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ABSTRACT
Several studies have shown that traffic metadata can be exploited
by a network-level adversary to identify the websites that users
are visiting over Tor. The success of such attacks, known as Web-
site Fingerprinting attacks, heavily depends on the particular set
of traffic features that are used to distinguish websites. Typically,
these features are manually engineered and static which makes
them fragile to changes in the Tor protocol and the deployment of
defenses. In this work we evaluate a traffic analysis attack based on
deep learning techniques that allows us to extract features automat-
ically. We show that our attack’s performance is comparable to that
of traditional attacks, while eliminating the need for feature design
and selection. We argue that this may be a game-changer in the
arms-race between Website Fingerprinting attacks and defenses.

1 INTRODUCTION
Since the first studies on Website Fingerprinting (WF) were pub-
lished, in the mid-nineties, this problem has received increasing
attention. One of the reasons for such interest is the magnitude
of the threat that WF poses: if successful, WF allows to recover
the browsing history of Internet users, circumventing encryption
and anonymization technologies that may be in place. In particular,
the Tor network, the nowadays most popular anonymity system,
has been shown to be vulnerable to WF in several studies [1–5].
Yet, the practical feasibility of WF techniques is an open question.
There are several studies that dispute the effectiveness of the attacks
in practice. A 2014 study criticizes attack evaluations for making
assumptions that give an unrealistic advantage to the adversary,
overestimating the actual effectiveness of the attacks [6]. In partic-
ular, most evaluations limit the set of pages that a user can visit –
from billions of pages to a few thousands – which may bias conclu-
sions drawn from such evaluations. Moreover, recent studies have
investigated the scalability of the attacks in larger sets of pages and
suggested that the attacks may not scale [4, 5, 7].

Another reason for such a growing interest inWF is the adoption
of machine learning methods in security and privacy research. The
use of machine learning techniques in WF has shaped research
in the field as an arms-race between attacks and defenses: new
attacks defeat defenses because they exploit web traffic features
that had not been considered before and, conversely, new defenses
are designed to conceal the features that those attacks exploited.
This arms-race is caused in part by the methodology followed in
WF research for feature selection: features are defined based solely
on intuition and expert knowledge and are fixed for a given attack.

Deep learning (DL) is the natural next step in this arms race. As
deep learning has been shown to outperform traditional machine

Figure 1: Representation of theWF threat model. The adver-
sary has access to the communication between the user and
the web server.

learning models in other fields such as image and speech recogni-
tion, it is reasonable to think these techniques will also boost the
performance of traffic analysis techniques such as WF. Moreover,
DL techniques can also provide automatic and efficient methods to
generate website-identifying features, eliminating the need for a
human expert. The fact that these feature sets might be optimal and
complete can settle the arms-race between attacks and defenses, as
no new attacks can be proposed from the discovery of new features.

With this paper we contribute to research in WF by reviewing
the prior work onWF, including our work that presents aWF attack
based on deep learning [8] – an extended version of this work will
appear in NDSS 2018. We also discuss the implications of these
works for the practicability of the attacks and defenses and identify
what are the challenges for future work on DL as applied to WF.

2 BACKGROUND
WF attacks apply supervised classifiers to network traffic traces to
identify patterns that are unique to a web page. These attacks can
circumvent the protection afforded by encryption and the metadata
protection of anonymity systems such as Tor. To carry out the
attack the adversary first visits a representative set of websites,
records the network traffic of his own visits, and extracts from it a
template or fingerprint for each site. Later, when the victim user
connects to the site, the adversary observes the victim’s traffic and
tries to find a match with previously recorded templates.

WF can be deployed by local adversaries who have access to the
first link of the communication between the user and the web server
(see Figure 1). There are many entities in a position to access this
communication, including wireless router owners, local network
administrators or eavesdroppers, Internet Service Providers (ISPs),



and Autonomous Systems (ASes), among other. Note that to deploy
the attack, the adversary only requires access to record the network
packets and does not require to modify, drop or add packets.

