUs (as Fig. 3A). E Change in Pearson correlation between TUs due to heterochromatin.
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These yield good concordance (Fig. 7E; Pearson coefficient
r= 0.82; r= 0.47 when monitoring only long-range contacts
between TUs at least 300 kbp away, p < 10−6 in both cases). The
exponent with which contact probability decays with 1D distance
is ~−1.1 in experiments, and ~−0.8 in simulations (fitted for 1D
distances between ~30 kbp and 1.5 Mbp), both broadly con-
sistent with the −1 value expected for a fractal globule62. The

small discrepancy may point to our simulations slightly over-
estimating the weight of long-range contacts, perhaps because we
do not include loop extrusion.

Overall the results obtained in our HSA14 simulations show
that a simple model based on 3D chromatin organisation captures
much of the complexity in 3D structure and transcription of a
whole human chromosome.
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Modelling chromosome 22 carrying the diGeorge deletion. Our
approach can, in principle, be applied to study any chromosome
providing appropriate genomic data are available (e.g., on DNase
hypersensitivity and histone acetylation). As a proof of principle,
we studied the effect of deleting ~2.55Mbp from HSA22—an
alteration which is associated with the diGeorge syndrome
(Fig. 8A) (https://dosage.clinicalgenome.org/clingen_region.cgi?
id=ISCA-37446). This syndrome affects ~1 in 4000 people, and
the variable symptoms include congenital heart problems, fre-
quent infections, developmental delays, and learning problems.

We predict a multitude of small effects in TU activity, both
near and far away from the deletion (see the Manhattan plot in
Fig. 8Bi). In particular, most TUs are slightly up-regulated, as
fewer TUs compete for the same number of factors, and the TUs
which change the most have intermediate transcriptional
activities in the wild type (Fig. S10). The p values associated
with the change in transcriptional activities vary widely, and
comparison of the observed distribution with the null hypothesis
(indicating that changes in measured transcription are due to
random variation) shows the observed is highly enriched in small
p values (Fig. 8Bii), as is generally the case with results from
GWAS5,6. The regulatory network is also re-wired (Fig. 8C).
Results are consistent with measurements of differential gene
expressions in patients, which showed both a large number of up-
regulated and down-regulated genes63. A more quantitative
comparison between experiments and simulations would benefit
from having GRO-seq data that include non-genic transcription.

Clearly, this approach opens up a rich field of study. For
instance, while there may be processes which occur in vivo which
are not represented in our model, it could still give an indication
of the genes most likely to be affected by any chromosome
rearrangement.

Discussion
We have described a parsimonious 3D stochastic model for
transcriptional dynamics based on multivalent binding of factors
and polymerases (TFs) to genic and non-genic transcriptional
units (TUs) in a chain representing a chromatin fibre. A dis-
tinctive feature of our framework is that it is fitting-free, which
means the model is truly predictive and can provide a mechan-
istic understanding of the phenomena we observe. On the other
hand, the absence of fitting renders it challenging to obtain a fully
quantitative agreemeent between modelling and experiment.

In our simulations two types of fibres were considered: a 3 Mbp
fragment with randomly-positioned TUs, which is useful to
exemplify emerging trends, and human chromosomes 14 and 22
where TUs were appropriately positioned according to bioinfor-
matic data. Despite deliberately excluding any explicit underlying
network of biochemical regulation, our model nevertheless yields
some notable results. These depend on having a low TF copy-
number—a feature compatible with observations in vivo23. First,
since TFs bind with the same affinity to all TUs, one might expect
the latter to all be transcribed similarly, but they are not (Fig. 1).
This is largely due to inter-TU spacing; TUs lying close together

