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ABSTRACT
Reducing the size of triangle meshes and their higher-dimensional
counterparts, called simplicial complexes, while preserving impor-
tant geometric or topological properties is an important problem
in computer graphics and geometry processing. Such salient prop-
erties are captured by local shape descriptors via linear differential
operators – often variants of Laplacian matrices. The eigenfunc-
tions of Laplacians yield a convenient and useful set of bases that
define a spectral domain for geometry processing (akin to the fa-
mous Fourier spectrum which uses eigenfunctions of the derivative
operator). Existing methods for spectrum-preserving coarsening
focus on 0-dimensional Laplacian operators that are defined on
vertices (0-dimensional simplices).

We propose a generalized spectral coarsening method that con-
siders multiple Laplacian operators of possibly different dimension-
alities in tandem. Our simple algorithm greedily decides the order
of contractions of simplices based on a quality function per simplex.
The quality function quantifies the error due to removal of that
simplex on a chosen band within the spectrum of the coarsened
geometry. We demonstrate that our method is useful to achieve
band-pass filtering on both meshes as well as general simplicial
complexes.

CCS CONCEPTS
• Computing methodologies→ Shape analysis.

KEYWORDS
geometry processing, numerical coarsening, spectral geometry

1 INTRODUCTION
Discrete representations of geometry such as triangle and tetrahe-
dral meshes are ubiquitous across computer graphics applications
such as modelling, simulation and rendering. Meshes typically used
in computer graphics applications are specific instances of general
abstractions called simplicial complexes. While the vertices of a
mesh are commonly embedded (have explicit coordinates) in 2D
or 3D, simplicial complexes capture abstract relationships between
nodes – as extensions of graphs by including 3-ary (triangles), 4-ary
(tetrahedra) and higher dimensional-relationships. We present a
coarsening algorithm to unify the simplification of meshes and
simplicial complexes of arbitrary dimensionality while preserving
desirable properties.

Spaces are often characterized by studying the action of differ-
ential operators over them. The Laplacian operator is an example
that makes a common appearance across geometry processing,
machine learning, mesh processing and computational topology.
Its specific definitions and flavours vary widely across domains
such as discrete exterior calculus [Crane et al. 2013], vector-field

processing [de Goes et al. 2016; Poelke and Polthier 2016; Vaxman
et al. 2016; Wardetzky 2020; Zhao et al. 2019], fluid simulation [Liu
et al. 2015], mesh segmentation [Lai et al. 2008], topological signal
processing [Barbarossa and Sardellitti 2020], random walk repre-
sentations [Lahav and Tal 2020], clustering and learning [Ebli et al.
2020; Ebli and Spreemann 2019; Keros et al. 2022; Smirnov and
Solomon 2021], etc.

Various flavours of Laplacians capture different properties across
multiple spaces. e.g. the mean curvature normal operator, also
known as Laplace-Beltrami operator, is a generalization of the
Laplacian from flat spaces to manifolds [Dierkes et al. 1992]. Vi-
sually appealing coarse meshes are produced by preserving low
frequencies of the cotan Laplacian, which encapsulates curvature
information. Both these variants are defined on the vertices of the
complex and therefore are 0-dimensional Laplacians. Properties
of vector fields are encoded using a Hodge Laplacian defined on
the edges of the complex– a 1-dimensional Laplacian. For some
applications, such as simplification of the domain of a physics sim-
ulation, the spectra of both 0- and 1-dimensional Laplacians need to
be preserved. In cases when the goal of coarsening is to preserve
functionality (simulation accuracy) rather than visual appeal, the
development of ad hoc rules for simplification become challenging.
A more principled approach is to impose constraints on the degree
of change caused by the coarsening operator on the eigenspace
of some relevant Laplacian. We discuss some such such spectral
coarsening algorithms in Section 2.

We propose a spectral coarsening method can preserve spectral
bands of different Laplacians, across different dimensionalities of
simplices. We develop a generalized spectral coarsening algorithm
that is agnostic of the specific Laplacian considered. We demon-
strate our algorithm’s effectiveness on meshes and more general
simplicial complexes. We propose a quality function in Section 4.1,
per simplex, which quantifies the error introduced in a specified
band of the spectrum of the coarse mesh resulting from a contrac-
tion of that simplex. We then greedily contract (sets of) simplices
iteratively until some threshold or target coarsening level is reached.

