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Abstract—Distributed ledgers based on Proof-of-Work (PoW)
are typically vulnerable when mining participation is low. During
these periods, an attacker with a mining majority can mount
serious attacks, like double spending or transaction censorship.
Our work explores mechanisms to secure a ledger against
such adversaries and puts forth the first rigorous study of
checkpointing as a protection from 51% attacks. The core idea
is to employ an external set of parties to finalize blocks after
their creation. This idea takes the form of checkpointing and
timestamping, the former ensuring low latency in a federated
setting and the latter being fully decentralized. Crucially, we
identify and protect against a (previously undocumented) attack,
“block lead”, thus our scheme is the first to guarantee liveness.

Index Terms—checkpoints, timestamping, Proof-of-Work

I. INTRODUCTION

During the early ’80s, the seminal work of Shostak, Pease,
and Lamport introduced the consensus problem [20], [27]. 30
Years later, Bitcoin [23] accelerated research by introducing
“Nakamoto consensus” and the blockchain structure. It is well-
known that, to achieve consensus in any setting with an active
adversary, (at least) a majority of participants need to be hon-
est [10]. Proof-of-Work (PoW) systems, like Bitcoin, assume
that over 50% of hashing power backs the correct protocol and,
if honest majority is violated, dangers arise. Typically 51%
attacks try to revert transaction finality. Finality ensures that
published transactions are stable after some time, i.e. cannot be
reversed (unless with negligible probability). Finality attacks
are devastating, since they invalidate the ledger’s immutability
and problems like “double spending” arise; simply put, if
the adversary can revert any transaction it wishes, then it
can double spend the same assets by first issuing a payment
and then reverting it, after presumed final by its counterparty.
Additionally, blockchain systems may face transaction censor-
ship attacks [29], which may also cause significant financial
damage. Such attacks are hard to identify reliably, so it is
important to ensure censorship resistance by construction; with
foresight, this can be satisfied by guaranteeing liveness.
Our Contributions and Roadmap.1 Our work provides,

1Due to space constraints, we refer to the paper’s extended version
(https://eprint.iacr.org/2020/173.pdf) for: i) the full proofs of all theorems;
ii) a liveness evaluation of Ethereum Classic; iii) a prototype implementation
of the checkpointing protocol of Section III, which uses Raft [24] and
issues checkpoints in less than a second; iv) two checkpointing variations,
with randomized checkpointing interval unknown to A and when A is not
rushing, both slightly improving liveness; v) an implementation description
and evaluation of timestamping on Bitcoin and Ethereum.

to the best of our knowledge, the first rigorous analysis of
mechanisms to mitigate majority attacks in PoW ledgers. Our
contributions are as follows: i) a provably secure, federated
and efficient checkpointing mechanism; ii) block lead, a novel
attack against liveness which affects all existing checkpointing
implementations; iii) a provably secure and fully decentral-
ized timestamping-based checkpointing mechanism. In detail,
Section III defines FCheckpoint, the checkpointing “ideal func-
tionality”. FCheckpoint defines a checkpointed chain resolution
mechanism, which guarantees persistence and liveness with
non-negligible probability. The analysis includes “block lead”,
a novel attack against liveness which, to the best of our
knowledge, has not been previously discussed. We model
the execution as an absorbing Markov chain and show that
liveness is guaranteed after a sufficient period of time. Finally,
we realize FCheckpoint via a protocol (Section III-B) with
(optimal, on the security parameter) size O(κ) of updatable
state. Our second design is timestamping-based checkpointing
(Section IV). The key idea is to use a second ledger, presum-
ably more reliable than the one we seek to protect, to perform
timestamping, which we show to be equivalent to checkpoints,
thus achieving the highest level of decentralization.
Related Work. In their seminal paper on PBFT [4], Castro and
Liskov use checkpoints in a replicated setting to bring a replica
which is “left behind” up to date. In blockchains, checkpoints
are often used to prevent network attacks and enhance per-
formance, e.g. Bitcoin introduced centrally-issued checkpoints
to speed up bootstrapping of network nodes and mitigate
DoS and 51% attacks. Our checkpointing solution is similar,
albeit federated instead of fully centralized and without being
vulnerable to block lead. Literature has primarily considered
checkpoints w.r.t. Proof-of-Stake (PoS) protocols to prevent
threats like nothing-at-stake [8], [21], long range [1], and stake
bleeding [12] attacks, in protocols like Ouroboros [18], Snow
White [5], and Ouroboros Praos [6], in the latter also used
to mitigate adaptive corruptions. Employing a committee to
finalize the ledger’s state has also seen extensive research. On
the PoW side, notable works include hybrid consensus [25],
Thunderella [26], and ByzCoin [19]; on the PoS side, Al-
gorand [13] uses a Verifiable Random Function to elect a
committee which runs a Byzantine Agreement protocol, while
Casper [2], [3] defines checkpointing which, in conjunction
with PoW, protects against block reversions by (financially)
penalizing adversaries. Afgjort [22] describes a generic finality
layer, run by a sub-committee and applied on top of a
blockchain. Nonetheless, in contrast to our scheme, all these978-0-7381-1420-0/21/$31.00 ©2021 IEEE
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systems rely on honest majority. Finally, secure timestamping
has been extensively researched. Specifically, timestamping
has been implemented both centrally [15], using hashes and
signatures, and in decentralized manner on Bitcoin [14], [16].