in 1D sequence space tend to be the most active (Fig. 1C) with
positively correlated dynamics reminiscent of transcriptional
bursting (Fig. 2B). This is because they often cluster into struc-
tures which are analogous to the phase-separated transcription
hubs/factories seen experimentally7,10, or to contact domains
formed by accessible DNA sites found by high-resolution map-
ping of chromatin interactions by microC30. Second, switching
off binding at any TU significantly affects the activity of many
others, both near and far away in sequence space (Fig. 4). Third,
introducing stable loops has subtle effects (Fig. 5), consistent with
the result that cohesin knock-outs and degrons lead to small
global changes in expression49, although they can be important
for inducible gene response in selected cases46. Fourth, tran-
scriptional activity of a TU is strongly affected by the local
environment in ways that are reminiscent of the silencing of a
gene by incorporation into heterochromatin52 (Fig. 6), or acti-
vation by embedment in euchromatin (Fig. S4). Fifth, the sto-
chasticity seen in individual simulations reflects that detected by
single-cell transcriptomics and single-cell Hi-C. Nevertheless, this
variability does not prevent emergence of robust phenotypes in a
cell population. Sixth, our simple fitting-free model predicts
patterns of transcriptional activity in human chromosomes that
promisingly and significantly correlate with experimental GRO-
seq data (Fig. 7). This suggests that chromatin structure sig-
nificantly constrains transcriptional activity. We hypothesise that
additional downstream biochemical regulation, not included in
our model, may provide a tool to adjust this underlying “struc-
tural” pattern of activity in a way which may be required for
appropriate biological function.

Finally, our results enable us to reconcile two conflicting sets of
data, namely that regulatory networks are both complex (as
GWAS shows that thousands of loci around the genome control
complex phenotypes5,6) and simple (as over-expressing just four
Yamanaka factors switches cell fate4). Thus, our simulations
reveal complex small-world networks of mutual up- and down-
regulation (Figs. 3 and S8), consistent with GWAS results.
However, increasing TF copy-number dramatically simplifies
network structure (Fig. 3). We suggest such a simplification
occurs when a fibroblast is reprogrammed into a pluripotent stem
cell by over-expressing the Yamanaka factors; the high factor
concentration simplifies the network so that the factors can
combine to switch the phenotype (Fig. S11).

Taken together, these results suggest the activity—or inactivity—
of every genomic region affects that of every other region to some
extent. We describe our framework as “pan-genomic” (Fig. S11).
This is reminiscent of the omnigenic model5,6 in the sense that
many loci are involved, all having small effects. However, it differs
as it provides an underlying mechanism for pangenomic effects, by
positing a direct and immediate effect of structure on regulation at
the transcriptional level, which contrasts with the non-trivial post-
transcriptional pathways envisioned by the omnigenic model.
Additionally, our pangenomic model yields a natural framework to
qualitatively understand mutually exclusive gene expression, when
switching on one gene in a family turns off all others (as in

Fig. 7 Comparison of transcriptional activities of TUs on HSA14 in HUVECs determined using simulations and GRO-seq. A Workflow (DHS model).
Simulations (244 runs) involve a chain (35,784 beads) representing HSA14, and 1700 switchable TFs confined in an ellipsoidal territory. Beads are
classified as TUs (red, strong binding), euchromatic (blue, weak binding), or heterochromatic (grey, non-binding). Transcriptional activities from
simulations are compared with those of GRO-seq data, by measuring the Spearman rank correlation. B (i) Snapshot (TFs not shown). (ii, iii) TU beads and
TFs in this configuration. C Comparison of transcriptional activities of TUs from simulations and GRO-seq (ranked from 0 to 100%, then binned in quintiles
and showed as a heat map). A scatter plot of unbinned ranks of beads corresponding to SEs are superimposed (white circles). D Comparison of
transcriptional activities from simulations (for both DHS and HMMmodels) and GRO-seq for all 3 kb regions/beads, only TUs, and only connected patches
of binding beads (see text). All correlations are significant (p < 10−6; two-sided Student’s t-test, indicated by grey lines). E (i, ii) Capture-HiC-like contact
maps obtained from simulations and experiments42 showing logarithm of number of contacts between 30 kbp bins which contain TUs.
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developing olfactory neurons64). The current model to explain this
phenomenon postulates a coupling between cis-acting up-regulation
and trans-acting down-regulation. The pangenomic networks we
find provide exactly this type of regulatory interactions (Fig. 3). Our
results are also consistent with recent experiments and mathema-
tical models showing that subtle changes in 3D structure can lead to
large changes in transcription65,66. On the other hand, it is chal-
lenging within our current model to account for local negative
feedback mechanisms leading to noise reduction or oscillations11, as
these are more likely to arise biochemically (an example is the
p53–Mdm2 system which achieves stabilisation of the cellular
concentration of p53 via a negative feedback loop67).