In summary, the our contributions in this paper are:
• a Laplacian-independent coarsening operator;
• an algorithm for band-pass filtering of simplicial complexes;
• a coarsening operator that simultaneously seeks to preserve
spectra of multiple Laplacians, with a controllable weighting.

2 RELATEDWORK
Spectral coarsening is an active area of research across applications
of graphs, meshes and simplicial complexes.

Graphs. The spectrum of a combinatorial graph Laplacian reveals
fundamental geometric and algebraic properties of the underlying
graph [Chung 1999]. A plethora of works [Chen et al. 2022] attempt
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0 &1-simplices 0,1&2-simplices

(a) boundary matrices are extensions of the incedence matrix to higher dimensions

0,1,2&3-simplices

(b)  weights of cotan Laplacian

Figure 1: (a) The unweighted 𝑘𝑡ℎ-dimensional Hodge Laplacian is defined as 𝜗𝑇
𝑘
𝜗𝑘 +𝜗𝑘+1𝜗𝑇𝑘+1 where 𝜗𝑘 represents the boundary

matrix from 𝑘+1-simplices to 𝑘-simplices. Thus, the 0-dimensional Laplacian (Laplace Beltrami) operator is obtained from the
incidence matrix and the adjacency matrix. The complex on the right has a tetrahedron (transparent orange) and therefore
𝜗0, 𝜗1 and 𝜗2 defined on it which leads to three (0-, 1- and 2-dimensional) Laplacians. (b) The cotan laplacian is a weighted
0-dimensional Laplacian where an example vertex and edge weight is illustrated.

to preserve spectral subspaces, while reducing the size of the in-
put graph. A notable example [Loukas 2019], which inspired our
method, proposes an iterative, parallelizable solution to preserve
spectral subspaces of graphs by minimizing undesirable projections.

Meshes. Seminal works [Garland and Heckbert 1997; Ronfard
and Rossignac 1996] for coarsening triangle meshes propose lo-
calized and iterative operations via edge collapses based on visual
criteria. Such methods have also been applied to rapid tetrahedral
mesh simplification based on volume criteria [Chopra and Meyer
2002]. Recent methods preserve low frequencies of the cotan Lapla-
cian and other geometric operators, by minimizing spectral error
𝐸 = ∥𝑃𝑀−1𝐿𝐹 − �̃�−1�̃�𝑃𝐹 ∥2

�̃�
, where 𝑃 is a coarsening projection

matrix, 𝑀 is a mass matrix, 𝐿 is a differential operator, and 𝐹 is
the spectrum of interest as a matrix of eigenvectors. A tilde above
the respective notations denotes their coarsened versions. They
formulate coarsening as an optimization problem subject to various
sparsity conditions [Liu et al. 2019], by detaching the mesh from
the operator [Chen et al. 2020], and localizing error computation
in order to form a parallelizable strategy [Lescoat et al. 2020].

Simplicial complexes. The computational topology literature ad-
dresses simplification of simplicial complexes with a special atten-
tion on homology and its preservation. Edge collapse, where two
vertices are merged, is referred to as a strong collapse, with the term
edge collapse reserved to the removal of edges, while keeping ver-
tices intact. The link condition [Dey et al. 1998] is a combinatorial
criterion ensuring that homology is preserved while performing
strong collapses, with further extensions to applications and per-
sistent homology [Boissonnat and Pritam 2019; Wilkerson et al.
2013]. Edge collapses in the form of edge removals [Boissonnat and
Pritam 2020; Glisse and Pritam 2022] is a state-of-the-art method
for reducing the size of filtered flag simplicial complexes while
preserving their (persistent) homology. These methods rarely inves-
tigate the spectral properties of the reduced complex, specifically
how the kernels of higher dimensional Hodge Laplacians are af-
fected by coarsening operations. Notable exceptions [Black and
Maxwell 2021; Hansen and Ghrist 2019; Osting et al. 2017] apply
the method of effective resistances [Spielman and Srivastava 2011]
for coarsening complexes, and cellular sheaves, respectively.

We propose a quality function that can be used in place of the
coarsening cost of Loukas et al [2019], and within the standard

mesh-coarsening frameworks [Garland and Heckbert 1997]. Yet, it
generalizes spectral coarsening across simplicial complexeswith the
ability to preserve multiple Laplacian operators targeting spectral
subspaces of interest. This enables coarsening while preserving
specific properties captured across Laplacians. e.g. low-frequences
of the 1-dimensional Hodge Laplacian localize homology generators
(holes) of a simplicial complex (see Figure 2).