II. PRELIMINARIES

We assume a synchronous setting, where the execution
proceeds in rounds. The number of parties n is fixed for the du-
ration of the execution (cf. the Bitcoin Backbone model [11]).
We also assume a diffuse functionality, i.e. a gossip protocol
which allows the parties to share messages without in a
partially connected graph. Each party performs q queries to
a random oracle (a hash function, in practice). The difficulty
parameter p denotes the probability that a single query to the is
successful, so the probability that a party produces a block at
any given round is q ·p. A controls µA of the network’s mining
power. We stress that it is possible that µA > 0.5, i.e. A might
control the majority of the mining power. Additionally, A is
“adaptive”, i.e. corrupts parties on the fly, and “rushing”, i.e. at
each round retrieves all messages before deciding its strategy.

Our analysis relies on the ledger properties distilled in the
Bitcoin Backbone model [11], persistence and liveness.

Definition 1 (Stable Transaction). A transaction is stable if
every honest party reports it in the same ledger position.

Definition 2 (Persistence). A transaction which is part of a
block at least k blocks away from the ledger’s head, i.e. a
block which is part of the chain which results from removing
the last k blocks of the current chain, is stable.

Definition 3 (Liveness). Every transaction provided continu-
ously as input to the parties is stable after u rounds.

III. THE CHECKPOINTED LEDGER

Our goal is to define a ledger which is resistant to attacks
from an adversarial mining majority. In this section, we
achieve this via the checkpointing functionality FCheckpoint,
which establishes checkpoints, i.e. irreversible chains. Upon re-
trieving a candidate chain, FCheckpoint decides whether to adopt
it based on maxvalid(·, ·), i.e. the chain decision rule [11].
When FCheckpoint adopts a chain which is kc blocks longer than
the latest checkpoint, it issues a new checkpoint and any chain
which does not extend the latest checkpoint is automatically
rejected. A larger kc results in sparse checkpoints, while
smaller kc allows faster synchronization and restricts A’s
control over the chain’s blocks (cf. Section III-A). Checkpoints
also organize the execution in epochs, each beginning with a
new checkpoint. Finally, to counter the “block lead” attack
described next, every checkpoint contains an unpredictable
nonce r; to model the ability ofA to corrupt parties,A chooses
a single nonce among a polynomial number of random nonces.
Figure 1 defines the checkpointing functionality FCheckpoint.
|C| denotes the length of a chain (in blocks), |V| the size of set
V, || the concatenation of blocks, chains of blocks, and strings,
≺ the prefix operation, e.g. if C = C ′|| · · · then C ′ ≺ C, \
the difference of two chains, e.g. if C = C ′||B|| · · · then
C \ C ′ = B|| · · · , and tail(C) the last block of C.

FCheckpoint interacts with a set of parties V and holds the
local chain C and the checkpoint chain Cc, both initially
set to ε. It is parameterized by kc, which defines the
number of blocks between two consecutive checkpoints,
and the maxvalid(·, ·) algorithm.
On receiving (CANDIDATECHECKPOINT, C ′) from a
party V , if Cc ≺ C ′ set C := maxvalid(C,C ′). Next,
if |C \ Cc| = kc compute a list R of p(κ) random
values as rj

$←− {0, 1}ω and send (NONCE, R) to A.
On receiving from A a response (NONCE, ri), such that
ri ∈ R, return (CHECKPOINT, tail(C)||ri) to V and set
C := Cc := C||ri.

