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Abstract. This paper proposes a definition of what it means for one
system description language to encode another one, thereby enabling
an ordering of system description languages with respect to expressive
power. I compare the proposed definition with other definitions of encod-
ing and expressiveness found in the literature, and illustrate it on a well-
known case study: the encoding of the synchronous in the asynchronous
π-calculus.

1 Introduction

This paper, like [16,21], aims at answering the question what it means for one
language to encode another one, and making the resulting definition applicable
to order system description languages like CCS, CSP and the π-calculus with
respect to their expressive power.

To this end it proposes a unifying concept of valid translation between two
languages up to a semantic equivalence or preorder. It applies to languages whose
semantics interprets the operators and recursion constructs as operations on a set
of values, called a domain. Languages can be partially ordered by their expres-
siveness up to the chosen equivalence or preorder according to the existence of
valid translations between them.

The concept of a [valid] translation between system description languages (or
process calculi) was first formally defined by Boudol [3]. There, and in most other
related work in this area, the domain in which a system description language
is interpreted consists of the closed expressions from the language itself. In [14]
I have reformulated Boudol’s definition, while dropping the requirement that the
domain of interpretation is the set of closed terms. This allows (but does not
enforce) a clear separation of syntax and semantics, in the tradition of universal
algebra. Nevertheless, the definition employed in [14] only deals with the case
that all (relevant) elements in the domain are denotable as the interpretations
of closed terms. In [16] situations are described where such a restriction is unde-
sirable. In addition, both [3,14] require the semantic equivalence ∼ under which
two languages are compared to be a congruence for both of them. This is too
severe a restriction to capture many recent encodings [1,2,7,30,31,33,38,43].
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In [16] I alleviated these two restrictions by proposing two notions of encod-
ing: correct and valid translations up to ∼. Each of them generalises the propos-
als of [3,14]. The former drops the restriction on denotability as well as ∼ being
a congruence for the whole target language, but it requires ∼ to be a congru-
ence for the source language, as well as for the source’s image within the target.
The latter drops both congruence requirements (and allows ∼ to be a preorder
rather than an equivalence), but at the expense of requiring denotability by
closed terms. In situations where ∼ is a congruence for the source language’s
image within the target language and all semantic values are denotable, the two
notions agree.

The current paper further generalises the work of [16] by proposing a new
notion of a valid translation that incorporates the correct and valid translations
of [16] as special cases. It drops the congruence requirements as well as the
restriction on denotability.

As in [16], my aim is to generalise the concept of a valid translation as much as
possible, so that it is uniformly applicable in many situations, and not just in the
world of process calculi. Also, it needs to be equally applicable to encodability
and separation results, the latter saying that an encoding of one language in
another does not exists. At the same time, I try to derive this concept from a
unifying principle, rather than collecting a set of criteria that justify a number
of known encodability and separation results that are intuitively justified.

Overview of the Paper. Section 2 defines my new concept of a valid translation
up to a semantic equivalence or preorder •∼. Roughly, a valid translation of one
language into another is a mapping from the expressions in the first language to
those in the second that preserves their meaning, i.e. such that the meaning of a
translated expression is semantically equivalent to the meaning of the original.

Section 3 shows that this concept generalises the notion of a correct transla-
tion from [16]: a translation is correct up to a semantic equivalence ∼ iff it is
valid up to ∼ and ∼ is a congruence for the source language as well as for the
image of the source language within the target language.

Likewise, [18]—the full version of this paper—establishes the coincidence of
my validity-based notion of expressiveness with the one from [16] when applying
both to languages for which all semantic values are denotable by closed terms.

One language is said to be at least as expressive as another up to •∼ iff
there exists a valid translation up to •∼ of the latter language into the former.
Section 4 shows that “being at least as expressive as” is a preorder on languages.
This expressiveness preorder depends on the choice of •∼, and a coarser choice
(making less distinctions) yields a richer preorder of expressiveness inclusions.

Section 6 illustrates the framework on a well-known case study: the encoding
of the synchronous in the asynchronous π-calculus.

Section 7 discusses the congruence closure of a semantic equivalence for a
given language, and remarks that in the presence of operators with infinite arity
it is not always a congruence. Section 8 states a useful congruence closure prop-
erty for valid translations: if a translation between two languages exists that is
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valid up a semantic equivalence ∼, then it is even valid up to an equivalence
that

– on the source language coincides with the congruence closure of ∼
– on the image of the source within the target language also coincides with the

congruence closure of ∼
– melts each equivalence class of the source with exactly one of the target.

Section 9 concludes that the framework established thus far is great for com-
paring the expressiveness of languages, but falls short for the purpose of combin-
ing language features. This requires a congruence reflection theorem, provided
in Sect. 12, for languages satisfying postulates formulated in Sects. 5, 10 and 11.

Section 12 defines when a translation is compositional, and shows that any
valid translation up to •∼ can be modified into a compositional translation valid
up to •∼. This requires restricting attention to languages and preorders •∼ that
satisfy some mild sanity requirements—the postulates of Sects. 10 and 11. Hence,
for the purpose of comparing the expressive power of languages, valid translations
between them may be presumed compositional.

Section 13 compares my approach with the one of Gorla [21], and concludes.
Omitted proofs and counterexamples (marked by ¶) can be found in [18].

2 Languages, Valid Translations, and Expressiveness

A language consists of syntax and semantics. The syntax determines the valid
expressions in the language. The semantics is given by a mapping [ ] that
associates with each valid expression its meaning, which can for instance be an
object, concept or statement.