Figure 2: A visualization of sums of bands of eigevectors
(right) of the 1-dimensional Hodge Laplacian of a simplicial
complex (left) with Betti 𝛽1 = 4 projected onto the complex:
5 lowest (low), 10 mid-range (middle), and the 10 largest
(high).

3 BACKGROUND
3.1 Simplicial Complexes & Meshes
A simplicial complex 𝐾 is constructed by considering appropri-
ate subsets of a finite set 𝑉 of vertices. Each element 𝑣 of 𝑉 can
be found in 𝐾 as the singleton set {𝑣}. Whenever a subset of the
vertices 𝜎 = {𝑣0, . . . , 𝑣𝑘 } ⊂ 𝑉 is found in 𝐾 , then all of 𝜎’s sub-
sets 𝜏 ⊂ 𝜎 should also be included in 𝐾 . Each set 𝜎 is called a
𝑘-simplex with dimension 𝑘 = dim𝜎 = |𝜎 | − 1. The dimension of
the simplicial complex is the maximal dimension of its simplices
dim𝐾 = max𝜎 ∈𝐾 dim𝜎 . A graph 𝐺 = (𝑉 , 𝐸) is a 1-dimensional sim-
plicial complex. A well known special case is a triangle mesh, which
is a 2-dimensional embedded simplicial complex with additional
manifold conditions upon the adjacencies of 2-simplices (faces) 𝐹 ,



Generalized Spectral Coarsening

with their bounding 1-simplices (edges) 𝐸. Similarly, a tetrahedral
mesh is a 3-dimensional embedded simplicial complex.

For a graph 𝐺 = (𝑉 , 𝐸), the incidence matrix 𝐴 : 𝐸 → 𝑉 where

𝐴𝑣,𝑒 =


−1 if 𝑒 : 𝑣 → 𝑣 ′

1 if 𝑒 : 𝑣 ′ → 𝑣, and
0 otherwise,

represents directed connectivity between vertices and edges. Bound-
ary matrices 𝜗𝑘 : R[𝐾𝑘 ] → R[𝐾𝑘−1] extend this idea to higher di-
mensions and capture connectivity between (the vector space with
real coefficients spanned by) the 𝑘-simplices 𝐾𝑘 and their bounding
𝐾𝑘−1 simplices. For convenience boundary operators are constructed
by imposing an ordering on the vertices 𝑉 = 𝐾0, such that each
𝑘-simplex can be expressed by an ordered list 𝜎 = [𝑣0, . . . , 𝑣𝑘 ]. The
orientation of the simplices in a simplicial complex is dictated by
the ordering imposed on the vertices, and the orientation of mesh
elements given by the cyclic ordering of vertices.

The boundary action is then applied on each simplex 𝜎 as

𝜗𝑘 (𝜎) =
𝑑∑︁
𝑖=0

(−1)𝑖𝜎−𝑖 ,

where 𝜎−𝑖 := [𝑣0, . . . , 𝑣𝑖 , . . . , 𝑣𝑘 ] indicates the deletion of the 𝑖-th
vertex from 𝜎 , resulting to a (𝑘 − 1)-dimensional bounding simplex.
Examples of three different complexes are shown in Figure 1 along
with illustrations of associated boundary matrices. The complex
on the left only contains 𝜗0 while the complex on the right has
𝜗0, 𝜗1, 𝜗3 defined on it. White cells in the matrix indicate zeros while
shaded boxes contain a ±1.

3.2 The Hodge Laplacian as a generalization
Hodge Laplacians [Rosenberg and Steven 1997] extend the notion of
the well-known graph Laplacians to higher-dimensional simplicial
complexes. The general definition of the Hodge Laplacian endows
each simplex in the complex 𝐾 with its own weight, which are
assembled into a diagonal weight matrix𝑊𝑘 per 𝑘−dimensional
simplicial set 𝐾𝑘 . The random walk 𝑘-Hodge Laplacian is defined as

𝐿RW
𝑘

= 𝐿down
𝑘

+ 𝐿up
𝑘

= 𝜗𝑇
𝑘
𝑊 −1
𝑘−1𝜗𝑘𝑊𝑘 +𝑊

−1
𝑘
𝜗𝑘+1𝑊𝑘+1𝜗

𝑇
𝑘+1 .

