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Abstract

Proteins perform critical processes in all living systems: con-
verting solar energy into chemical energy, replicating DNA,
as the basis of highly performant materials, sensing and much
more. While an incredible range of functionality has been
sampled in nature, it accounts for a tiny fraction of the pos-
sible protein universe. If we could tap into this pool of unex-
plored protein structures, we could search for novel proteins
with useful properties that we could apply to tackle the en-
vironmental and medical challenges facing humanity. This is
the purpose of de novo protein design.

Sequence design is an important aspect of de novo protein
design, and many successful methods to do this have been
developed. Recently, deep-learning methods that frame it as a
classification problem have emerged as a powerful approach.
Beyond their reported improvement in performance, their pri-
mary advantage over physics-based methods is that the com-
putational burden is shifted from the user to the developers,
thereby increasing accessibility to the design method. Despite
this trend, the tools for assessment and comparison of such
models remain quite generic. The goal of this paper is to both
address the timely problem of evaluation and to shine a spot-
light, within the Machine Learning community, on specific
assessment criteria that will accelerate impact.

We present a carefully curated benchmark set of proteins and
propose a number of standard tests to assess the performance
of deep learning based methods. Our robust benchmark pro-
vides biological insight into the behaviour of sequence-
design methods, which is essential for evaluating their perfor-
mance and practical utility. We compare five existing mod-
els with two novel models for sequence prediction. Finally,
we test the designs produced by these models with Al-
phaFold2, a state-of-the-art structure-prediction algorithm, to
determine whether they are likely to fold into the intended
3-Dimensional shapes.

1 Background

Proteins are the molecules that perform almost all of the
biochemical work in all living things. They have a stagger-
ing array of functionality from incredibly performant mate-
rials, like silks and wools, to some of the most efficient cat-
alysts, capable of accelerating complex chemical reactions
(Alberts et al. 2002). Beyond their roles in nature, proteins
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are broadly applied in industry and medicine. They are the
active ingredient in many recent blockbuster drugs, such as
immunotherapies for cancer (Nahta and Esteva 2006), and
protein catalysts (enzymes) are increasingly used for chem-
ical synthesis, providing greener alternatives to traditional
chemical processes (Wu et al. 2020).

Proteins are formed from long polymers known as
polypeptides. Each polypeptide is assembled from funda-
mental building blocks called amino acids. These building
blocks have a common element that is bonded together to
make the polypeptide chain called the backbone, and a vari-
able region called the side chain (see Fig. 1), which has 20
possible chemical groups (Alberts et al. 2002). The sequence
of amino acids (primary structure) leads to the formation of
local and long-range chemical interactions (secondary and
tertiary structure respectively), which induce the polypep-
tide to form a distinct 3D structure, and it is this structure
that leads to the proteins function (Anfinsen et al. 1961).
Polypeptides vary in length, from small peptides composed
of only a few amino acids to huge proteins containing tens
of thousands of amino acids, with a median length of around
300 (Brocchieri 2005). The complexity is further increased
as multiple polypeptides can assemble to form larger struc-
tures (quaternary structure).

The 3D structure of proteins can be determined using 3
main experimental methods: X-ray crystallography, NMR
spectroscopy and Cryo-Electron Microscopy. Advances in
these techniques have led to a rapid increase in the amount of
structural data that is available, with > 180, 000 structures
available in the Protein Data Bank (PDB) (Berman 2000)
as of August 2021. The structures produced by the diligent
work of thousands of structural biologists, combined with
the foresight and infrastructure to openly shared these data,
has given us a deep insight into how proteins function. This
data set is now rich enough that we can start addressing
the problem of how the sequence of amino acids relates to
a folded, functional 3D structure, i.e. the “Protein Folding
Problem”, through computational means. This is an impor-
tant problem to address as it is far easier to obtain sequence
information than it is to obtain structural information, with
genomes available for > 64,000 organisms in the NCBI
database (https://www.ncbi.nlm.nih.gov/genome/), each of
which contains the amino-acid sequence of 100s to 10,000s
of proteins.
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Figure 1: a) An experimentally determined protein structure (PDB ID: lubq) rendered in “cartoon” format using PyMol
(Schrodinger, LLC 2015). The box show atomic level detail with the backbone (tubes) and side chains (lines). Nitrogen atoms
are in blue, carbon atoms in grey and oxygen atoms in red. b) A cartoon of protein design, which aims to identify sequences
of amino acids (stars) that are able to produce a target backbone shape (circles). This is commonly posed as an inference
problem and errors are measured using aggregate metrics such as accuracy of the inferred sequences. Our experiments reveal
that measuring the deviation (RMSD) of the designed protein, as predicted by AlphaFold2 (Jumper et al. 2021), from the target

structure provides more insight than generic metrics.

There has been steady improvement in protein-
structure prediction algorithms over the past 2 decades
(Kryshtafovych et al. 2019), but recent deep-learning based
methods have utterly transformed the field, with state-
of-the-art methods producing models that are within the
experimental error of the structure-determination method
(Baek et al. 2021; Jumper et al. 2021). The front runner
in these algorithms is DeepMind’s AlphaFold2 (AF2),
which has now been applied to predict the structure of
every protein in the human genome, as well as the genomes
of 20 model organisms (Tunyasuvunakool et al. 2021),
which provides an invaluable resource for understanding
the function of natural proteins.

However, the protein sequences that have been sampled in
nature account for a tiny fraction of all the possible proteins.
Even for a relatively small protein with around 200 amino
acids, there are around 102°C possible sequences, which is
significantly more sequences than have been sampled in ev-
ery cell of every organism since proteins arose (Baker 2019).
This means that it is a statistical certainty that the most per-
formant materials, therapeutics and enzymes for any appli-
cation have not been sampled. If we are to unlock the poten-
tial of this pool of unobserved proteins, known as the dark
matter of protein folding space (Taylor et al. 2009), we must
solve the “Inverse Protein Folding Problem”, that is if we
have a desired 3D structure with a useful function, how can
we design an amino-acid sequence that will reliably fold into
this structure.