In conclusion, we have developed a framework that can be
applied to predict the transcriptional activity of any genomic
fragment in health or disease (Figs. 7 and 8) providing

appropriate experimental data are available. Predictive power can
be enhanced by incorporating additional TFs, and more suitable
datasets of histone marks. Other features that can improve cor-
relations between experiments and simulations are a more
accurate modelling of cohesin loop formation by loop extrusion,
and of the heteromorphic nature of chromatin19. We hope to
report on work incorporating the latter two features in the future.

Methods
Polymer modelling. We model chromatin fibres and chromosomes as bead-and-
spring polymers. A fibre has M monomers, each of size σ (corresponding to 3 kbp,
or 30 nm24), and ri denotes the position of the ith monomer in 3D space. Multi-
valent transcription factors (either active or inactive) are modelled as spheres, again
with size σ for simplicity. There are n multivalent factors in a simulation (where n
is varied systematically, see text and “Results” section for details), and N high-
affinity binding sites, which we refer to as TU (or TU beads).

Fig. 8 Modelling effects of the DiGeorge deletion in HSA22. A Workflow. Simulations (800 simulations/condition) for wild type (17,102 beads) and
deletion (16,250 beads, where wild-type beads 6305–7156 are cut, corresponding to a deletion of chr22:18,912,231–21,465,672 in hg19). [Agreement
between predicted transcriptional activity and GRO-seq in HSA22 is similar to that found for HSA14 (here, Spearman correlation is r ~ 0.29, p < 10−6; two-
sided Student’s t-test).] B (i) Manhattan plot showing �log 10(p value) as a function of genomic position along HSA22 (position given in Mbp), for changes
in TU transcriptional activities between wild type and deletion. (ii) Quantile–quantile plot showing expected versus observed values for �log 10(p value) for
the same data in (i). Expected values are computed from the normal distribution (these correspond to the null hypothesis according to which the change in
transcriptional activities in the deletion is purely due to random variation). (iii) Regulatory networks of two 3Mbp segments in chromosome 22 inferred
from the Pearson correlation matrix. Edges show positive correlations >0.12 (p= 0.0007). Segments chosen have roughly the same number of nodes in
3Mbp as the short fragment (Fig. 3Aii).
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Any two monomers (i and j) in the chromatin fibre interact purely repulsively,
via a Weeks–Chandler–Anderson potential, given by

Uij

WCA ¼ 4kBT
σ

rij

 !12

� σ

rij

 !6

þ 1
4

" #
ð1Þ

if rij < 21/6σ and 0 otherwise, where rij is the separation of beads i and j. There is
also a finite extensible non-linear elastic (FENE) spring acting between consecutive
beads in the chain to enforce chain connectivity. This is given by
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where i and j are neighbouring beads, R0= 1.6σ is the maximum separation
between the beads, and Kf= 30kBT/σ2 is the spring constant. With simulations
including permanent cohesin loops (Fig. 7 in the main text, and Supplementary
Fig. S4), neighbouring monomers and monomers forming loops interact via
harmonic, rather than FENE springs,

Uij

harmonic ¼ Kh rij � �R
� �2 ð3Þ

where i and j are neighbouring beads, Kh= 100kBT/σ2 is the harmonic spring
constant, and �R is the equilibrium spring distance. For these simulations, we use
�R ¼ 1:1σ for bonds joining neighbouring monomers along the chain, and �R ¼ 1:8σ
for bonds joining loop-forming monomers. The harmonic potential is used instead
of the FENE one to enhance numerical stability.

Finally, a triplet of neighbouring beads interact via a Kartky–Porod term to
model the stiffness of the chromatin fibre. This term explicitly reads as follows:
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where i and j are neighbouring beads, t
!

i is the tangent vector connecting beads i
to i+ 1, and ℓp is related to the persistent length of the chain: this parameter is set
to 3σ in our simulation, which corresponds to a relatively flexible fibre—the
resulting persistence length is within the range of values estimated for chromatin
from experiments and computer simulations68.