This antisymmetric linear map from 𝑘-simplices to 𝑘-simplices
can be symmetrized (while preserving its spectral properties) as
𝐿𝑘 =𝑊

−1/2
𝑘

𝐿RW
𝑘

𝑊
−1/2
𝑘

, which we will henceforth refer to as the
𝑘-Hodge Laplacian. For a more thorough treatment on the subject
of Hodge Laplacian and its spectra, we direct the reader to [Horak
and Jost 2013; Lim 2020].

By the result of [Eckmann 1944], the kernel of a Hodge Lapla-
cian is isomorphic to the homology group of the same dimension
ker𝐿𝑘 ≃ H𝑘 (𝐾), which represents nontrivial holes. The rankH𝑘 is
called the betti number 𝛽𝑘 , and counts the number of such holes.

Most existing Laplacian variants used in graph and mesh pro-
cessing applications may be viewed as special cases of the 𝑘-Hodge
Laplacian. The weighted combinatorial graph Laplacian is 0-Hodge
Laplacian with unit weight on vertices 𝐿graph = 𝐿RW0 = 𝐿

up
0 =

𝜗1𝑊1𝜗𝑇1 . The cotan Laplacian, the stiffness matrix in finite element

methods, is the 0-Hodge Laplacian with area weights assigned to
vertices, and cotan weights assigned to edges

𝑤𝑣𝑖 =
∑︁

𝜎={𝑣𝑖 ,𝑣𝑗 ,𝑣𝑘 }∈𝐾2

A𝜎/3

𝑤𝑒𝑖,𝑗 =
1
2
(cot\𝑒𝑖,𝑗𝑣𝑙

+ cot\𝑒𝑖,𝑗𝑣𝑚 ) .

A𝜎 is the area of face 𝜎 , and \𝑒𝑖,𝑗𝑣𝑙
is the angle at vertex 𝑣𝑙 facing

the edge 𝑒𝑖, 𝑗 = {𝑣𝑖 , 𝑣 𝑗 }.

4 METHOD
Our generalized spectral coarsening method operates iteratively.
At each iteration, or level of coarsening ℓ , a candidate family of
simplices is selected based on a quality prediction function, and con-
tracted (see Algorithm 1 for a summary). For each simplex, the qual-
ity prediction function measures the projection of the eigenspace to
be preserved on to the perpendicular of the eigenspace induced by a
contraction. This quantifies “spectral leaking" or error, since a large
value indicates a low fidelity of the eigenspace of the contracted
complex to the corresponding space in the input.

ALGORITHM 1: Contraction algorithm overview
Data: complex 𝐾 , sub-spectra {(𝑆0,𝑈0), . . . , (𝑆𝑄 ,𝑈𝑄 ) },

reduction ratio 𝜌
Result: Output complex 𝐾𝑐 , coarsening matrices 𝑃 = {𝑃0, . . . , 𝑃𝑘 }

1 Initialize candidate families Φ ;
2 while reduction ratio < 𝜌 do
3 foreach 𝜙 ∈ Φ do Compute quality cost 𝑐𝜙 (Sec.4.1);
4 Select simplex family 𝜙 with minimum cost to contract;
5 Perform complex contraction 𝐾 ↘𝜙 ;
6 Update remaining candidate families Φ \ 𝜙𝑐 ;

4.1 Quality function
The input to the coarsening algorithm is a sub-matrix 𝑈 of the
eigenvectors of 𝐿𝑘 , a diagonal matrix 𝑆 containing the correspond-
ing eigenvalues and the reduction ratio to be achieved 𝜌 . For ease
of exposition, we start with a description of the ℓ𝑡ℎ coarsening step
on a complex 𝐾 with the aim of preserving the subspace spanned
by𝑈 .