To address this challenge, many successful approaches
for designing proteins have been developed, including min-
imal design and rational design, but computational protein
design (CPD) has quickly become the most widely used
method (Woolfson 2021). The most successful method in
this area is Rosetta (Guntas, Purbeck, and Kuhlman 2010), a
software suite for computational protein design, which uses
a physics-based design method, but deep-learning based
methods show a lot of promise for a variety of tasks in CPD,
in particular fixed-backbone sequence design, where a de-

sired backbone structure is passed as the input and an amino
acid sequence is returned as the output (Zhang et al. 2020;
Qi and Zhang 2020).

Current methods of benchmarking fixed-backbone se-
quence design focus on sequence recovery, where the back-
bones of natural proteins with known amino-acid sequences
are passed as the input and the accuracy of the method is
measured by the degree of identity between the predicted
sequence and the true sequence (Zhang et al. 2020; Qi and
Zhang 2020; Strokach et al. 2020). However, this approach
is fundamentally flawed, and accuracy values of this type do
not reflect the real world utility of the design methodology.

To take an extreme example, if a sequence design method
had 100% sequence recovery, this would not necessarily be
a useful feature. Very often the purpose of protein design is
to diversify the properties of known proteins to make them
better suited to a particular application, for example stabil-
ity or expressability (Goldenzweig et al. 2016). With a se-
quence recovery of 100%, no diversity would be generated,
and the method may not be capturing the functional redun-
dancy that we observe in natural proteins, that is, many se-
quences can fold to adopt the same overall shape (fold). Ul-
timately, we must move beyond simplistic methods for evalu-
ating design methodologies and provide information to users
that will help them to assess whether a specific method will
be appropriate for their target application.

Our Contributions Here, we have created a benchmark
for evaluating the performance of CPD methods, which
gives a more holistic view of performance. It combines a set
of about 600 structures carefully sampled from a broad range
of protein folds, with diverse secondary structures composi-
tions and resolutions. We applied this benchmark to evaluate
state-of-the-art methods for sequence design, both physics-
and neural-network based, and uncovered useful informa-
tion about their applicability and performance. Finally, we
used this benchmark to guide the development of highly per-
formant convolutional, graph and hybrid CNN/GNN meth-
ods, and tested their performance by applying AF2 to predict
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Figure 2: Benchmark set composition. 40 protein architectures grouped into 4 categories: mainly-« (red) - 70 chains, mainly-g3
(blue) - 282 chains, a-3 (purple) - 196 chains, special (yellow) - 47 chains.

the structure of our designed sequences. Our results show
that about 85% of our designs are predicted to fold into their
intended 3D structure (within 3 A), despite having < 42%
sequence identity with the native sequence, which demon-
strates that they have clear utility to design novel proteins
with diverse properties.

2 PDBench: Evaluation benchmark set

Diverse Set of Structures Our benchmark set contains
595 protein structures spanning 40 protein architectures
that are clustered into 4 fold classes (see Fig. 2): mainly-
a, mainly-3, a-f and special, as presented in the CATH
database (Knudsen and Wiuf 2010). The ‘special’ category
contains proteins that do not have regular secondary struc-
ture. Crystal structures with maximum resolution of 3 A
and up to 90% sequence identity were carefully chosen to
cover the structural diversity present in the PDB (see Fig. 2).
This ensures that the performance is evaluated on high- and
low-quality inputs (see Fig. 3) and the results are not bi-
ased towards the most common protein architectures. The
benchmark structures were prepared by removing all non-
backbone atoms using AMPAL (Wood et al. 2017).
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Figure 3: Resolution and amino acid distribution in the
benchmark set.

Benchmarking Tool We have developed an open-source
benchmarking library that is implemented in Python. The in-
puts to our program are a prediction matrix (in .csv format)
and a dataset map (in .txt format). The prediction matrix is
n x 20 for a protein with n amino acids in the polypeptide
chain. Each row in the matrix encodes prediction probabili-
ties across the 20 canonical amino-acid classes. The dataset

map contains a list of protein chains to be evaluated with
the benchmark. The outputs of our program are the metrics
for each model in a plot, as well as the option to generate
comparison plots between different models to compare their
performances. The software uses the AMPAL library to read
protein sequences and then replaces non-canonical residues
with standard amino acids residues for compatibility with
protein design software (Wood et al. 2017). For example, se-
lenomethionine is converted to methionine. Optionally, non-
canonical residues can be omitted from calculations.

DSSP is used to assign the secondary structure for each
residue (Joosten et al. 2010). For simplicity, predictions for
a-helix, w-helix and 31g-helix are combined and treated as
helices. Predictions for hydrogen-bonded turn, bend and iso-
lated B-bridge residues are combined and treated as struc-
tured loops. CATH database (Knudsen and Wiuf 2010) is
used to assign protein architectures to chains.

Metrics We calculate four groups of metrics: 1) recall,
precision, AUC, F1 score, Shannon’s entropy, and predic-
tion bias for each amino acid class; 2) accuracy, macro-
precision, macro-recall, similarity and top-3 accuracy for
each protein chain; 3) accuracy, macro-precision, macro-
recall, similarity and top-3 accuracy for each secondary
structure type; 4) accuracy, macro-precision, macro-recall,
similarity and top-3 accuracy for each protein architecture.
All metrics except similarity and prediction bias are calcu-
lated with SciKit-Learn (Pedregosa et al. 2011). Prediction
bias is a metric measuring the discrepancy between the oc-
currence of a residue and the number of times it is predicted.