The interaction between a chromatin bead, a, and a multivalent TF, b, is
modeled through a truncated and shifted Lennard–Jones potential, given by

Uab
LJ ¼ 4ϵab
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for dab (the distance between the centres of chromatin bead and protein) smaller
than rc, and 0 otherwise. The parameter rc is the interaction cut-off; it is set to
rc= 21/6σ for inactive proteins or for active proteins and non-binding chromatin
beads (this cutoff results in a Weeks–Chandler–Anderson potential and purely
repulsive interactions), or to rc= 1.8σ for an active protein and a binding
chromatin bead (this results in an attractive interaction). In all cases, the potential
is shifted to zero at the cut-off in order to have a smooth potential. Purely repulsive
interactions are modeled by setting ϵab= kBT, while attractive interactions are
modeled using ϵab= 3kBT for active TF and low-affinity beads, and to ϵab= 8kBT
for active TF and high-affinity (TU) beads.

A TU bead (or more generally any chromatin bead in Fig. 8D in the main text)
is said to be transcribed if it is bound to a factor—i.e., if there is at least a TF whose
centre lies within a range rc= 1.8σ away from the bead centre.

The time evolution of each bead in the simulation (whether TF or chromatin
bead) is governed by the following Langevin equation:

mi
d2 r!i

dt2
¼ �∇Ui � γi

d r!i

d
t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγi

p
η!iðtÞ; ð6Þ

where Ui is the total potential experienced by bead i, mi≡m and γi≡ γ are its mass
and friction coefficient (equal for all beads in our simulations), and η!i is a
stochastic noise vector with the following mean and variance:

h η!ðtÞi ¼ 0; hηi;αðtÞηj;βðt0Þi ¼ δijδαβδðt � t0Þ; ð7Þ
where the Latin and Greek indices run over particles and Cartesian components,
respectively, and δ denotes here the Kronecker delta.

As is customary69, we set m/ξ= τLJ= τB, with the LJ time τLJ ¼ σ
ffiffiffiffiffiffiffiffiffi
m=ϵ

p
and

the Brownian time τB= σ2/D, where ϵ is the simulation energy unit, equal to
kBT, and D= kBT/γ is the diffusion coefficient of a bead of size σ. From the
Stokes friction coefficient for spherical beads of diameter σ we have that
ξ= 3πηsolσ where ηsol is the solution viscosity. One can map this to physical
units by setting T= 300 K and σ= 30 nm, as above, and by setting the viscosity
to the effective viscosity of the nucleoplasm, which is scale-dependent and
ranges between 10 and100 cP for objects of the size of our chromatin bead70.
This leads to τLJ= τB= 3πηsolσ3/ϵ ≃ 0.6–6 ms. The Brownian time τB is our unit
of time in simulations. The numerical integration of Eq. (6) is performed using a
standard velocity-Verlet algorithm with time step Δt= 0.01τB and is
implemented in the LAMMPS engine71. Protein switching is including by

stochastically changing the type of TF beads every 10,000 timesteps
(equivalently, every 100 Brownian times), with probabilities such that the
switching off rate is of α= 10−5τ�1

B , or 0.017–0.17 s−1. In simulations of the toy
model (Figs. 1–7 in the main text and Suppl. Figs. S1–S4), the switching on rate
is equal to α; in chromosome 14/22 simulations (Fig. 8 in the main text and
Suppl. Fig. S5), it is equal to α/4. Consequently, in steady state the average
number of active and inactive proteins is equal in simulations of the toy model,
whereas the average number of inactive proteins is fourfold larger than that of
active proteins in chromosome 14/22 simulations.

For more details on simulations, see Supplementary Notes 1 and 3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the current study have been
deposited in Edinburgh DataShare [https://doi.org/10.7488/ds/3110]. To compare the
predicted transcriptional activity of chromosome 14 outputted by our simulations with
experiments, we use GRO-seq data. For HUVECs, we use the datasets GEO:
GSM2486801, GSM2486802, GSM2486803. For hESCs, we use GEO: GSM1579367,
GSM1579368. Super-enhancer regions considered here are those identified in ref. 57, and
available in the dbSUPER database [http://asntech.org/dbsuper/].

Code availability
The code used for the simulation is LAMMPS, which is publicly available at https://
lammps.sandia.gov/. Custom codes written to analyse data are available from the
corresponding author upon request, or they can be downloaded from https://
git.ecdf.ed.ac.uk/dmarendu/omnigenomic-model (access can be requested from the
corresponding author).