At iteration ℓ , a simplicial map 𝑃 ℓ
𝑘
: 𝐾 ℓ−1

𝑘
→ 𝐾 ℓ

𝑘
maps the 𝑘-

simplices of 𝐾 before contraction to those after contraction. Drop-
ping superscripts for now, since we are currently only considering
a single ℓ𝑡ℎ level, we can imagine 𝑃𝑘 as an operation from the fine
complex to the coarsened complex. Conversely its psedoinverse
𝑃+
𝑘
= 𝑃𝑇

𝑘
𝐷−2 maps from the coarse to fine complex. Here 𝐷 is a

diagonal normalizing matrix that contains row norms along its
diagonal. Applying both maps in sequence results in an operator
Π = 𝑃+

𝑘
𝑃𝑘 which projects a signal defined on the fine complex down

to the coarse and then back up to the fine complex.
Our goal with the coarsening step is for this projection to have

a low error on the subspace of importance, say 𝐴ℓ
𝑘
where 𝐴ℓ=0

𝑘
=

𝑈
√
𝑆+. We define a quality function 𝑐𝑘 : 𝐾𝑘 → R as

𝑐𝑘 = ∥Π⊥
𝑘
𝐴ℓ
𝑘
∥𝐿 (1)
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whichmeasures error as the perpendicular projectionΠ⊥
𝑘
= (I−Π𝑘 )

of the coarsened spectrum, against the spectrum of the preceding
level, where ∥𝑥 ∥𝐿 =

√︁
𝑥𝑇 𝐿𝑘𝑥 is the 𝐿-norm. This quality function

has desirable theoretical properties [Loukas 2019].
At each level ℓ we evaluate this function over all the 𝑘-simplices

and greedily contract a subset of simpliceswith low quality values to
obtain the coarsened mesh (see Section 4.2) that preserves spectral
band (𝑈 , 𝑆) for a single Laplacian 𝐿𝑘 .

To extend this to 𝑄 different bands associated with potentially
different Laplacians we combine the individual quality cost evalua-
tions via a user-specified 𝑓comb : R𝑄 → R to obtain the final quality
function 𝑐 = 𝑓comb ({𝑐𝑞}), 𝑞 ∈ [0, 1, · · · , 𝑄] . In our experiments
in Section 5, where 𝐿0, 𝐿1 and 𝐿2 are considered in tandem, we
use a weighted average where the weight for 𝐿𝑘 is 1

1+𝑘 , where 𝑘
is the dimensionality of the Laplacian, so 𝑓comb ({𝑐𝑞}) =

∑
𝑞

1
1+𝑞 𝑐𝑞 .

Algorithm 2 shows pseudocode for calculating the quality function
at each contraction level ℓ .

ALGORITHM 2: Quality function computation
Data: input spectra {(𝑆0,𝑈0), . . . , (𝑆𝑄 ,𝑈𝑄 ) }, level ℓ , families Φ

coarsening matrices 𝑃 ℓ , current laplacians 𝐿ℓ = {𝐿ℓ0 , . . . , 𝐿
ℓ
𝑄
}

Result: Cost 𝑐𝜙 for each family 𝜙 ∈ Φ

1 foreach Spectrum (𝑆𝑞,𝑈𝑞) do
2 if ℓ = 0 then
3 𝐵ℓ𝑞 = 𝑈𝑞𝑆

+1/2
𝑞 ;

4 𝐴ℓ
𝑞 = 𝐵ℓ𝑞 ;

5 else
6 𝐵ℓ𝑞 = 𝑃 ℓ𝐵ℓ−1𝑞 ;
7 𝐴ℓ

𝑞 = 𝐵ℓ (𝐵ℓ𝑞
𝑇
𝐿ℓ𝑞𝐵

ℓ
𝑞)+1/2

8 foreach Family 𝜙 ∈ Φ do
9 Calculate perpendicular projection matrix Π⊥ = (I − 𝑃+𝑃 ) ;

10 foreach Spectrum (𝑆𝑞,𝑈𝑞) do
11 𝑐𝑞 = ∥Π⊥𝐴ℓ

𝑞 ∥𝐿ℓ𝑞 ; /* quality per spectrum */

12 𝑐𝜙 = 𝑓comb (𝑐𝑞) ; /* quality function */

4.2 Implementation
Dealing with harmonic subspaces. For 𝐿𝑘 , 𝑘 > 0, the harmonic

portion of the spectrum is non-trivial and encodes salient informa-
tion about nontrivial cycles called homology generators (see Sec-
tion 3). It is often desirable to preserve these eigenvectors, which
would otherwise be annhilated by virtue of being scaled by their
coresponding zero eigenvalue. To adjust for this, in practice we use
modified eigenvalues 𝑆 = I + 𝑆 for all experiments in Section 5.