Accuracy-based metrics are useful, but there is functional
redundancy between amino acids, as many side chains have
similar chemistry. The similarity of amino acids can be de-
termined by the relative frequency of substitution of one
amino acid for another observed in natural structures, using
substitution matrices such as BLOSUMG62, which we com-
bine into a similarity score for the sequence (Henikoff and
Henikoff 1992). We also created torsion angle comparison
plots between true and predicted residues for each model.
¥ and ¢ angles for the plots are extracted using AMPAL
(Wood et al. 2017); the residue count for each torsion angle
pair for each amino acid is normalized by the true number
of that amino acid in the dataset.



Structure Evaluation We computationally validate de-
signed sequences, using AF2 (Jumper et al. 2021), to de-
termine if the sequence adopts the intended 3D structure.
The sequence predictions are used as an input and the pre-
dicted structure is compared to the target structure, calculat-
ing a length-normalised form of Root Mean Squared Devi-
ation (RMSD) (Carugo and Pongor 2008). As the folding
predictions are computationally demanding, we randomly
chose 59 monomeric! protein structures from our bench-
mark. We used a modified version of ColabFold (Mirdita,
Ovchinnikov, and Steinegger 2021) to allow for multiple si-
multaneous predictions on a single GPU (about 2 days for
each set of 59 structures). RMSD was calculated using the
align command in PyMOL (Schrédinger, LLC 2015).

3 Models evaluated
3.1 Physics-based Models

We tested two state-of-the-art physics-based methods:
EvoEF2 (Huang, Pearce, and Zhang 2019) and Rosetta (Al-
ford et al. 2017). Fixed backbone sequence design protocols
were performed, details of which can be found in the Sup-
plementary Material.

3.2 Existing Deep Learning-based Models

The input to CNN models is a fixed-size 3D grid, that we
call a frame, which is centred on the Ca atom of the input
amino acid, with a frame for each residue in the protein se-
quence. The network is trained to classify, predicting prob-
abilities across a fixed set of 20 classes for each frame. The
input to GNN models on the other hand is the whole pro-
tein as a graph. Each residue is represented as a node in the
graph, with an edge connecting two nodes if the correspond-
ing residues are within a predefined distance threshold. The
GNN is then trained to produce a 20-dimensional embed-
ding that represents the class probabilities for all residues at
once. An illustration of the different types of data input is
shown in the Supplementary Materials.

ProDCoNN (CNN) We replicated the architecture de-
scribed in Zhang et al. (2020). We used our open-source vox-
elisation library to create the protein dataset used to train the
model. The neural network was built using Keras (Chollet
et al. 2015).

DenseCPD (CNN) Qi and Zhang (2020) proposed using a
3D DenseNet architecture (Huang et al. 2019) for sequence
design. Their model contains 3M trainable parameters, how-
ever we were not able to replicate it with the information
given. Qi and Zhang (2020) kindly shared their model ar-
chitecture for us to train with the same dataset as the other
models, although the architecture provided was different to
that described in the paper. When trained with the same data
as the other models, we were not able to match the published
performance of DenseCPD, therefore we used their trained
model. However, it must be noted that this model has been
trained on some of the benchmark structures.

' AF2 performance is higher in protein monomers compared to
multimeric complexes (Jumper et al. 2021)

ProteinSolver (GNN) is a model proposed by Strokach
et al. (2020). Their code and the model are open-source and
available online. The model uses a threshold of 12 A to con-
sider two residues connected by an edge.

3.3 Novel models

TIMED-Unbalanced (CNN) We used the Keras frame-
work as a high-level interface to TensorFlow (Abadi et al.
2015), to create a deep CNN, which we refer to as TIMED
(Three-dimensional Inference Method for Efficient Design).
Details of the architecture are in the Supplementary Mate-
rial. One of the key features of our neural network is the use
of the final Global Average Pooling (GAP) layer rather than
a Fully Connected (Dense) layer, to preserve spatial infor-
mation (Lin, Chen, and Yan 2014). The model also uses Spa-
tial Dropout rather than standard dropout to help enforce this
relationship. The model was trained with categorical cross
entropy loss.

TIMED-Balanced (CNN) To avoid biasing our neural
network towards the natural frequency of amino acid, we use
a random undersampling method. In the training and valida-
tion sets, all residue classes are capped to match the num-
ber of the least abundant residue. At the beginning of every
epoch, for residues with a higher count than the minimum,
frames are randomly re-sampled to increase the number of
total residues observed by the network.

GX (GNN + GNN-CNN Hybrid) Our Graph eXpanded
method involves a GNN architecture with several SAGE lay-
ers (Hamilton, Ying, and Leskovec 2018) and a mean aggre-
gation function. While we experimented with several fea-
tures, we utilises the frame predictions of TIMED as its
input features and the coordinates of atoms C, N, O and
Ca. We call this GX[PC] since it is a hybrid CNN-GNN
model which aim at improving on the high CNN perfor-
mance by adding longer-range information captured by the
GNN. We used a weighted categorical cross entropy loss
where weights were obtained from the inverse natural fre-
quency of residues (Gasteiger et al. 2005).

4 Experimental results
4.1 Implementation details

The TIMED model (CNN) was built with Keras. We trained
our model for 50 epochs which took about 49 hours. The
GX model (GNN) was built with PyTorch (Paszke et al.
2019). Each batch of the dataset contained 200 structures
for the CSD3 server and 1,000-1,200 structures for our in-
ternal server. Training took about 10 hours for about 1000
epochs. The hardware used for training was a combination of
the Cambridge Service for Data-Driven Discovery (CSD3)
(NVIDIA Tesla P100 16GB GPU and 36 cores) and our
internal servers (Intel Core 19-10980XE CPU @ 3.00GHz
(36 cores) and NVIDIA Quadro RTX 8000 48GB). Weights
& Biases was used to track experiments and for Bayesian
hyper-parameter sweep (Biewald 2020).
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Figure 4: The first three plots compare performances of
models across classes of folds. The plot at the bottom shows
the negated correlation coefficient (Y axis) between macro-
recall and the resolution (in A) of the input structure. The
performance of DenseCPD depends on input with fine res-
olution. All p-values were significant (< 10~%) except for
ProteinSolver (0.3) which is excluded from the plot.