Following [16], I represent a language L as a pair (TL, [ ]L) of a set TL of
valid expressions in L and a mapping [ ]L : TL → DL from TL in some set of
meanings DL.

Definition 1 ([16]). A translation from a language L into a language L′ is a
mapping T : TL → TL′ .

In this paper, I consider single-sorted languages L in which expressions or terms
are built from variables (taken from a set X ) by means of operators (including
constants) and possibly recursion constructs. For such languages the meaning
[E]L of an L-expression E is a function of type (X →V)→V for a given sets of
values V. It associates a value [E]L(ρ)∈V to E that depends on the choice of a
valuation ρ : X→V. The valuation associates a value from V with each variable.

Since normally the names of variables are irrelevant and the cardinality of
the set of variables satisfies only the requirement that it is “sufficiently large”,
no generality is lost by insisting that two (system description) languages whose
expressiveness is being compared employ the same set of (process) variables.
On the other hand, two languages L and L′ may be interpreted in different
domains of values V and V′.
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Let L and L′ be languages as considered above, with semantic mappings

[ ]L : TL → ((X → V) → V) and [ ]L′ : TL′ → ((X → V′) → V′).

In order to compare these languages w.r.t. their expressive power I need a seman-
tic equivalence or preorder •∼ that is defined on a unifying domain of interpreta-
tion Z, with V,V′ ⊆ Z.1 Intuitively, v ′ •∼ v with v ∈ V and v ′ ∈ V′ means that
values v and v ′ are sufficiently alike for our purposes, so that one can accept a
translation of an expression with meaning v into an expression with meaning v ′.
Below, target values of a translation (in V′) are written on the left.

Correct and a valid translations up to a semantic equivalence or preorder •∼
were introduced in [16]. Here I redefine these concepts in terms of a new concept
of correctness w.r.t. a semantic translation.

Definition 2. Let V and V′ be domains of values in which two languages L
and L′ are interpreted. A semantic translation from V into V′ is a relation
R ⊆ V′ × V such that ∀v ∈ V.∃v ′ ∈ V′. v ′Rv .

Thus every semantic value in V needs to have a counterpart in V′—possibly mul-
tiple ones. For valuations η : X → V′, ρ : X → V I write ηR ρ iff η(X)R ρ(X)
for each X ∈ X .

Definition 3. A translation T : TL → TL′ is correct w.r.t. a semantic transla-
tion R if [T (E)]L′(η)R [E]L(ρ) for all expressions E ∈ TL and all valuations
η : X → V′ and ρ : X → V with ηR ρ.

Thus T is correct iff the meaning of the translation of an expression E is a
counterpart of the meaning of E, no matter what values are filled in for the
variables, provided that the value filled in for a given variable X occurring in
the translation T (E) is a counterpart of the value filled in for X in E.

Definition 4. A translation T : TL → TL′ is correct up to •∼ iff •∼ is an
equivalence, the restriction R of •∼ to V′ × V is a semantic translation, and T
is correct w.r.t. R.

Definition 5. A translation T is valid up to •∼ iff it is correct w.r.t. some
semantic translation R ⊆ •∼. Language L′ is at least as expressive as L up to •∼
if a translation valid up to •∼ from L into L′ exists.

Example 4 in [18] illustrates both notions and shows their difference.

1 I will be chiefly interested in the case that •∼ is an equivalence—hence the choice
of a symbol that looks like ∼. However, to establish Observation 2 and Theorem 2
below, it suffices to know that •∼ is reflexive and transitive. My convention is that the
dotted end of •∼ points to a translation and the other end to an original—without
offering an intuition for the possible asymmetry.
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3 Correct = Valid + Congruence

In [16] the concept of a correct translation up to ∼ was defined, for ∼ a semantic
equivalence on Z. Here two valuations η, ρ : X → Z are called ∼-equivalent,
η ∼ ρ, if η(X) ∼ ρ(X) for each X ∈ X . In case there exists a v ∈ V for
which there is no ∼-equivalent v ′ ∈ V′, there is no correct translation from L
into L′ up to ∼. Namely, the semantics of L describes, among others, how any
L-operator evaluates the argument value v , and this aspect of the language has
no counterpart in L′. Therefore, [16] requires

∀v ∈ V. ∃v ′ ∈ V′. v ′ ∼ v . (1)

This implies that for any valuation ρ : X → V there is an η : X → V′ with η ∼ ρ.

Definition 6 ([16]). A translation T from L into L′ is correct up to ∼ iff (1)
holds and [T (E)]L′(η) ∼ [E]L(ρ) for all E ∈ TL and all valuations η : X → V′

and ρ : X → V with η ∼ ρ.

Note that this definition agrees completely with Definition 4. Requirement (1)
above corresponds to R being a semantic translation in Definition 4.

If a correct translation up to ∼ from L into L′ exists, then ∼ must be a
congruence for L.

Definition 7. An equivalence relation ∼ is a congruence for a language L inter-
preted in a semantic domain V if [E]L(ν) ∼ [E]L(ρ) for any L-expression E
and any valuations ν, ρ : X → V with ν ∼ ρ.2

Proposition 1 ([16]). If T is a correct translation up to ∼ from L into L′, then
∼ is a congruence for L.

The existence of a correct translation up to ∼ from L into L′ does not imply
that ∼ is a congruence for L′. However, ∼ has the properties of a congruence
for those expressions of L′ that arise as translations of expressions of L, when
restricting attention to valuations into U := {v ∈ V′ | ∃v ∈ V. v ′ ∼ v}. In [16]
this called a congruence for T (L).