Tor is an anonymous communications network specially de-
signed for low-latency applications such as web browsing. In its de-
fault mode of operation, Tor routes connections through three-hop
circuits and encrypts the traffic in layers using onion routing [9], so
that none of the relays can know both the origin and the destination
of the communication at the same time. The Tor network is designed
to protect its users from local network eavesdroppers and, thus,
should protect against WF. However, several studies have shown
that an adversary sitting between the user and the entry (guard) to
the Tor network can deploy a WF attack successfully [1–5].

Evaluations of WF attacks have been criticized for making unre-
alistic assumptions on the experimental settings that give an unfair
advantage to the adversary compared to real attack settings [6]. For
instance, they evaluated the attacks on small datasets and assumed
the adversary can train on all the sites that the victim may visit.
This assumption is known as the closed-world assumption. A more
challenging scenario is the open world, where the user can visit any
website even if the attacker has not trained the classifier on it. We
have evaluated our deep-learning-based attack in both open- and
closed-worlds but only report in this paper the latter. We refer the
reader to our technical report for more details [8].

As neural network models for the implementation of the attacks
we used Stacked Denoising Autoencoders (SDAE), Long Short-
Term Memory (LSTM) units and Convolutional Neural Networks
(CNN). We refer the reader to our technical report for a complete
background of these techniques and our methodology to tune their
parameters [8].

3 RELATEDWORK
The first WF attack against the Tor network was based on a Naive
Bayes classifier and the features were the frequency distributions
of packet lengths [10]. Even though their evaluation showed the
attack achieved an average accuracy of 3%, the attack was improved
by Panchenko et al. using a Support Vector Machine (SVM) [11]. In
addition, Panchenko et al. added new features that were exploiting
the distinctive burstiness of web traffic and increased the accuracy
of the attack to more than 50% accuracy.

These works were succeeded by a series of studies that claimed
to improve the accurady of the attacks over 90% success rates.
First, Cai et al. [1] used an SVM with their custom kernel based
on an edit-distance and achieved more than 86% accuracy for 100
sites. The edit distance allowed for delete and transpose operations,
that are supposed to capture drop and retransmission of packets
respectively. Following a similar approach, Wang and Goldberg [2]
experimented with several custom edit distances and improved Cai
et al.’s attack to 91% accuracy for the same dataset.

The three last attacks outperform all the attacks described above
and, for this reason, we have selected them to compare with our
attack. Each attack uses a different classification model and feature
sets and work as follows:

Wang-kNN [3]: this attack is based on a k-Nearest Neighbors (k-
NN) classifier with more than 3,000 traffic features. They proposed
to weigh the features of a custom distance metric, minimizing the

distance among traffic samples that belong to the same site. Their
results show that this attack achieves 90% to 95% accuracy on 100
websites [3].

CUMUL [4]: CUMUL is based on an SVM with a Radial Basis
Function (RBF) kernel. CUMUL uses the cumulative sum of packet
lengths to derive the features for the SVM. Their evaluations demon-
strate an attack success of 90-93% on 100 sites.

k-Fingerprinting (k-FP) [5]: Hayes and Danezis’s k-FP attack
is based on Random Forests (RF). Their feature sets include 175
features developed from features available in prior work, as well
as novel timing features. They use the leafs of the random forest
to encode a new representation of the sites they intent to detect
that is relative to all the other sites in their training set. The new
representation of the data is fed to a k-NN classifier for the actual
classification. Their results show the attack is as effective as CUMUL
and achieves similar accuracy scores for the same number of sites.

All these attacks have selected their features mostly based on
expertise and their technical knowledge on how Tor and the HTTP
protocol work and interact with each other. Some of these works
have also used basic feature selection algorithms to determine the
relevance of classifier features. For instance, Hayes and Danezis
used the random forest classifier to rank their features [5] and
previous studies had analyzed traffic features with regard to WF
attacks and defenses [11–13].

Nevertheless, none of these methods provide any guarantees
that the feature sets they provide are optimal. Since the features
are designed based on heuristics, this leaves an opportunity for
improvement by automatically searching for new, perhaps even
more effective features for WF.