Functionality FCheckpoint

Fig. 1. The checkpointing ideal functionality.

Block lead. As covered in the introduction, violating live-
ness enables devastating attacks. Before proceeding with the
security analysis, we describe block lead, an attack which
breaks liveness even in the presence of standard checkpointing
mechanisms. To the best of our knowledge, this attack has
not been previously discussed or taken into consideration,
thus all existing checkpointing mechanisms fail to provide any
liveness guarantees and protect the systems against adversarial
mining majorities. The core observation is that an adversary
A with a mining majority produces blocks faster than honest
parties. Thus, A gains an advantage by withholding newly-
mined blocks until a competing chain is produced (similar
to Selfish Mining [9], [28]). Eventually, A’s chain is much
longer and can compete with and discard every future honest
block. Liveness can thus be guaranteed only if this advantage
is constrained. We achieve this via the unpredictable nonce
r, which “refreshes” the randomness and prevents A from
retaining its advantage across epochs.

A. Security of the Checkpointed Ledger

We now show that the checkpointed ledger satisfies persis-
tence and liveness w.r.t. the following parameters: 1) k: the
persistence parameter, i.e. the number of blocks after which
a transaction is stable; 2) u: the liveness parameter, i.e. the
amount of time that a transaction needs to be continuously
provided to all parties before it becomes stable; 3) kc: the
checkpointing interval, i.e. the epoch’s length; 4) q: the number
of queries to the hashing oracle that a party can make during
a single round; 5) p: the block difficulty, i.e. the probability
that a single query is successful in producing a block; 6) n:
the number of parties; 7) t: the number of adversarial parties.
Persistence. Intuitively, every ancestor block to a checkpoint
is stable, so persistence is satisfied for every block up to the
latest checkpoint. Theorem 1 formally proves this intuition,
where Cdk denotes the chain which is output by removing the
k last blocks from C.
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Theorem 1 (Persistence). The checkpointed chain resolution
protocol of Section III satisfies persistence (cf. Definition 2)
for parameter k ≥ kc.

Liveness. Proving that checkpoints guarantee liveness is sig-
nificantly more challenging, so our analysis proceeds in dis-
tinct steps. First, Theorem 2 shows that a transaction’s liveness
is guaranteed as long as an honest block is checkpointed.

Theorem 2. For any execution of a checkpointed chain
resolution protocol which securely realizes FCheckpoint (cf.
Section III), a transaction τ is stable (cf. Definition 1) if at
least one honestly-generated block, which is mined after the
creation of τ , is part of the checkpointed chain after u rounds
since τ is diffused on the network.

An epoch begins with the creation of a checkpoint and the
accompanying unpredictable nonce r, which ensures that the
execution is memoryless across epochs. Our analysis uses a
(somewhat) simple absorbing Markov chain, parameterized by
kc, to express the checkpointed ledger’s execution. Theorem 3
then shows that reaching the absorbing state translates into
checkpointing an honest block, i.e. achieving liveness. Each
state of the Markov chain is identified by (i, j). i denotes
the number of blocks that the honest parties need to produce
to reach the next checkpoint; similarly, j is the number of
blocks that A needs to produce. Corollary 1 shows that, to
violate liveness, A cannot adopt honest blocks, thus A mines
separately from honest parties.

Corollary 1. For every transaction τ and for every execution
of a checkpointed chain resolution protocol which securely
realizes FCheckpoint (cf. Section III), if A adopts an honest
block which is produced after the creation of τ , then liveness
is guaranteed for τ .

Each epoch starts on state (kc, kc), where all parties need
exactly kc blocks to “reach” the next checkpoint. The absorb-
ing state compounds all states of the form (0, j) with j > 0.
States (i, j) with i > 0 are transitional. Transitions represent
the accumulation of honest and adversarial blocks in their
respective chains. If an honest party produces multiple blocks
in a single round, it diffuses only the first, so the only allowed
transitions from state (i, j) are towards states (i−a, j−b) with
a ∈ {0, 1}, b ∈ [0, j]. We define the random variables:

• H: H = 1 if at least one honest party produces a block
at a given round, else H = 0;

• M (i): M (i) = 1 if all adversarial parties produce exactly
i blocks at a given round, else M (i) = 0;

for which the following hold:

• E(H) = h = 1− (1− p)q·(n−t);
• E(M (i)) = m(i) =

(
q·t
i

)
· pi · (1− p)q·t−i for any i.