Choosing candidate families. Our algorithm allows any possible
choice for combinations of simplices Φ to be contracted to a point.
We tested our method with various candidate families: edges (pairs
of vertices), faces (triplets of vertices) and more general vertex
neighborhoods consisting of closed-stars. Larger contraction sets
lead to aggressive coarsening, and lead to larger spectral error. To
evaluate and compare approximation quality with related work
(which are restricted to edge collapses) we limit our presentation
of results in Section 5 to candidate families consisting of edges.

Building coarsening matrices. When constructing coarsening ma-
trices, it is required to choose a target simplex to which all simplices
in the candidate family will map. We select the simplex with the
smallest index (based on our ordering of simplices) to be this target.
If 𝑡 is the index of the target, 𝑧 is the index of any contracted simplex
and |𝜙 | is the cardinality of the candidate family being contracted,
then 𝑃𝑡,𝑡 = 𝑃𝑡,𝑧 = 1

|𝜙 | . In the special case of edge collapses on
meshes, with the cotan Laplacian as the operator of interest, we
follow the strategy devised by [Lescoat et al. 2020]. Since vertex
positioning affects the cotan Laplacian, the new vertex position
𝑢 ′ is assumed to lie on the edge to be contracted, and thus can
be parametrized by 𝛼 as 𝑢 ′ = 𝛼𝑢 + (1 − 𝛼)𝑣 , with 𝑒 = (𝑢, 𝑣) the
edge. Our coarsening matrices are also parametrized by the same
𝛼 , such that 𝑃𝑡,𝑡 = 𝑎, and 𝑃𝑡,𝑧 = 1 − 𝑎. Three values for 𝛼 are cho-
sen, 𝛼 ∈ {0, 0.5, 1}, and a quadratic function is interpolated on the
corresponding quality function evaluations 𝑐𝜙 (𝛼). The chosen 𝛼∗
is the minimizer of the interpolated quadratic function.

Updating candidate families’ cost. When coarsening simplicial
complexes, each contraction can dramatically alter the spectral
landscape. For example, an edge collapse might destroy a homology
cycle thus altering the kernel of the corresponding Laplacian. To
avoid recomputing the quality function for every other member of
the candidate family, at each contraction level, we sample candidate
families to be updated based on the magnitude of change of their
members across different contraction levels. So, when contracting
an edge 𝑒 , and a target subspace of 𝐿1, the probability of updating
this edge at level ℓ is 𝑝𝑒 =

∑
𝑘 |𝐴ℓ𝑒,𝑘 − (𝑃+𝐴ℓ−1)𝑒,𝑘 |/

∑
𝑒 𝑝𝑒 . For the

spectrum of 𝐿0 with the same edge families, we sample vertices
instead and consider all adjacent edges as candidates to be updated.

5 EVALUATION
We demonstrate our coarsening method using meshes and com-
plexes and compare it against a baseline. Spectral approximations
are evaluated using a generalization of functional maps [Chen et al.
2020; Lescoat et al. 2020; Liu et al. 2019]𝐶 = 𝑈𝑇𝑐 𝑃𝑈 . that are applica-
ble to all Laplacian operators, Ideally 𝐶 should resemble a diagonal
matrix. Direct comparisons with previous work are shown in the
supplementary material. We denote quantities on the coarsened
complex with the subscript ·𝑐 . We evaluate the following metrics
for the functional maps, for each spectral region and Laplacian
considered [Lescoat et al. 2020; Loukas 2019].