The first attempt to apply a DL-based approach to WF was made
by Abe and Goto [14], where they evaluated a SDAE on the Wang-
kNN’s dataset [3]. Their classifiers do not outperform the state-
of-the-art, but nevertheless achieve a convincing 88% on a closed
world of 100 classes. We re-evaluated the reported models in Abe
and Goto’s paper on the same dataset with support of the authors to
confirm their results. It is fair to assume that the lower performance
is due to the lack of a sufficient amount of training data for a deep
neural network, which, as we confirm in our experiments is deemed
necessary for the DL algorithms. In this paper we explore other DL
models apart of SDAE and further tune the attacks to perform as
accurately as current traditional WF attacks.

4 EVALUATION
4.1 Datasets
We have followed prior work’s methodology for data collection [2,
6]. For the closed-world dataset, we visited the homepage of each
of the top Alexa 1,200 sites 3,000 times and dumped the traffic
generated by each visit separately. The crawls were parallelized
but the visits in each node were sequential and were visited in
round-robin order, as described by Wang and Goldberg’s batched
methodology [2]. After cleansing the datasets by removing erred
visits and ensuring we have the same number of visits per site, we
ended up having 900 websites, with 2,500 valid network traces each.
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4.2 Comparison with state-of-the-art attacks
Figure 2 shows the closed world classification accuracy obtained
through cross-fold validation for the three traditional WF attacks
on a dataset with 100 traces per website (CW100). For the same set of
website instances, thek-NN attack achieves a classification accuracy
of 92.87% on our dataset, whereas for CUMUL and k-FP we obtain
accuracy results of 95.43% and 92.47%, respectively. The obtained
results are in line with those originally reported by the authors
themselves albeit on other datasets. For this particular setup, the
CUMUL attack turned out to be the most successful one.
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Figure 2: Re-evaluation of traditional WF attacks on new
data

In the second experiment, we evaluate the same traditional meth-
ods on 100 websites, but with a growing number of traces per web-
site, to investigate whether the classification accuracy improves
significantly when provided with more training data and whether
any WF attack method is consistently better than another.
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Figure 3: Impact on the classification accuracy for a growing
number of website traces

In Figure 3, we depict the classification accuracy in a closed-
world experiment where the number of website instances grows
from 100 to 1,000 traces. Our results show that the CUMUL attack
consistently outperforms the two other methods. For all methods,
the improvement becomes less evident after 300 website traces. An-
other interesting observation is that each WF attack – when given
sufficient training data – converges to a classification accuracy

of approximately 96 − 97%. However, we experienced scalability
issues with the k-NN based attack by Wang et al., given that the
classification running times were at least an order of magnitude
higher than those of CUMUL and k-FP.

We also assess how the classification accuracy drops when the
number of websites increases for a fixed amount of training in-
stances. Given that the CUMUL attack consistently outperformed
the other two methods on our dataset, and was superior in resource
consumption, we only report the results for CUMUL. We reevaluate
the CUMUL classifier on our closed worlds CWN , where N is the
number of sites in the world, with 300 traces per website.

Table 1 illustrates that the CUMUL attack obtains a reasonable
92.73% 10-fold cross-validation accuracy for 900 websites using 300
instances each, and a parameter combination of loд2(C) = 21 and
loд2(γ ) = 5. In general, we observe that the performance degrades
gradually with a growing size of the closed world. Moreover, dou-
bling the initial amount of instances gives an advantage of up to 2%,
while the amounts higher than 300 stop providing any significant
improvement.

Dataset CUMUL (100tr) CUMUL (300tr) CUMUL (best)
CW100 95.43% 96.85% 97.68% (2000tr)
CW200 93.58% 95.93% 97.07% (2000tr)
CW500 92.30% 94.22% 95.73% (1000tr)
CW900 89.82% 92.73% 92.73% (300tr)

Table 1: CUMUL accuracy for a growing closed world (with
100 traces per website, 300 traces, and the best achieved ac-
curacy for a varying number of traces).

We choose CUMUL as the reference point for comparing our
proposed method with the state-of-the art, as CUMUL performed
the best on our closed worlds, and proved to be practically feasible.