Definition 8. Let T : TL → TL′ be a translation from L into L′. An equiva-
lence ∼ on V′ is a congruence for T (L) if [T (E)]L′(θ) ∼ [T (E)]L′(η) for any
E ∈ TL and θ, η :X→U with θ ∼ η.

Proposition 2 ([16]). If T is a correct translation up to ∼ from L into L′, then
∼ is a congruence for T (L).

The following theorem tells that the notion of validity proposed in Sect. 2 can
be seen as a generalisation of the notion of correctness from [16] that applies to
equivalences (and preorders) •∼ that need not be congruences for L or T (L).

Theorem 1. A translation T from L into L′ is correct up to a semantic equiv-
alence ∼ iff it is valid up to ∼ and ∼ is a congruence for T (L). ¶
2 This is called a lean congruence in [17]; in the presence of recursion, stricter congru-

ence requirements are common. Those are not needed in this paper.
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4 A Hierarchy of Expressiveness Preorders

An equivalence or preorder •∼ on a class Z is said to be finer, stronger, or more
discriminating than another equivalence or preorder •≈ on Z if v •∼ w ⇒ v •≈ w
for all v ,w ∈ Z.

Observation 1. Let T : TL → TL′ be a translation from L into L′, and let •∼
be finer than •≈. If T is valid up to •∼, then it is also valid up to •≈.

The quality of a translation depends on the choice of the equivalence or pre-
order up to which it is valid. Any two languages are equally expressive up to
the universal equivalence, relating any two processes. Hence, the equivalence
or preorder needs to be chosen carefully to match the intended applications of
the languages under comparison. In general, as shown by Observation 1, using
a finer equivalence or preorder yields a stronger claim that one language can be
encoded in another. On the other hand, when separating two languages L and
L′ by showing that L cannot be encoded in L′, a coarser equivalence yields a
stronger claim.

Observation 2. The identity is a valid translation up to any preorder from any
language into itself.

Theorem 2. If valid translations up to •∼ exists from L1 into L2 and from L2

into L3, then there is a valid translation up to •∼ from L1 into L3. ¶

Theorem 2 and Observation 2 show that the relation “being at least as expressive
as up to •∼” is a preorder on languages.

5 Closed-Term Languages

The languages considered in this paper feature variables, operators of arity n∈IN,
and/or other constructs. The set TL of L-expressions is inductively defined by:

– X ∈ TL for each variable X ∈ X ,
– f(E1, . . . , En) ∈ TL for each n-ary operator f and expressions Ei ∈ TL,
– and clauses for the other constructs, if any.

Examples of other constructs are the infinite summation operator
∑

i∈I Ei of
CCS, which takes arbitrary many arguments, or the recursion construct μX.E,
that has one argument, but binds all occurrences of X in that argument.

In general a construct has a number (possibly infinite) of argument expres-
sions and it may bind certain variables within some of its arguments—the scope
of the binding. An occurrence of a variable X in an expression is bound if it
occurs within the scope of a construct that binds X, and free otherwise.

The semantics of such a language is given, in part, by a domain of values
V, and an interpretation of each n-ary operator f of L as an n-ary operation
fV : Vn → V on V. Using the equations

[X]L(ρ) = ρ(X) and [f(E1, . . . , En)]L(ρ) = fV([E1]L(ρ), . . . , [En]L(ρ))
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this allows an inductive definition of the meaning [E]L of an L-expression E.
Moreover, [E]L(ρ) only depends on the restriction of ρ to the set fv(E) of
variables occurring free in E.

The set TL ⊆ TL of closed terms of L consists of those L-expressions E ∈ TL
with fv(E) = ∅. If P ∈ TL and V �= ∅ then [P ]L(ρ) is independent of the choice
of ρ : X → V, and therefore denoted [P ]L.

Definition 9. A substitution in L is a partial function σ : X ⇀ TL from the
variables to the L-expressions. For a given L-expression E ∈ TL, E[σ] ∈ TL
denotes the L-expression E in which each free occurrence of a variable X ∈
dom(σ) is replaced by σ(X), while renaming bound variables in E so as to avoid
a free variable Y occurring in an expression σ(X) ending up being bound in
E[σ]. A substitution is closed if it has the form σ : X → TL.

An important class of languages used in concurrency theory are the ones where
the distinction between syntax and semantic is effectively dropped by taking
V = TL, i.e. where the domain of values where the language is interpreted in
consists of the closed terms of the language. Here a valuation is the same as a
closed substitution, and [E]L(ρ) for E ∈ TL and ρ : X → TL is defined to be
E[ρ] ∈ TL. I will call such languages closed-term languages.

6 Translating a Synchronous into an Asynchronous π

As an illustration of the concepts introduced above, consider the π-calculus as
presented in [28], i.e., the one of [44] without matching, τ -prefixing, and choice.

Given a set of names N , the set Tπ of process expressions or terms E of
the calculus is given by

E ::= X | 0 | x̄y.E | x(z).E | E|E′ | (νz)E | !E

with x, y, z ranging over N , and X over X , the set of process variables. Process
variables are not considered in [44], although they are common in languages
like CCS [27] that feature a recursion construct. Since process variables form a
central part of my notion of a valid or correct translation, here they have simply
been added. This works generally. In Sect. 12 I show that for the purpose of
accessing whether one language is as expressive as another, translations between
them can be assumed to be compositional. This important result would be lost if
process variables were dropped from the language. In that case compositionality
would need to be stated as a separate requirement for valid translations.

Closed process expressions are called processes. The π-calculus is usually
presented as a closed-term language, in that the semantic value associated with
a closed term is simply itself. Yet, the real semantics is given by a reduction
relation between processes, defined below.