∥𝐶 ∥𝐿comm =
∥𝑆𝑐𝐶−𝐶𝑆 ∥2𝐹

∥𝐶 ∥2
𝐹

∥𝐶 ∥Θ = ∥ sinΘ(𝑈 , 𝑃+𝑈𝑐 )∥2𝐹
∥𝐶 ∥𝐶orth = ∥𝐶 − I∥2

𝐹
∥𝐶 ∥subsp = |∥𝑆1/2𝑈𝑇Π𝑈𝑆−1/2∥2 − 1|

∥𝐶 ∥Πorth = ∥𝐶𝑇𝐶 − I∥2
𝐹

∥ · ∥_ = ∥ |𝑆−𝑆𝑐 |
𝑆

∥2

5.1 Meshes
To enable comparisons of 𝐿𝑘 , 𝑘 > 0, we develop a baseline by
extending previous work [Lescoat et al. 2020] to multi-dimensional
Laplacians. From their output coarsening matrix 𝑃0 we additionally
infer coarsening matrices 𝑃1 and 𝑃2 which operate on the space of
edges and faces respectively. They do not consider higher dimensional
mappings in their error metric. Since they operate only based on the
cotan Laplacian, we always consider it as one of the targets.
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Figure 3: The figure shows an example of a simplicial complex coarsened using multiple methods (columns) including three
instances of ourmethodwith different bands of the spectra to be preserved. Different blocks of the generalized functionalmaps
are shown in subsequent rows, corresponding to each method. Ideally, these maps should all resemble diagonal matrices. Our
method preserves the diagonal better. Further, our method respects the band-pass requirements while performing coarsening.
The first column labels the indices of the eigenvectors over which the functional maps in that row are calculated.

The top row of Figure 4 visualizes an input mesh (first column)
along with three sample eigenvectors of three different Laplacians
(columns). The second and third rows compare the same elements
obtained using our coarsenedmesh and our baseline – both obtained
by considering all three Laplacians. With the same reduction of the
monkeymodel from 1647 to 400 vertices ourmethod better preserves
eigenvectors in all dimensions, as represented by the diagonal-like
structure of 𝐶 matrices. Furthermore, characteristic features which
can be identified in the first few eigenvector projections on the
mesh, such as the shape of the eyes, the nose, and the mouth, are
preserved in our coarsened model, whereas they are either distorted
or absent in the baseline.

Table 1 compares the spectral approximation metrics of our
method and with the baseline. Our method slightly outperforms
the baseline for higher dimensional Laplacians, whereas the results
are inconclusive for 𝐿cot.

Figure 5 shows tests comparing both methods’ abilities to per-
form distance computations (details in the Appendix) on the coarse
mesh and re-map the distance evaluations to the full-sized model.
The distance evaluations computed on the reference, ours, and the
baseline are shown. The figure also shows the distances on the
coarsened mesh and then lifted back to the original mesh 𝑑 · and

compute the error, in Table 2. We use an overscript ·̃ to denote
quantities that are coarsened and then lifted back to the fine com-
plex. Our method outperforms the baseline by a large margin in
most spectral distances considered, indicating its usefulness as a
compressed domain for spectral processing. Denoting an eigenpair
as (𝑢𝑖 , 𝑠𝑖 ), with 𝑢𝑖 (𝑣) being the eigenvector value for vertex 𝑣 , we
consider the following spectral distances:

𝑑diffusion (𝑤, 𝑣, 𝑡)
∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2𝑒−2𝑠𝑖𝑡

𝑑biharmonic (𝑤, 𝑣)
∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2/𝑠2

𝑖
𝑑commute (𝑤, 𝑣)

∑
𝑖 (𝑢𝑖 (𝑣) − 𝑢𝑖 (𝑤))2/𝑠𝑖

𝑑WKS (𝑤, 𝑣)
∫ 𝑡max
𝑡min

���𝑊𝐾𝑆 (𝑤,𝑡 )−𝑊𝐾𝑆 (𝑣,𝑡 )
𝑊𝐾𝑆 (𝑤,𝑡 )−𝑊𝐾𝑆 (𝑣,𝑡 )

���𝑑𝑡 ,
WKS(𝑣, 𝑡) ∑

𝑖 𝑢
2
𝑖
(𝑣)𝑒−

(𝑡−log𝑠𝑖 )2
2𝜎2 /∑𝑖 𝑒− (𝑡−log𝑠𝑖 )2

2𝜎2

𝑑HKS (𝑤, 𝑣, 𝑡)
∑
𝑖 𝑢𝑖 (𝑤)𝑢𝑖 (𝑣)𝑒−𝑠𝑖𝑡

5.2 Coarsening simplicial complexes
Our method is directly applicable to simplicial complexes accompa-
nied by the appropriate Hodge Laplacians. We compare our method
to the state-of-the-art edgecollapser of theGudhi library [TheGUDHI
Project 2015], that guarantees homology preservation, and a base-
line where edges are collapsed at random. We constructed a dataset
of 100 simplicial complexes by randomly sampling points from
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Figure 4: A comparison of eigenvectors of different Laplacians (columns) obtained on our coarsenedmesh (middle row) and the
baseline (bottom row) on the monkeymodel. Both methods resulted in a coarsening from 1647 to 400 vertices while optimizing
for the 100 smallest eigenpairs of the cotan Laplacian 𝐿cot, as well as Hodge Laplacians 𝐿1 and 𝐿2. The 3rd, 7th, and 20th
eigenvectors for each dimension are projected on the model, alongside the resulting functional map𝐶. Our method results in
improved eigenvector preservation and alignment, visible from the diagonal-like structure of 𝐶. The bottom plots compare
the 100 smallest eigenvalues of each resulting mesh to the original. Both methods exhibit similar performance.