4.2 Model Performance per Class

We compared all the models with our benchmark using the
accuracy, macro-recall and similarity metrics (see Fig. 4).
Since proteins can adopt a wide range of structures, per-fold
metrics provide more meaningful insights about the perfor-
mance of a model. We divided our benchmark set (595 struc-
tures) into four categories of protein folds as explained in
Sec. 2. See Fig. 2 for the proportion of structures in each
category. We calculated metrics for each protein structure,
and averaged the metrics across folds. Error bars show one
standard deviation from the mean within each group.
Between the physics-based methods, Rosetta outper-
formed EvoEF2 in all our tests and all metrics by about 4-
10 %. All TIMED and DenseCPD models marginally out-

performed the physics-based methods across the metrics re-
gardless of structure types except for the “special” class.
DenseCPD? had the highest performance across all metrics
by a considerable margin. ProteinSolver had the lowest per-
formance across all methods (vide infra).

4.3 Dependence on Resolution

The spatial resolutions of experimentally determined pro-
tein structures varies by methodology and other factors. The
finer the resolution, the more precisely the position of the
atoms are known in the structure. We calculated correla-
tions between macro recall and input resolution (in A) for all
models across different folds (Figure 4). Except for Protein-
Solver, all models had a significant correlation between res-
olution and macro-recall, with p-values values of < 1078,
DenseCPD consistently had a higher correlation than other
models, which could be explained by the fact that it was
trained on 2A structures while the other deep learning mod-
els (with the exception of ProteinSolver) were re-trained on
3A structures. Rosetta exhibited lower correlation than other
models on all protein classes except ‘special’.

4.4 Prediction Bias

The composition of the amino acids in proteins is not uni-
formly distributed, and can vary significantly between dif-
ferent protein folds. Therefore, we investigated the effect of
balancing our frame dataset prior to training. When TIMED
and ProDCoNN were trained without balancing, the ac-
curacy on the benchmarking set increased from 38.5% to
41.1% and from 35.1% to 37.7%, respectively. However, this
also resulted in increased prediction bias for the most com-
mon amino acids, as well as decreased macro-recall. This
is particularly obvious for alanine, glutamate and leucine
in a-helices (4%, 10% and 6% bias in TIMED; 2%, 15%
and 10% in ProDCoNN, respectively) and, to a lesser ex-
tent, leucine and valine in 3-sheets (3% and 5% in TIMED,
4% and 7% in ProDCoNN) (see Supplementary Material).
When the amino acid distribution was balanced by ran-
dom undersampling, the prediction bias was closer to 0%
for all amino acids, indicating that predicted sequences had
the same amino acid distribution as true sequences. Overall,
TIMED architecture appears to be more robust to amino acid
imbalance which could be key to designing natural-looking
sequences.

The benchmark also produces torsion angle comparison
plots that investigate the of prediction bias in more detail.
The geometry of the protein backbone can be described
primarily by rotation around the N-C, and C,-C bonds.
These rotations can be described by the two torsion angles
® and V. Certain backbone conformations are associated
with specific combinations of ® and ¥ e.g. repeated regions
of ®&=-60, W=-60 lead to the formation of «-helical sec-
ondary structure. By comparing torsion-angle frequencies

2Caveat: Our retrained version of the DenseCPD model was
unable to match its claimed performance. We therefore used the
DenseCPD model trained and shared kindly by its authors. How-
ever, this contained some benchmark structures in its training set.



of true and predicted amino acids, we can identify if pre-
dicted amino acids are in energetically favourable regions
and how their distribution has changed with respect to dif-
ferent structures within proteins. For example, the first itera-
tion of TIMED model had the accuracy of 26% but 19% pre-
diction bias for glycine. We discovered that glycine is over-
predicted almost everywhere but especially in the a-helical
region (I=-60, $=-60) and, to a lesser extent, in region as-
sociated with 3-sheets (around ®=-140, ¥=140), and is fre-
quently confused for other amino acids (Fig. 6).

4.5 Design Evaluation with AlphaFold2 (AF2)

We randomly selected 59 structures from the benchmark
(about 10% of the benchmark) covering classes of mainly
alpha, mainly beta and alpha-beta. We predicted the residue
sequences using each of the models in Sec. 3. We provided
the predictions as input into AF2, a state-of-the-art protein
folding model, to obtain hypothetical 3D structures of the
predicted sequences. We then compared the RMSD between
the predicted structure and the target structure. We did this
for each model and for each class. We excluded structures
with the “special” class as they are highly irregular.

As shown in Fig. 5, the physics-based methods tend to
have a larger range of RMSD, especially EvoEF2. Rosetta
has a larger RMSD range in the mainly beta fold. Most mod-
els performed better for alpha-beta folds. The performance
of deep-learning models is usually equivalent or better than
the physics-based methods, with DenseCPD performing best
overall. It generally has the smallest range in RMSD ex-
cept for the mainly-alpha fold where it has a larger range
of RMSD than TIMED-unbalanced. The unbalanced mod-
els seem to outperform the balanced ones in terms of RMSD,
consistently over all folds. The GX[PC] model seems to im-
prove the prediction of TIMED-Balanced in the mainly beta
fold and alpha-beta. The ProDCoNN model typically tends
to perform better in mainly beta structures.

We also visualise these data using a percentage plot to
show how many structures are present at each RMSD thresh-
old (see Supplementary Material). We see that, under 6 A,
deep-learning models tend to have a similar percentage of
structures at each RMSD threshold. DenseCPD is the best
overall model, but it closely matched by other deep learning
models. It is worth reiterating that some of these structure
from the benchmark were present training set of DenseCPD.
We avoided running ProteinSolver on AF2 given the poor
performance in our benchmark.