Definition 10. An occurrence of a name z in π-calculus process P ∈ Tπ is
bound if it occurs within a subexpression x(z).P ′ or (νz)P ′ of P ; otherwise it
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is free. Let n(P ) (resp. bn(P )) be the set of names occurring (bound) in P ∈
Tπ. Structural congruence, ≡, is the smallest congruence relation on processes
satisfying

P1|(P2|P3) ≡ (P1|P2)|P3 !P ≡ P |!P (νw)(P |Q) ≡ P |(νw)Q
P1|P2 ≡ P2|P1 (νz)0 ≡ 0 x(z).P ≡ x(w).P{w/z}

P |0 ≡ P (νz)(νw)P ≡ (νw)(νz)P (νz)P ≡ (νw)P{w/z} .

Here the rightmost column only holds when w /∈ n(P ), and P{w/z} denotes the
process obtained by replacing each free occurrence of z in P by w.

Definition 11. The reduction relation, → ⊆ Tπ × Tπ, is generated by the
following rules.

x̄z.P |x(y).Q → P |Q{z/y} (z /∈ bn(Q))

P → P ′

P |Q → P ′|Q
P → P ′

(νz)P → (νz)P ′
Q ≡ P P → P ′ P ′ ≡ Q′

Q → Q′

Let =⇒ be the reflexive and transitive closure of →. The observable behaviour
of π-calculus processes is often stated in terms of the outputs they can produce
(abstracting from the value communicated on an output channel).

Definition 12. Let x ∈ N . A process P has a strong output barb on x, notation
P↓x̄, if P can perform an output action x̄z. This is defined inductively:

(x̄z.(P ))↓x̄
P↓x̄

(P |Q)↓x̄

Q↓x̄

(P |Q)↓x̄

P↓x̄ x �= z

((νz)P )↓x̄

P↓x̄

(!P )↓x̄

A process P has a weak output barb on x, P⇓x̄, if there is a P ′ with P =⇒ P ′⇓x̄.

A common semantic equivalence applied in the π-calculus is weak barbed con-
gruence [29,44].

Definition 13. Weak (output) barbed bisimilarity is the largest symmetric rela-
tion •≈ ⊆ Tπ × Tπ such that

– P
•≈ Q and P↓x̄ implies Q⇓x̄, and

– P
•≈ Q and P =⇒ P ′ implies Q =⇒ Q′ for some Q′ with P ′ •≈ Q′.

Weak barbed congruence, ∼=c, is the largest congruence included in •≈.

Often input barbs, defined similarly, are included in the definition of weak barbed
bisimilarity [44]. This is known to induce the same notion of weak barbed con-
gruence [44]. Another technique for defining weak barbed congruence is to use
a barb, or set of barbs, external to the language under investigation, that are
added to the language as constants [21], similar to the theory of testing of [9].
This method is useful for languages with a reduction semantics that do not fea-
ture a clear notion of barb, or where there is ambiguity in which barbs should be
counted and which not, or for comparing languages with different kinds of barb.



A Theory of Encodings and Expressiveness 191

Example 1. x̄z.0 �∼=c (νu)(x̄u.0|u(v).v̄z.0).
For let E := X|x(u).ūv.0 with ρ(X) = x̄z.0 and ζ(X) = (νu)(x̄u.0|u(v).v̄z.0).
Then E[ζ] → (νu)

(
u(v).v̄z.0|ūv.0

)
→ (v̄z.0)↓v̄ but (E[ρ])�⇓v̄.

The asynchronous π-calculus, as introduced by Honda and Tokoro in [24] and
by Boudol in [4], is the sublanguage aπ of the fragment π of the π-calculus pre-
sented above where all subexpressions x̄y.E have the form x̄y.0. Asynchronous
barbed congruence, ∼=c

a, is the largest congruence for the asynchronous π-calculus
included in •≈. Since aπ is a sublanguage of π, ∼=c

a is at least as coarse an equiv-
alence as ∼=c, i.e. ∼=c ⊆ ∼=c

a. The inclusion is strict, since !x(z).x̄z.0 ∼=c
a 0, yet

!x(z).x̄z.0 �∼=c 0 [44]. Since all expressions used in Example 1 belong to aπ, one
even has x̄z.0 �∼=c

a (νu)(x̄u.0|u(v).v̄z.0).
Boudol [4] defined a translation T from π to aπ inductively as follows:

T (X) = X for X ∈ X
T (0) = 0

T (x̄z.P ) = (u)(x̄u|u(v).(v̄z|T (P ))) choosing u, v /∈ n(P ), u �= v
T (x(y).P ) = x(u).(v)(ūv|v(y).T (P )) choosing u, v /∈ n(P ), u �= v

T (P |Q) = (T (P )|T (Q))
T (!P ) = !T (P )

T ((νx)P ) = (νx)T (P )

Example 1 shows that T is not valid up to ∼=c. In fact, it is not even valid up to
∼=c

a. However, as shown in [25], it is valid up to •≈. Since •≈ is not a congruence
(for π or aπ) it is not correct up to •≈.

7 Congruence Closure

Definition 14. An equivalence relation ∼ is a 1-hole congruence for a language
L interpreted in a semantic domain V if [E]L(ν) ∼ [E]L(ρ) for any L-expression
E and any valuations ν, ρ : X → V with ν ∼1 ρ. Here ν, ρ are ∼1-equivalent,
ν ∼1 ρ, if ν(X) ∼ ρ(X) for some X ∈ X and ν(Y ) = ρ(Y ) for all variables Y �= X.