Received: 27 May 2021; Accepted: 30 August 2021;

References
1. Alberts, B., Johnson, A., Lewis, J., Morgan, D. & Raff, M. Molecular Biology of

the Cell (Taylor & Francis, 2014).
2. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected

cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).
3. Dall’Agnese, A. et al. Transcription factor-directed re-wiring of chromatin

architecture for somatic cell nuclear reprogramming toward trans-
differentiation. Mol. Cell 76, 453–472 (2019).

4. Takahashi, K. et al. Induction of pluripotent stem cells from adult human
fibroblasts by defined factors. Cell 131, 861–872 (2007).

5. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits:
from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

6. Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive
omnigenic inheritance. Cell 177, 1022–1034 (2019).

7. Cook, P. R. & Marenduzzo, D. Transcription-driven genome organization: a
model for chromosome structure and the regulation of gene expression tested
through simulations. Nucleic Acids Res. 46, 9895–9906 (2018).

8. Andersson, R. et al. An atlas of active enhancers across human cell types and
tissues. Nature 507, 455–461 (2014).

9. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and
non-coding disease variants to target gene promoters. Cell 167, 1369–1384
(2016).

10. Cramer, P. Organization and regulation of gene transcription. Nature 573,
45–54 (2019).

11. Sneppen, K., Krishna, S. & Semsey, S. Simplified models of biological
networks. Annu. Rev. Biophys. 39, 43–59 (2010).

12. Smolen, P., Baxter, D. A. & Byrne, J. H. Modeling transcriptional control in
gene networks—methods, recent results, and future directions. Bull. Math.
Biol. 62, 247–292 (2000).

13. Pombo, A. & Dillon, N. Three-dimensional genome architecture: players and
mechanisms. Nat. Rev. Mol. Cell Biol. 16, 245–257 (2015).

14. Spielmann, M., Lupiáñez, D. G. & Mundlos, S. Structural variation in the 3D
genome. Nat. Rev. Genet. 19, 453–467 (2018).

15. Barbieri, M. et al. Complexity of chromatin folding is captured by the strings
and binders switch model. Proc. Natl Acad. Sci. USA 109, 16173–16178
(2012).

16. Brackley, C. A., Johnson, J., Kelly, S., Cook, P. R. & Marenduzzo, D. Simulated
binding of transcription factors to active and inactive regions folds human
chromosomes into loops, rosettes and topological domains. Nucleic Acids Res.
44, 3503–3512 (2016).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25875-y

12 NATURE COMMUNICATIONS |         (2021) 12:5756 | https://doi.org/10.1038/s41467-021-25875-y | www.nature.com/naturecommunications

https://doi.org/10.7488/ds/3110
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2486801
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2486802
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2486803
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1579367
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1579368
http://asntech.org/dbsuper/
https://lammps.sandia.gov/
https://lammps.sandia.gov/
https://git.ecdf.ed.ac.uk/dmarendu/omnigenomic-model
https://git.ecdf.ed.ac.uk/dmarendu/omnigenomic-model
www.nature.com/naturecommunications


17. Gilbert, N. & Marenduzzo, D. Genome organization: experiments and
modeling. Chromosome Res. 25, 1 (2017).

18. Pereira, M. C. F. et al. Complementary chromosome folding by transcription
factors and cohesin. Preprint at bioRxiv https://doi.org/10.1101/305359
(2018).

19. Buckle, A., Brackley, C. A., Boyle, S., Marenduzzo, D. & Gilbert, N. Polymer
simulations of heteromorphic chromatin predict the 3D folding of complex
genomic loci. Mol. Cell 72, 786–797 (2018).

20. Finn, E. H. et al. Extensive heterogeneity and intrinsic variation in spatial
genome organization. Cell 176, 1502–1515 (2019).

21. Brackley, C. A. et al. Ephemeral protein binding to DNA shapes stable nuclear
bodies and chromatin domains. Biophys. J. 28, 1085–1093 (2017).

22. Steurer, B. et al. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid
turnover of initiating and promoter-paused RNA polymerase II. Proc. Natl
Acad. Sci. USA 115, E4368–E4376 (2018).

23. Brewster, R. C. et al. The transcription factor titration effect dictates level of
gene expression. Cell 156, 1312–1323 (2014).

24. Brackley, C. A., Taylor, S., Papantonis, A., Cook, P. R. & Marenduzzo, D.
Nonspecific bridging-induced attraction drives clustering of DNA-binding
proteins and genome organization. Proc. Natl Acad. Sci. USA 110,
E3605–E3611 (2013).