5 Discussion

Combinations of Metrics Across Classes When consid-
ering accuracy metrics (Fig. 4) along with similarity to the
target structures (Fig. 5), there is a marked difference in the
performance of all the design algorithms across the differ-
ent fold classes. It is interesting that all of the deep learn-
ing based methods performed well when designing “mainly
B structures, as these are traditionally very challenging
targets (Woolfson et al. 2015; Huang, Boyken, and Baker
2016). Furthermore, the accuracy of sequence recovery was
more strongly correlated with resolution in the S-rich classes

(“mainly S and a3”) (Fig. 4), which suggests that the se-
quence preferences in /3 structure are closely linked to sub-
tle details in the backbone conformation. This might indi-
cate why 3 design is more challenging: it is more difficult
to generate high-quality backbone models for S-rich struc-
tures compared with a-rich structures, most likely due to the
higher degree of conformational flexibility compared to «
helices, and so our focus should be on improving backbone-
modelling techniques for 3 structure rather than sequence-
design methods.
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Figure 6: Glycine overprediction. Left: A torsion angle plot
showing normalized frequency difference between true and
predicted number of glycine amino acids. Negative values
indicate increased glycine frequency in predicted sequences.
Right: A confusion matrix showing the confusion frequency
for amino acid pairs.

Glycine Trap The over prediction of glycine by our ini-
tial model is likely related to the flexibility of this residue,
which allows it to adopt a broad combinations of ® and ¥
(Lovell et al. 2003). It is well documented that the identity
of the side chain has a large impact on the backbone con-
formation (Shapovalov and Dunbrack 2011), therefore it is
likely that it is important to the quality of predictions. How-
ever, if too much attention is placed on backbone torsion
angles, it is easy to imagine that a network would over pre-
dict residues with a strong influence on backbone conforma-
tion, such as glycine and proline, which is what we see in
our initial model (See Fig. 6 right). However, glycine is a
highly destabilizing a-helices (L6pez-Llano, Campos, and
Sancho 2006), so it is important to be aware of these biases.
PDBench can easily identify cases where this, or other se-
quence biases, have occurred, which can be used to guide
the development of the design methodology.

Balancing Amino Acids Using the benchmark, we ex-
plored the effect of balancing amino-acid classes. In some
ways, unbalanced classes better reflect the biochemical
availability of the individual amino acids, which could im-
prove production of the proteins in living systems. However,
this would mean that the biases of natural proteins would
be reflected in the sequences produced by the design algo-
rithm, when there’s strong evidence that functional proteins
exist in sequence spaces that are unexplored in nature (Weid-
mann et al. 2019). The benchmark highlights these sequence
biases clearly, and armed with the results of the benchmark,
potential users can decide whether this behaviour is desir-
able for their specific application.
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Figure 5: Boxplot showing the ranges of RSMD between the real structure and predicted structure for each model, seperated
by protein class. 59 Structures were randomly selected from the benchamrk and the predicted sequence for each model was fed
to AF2 to obtain a theoretical structure. The structures were then compared using RMSD (g, a normalised version of RMSD to
compare protein structures of different lengths proposed by Carugo and Pongor (2008).

ProteinSolver and de novo Design We were surprised to
see that the performance of ProteinSolver was lower using
our benchmark compared to their published results. We hy-
pothesised that this could be due to differences in the input
structures. If side-chain atoms of the input structures were
included when calculating the distance matrix, which is used
as an input to their model, the distance matrix would indi-
rectly encode sequence information present on the backbone
scaffold. For example, for long and flexible residues like glu-
tamate and lysine, those residues could be closer to many
more residues than the backbone alone, which will have an
obvious impact on the distance matrix. When designing de
novo, the identity of the side-chains is unknown, and so
we strip the side chain atoms out of the benchmark struc-
tures. We tested ProteinSolver using our benchmark struc-
tures both with and without side-chain atoms, which con-
firmed our hypothesis of label leakage, as the macro-recall
dropped from 36.3% to 13.3%. ProteinSolver clearly has
some utility for making minor changes to natural sequences,
but it appears to be unsuitable for de novo design.

Significance Threshold for Metrics We have discovered
that accuracy, macro-recall and other statistical metrics can
accurately estimate a model’s performance only up to a
certain point. For example, the TIMED unbalanced and
DenseCPD models differ significantly by accuracy, macro-
recall and similarity. However, difference in RMSD in the
AlphaFold?2 predictions are not significant, so it appears that
they both produce sequences that will fold to the target struc-
ture. Perhaps, after a certain accuracy point, statistical met-
rics become less relevant. In the case of de novo design for
example, high accuracy might limit the utility of the design
method, as the sequences produced will have lower variabil-
ity. In real-world application of protein, the increased di-
versity of lower accuracy models might be more desirable,
especially when the experimental strategy involves high-

throughput screening.

Limitations We have used structure predictions from AF2
to validate the designs produced by the sequence design al-
gorithms, which is computationally demanding. To provide
context, the evaluation using AF2 (on about 10% of the
benchmark set) took two days of computation on our servers.
While the reported performance is impressive (Jumper et al.
2021), it remains to be seen whether this is a useful method
for determining if designs will fold in experimental settings.
As AF2 is trained on observed protein structures, the predic-
tive power of this model may be lower for sequences out-
side of observed structural space. In this case, physics-based
simulations such as molecular dynamics, might be required
to evaluate the AF2 structures further, although these simu-
lations are even more computationally expensive, so reduce
the scale at which design can be performed.