multi-holed tori, as described in [Keros et al. 2022]. The result-
ing complexes exhibit spurious non-trivial topology. We evaluate
our coarsening using spectral metrics defined at the beginning
of Section 5. We compute the error in homology preservation as
𝐸𝛽 = |𝛽1𝑐 − 𝛽1 |, with 𝛽1 counting the number of non-trivial holes
(formally, the rank of the homology groupH1).

Results averaged over the dataset are presented in Table 4, where
the reduction in simplices was consistent across the rows. Our
method aimed to preserve the first 𝛽1 + 1 eigenpairs of 𝐿1. Similarly,
the results in Table 3, were for a size reduction of 80% and optimizing

for the first 30 smallest eigenpairs of 𝐿1. Our method outperforms
the baselines in all metrics, as none of them optimize for spectral
preservation.

We illustrate the band-filtering abilities of our method on a
selected complex with interesting topology (Figure 2), where we
coarsen the complex by optimizing for the 𝛽1 + 1 lowest, 10 mid-
frequency, and 10 largest eigenpairs of 𝐿1, in Figure 3. For reference,
we compare our results with the Gudhi and Random baselines. As
seen from the sections of the functional maps𝐶 for each coarsened
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Figure 5: Spectral distances evaluated on the coarsened meshes, and subsequently lifted to the original mesh.

∥ · ∥𝐿comm ∥ · ∥Πorth ∥ · ∥𝐶orth ∥ · ∥subsp∥ · ∥Θ∥ · ∥_
𝐿cot Ours 0.766 65.7 11.1 0.54 6.29 26.6

baseline 0.34 72.1 11.0 0.35 15.9 31.8

𝐿1 Ours 0.11 94.3 10.1 0.32 1.39 31.3
Baseline 0.02 82.9 10.4 1.08 9.35 31.8

𝐿2 Ours 0.159 92.3 10.1 0.20 1.98 31.3
Baseline 0.035 82.0 10.6 1.21 11.4 31.2

Table 1: Results of the spectral approximation metrics (Sec-
tion 5) for the monkey model.

diffusion biharm. commute HKSdist
Ours 6.44 × 10−6 4890 0.27 2.74 × 10−6
Baseline 1.97 × 10−5 7090 0.99 1.65 × 10−6

Table 2: Error in lifting the spectral distances 𝑑 · from the
coarse to the original mesh, for the monkey model.

complex, our method preserves the desired bands, and unearths
their geometric structure.

6 CONCLUSION AND LIMITATION
We presented a simple algorithm to unify spectral coarsening of
meshes and simplicial complexes. Our algorithm preservation of
multiple bands of spectra. Although our algorithm is able to opti-
mize for weighted combinations of multiple Laplacians, it is not
clear how to choose these combined quality functions. Further

∥ · ∥𝐿comm ∥ · ∥Πorth ∥ · ∥subsp ∥ · ∥_ 𝐸𝛽

Gudhi 3.84 29.1 2.50 71.5 0.0
Ours 0.49 8.98 1.52 2.76 0.07
Random 3.08 20.8 0.32 .400000 0.977

Table 3: Spectral approximation metrics averaged over 100
complexes. We optimize for the first 30 eigenpairs of 𝐿1.
Ours and Random reduces the size of each complex by 80%,
whereas Gudhi achieves a reduction of above 90%.

∥ · ∥Πorth ∥ · ∥subspace 𝐸𝛽

Gudhi 2.94 × 100 9.10 × 10−1 0.0
Ours 1.78 × 100 7.85 × 10−1 2.18 × 10−1
Random 2.76 × 100 8.87 × 10−1 1.29 × 100

Table 4: Spectral approximation metrics averaged over 100
complexes. We optimize for the first 𝛽1 + 1 eigenpairs of 𝐿1.
Ours and Random reduces each complex to the same num-
ber of simplices as Gudhi.

investigation is required to exploit the preservation of higher-
dimensional Laplacians for mesh processing.
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