25. Brackley, C. Polymer compaction and bridging-induced clustering of
protein-inspired patchy particles. J. Phys. Condens. Matter 32, 314002
(2020).

26. Kilic, S., Bachmann, A. L., Bryan, L. C. & Fierz, B. Multivalency governs HP1α
association dynamics with the silent chromatin state. Nat. Commun. 6, 7313
(2015).

27. Cook, P. R. The organization of replication and transcription. Science 284,
1790–1795 (1999).

28. Papantonis, A. et al. TNFα signals through specialized factories where
responsive coding and miRNA genes are transcribed. EMBO J. 31, 4404–4414
(2012).

29. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional
condensates. Mol. Cell 75, 549–561 (2019).

30. Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked
mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).

31. Ryu, J.-K. et al. Bridging-induced phase separation induced by cohesin SMC
protein complexes. Sci. Adv. 7, eabe5905 (2021).

32. Pombo, A. et al. Regional specialization in human nuclei: visualization of
discrete sites of transcription by RNA polymerase III. EMBO J. 18, 2241–2253
(1999).

33. Faro-Trindade, I. & Cook, P. R. A conserved organization of transcription
during embryonic stem cell differentiation and in cells with high C value.Mol.
Biol. Cell 17, 2910–2920 (2006).

34. Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome
architecture mapping. Nature 543, 519–524 (2017).

35. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome
structure. Nature 502, 59 (2013).

36. Macaulay, I. C. & Voet, T. Single cell genomics: advances and future
perspectives. PLoS Genet. 10, e1004126 (2014).

37. Muerdter, F. & Stark, A. Gene regulation: activation through space. Curr. Biol.
26, R895–R898 (2016).

38. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting.
Cell 166, 358–368 (2016).

39. Bartman, C. R., Hsu, S. C., Hsiung, C. C.-S., Raj, A. & Blobel, G. A. Enhancer
regulation of transcriptional bursting parameters revealed by forced
chromatin looping. Mol. Cell 62, 237–247 (2016).

40. Suter, D. M. et al. Mammalian genes are transcribed with widely different
bursting kinetics. Science 332, 472–474 (2011).

41. Humphries, M. D. & Gurney, K. Network ‘small-world-ness’: a quantitative
method for determining canonical network equivalence. PLoS ONE 3,
e0002051 (2008).

42. Rao, S. S. et al. A 3d map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 159, 1665 – 1680 (2014).

43. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion.
Cell Rep. 15, 2038–2049 (2016).

44. Brackley, C. A. et al. Non-equilibrium chromosome looping via molecular
slip-links. Phys. Rev. Lett. 119, 138101 (2017).

45. Oti, M., Falck, J., Huynen, M. A. & Zhou, H. Ctcf-mediated chromatin
loops enclose inducible gene regulatory domains. BMC Genomics 17, 252
(2016).

46. Cuartero, S. et al. Control of inducible gene expression links cohesin to
hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19,
932–941 (2018).

47. Sasca, D. et al. Cohesin-dependent regulation of gene expression during
differentiation is lost in cohesin-mutated myeloid malignancies. Blood 134,
2195–2208 (2019).

48. Robson, M. I., Ringel, A. R. & Mundlos, S. Regulatory landscaping: how
enhancer-promoter communication is sculpted in 3d. Mol. Cell 74, 1110–1122
(2019).

49. Rao, S. S. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320
(2017).

50. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich
domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

51. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature 473, 43 (2011).

52. Timms, R. T., Tchasovnikarova, I. A. & Lehner, P. J. Position-effect
variegation revisited: hushing up heterochromatin in human cells. BioEssays
38, 333–343 (2016).

53. Wang, Y., Nagarajan, M., Uhler, C. & Shivashankar, G. Orientation and
repositioning of chromosomes correlate with cell geometry-dependent gene
expression. Mol. Biol. Cell 28, 1997–2009 (2017).

54. Consortium, E. P. An integrated encyclopedia of dna elements in the human
genome. Nature 489, 57–74 (2012).

55. Niskanen, H. et al. Endothelial cell differentiation is encompassed by changes
in long range interactions between inactive chromatin regions. Nucleic Acids
Res. 46, 1724–1740 (2017).