6 Conclusion

We have presented PDBench, a dataset and software pack-
age for evaluating fixed-backbone sequence design algo-
rithms. The structures included in PDBench have been cho-
sen to account for the diversity and quality of observed
protein structures, giving a more holistic view of perfor-
mance. We find that generic metrics such as classification
accuracy and recall are less informative when determining
the utility of computational models for protein-sequence de-
sign, as they can obscure properties of the design method
that could have a major impact on the quality of the de-
signed sequences. Finally, structure predictions of designed
sequences showed that there appears to be diminishing re-
turns from further improving fixed-backbone design algo-
rithms, and so, in the spirit of quantum physicists before us,
perhaps it is time to “‘shut up and calculate” (Mermin 1989).
We are currently in the process of experimentally validating
designs from the TIMED models in the laboratory.
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1 Guide
From Section (Main Paper) Link to Section / Figure
3.1 Physics-based models Section 9
3.2 Existing Deep Learning-based Models Figure 8
3.3 Novel models Figure 9
4.4 Prediction Bias Figure 2

4.5 Design Evaluation with AlphaFold2 Figure 5 and 6

2 DenseCPD and TIMED Benchmark Performance with and
without train structure

Our retrained version of DenseCPD was unable to match its claimed performance. We therefore
used DenseCPD model trained and shared kindly by its authors. However, this contained some
benchmark structures in its training set. We also evaluated denseCPD with training structures
excluded from the benchmark set.

Full benchmark set denseCPD training structures excluded
Metrics denseCPD TIMED denseCPD TIMED
Accuracy, % 56.8 38.9 51.6 36.9
Macro-recall, %  53.2 37.5 47.8 35.5
Similarity, % 72.4 57.4 68.1 55.5

Table 1:  denseCPD performance on the benchmark set with and without training structures.
Structures not included in denseCPD training set had on average lower resolution; this resulted in
lower metrics not only for denseCPD but also for TIMED. Therefore, denseCPD does not seem to
overfit its training data.

3 Models Summary

We propose two novel models as well as comparing them with other available deep learning- and
physics- based methods:



Method Type Architecture Novel

EvoF2 physics - no
Rosetta physics - no
ProdConn learned CNN no
DenseCPD  learned CNN no
ProteinSolver learned GNN no
TIMED learned CNN yes
GX[PC] learned GNN yes

Table 2: A summary of models compared in this paper.

4 Comparison of two extreme examples from DenseCPD and
TIMED

We then selected two exemplar structures from models DenseCPD and TIMED-Balanced to further
understand the performance in the context of protein structures. We selected structures where one
model had low RMSD and the other a high RMSD. We selected structures 3CXB and 4EFP.

= QOriginal DenseCPD TIMED-Balanced

Figure 1: Comparison of two selected ground truth structures (pink) with those obtained using
AF2 on predictions from DenseCPD (cyan) and TIMED (yellow). For 3CXB (left), RMSD is 1.34
A (DenseCPD) and 14.65A (TIMED). For 4EFP (right), it is 16.38 A (DenseCPD) and 0.65A
(TIMED).

5 Prediction Bias for TIMED and ProDCoNN (balanced and
unbalanced)

The composition of amino acids in proteins is not uniformly distributed. Therefore, we investigated
the effect of balancing amino acid distribution in the training set.
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Figure 3:
unbalanced versions.

Prediction bias comparison for TIMED and ProDCoNN models both balanced and



6 Comparison of Number of structures at each resolution for
each model

Here, we show the % of structure obtained at each resolution. The average RMSD for AlphaFold2 in
the CASP 2020 challenge was approximately 1.6 A (?). We therefore show the number of structures
at each bin of 1.6 A in Figure 4 and 2 A in Figure 5. For completeness we also show the results for
1 A in Figure 6, although these are below the margin of error and are likely not significant.

Mainly Alpha Mainly Beta Alpha-Beta All
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Figure 4: Percentage of structures at each RMSD under 6.4 A, for each model and for each protein
fold. Here, we used bins of 1.6 A which is the average RMSD AlphaFold2 got in CASP14.
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Figure 5: Percentage of structures at each RMSD under 6 A, for each model and for each protein fold.
We used bins of 2 A as this was the mean resolution across the input structures of the benchmark.
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Figure 6: Percentage of structures at each RMSD under 6 A, for each model and for each protein
fold. Here, we used bins of 1 A to show the breakdown of performance below 2 A.

7 ProteinSolver Distance Matrix with and without Poly-Glycine
Input

Protein Solver Distance Matrices using 1QYS protein with and without sidechain atoms (labels).
ProteinSolver claims to use the heaviest atom in the residue and as confirmed by private conversation
received on June 5th at 20:59, they “include both backbone and side chain atoms when calculating
nearest distances”.

The side chains atoms determine the identify of the amino acids and are therefore labels. In a truly
de novo design setting, only an empty backbone (without side chains would be available.

The macro-recall performance dropped from 36.6 to 13.3 when using an empty backbone (poly-
glycine) input. The performance drop is only observed for ProteinSolver while it remains constant
for all other models.
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Figure 7: The distance matrix changes if side-chains (labels) are included in the .pdb input. The
two distance matrices should be identical as only the empty backbone atoms should be used, as they
are the only ones available in de novo settings, meaning it probably presents label leakage.



8 Input Data Pipeline

Distance Matrix

Protein Empty Backbone GNN Models: GX[C1], GX[C4], GX[P20], GX[PC]

Residue
- > Sequence

"ACAQLTA..."

Voxelisation Frames

CNN Model: TIMED

Figure 8: Illustration of the data pipeline. High-quality 3D structures of proteins are obtained
from a database. The side-chains of each residues are removed so to produce an empty backbone.
The GNN models calculate the distances between each residue in the protein to produce a distance
matrix which is used for the production of a graph. The CNN model, on the other hand, voxelises
areas of space (“frame”) around each residue, with the Ca at the center of it. Both models predict
the identity of the side-chains of the residues giving a sequence of predicted residues to obtain the
input 3D structure.

9 Physics Models Commands

We evaluated two state-of-the-art physics-based methods: EvoEF2 (?) and Rosetta (7). We used
the following commands to run fixed backbone design protocols:

EvoEF2: ./EvoEF2 —command=ProteinDesign —ppint —design_chains=B —pdb=structure.pdb to
design chain B from structure.pdb.