Lemma 1 shows that, when at least one honest block is
created, each honest party’s chain increases by one block; this
result is adjacent to the chain growth property first implied
in [11] and explicitly highlighted in [17].

Lemma 1. If an honest party V has a chain of length l at
round r, at round r + 1 every honest party has a chain of
length at least l.

Lemma 2 defines the transition probability from a state (i, j)
to (i − a, j − b), a ∈ {0, 1}, b ∈ [0, j]; we use the following
notation: m̂l =

∑l
φ=0m

(φ), h̄ = 1−h. These probabilities are
minimal w.r.t. the honest chain growth, given that A publishes
an l-long chain only if the longest honest chain is also l-long.
Indeed, if A publishes its chain earlier, then the transition
probabilities change in favor of the honest parties, since the
honest parties converge quicker to the absorption state. Finally,
Theorem 3 formalizes the liveness guarantees.

Lemma 2 (Transition Probabilities). For transitions from
round (i, j), where i > 1, j > 0 and b ∈ [0, j − 1], the
following hold:
• transition to (i, j − b) occurs with probability h̄ ·m(b);
• transition to (i−1, j−b) occurs with probability h ·m(b).
Additionally, the following special cases hold:

i) the state (0, 0) is equivalent to the state (kc, kc);
ii) transition from round (1, j), where j > 0, to the absorbing

state occurs with probability h · m̂j−1;
iii) from round (i, j), where i, j > 0, the following hold:

• transition to (i, 0) occurs with probability h̄ · (1 −
m̂j−1);

• transition to (i− 1, 0) occurs with probability h̄ · (1−
m̂j−1);

iv) from round (i, 0), where i > 0, the following hold:
• transition to (i− 1, 0) occurs with probability h;
• transition to (i, 0) occurs with probability h̄.

Theorem 3 (Liveness). The Markov chain of Lemma 2 has
the property that, whenever it reaches the absorbing state,
an honest block is guaranteed to be checkpointed in the
corresponding execution with error probability L · 2−ω , L
being the protocol execution length.

Finally, we observe that, from every state, there exists a path
which reaches the absorption state with non-zero aggregate
probability. Therefore, for a sufficiently large number of steps
absorption probability is non-negligible and, as the number of
steps tends to infinity, the liveness probability tends to 1.

B. The Checkpointed Chain Resolution Protocol

Now we realize as a federated service distributed among
parties. We now construct a federated protocol which securely
implements FCheckpoint (cf. Theorem 4). The checkpointing
protocol (Figure 2) is parameterized by a validation predi-
cate Validate, which identifies whether a chain is valid, e.g.
verifies the signatures and the Proof-of-Work of the chain’s
blocks. Also it employs an interactive consistency protocol
πIC (cf. [7]), s.t. parties both reach agreement on the block
to checkpoint and collectively produce the nonce r. After πIC
ends, each party outputs a list [〈B1, r1〉, . . . , 〈Bn, rn〉] contain-
ing everybody’s inputs; if a party aborts, a default value 〈⊥,⊥〉
is set as its input. The parties then pick the block with plurality
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among the outputs, breaking ties lexicographically, and use a
hash function H to compute the nonce r = H(r1|| . . . ||rj).

A checkpointing party which runs πCheckpoint is param-
eterized by the list V of n checkpointing parties, an
interactive consistency protocol πIC, a hash function H,
a validation predicate Validate, and kc. It keeps a local
checkpointed block, Bc, initially set to ε.
On receiving (CANDIDATECHECKPOINT, C ′) from a
party V , check:
• ∃i : C ′[i] = Bc (i.e. if C ′ extends the checkpoint);
• Validate(C ′) = 1 (i.e. if C ′ is valid);
• |C ′| − i = kc (i.e. if C ′ is long enough).