An n-hole congruence for any finite n ∈ IN can be defined in the same vain, and
it is well known and easy to check that a 1-hole congruence ∼ is also an n-hole
congruence, for any n ∈ IN. However, in the presence of operators with infinitely
many arguments, a 1-hole congruence need not be a congruence.

Example 2. Let V be (IN × IN) ∪ {∞}, with the well-order ≤ on V inherited
lexicographically from the default order on IN and ∞ the largest element. So
(n,m) ≤ (n′,m′) iff n ≤ n′ ∨ (n = m ∧ m ≤ m′). Consider the language L with
constants 0, 1 and (1), interpreted in V as (0, 0), (1, 0) and (0, 1), respectively,
the binary operator +, interpreted by (n1,m1) +V (n2,m2) = (n1+n2,m1+m2)
and ∞+E = E+∞ = ∞, and the construct sup(Ei)i∈I that takes any number of
arguments (dependent on the set of the index sets I). The interpretation of sup
in V is to take the supremum of its arguments w.r.t. the well-order ≤. In case
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sup is given finitely many arguments, it simply returns the largest. However
sup((n, i))i∈IN = (n+1, 0).

Now let the equivalence relation ∼ on V be defined by (n,m) ∼ (n′,m′) iff
n = n′, leaving ∞ in an equivalence class of its own. This relation is a 1-hole
congruence on L. Hence, it is also a 2-hole congruence, so one has
(
(n1,m1) ∼ (n′

1,m
′
1) ∧ (n2,m2) ∼ (n′

2,m
′
2)

) ⇒ (n1,m1) + (n2,m2) ∼ (n′
1,m

′
1) + (n′

2,m
′
2).

Yet it fails to be a congruence: (n, i) ∼ (n, 0) for all i ∈ IN, but

(n+1, 0) = sup((n, i))i∈IN �∼ sup((n, 0))i∈IN = (n, 0).

It is well known and easy to check that the collection of equivalence relations on
any domain V, ordered by inclusion, forms a complete lattice—namely the inter-
section of arbitrary many equivalence relations is again an equivalence relation.
Likewise, the collection of 1-hole congruences for L is also a complete lattice,
and moreover a complete sublattice of the complete lattice of equivalence rela-
tions on V. The latter implies that for any collection C of 1-hole congruence
relations, the least equivalence relation that contains all elements of C (exists
and) happens to be a 1-hole congruence relation. Again, this is a property that
is well known [22] and easy to prove. It follows that for any equivalence relation
∼ there exists a largest 1-hole congruence for L contained in ∼. I will denote this
1-hole congruence by ∼1c

L , and call it the congruence closure of ∼ w.r.t. L. One
has v1 ∼1c

L v2 for v1, v2 ∈ V iff [E]L(ν) ∼ [E]L(ρ) for any L-expression E and
any valuations ν, ρ : X → V with ν(X) = v1 and ρ(X) = v2 for some X ∈ X and
ν(Y ) = ρ(Y ) for all Y �= X. Such results do not generally hold for congruences.

Example 3. Continue Example 2, but skipping the operator +. Let ∼k be the
equivalence on V defined by (n,m) ∼k (n′,m′) iff n = n′∧(m = m′∨m,m′ ≤ k).
It is easy to check that all ∼k for k ∈ IN are congruences on the reduced L, and
contained in ∼. Yet their least upper bound (in the lattice of equivalence relations
on V) is ∼, which is not a congruence itself. In particular, there is no largest
congruence contained in ∼.

When dealing with languages L in which all operators and other constructs
have a finite arity, so that each E ∈ TL contains only finitely many variables,
there is no difference between a congruence and a 1-hole congruence, and thus
∼1c

L is a congruence relation for any equivalence ∼. I will apply the theory of
expressiveness presented in this paper also to languages like CCS that have
operators (such as

∑
i∈I Ei) of infinite arity. However, in all such cases I’m

currently aware of, the relevant choices of L and ∼ have the property that ∼1c
L

is in fact a congruence relation. As an example, consider weak bisimilarity [27].
This equivalence relation fails to be a congruence for

∑
. However, the coarsest 1-

hole congruence contained in this relation, often called rooted weak bisimilarity,
happens to be a congruence. In fact, when congruence-closing weak bisimilarity
w.r.t. the binary sum, the result [15] is also a congruence for the infinitary sum,
as well as for all other operators of CCS [27].
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Definition 15. Let T be a translation from L into L′. A subset W of V′ is
closed under T (L) if [T (E)](η) ∈ W for any expression E ∈ TL and valuation
η : X → W. An equivalence ∼ on W is a congruence (respectively 1-hole
congruence) for T (L) on W if for any E ∈ TL and θ, η : X → W with θ ∼ η
(respectively θ ∼1 η) one has [T (E)]L′(θ) ∼ [T (E)]L′(η).

Proposition 3. Let T be a translation from L into L′ that is correct w.r.t. a
semantic translation R ⊆ V′ ×V. Let R(V) := {v ′ ∈ V′ | ∃v ∈ V. v ′Rv}. Then
R(V) is closed under T (L).

Proof: Let E ∈ TL and η : X → R(V). Take ρ : X → V with ρRη. Then
[T (E)]L′(η)R[E]L(ρ). Since [E]L(ρ) ∈ V one has [T (E)]L′(η) ∈ R(V). ��

Proposition 4. Let the translation T from L into L′ be correct w.r.t. the
semantic translation R ⊆ ∼. Then ∼ is a (1-hole) congruence for L iff it is
a (1-hole) congruence for T (L) on R(V).