Rosetta (version 3.12): . /fixbb.static.linuxgccrelease -s structure.pdb -linmem_ig 10 -ignore_unrecognized res

-resfile file.txt. Resfile was used to select specified chain.

10 Benchmark structures

Our benchmark set contains 595 protein structures spanning 40 protein architectures.

PDB code + chain: 1xg0C, 3g3zA, 3rf0A, 4i5jA, 2ptrA, 3f0cA, 4abuB, 2p57A, 2q00C, GerGA,
1h32A, 3e3vA, 3cxbA, 1dvoA, 5dicA, 2bnmA, 4pfoA, 2ebfX, 3giaA, 1adlA, 3cexA, 4ebbA, 3jrtA,
3wfdB, 4vigA, 3qb9A, 3abhA, 3nvoA, 201kA, 5x56A, 2ralA, 4adzA, 2p6vA, 3kdiA, 4lctA, 4adyA,



4zhbA, 4p6zG, 4nq0A, 3dadA, 2vq2A, 4dloA, 20f3A, 4y5jA, 2pmT7A, 2hr2A; 3ro3A, 3bqoA, 3utdA,
2yhcA, 4k6jA, 3iisM, bagdA, 2fbaA, 3e7jA, 1viwA, 3a0oA, 4wulA, 4dozwA, 4¢j0A, 1gxmA, bmTyA,
4fnvA, bgzkA, 4dayoA, 3wkgA, 3vsnA, 2jg0A, 4j5tA, 4ktpA, 4mqwA, 51f2A, bmriA, 50l4B, 1bx7TA,
3caTA, 3tvjA, 3tbdA, 1uzkA, 5bq8A, 3klkA, 1b8kA, 1v6pA, 4dhquA, 4k8wA, 6a2qA, 1lpbA, 3hrzB,
6fmeB, 2aydA, 2ra8A, 4fzqA, 3d4uB, 3wwlA, 2r01A, 11slA, 3f3fC, 2q4zA, 2de6A, 3d9xA, 2hjeA,
3mcbB, 2y8nB, 3witA, 1yadbT, 2dyiA, 3kyfA, 2v76A, 2e12A, 1g3pA, 4006A, 3fb9A, 2p38A, ligqA,
4hhvA, 3teeA, 5j3tA, 5h3xA, 3zbdA, 5d7uA, 5z¢jC, SulmA, 1wthD, 4rgl A, 1kt6A, 2ja9A, 1iduA,
4i86A, 107iA, 1x8qA, 2ichA, 3dzmA, 3n91A, 1luzA, 4lqzA, 4ilkA, 5xlyB, 3a35A, 3tdqA, 4mxtA,
3wjtA, 3buuA, 3ksnA, 2w7qA, 2yzyA, 4z48A, 3bk5A, 4qa8A, 2byoA, 3bmzA, 4egdA, 4joxA, 3h6jA,
2bhuA, 1pmhX, 6ggrA, 4dqaA, 4v2bA, 4weeA, 2w07B, 4r9pA, 2r2cA, 2rOhA, 4aqoA, 4luqC, 3iagC,
1k5nA, 2ygnA, 3bwzA, 4fmrA, InjhA, 4hi6A, 1pkhA, 1gp0A, 3qlnA, 2ag4A, 2v3iA, 3tylA, 1gprA,
3aihA, 4cdaA, 1tulA, 4a02A, 4c08A, 4maiA, 1jovA, 3wmvA, 2fdbM, 1dqgA, 1xzzA, 6i18A, 4i4oA,
4efpA, 5yh4A, 3h6qA, 5bowA, 5vidA, 2vxtl, 3vwcA, 4lo0C, 1sr4C, 2dpfA, 3dzwA, 3aleA, 1xd5A,
4h30A, 4tkcA, 5j76A, 3mezC, 4gclA, 1b2pA, 41eTA, 4oitA, 6b0gE, 1z1yB, 1vimoA, 2gudA, 4r6rE,
5krpC, 5v6fA, 4pitA, 6flwA, 4ddnD, 3apaA, bgvyA, 1c3mA, 4mq0A, 3wocA, 3aqgA, 3towA, 2qp2A,
InykA, 2bmoA, 2gbwA, 1rfsA, 4aivA, 3gkeA, 2nwfA, 1jm1A, 2qpzA, 5cxmB, 3dqyA, 3d89A, 2b1xA,
4qdcA, 2q3wA, 3cTxA, 1genA, 1itvA, 3s18A, 4rt6B, 3cu9A, 3wasA, 6ms3B, 6frwA, 3kluA, baycA,
5c0pA, 4nliA; 3rdzA, 1t12A, 4ub6dA, loygA, 4qqsA, 3qz4A, 5a8cA, 4pvaA, 3kstA, 5lwA, 6gybA,
lcruA, 1suuA, 304pA, 2pdoA, 4mzaA, 5gtqA, 3dr2A, 3dasA, 3gdeA, 2fp8A, 5hx0B, InpeA, 1s1dA,
2zwal, 3a72A, 2zb6A ;| 3scyA, 3b7fA, 3al9A, 304hA, 4pxwA, 4wkOA, 2w18A, bem2A, 1sq9A, 1xipA,
4h5iA, 1jofA, bic7A, 5k19A, 6elzA, 2z2nA, 6edlA, 6fkwA, 6damA, 1filgA, 4cvbA, 4mhlA, 1268A,
2z3zA, 4qlvA, 1xfdA, 5d7wA, 1kapP, 3laaA, 1p9hA, 3ultA, 3s6lA, 2xqhA, 4dt5A, 5mbzA, 5lw3A,
1kbcA, 1kdzA, 2ntpA, 3bh7B, 2j8kA, 2vfoA, 3n6zA, 1hf2A, 2x3hB, 1rmgA, 6mfkA, 110sA, 2xt2A,
5nzgA, 3kweA, 2wTzA, 11ktA, 3facA, 3pyiB, 2casA, 1gppA, 3maoA, 1ut7A, 1hxrA, 1t61A, 4qjvA,
3lywA, 3dalA, 5hqhA, 3u7zA, 3r90A, 1tp6A, 3s9xA, 2exbA, 3gbyA, 5kvbA, 2cu3A, 1clyB, 5f6rA,
4a6qA, 2wH6A, 4lgbA, 400bA, 30ajA, 3n8bA, 3jumA, 2prxA, 5blrA, lewfA, 4m4dA, 20bdA, 6bagA,
lusuB, 3e8tA, 3aotA, 2rckA, 316iA, 3uvlA, 3bqwA, 5mprA, 1kkoA, 4cd8A, 1vd6A, 2g0wA, 4lanA,
3s83A, 2v3gA, 3fkrA, 4z0gA, 3sggA, bzjbA, 2xfrA, 4g8tA, 5n6fA, ImuwA, 2qghqA, 3h35A, 3kluA,
3fn2A, 20d6A, 1kcfA, 3nlcA, 2zw2A, 4ftxA, 3u2aA, 2hiqA, 1xkpC, 6ih0A, 5c12A, 1w4rA, 3c0fB,
3nbmA, 2r6zA, 5hxdA, 1chdA, 3do8A, 3gohA, 1n0eA, 2q82A, 5kxhA, 3oqiA, 2x41A, 3d3kA, 3146A,
2fkcA, 5jphA, 3nytA, 3rhtA, 3dkrA, 2psbA, 1tcbA, 3vrdB, 2je3A, 3ghsA, 1jkeA, 4at0A, 1vidA,
4u8pC, 4ntcA, 5ipyA, bnakA, 4z24B, 4opcA, 5cdkA, 2b0aA, 4n2pA, 1j5uA, 1vzyB, 1vq0A, 4ipuA,
4dq9A, 4jtmA, 3gs9A, 3adyA, 3miOA, 3ib7A, 3g91A, 1vr7A, 4zx2A, 1dsl1A, 3zwfA, 1hqOA, 3hbcA,
3p8KA, 1wraA, 3t91A, 3c9fA, 2imhA, TumOA, 5y0mA, 5udhA, 3zh4A, 3swgA, 5ujsA, 3nvsA, 200bA,
2pqcA, 3slhA, 1rf6A, 4n3pA, 5bufA, 3rmtA, 4fqdA, 1ud9A, 1t6lA, IrwzA, 3ifvA, 1izbA, 3Ix2A,
1u7bA, 5tupA, 5h0tA, 5v7TmA, 3fdsC, 3aizA, 1b77A, 3p91A, 1dmlA, 3hslX, 2z01A, 6nibA, 2jerA,
1xknA, 1zbrA, 3hvmA, 1jdwA, 5wpiA, 1g61A, 1h70A, 5m3qA, 1ynfA, 3wndA, 1io0A, 4rcaB, 4fcgA,
4ecoA, 3wpcA, 4m6A, 4dcnmA, 5hzIB, 4fsTA, 2xwtC, 3edgA, 4wpbA, 5ilTA, 127xW, 4u7lA, 6{g8A,
2wthA | 2fy7A, bwwdA, 1j3aA, lomzA, 3emfA, 1xw3A, 3h4rA, 3essA, 1022A, 4ktbA, 1jh6A, 3n08A,
StsqA, 3e9vA, 4j7hA, 1i4jA, 2wnfA, 3vlaA, 3coqA, 2f60K, 4zgmA, 1i7TwB, 6g6kA, 1pbyC, 1a92A,
3alrA, 2wjvD, 2a26A, 1devB, 410nA, 4ayaA, 3zxcA, 4pkfB, 2blyA, 4dncD, 4jpnA, 4el18B, 3vepX,
3vdyB, 1xawA, 1ykhA, 2p64A, 6bscB, 2z3xA, 4uzzB, 3thfA, 1wq6A, 4ke2A, 4IhfA, 2v66B, 3lczA,
2h40A, 4wjwA, 3kvpA, 3e56A, 3bk3C, 2ds5A, 3zoqB, 3nfgB, 4ksnA, 3ual0A, 3nrtA, 4a9aC, 6hikL