56. Jordán-Pla, A., Pérez-Martínez, M. E. & Pérez-Ortín, J. E. Measuring RNA
polymerase activity genome-wide with high-resolution run-on-based
methods. Methods 159, 177–182 (2019).

57. Khan, A. & Zhang, X. dbsuper: a database of super-enhancers in mouse and
human genome. Nucleic Acids Res. 44, D164–D171 (2015).

58. Belcastro, V. et al. Transcriptional gene network inference from a massive
dataset elucidates transcriptome organization and gene function. Nucleic Acids
Res. 39, 8677–8688 (2011).

59. Ouma, W. Z., Pogacar, K. & Grotewold, E. Topological and statistical analyses
of gene regulatory networks reveal unifying yet quantitatively different
emergent properties. PLoS Comput. Biol. 14, e1006098 (2018).

60. Fagny, M. et al. Exploring regulation in tissues with eQTL networks. Proc. Natl
Acad. Sci. USA 114, E7841–E7850 (2017).

61. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with
high-resolution capture Hi-C. Nat. Genet. 47, 598 (2015).

62. Mirny, L. A. The fractal globule as a model of chromatin architecture in the
cell. Chromosome Res. 19, 37–51 (2011).

63. Jalbrzikowski, M. et al. Transcriptome profiling of peripheral blood in 22q11.
2 deletion syndrome reveals functional pathways related to psychosis and
autism spectrum disorder. PLoS ONE 10, e0132542 (2015).

64. Alsing, A. K. & Sneppen, K. Differentiation of developing olfactory neurons
analysed in terms of coupled epigenetic landscapes. Nucleic Acids Res. 41,
4755–4764 (2013).

65. Xiao, J. Y., Hafner, A. & Boettiger, A. N. How subtle changes in 3D structure
can create large changes in transcription. eLife 10, e64320 (2021).

66. Zuin, J. et al. Nonlinear control of transcription through enhancer-promoter
interactions. Preprint at bioRxiv https://doi.org/10.1101/2021.04.22.440891
(2021).

67. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback
loops. Oncogene 24, 2899–2908 (2005).

68. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome
conformation. Science 295, 1306–1311 (2002).

69. Kremer, K. & Grest, G. S. Dynamics of entangled linear polymer melts: a
molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990).

70. Michieletto, D., Orlandini, E. & Marenduzzo, D. Polymer model with
epigenetic recoloring reveals a pathway for the de novo establishment and 3D
organization of chromatin domains. Phys. Rev. X 6, 041047 (2016).

71. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys. 117, 1–19 (1995).

Acknowledgements
We thank the European Research Council (ERC CoG 648050 THREEDCELLPHYSICS)
for support.

Author contributions
C.A.B., N.G., D. Michieletto, A.P., P.R.C., M.C.F.P., and D. Marenduzzo designed
research; C.A.B., M.C.F.P., and D. Marenduzzo performed research; C.A.B., N.G., D.
Michieletto, A.P., M.C.F.P., P.R.C., and D. Marenduzzo analysed the data and wrote the
manuscript.

Competing interests
The authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25875-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5756 | https://doi.org/10.1038/s41467-021-25875-y |www.nature.com/naturecommunications 13

https://doi.org/10.1101/305359
https://doi.org/10.1101/2021.04.22.440891
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-25875-y.

Correspondence and requests for materials should be addressed to D. Marenduzzo.

Peer review informationNature Communications thanks the anonymous reviewers
for their contribution to the peer review of this work. Peer reviewer reports are
available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25875-y

14 NATURE COMMUNICATIONS |         (2021) 12:5756 | https://doi.org/10.1038/s41467-021-25875-y | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-25875-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Complex small-world regulatory networks emerge from the 3D organisation of the human genome
	Results
	Transcriptional activity varies along the chromatin fibre and is highly stochastic
	Transcriptional bursting
	Local chromatin architecture creates small-world percolating transcription networks
	Modelling effect of mutations and SNPs in regulatory elements
	Modelling loops, heterochromatin and euchromatin
	Modelling a whole human chromosome
	Networks inferred from simulations are qualitatively similar to experimental ones
	Contact maps found by simulations are qualitatively similar to Hi-C
	Modelling chromosome 22 carrying the diGeorge deletion

	Discussion
	Methods
	Polymer modelling

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