Proof: First suppose ∼ is a congruence for L. Let E ∈TL and θ, η : X → R(V)
with θ ∼ η. By the definition of R(V) there are valuations ν, ρ : X → V with
θ R ν and η R ρ. Now ν ∼ θ ∼ η ∼ ρ, so

[T (E)]L′(θ)R[E]L(ν) ∼ [E]L(ρ)R−1[T (E)]L′(η)

and hence [T (E)]L′(θ) ∼ [T (E)]L′(η). The other direction proceeds in the
same way.

Now suppose ∼ is a 1-hole congruence for L. Let E∈TL and θ, η : X → R(V)
with θ ∼1 η. Then θ(X) ∼ η(X) for some X ∈ X and θ(Y ) = η(Y ) for all
Y �= X. So there must be ν, ρ : X → V with θ R ν, η R ρ and ν(Y ) = ρ(Y )
for all Y �= X. Since ν(X) ∼ θ(X) ∼ η(X) ∼ ρ(X) it follows that ν ∼1 ρ. The
conclusion proceeds as above, and the other direction goes likewise. ��

The requirement of being a congruence for T (L) on R(V) is slightly weaker
than that of being a congruence for T (L)—cf. Definition 8—for it proceeds by
restricting attention to valuations into R(V) ⊆ U. ¶

8 A Congruence Closure Property for Valid Translations

In many applications, semantic values in the domain of interpretation of a lan-
guage L are only meaningful up to a semantic equivalence ∼c, and the intended
semantic domain could just as well be seen as the set of ∼c-equivalence classes
of values. For this purpose it is essential that ∼c is a congruence for L. Often ∼c

is the congruence closure of a coarser semantic equivalence ∼, so that two values
end up being identified iff they are ∼-equivalent in every context. An example of
this occurred in Sect. 6, with •≈ in the rôle of ∼ and ∼=c in the rôle of ∼c. Now
Theorem 4, contributed in this section, says that if a translation from L into L′

is valid up to ∼, then it is even valid up to an equivalence ∼1c
L,R that extends ∼c

from V to a subdomain W of V′ that suffices for the interpretation of translated
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expressions from L. This equivalence ∼1c
L,R coincides with the congruence closure

of ∼ on L, as well as on T (L), and melts each equivalence class of V with exactly
one of W, and vice versa.

Let L and L′ be languages with [ ]L : TL → ((X → V) → V) and
[ ]L′ : TL′ → ((X → V′) → V′). In this section I assume that V ∩ V′ = ∅. To
apply the results to the general case, just adapt L′ by using a copy of V′—any
preorder •∼ on V ∪ V′ extends to this copy by considering each copied element
•∼-equivalent to the original.

Definition 16. Given any semantic translation R, let ≡R ⊆ (V ∪ V′)2 be the
smallest equivalence relation on V ∪ V′ containing R.

Theorem 3. If a translation T is correct w.r.t. the semantic translation R, then
≡R is a 1-hole congruence for L. ¶

By Proposition 4 ≡R also is a 1-hole congruence for T (L) on R(V). Only the
subset R(V) of V′ matters for the purpose of translating L into L′. On V′\R(V)
the equivalence ≡R is the identity.

Theorem 4. Let T be a translation from a language L, with semantic domain
V, into a language L′, with domain V′, that is valid up to a semantic equivalence
∼. Then T is even valid up to a semantic equivalence ∼1c

L,R, contained in ∼, such
that (1) the restriction of ∼1c

L,R to V is the largest 1-hole congruence for L
contained in ∼, (2) the set W := {v ∈ V′ | ∃v ∈ V. v ′ ∼1c

L,R v} is closed under
T (L), and (3) the restriction of ∼1c

L,R to W is the largest 1-hole congruence for
T (L) on W that is contained in ∼. ¶

Note that each equivalence class of ∼1c
L,R on V∪W melts an equivalence class of

∼1c
L,R on V with one of ∼1c

L,R on W. Moreover, on V the relation is completely
determined by L and ∼. However, in general the whole relation ∼1c

L,R is not
completely determined by L and ∼. ¶

Corollary 1. Let T be a translation from a language L, with semantic domain
V, into a language L′, with domain V′, valid up to a semantic equivalence ∼,
and suppose the congruence closure ∼1

L of ∼ w.r.t. L is in fact a congruence.
Then T is correct up to the equivalence ∼1c

L,R described in Theorem 4. ¶

The languages π and aπ of Sect. 6 do not feature operators (or other con-
structs) of infinite arity. Hence the congruence closure ∼1c

π or ∼1c
aπ of an equiv-

alence ∼ on π or aπ is always a congruence. So by Corollary 1 Boudol’s trans-
lation T is correct up to an equivalence •≈c

π,R, defined on the disjoint union
of the domains Tπ and Taπ on which the two languages are interpreted. This
equivalence is contained in •≈, and on the source domain Tπ coincides with ∼=c.
By Theorem 4, the restriction of •≈c

π,R to a subdomain W ⊆ Taπ is the largest
congruence for T (π) on W that is contained in ∼. As ∼=c

a is a congruence for all
of aπ on all of Taπ, and contained in •≈, it is certainly a congruence for T (π)
on W, and thus contained in •≈c

π,R. This inclusion turns out to be strict. As
an illustration of that, note that x̄z.0|x̄z.0 ∼=c x̄z.x̄z0. (This follows since these
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processes are strong (early) bisimilar [44] and thus strong full bisimilar by [44,
Definition 2.2.2].) Consequently, their translations must be related by •≈c

π,R. So,
for distinct u, v, y, w, x, z ∈ N ,

(u)(x̄u|u(v).(v̄z|0))
∣
∣(u)(x̄u|u(v).(v̄z|0)) •≈c

π,R (y)(x̄y|u(w).(w̄z|(u)(x̄u|u(v).(v̄z|0)))).