If all hold do:
1) pick rj

$←− {0, 1}ω;
2) execute protocol πIC with the parties in V

with input 〈tail(C ′), rj〉 and wait for its output
[〈B1, r1〉, . . . , 〈Bn, rn〉];

3) find the block Bj which has plurality among the
output blocks (breaking ties lexicographically) and
set Bc := Bj ||H(r1|| . . . ||rn).

Finally, return (CHECKPOINT, Bc) to V .

Protocol πCheckpoint

Fig. 2. The protocol which is run by the checkpointing federation.

Theorem 4. Protocol πCheckpointBFT securely realizes the
functionality FCheckpointBFT, assuming a secure interactive
consistency protocol πIC, which successfully terminates, and
a hash function H.

To incorporate checkpoints, when a miner creates a new
block, they submit it to all checkpointing parties via the
CandidateCheckpoint interface of πCheckpoint. When the new
checkpoint is issued, they accept it and, following, adopt a
new chain only if it contains the newly-issued checkpoint.

IV. THE TIMESTAMPED LEDGER

Our second scheme aims to achieve the same security guar-
antees in a fully decentralized way. Figure 3 defines the global
timestamping functionality, FTime. A party can timestamp a
string s by submitting the message (TIMESTAMP, s); after-
wards, every party can verify it via the Verify interface. The
timestamping functionality is global, so timestamps cannot be
issued privately. Therefore, when a party timestamps a string,
every other party can access both the string and its timestamp.
Also the timestamp consists of both a counter and a random
value, the latter mitigating the block lead attack.

A miner timestamps a new block B by submitting it to
FTime; B.τ denotes the timestamp of the block B. When a
miner receives a candidate chain, it compares it with the local
chain. Starting from genesis, it parses both chains until it finds
the timestamped position where the two diverge, i.e. the oldest

FTime keeps: i) T[]: an initially empty list of timestamped
strings; ii) τ : a counter initially set to 0.
On receiving (TIMESTAMP, s), if ∀(s′, ·) ∈ T[] : s′ 6= s,
set τ := τ + 1. Then compute a list R of p(κ) random
values as rj

$←− {0, 1}ω and send (NONCE, R) to A. On
receiving a response (NONCE, ri), such that ri ∈ R, add
(s, τ, ri) to T[].
On receiving (VERIFY, s, τ), if ∃(s, τ) ∈ T[] then return
(VERIFYTIMESTAMP,>).

Functionality FTime

Fig. 3. The timestamping ideal functionality.

timestamped block in each chain which does not exist in the
other. If such point exists then it adopts the chain with the
oldest diverging block, else it employs maxvalid.

A party that runs πTimeMiningRes holds the local chain C,
initially set to ε, and is parameterized by maxvalid(·, ·).
On receiving (CANDIDATECHAIN, C ′), send to FTime

(VERIFY, B,B.τ) for each timestamped block B ∈ C ′

and wait for (VERIFYTIMESTAMP,>). Next:
i) set i := 0;

ii) while C[i] = C ′[i] do i := i+ 1;
iii) set i′ := i, c := i− 1;
iv) while C[i] is not timestamped and i < |C| do i :=

i+ 1;
v) while C ′[i′] is not timestamped and i′ < |C ′| do

i′ := i′ + 1;
vi) if i = |C| and i′ = |C ′| set C := maxvalid(C \ C[:

c], C ′ \ C ′[: c]),
vii) else if i = |C| or C ′[i′].τ < C[i].τ then set C := C ′.
On receiving (READ, ) return (CHAIN, C).

Protocol πTimeMiningRes

Fig. 4. Timestamped chain resolution for miners.

Theorem 5 shows the security of πTimeMiningRes. An im-
portant caveats should be stressed though. If only part of
the block is timestamped, e.g. its hash or its headers, A
could keep a timestamped block’s content secret, resulting
in a DoS, as honest miners halt until the block is revealed.
In a centralized setting, this can be prevented by ensuring
that the service timestamps only fully available blocks; in the
paper’s full version, we show how to prevent this attack in the
decentralized setting via consecutive timestamps.

Theorem 5 (Timestamping). The timestamped resolution pro-
tocol πTimeMiningRes and the timestamping functionality FTime

of Section IV guarantee persistence and liveness with param-
eter kc = 1 (cf. Theorems 1 and 3).
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