4.3 DL-based WF attacks
In this study, we evaluate the SDAE, CNN and LSTM networks
on four closed worlds of different number of websites. We use
the models selected by performing hyperparameter tuning on the
CW100 dataset. We estimate the models’ performance by conducting
a 10-fold cross-validation on each dataset. We use two performance
metrics to evaluate and compare the models with each other: the
test accuracy and loss functions.

The aspect that had the greatest impact on the performance of
the attack was the amount of training data (i.e., the amount of traffic
traces for each website). For every closed world experiment, we
observed significant improvements for a growing amount of traces.
One example of this trend is given in Figure 4 for theCW100 dataset,
where we vary the amount of instances from 100 to all available
2,500 per class.

First and foremost, from these results we can confirm the feasibil-
ity of the WF attack based on a DL approach with automatic feature
learning. We observe how classification accuracy and loss function
gradually improve for all models, in the end reaching the 95.46,
96.26 and 94.02% success rate for SDAE, CNN and LSTM model
accordingly. These results are comparable to the ones achieved by
traditional attacks.
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Figure 4: Accuracy, loss and evaluation time of the DL mod-
els (SDAE, CNN, LSTM) for CW100 and a growing number of
traces

If we compare the three DNNs with each other, we observe that
the SDAE and CNN networks consistently perform better than the
LSTM in terms of classification accuracy, with CNN outperforming
the other two. Nevertheless, given that LSTM classifies traffic traces
based solely on their first 150 Tor cells – compared to the SDAE
and CNN that use up to 5,000 and 3,000 cells from each trace –,
the achieved performance still appears promising. We interpret
that even a small part of the traffic trace is sufficient for website
recognition up to 94% accuracy when deploying a model that is able
to exploit temporal dependencies of the input sequence. Notably,
LSTM performs much poorer when trained on fewer traffic traces
than SDAE and CNN, but later gains comparable recognition rate
at 1,000 training instances per class.

Next, we assess whether the selected DL models tuned onCW100
perform similarly when applied to larger datasets: CW200, CW500
andCW900. The closed world evaluation results remain comparable
to CUMUL’s results presented in Figure 5 compares the DL-based
methods to CUMUL. This comparison illustrates that our DL-based
attack can indeed successfully eliminate the complex feature engi-
neering.
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Figure 5: DL (SDAE, CNN, LSTM) vs. CUMUL for a growing
size of the closed world from 100 to 900 websites.

5 DISCUSSION
While DL eliminates the need for feature engineering, the learning
method does not produce an explicit representation of the features
that can be easily interpreted by a human analyst. The next step
would be to produce countermeasures against techniques exploiting
these implicit features. Therefore, future work should focus on
interpreting these features and compare them with existing ones.
However, this is a complex and unsolved task common in DL and
ML in general [15].

One approach to confirm the presence of new features would
be to analyze the impact that defenses have on concealing existing
features in Tor traffic. For instance, an interesting direction for
future work could be investigating to what extent the proposed WF
defenses [16–18] can be adapted to isolate single known features
as a way to identify the new ones.

Another line of research for future work is to investigate de-
fense strategies specifically designed to mitigate the attack that
we have presented in this work. Such research could base on the
latest work on adversarial examples [19]. Adversarial examples are
attacks that consist in crafting classification examples that fool the
neural network into classifying them into a wrong class. In DL-
based WF attacks, adversarial examples can be seen as WF defenses
that optimize the bandwidth overhead. We propose to build upon
work [20] and design a server-side defense that applies adversarial
examples techniques to change the hosted site and protect it against
the attacks presented in this paper. Further, that would enable the
application of Generative Adversarial Networks (GAN) in the WF
problem [21].

6 CONCLUSION
In this study, we propose and evaluate a WF attack based on DL.
The main objective was to assess the feasibility of WF through
automated feature learning. We show that deep neural networks
are capable of fingerprinting websites with an accuracy that is
comparable to the best-performing approaches among numerous
research efforts in recent years. In conclusion, using DL gives an
adversary major advantages, resulting in accurate and efficient
traffic deanonymization. We hope our work will encourage future
research on DL as applied to WF an other traffic analysis problems.
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