Yet, these processes are not ∼=c
a-equivalent, as can be seen by putting them in a

context x(y).x(y).r̄(s)|X. There, only the left-hand side has a weak barb ⇓r̄.

9 Integrating Language Features Through Translations

The results of the previous section show how valid translations are satisfactory
for comparing the expressiveness of languages. If there is a valid translation T
from L to L′ up to ∼, and (as usual) ∼1c

L is a congruence, then all truths that
can be expressed in terms of L can be mimicked in L′. For the congruence classes
of ∼1c

L translate bijectively to congruence classes of an induced equivalence rela-
tion on the domain of T (L) (within the domain of L′), and all operations on
those congruence classes that can be performed by contexts of L have a perfect
counterpart in terms of contexts of T (L). This state of affairs was illustrated on
Boudol’s translation from a synchronous to an asynchronous π-calculus.

There is however one desirable property of translations between languages
that has not yet been achieved, namely to combine the powers of two languages
into one unified language. If both languages L1 and L2 have valid translations
into a language L′, then all that can be done with L1 can be mimicked in a
fragment of L′, and all that can be done with L2 can be mimicked in another
fragment of L′. In order for these two fragments to combine, one would like to
employ a single congruence relation on L′ that specialises to congruence rela-
tions for T1(L1) and T2(L2), which form the counterparts of relevant congruence
relations for the source languages L1 and L2.

In terms of the translation T from π to aπ, the equivalence ∼=c
a on Taπ would

be the right congruence relation to consider for aπ. Ideally, this congruence would
extend to an equivalence ∼=c

π,aπ on the disjoint union Tπ � Taπ, such that the
restriction of ∼=c

π,aπ to Tπ is a congruence for π. Necessarily, this congruence
on Tπ would have to distinguish the terms x̄z.0|x̄z.0 and x̄z.x̄z0, since their
translations are distinguished by ∼=c

a. One therefore expects ∼=c
π,aπ on Tπ to be

strictly finer than ∼=c. Here it is important that the union of Tπ and Taπ on
which this congruence is defined is required to be disjoint. For if one considers
Taπ as a subset of Tπ, then we obtain that the restriction of ∼=c

π,aπ to that subset
(1) coincides with ∼=c

a and (2) is strictly finer than ∼=c. This contradicts the fact
that ∼=c is strictly finer than ∼=c

a.
In Sect. 12 I will show that such a congruence ∼=c

π,aπ indeed exists. In fact,
under a few very mild conditions this result holds generally, provided that the
source language L is a closed-term language. ¶
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10 A Unique Decomposition of Terms

The results of Sect. 12 apply only to languages satisfying two postulates, formu-
lated below, and to preorders •∼ that “respect α=”, defined in Sect. 11.

Definition 17. α-conversion is the act of renaming all occurrences of a bound
variable X within the scope of its binding into another variable, say Y , while
avoiding capture of free variables. Here one speaks of capture when a free occur-
rence of Y turns into a bound one.

Write E
α= F if expression E can be converted into F by acts of α-conversion.

In languages where there are multiple types of bound variables, α= allows con-
version of all of them. In a π-calculus with recursion, for instance, there could
be bound process variables X ∈ X as well as bound names x ∈ N . The last two
conversions in the right column of Definition 10 define α-conversion for names.

Postulate 1 ([16], paraphrased). There exists a class of expressions called
standard heads, and a class of substitutions called standard substitutions, such
that for each expression E, if not a variable, there are unique standard heads H
and substitutions σ such that E

α= H[σ].

A term f(c, g(c)), for instance, can be written as H[σ] where H = f(X1,X2) is
a head, and σ : {X1,X2} → TL is given by σ(X1) = c and σ(X2) = g(c). The
head H is standardised by means of a particular (arbitrary) choice for its argu-
ment variables X1 and X2. σ is standardised through a particular choice of the
bound variables that may occur in the expressions σ(X). A head for a recursive
expression μX.f(g(c), g(g(X))) is μX.f(Y, g(g(X))). See [16] for further detail.

This postulate is easy to show for each common type of system description
language, and I am not aware of any counterexamples. However, while striving
for maximal generality, I consider languages with (recursion-like) constructs that
are yet to be invented, and in view of those, this principle has to be postulated
rather than derived.

11 Invariance of Meaning Under α-conversion

Write v α=L w , with v ,w ∈ V, iff there are terms E,F ∈ TL with E
α= F , and

a valuation ζ : X → V such that [E]L(ζ) = v and [F ]L(ζ) = w . This relation
is reflexive and symmetric.

In [16] I limited attention to languages satisfying

if E
α= F then [E]L = [F ]L. (2)

This postulate says that the meaning of an expression is invariant under α-
conversion. It can be reformulated as the requirement that α=L is the identity
relation. This postulate is satisfied by all my intended applications, except for
the important class of closed-term languages. Languages like CCS and the π-
calculus can be regarded as falling in this class (although it is also possible to
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declare the meaning of a term under a valuation to be an α=-equivalence class of
closed terms). To bring this type of application within the scope of my theory,
here I weaken this postulate by requiring merely that α=L is an equivalence.

Postulate 2. α=L is an equivalence relation.

This postulate is needed in Sect. 12. I also need to restrict attention to preorders
•∼ with α=L ⊆ •∼. When that holds I say that the preorder •∼ respects α=L. If (2)
holds—which strengthens of Postulate 2—then any preorder respects α=L.