11 TIMED CNN Architecture
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Figure 9: Architecture of the TIMED Convolutional Model.



12 GX[PC] GNN Architecture

Similarly to ProteinSolver we create a graph structure for each protein. We calculate the distance
between the Ca of all residues in the empty backbone to produce a distance matrix for each protein.
The distance matrices were then loaded into SciPy’s sparse matrix (?) and Deep Graph Library
(DGL) (?) to produce a graph structure. Each residue in the protein sequence is represented by a
node. An edge connects two nodes if the distance between the two is below the distance threshold,
for example 12 A, which was obtained from ProteinSolver (7). We also tried different ranges of
distances ranging from 4 to 10 A.

The nodes in the graphs were given different node features:

- C4: Four atomic coordinates of the node, C, N, O, and Ca.

- P20: The output 20-dimensional probability of TIMED (CNN), for that specific node.
- PC: Both C4 and P20 in a 24-dimensional array.

We used a 70-30 train-validation split, again excluding all benchmarking structure. As with Apos-
teriori, we release the code open-source together with our models.

To circumvent DGL’s limitation of not being able to save datasets larger than RAM, we modified
the DGLDataset class to save (and load) batches of graphs into multiple files as well as supporting
multiprocessing. Data Loading in batches significantly affects the training time.

The best GX model was trained with a distance threshold of 12 and 10 layers with the following
architecture:

10 layers with SAGEConv using the mean aggregation function. Each layer is followed by activation
with LeakyRelu and Dropout rate of 0.4, except for the final layer.



13

DenseCPD Architecture (claimed)

Figure 10: Replication of architecture of the DenseCPD from the paper figure.
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14 DenseCPD Architecture (actual)
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Figure 11: Architecture of the DenseCPD obtained from the model.json file from the authors.
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