12 Compositionality

An important property of translations, defined below, is compositionality. In this
section show I that any valid translation up to a preorder •∼ can be modified
into such a translation that moreover is compositional, provided one restricts
attention to languages that satisfy Postulates 1 and 2, and preorders •∼ that
respect α=.

Definition 18. A translation T from L into L′ is compositional if

(1) T (E[σ]) α= T (E)[T ◦ σ] for each E ∈ TL and σ : fv(E) → TL,
(2) E

α= F implies T (E) α= T (F ) for all E,F ∈ TL,
(3) and moreover T (X) = X for each X ∈ X .

In case E = f(t1, . . . , tn) for certain ti ∈ TL this amounts to
T (f(t1, . . . , tn)) α= Ef (T (t1), . . . , T (tn)), where Ef := T (f(X1, . . . , Xn)) and
Ef (u1, . . . , un) denotes the result of the simultaneous substitution in this expres-
sion of the terms ui ∈ TL′ for the free variables Xi, for i = 1, . . . , n. The
first requirement of Definition 18 is more general and covers language constructs
other than functions, such as recursion. Requiring equality rather than α= is too
demanding. ¶

Lemma 1. If T1 : TL1 → TL2 and T2 : TL2 → TL3 are compositional
translations, then so is their composition T2 ◦ T1 : TL1 → TL3 , defined by
T2 ◦ T1(E) := T2(T1(E)) for all E ∈ L1.

Proof: (1) T2(T1(E[σ])) α= T2(T1(E)[T1 ◦ σ]) α= T2(T1(E))[T2 ◦ T1 ◦ σ]) for each
σ : X ⇀ TL1 and E ∈ TL1 . Here the derivation of the first α= uses Property (2)
of Definition 18—and this is the reason for requiring that property.

(2) E
α=F implies T1(E) α=T1(F ) and T2(T1(E)) α= T2(T1(F )) for all E,F ∈TL.

(3) T2(T1(X)) = T2(X) = X for each X ∈ X . ��

Theorem 5. Let L and L′ be languages that satisfy Postulates 1 and 2, and •∼
a preorder that respects α=L and α=L′ . If any valid (or correct) translation from
L into L′ up to •∼ exists, then there exists a compositional translation that is
valid (or correct) up to •∼. ¶
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Hence, for the purpose of comparing the expressive power of languages, valid
translations between them can be assumed to be compositional. For correct
translations this was already established in [16], but assuming (2), a stronger
version of Postulate 2.

I can now establish the theorem promised in Sect. 9. In view of Theorem 5, no
great sacrifices are made by assuming that the translation T is compositional.
Other “mild conditions” needed are Postulate 2 for L′ and ≈ respecting α=L′ .

Theorem 6. Let L be a closed-term language and L′ a language that satisfies
Postulate 2. Let T be a compositional translation from L into L′ that is valid
up to ∼. Let ≈ be any congruence for L′ containing α=L′ and contained in ∼.
Then T is correct up to an equivalence ≈T on V ∪ V′, contained in ∼, that on
V′ coincides with ≈. ¶

13 Related Work

The concept of full abstraction stems from Milner [26]. It indicates a satisfactory
connection between a denotational and an operational semantics of a language.
Riecke [42] and Shapiro [45] adapt this notion to translations between languages.

Definition 19. A translation T : TLS → TLT is fully abstract w.r.t. the equiva-
lences ∼S⊆T2

LS
and ∼T⊆T2

LT
if, for all P,Q ∈ TLS , P ∼S Q ⇔ T (P ) ∼T T (Q).

In [42,45], ∼S and ∼T are required to be congruence closures—see [18] for more
detail. The simplified definition above was used in [1,30,31]. Fu [10] bases a
theory of expressiveness on full abstraction, with a divergence-preserving form
of barbed branching bisimilarity [19] in the rôle of ∼S and ∼T. A comparison of
full abstraction with the approach of the present paper appears in [18].

In the last twenty years, a great number of encodability and separation
results have appeared, comparing CCS, Mobile Ambients, and several versions
of the π-calculus (with and without recursion; with mixed choice, separated
choice or asynchronous) [1,2,5–8,11–13,23,30–34,38–41,43,46]; see [20,21] for
an overview. Many of these results employ different and somewhat ad-hoc crite-
ria on what constitutes a valid encoding, and thus are hard to compare with each
other. Several of these criteria are discussed and compared in [35,36]. Gorla [21]
collected some essential features of these approaches and integrated them in a
proposal for a valid encoding that justifies most encodings and some separation
results from the literature.

Like Boudol [3] and the present paper, Gorla requires a compositional-
ity condition for encodings. However, his criterion is weaker than mine (cf.
Definition 18) in that the expression Ef encoding an operator f may be depen-
dent on the set of names occurring freely in the expressions given as arguments
of f . This issue is further discussed in [16]. It is an interesting topic for future
research to see if there are any valid encodability results à la [21] that suffer
from my proposed strengthening of compositionality.
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The second criterion of [21] is a form of invariance under name-substitution.
It serves to partially undo the effect of making the compositionality requirement
name-dependent. In my setting I have not yet found the need for such a condition.
In [16] I argue that this criterion as formalised in [21] is too restrictive.

The remaining three requirements of Gorla (the ‘semantic’ requirements) are
very close to an instantiation of mine with a particular preorder •∼. If one takes
•∼ to be weak barbed bisimilarity with explicit divergence (i.e. relating divergent
states with divergent states only), using barbs external to the language, as dis-
cussed in Sect. 6, then an valid translation in my sense satisfies Gorla’s semantic
criteria, provided that the equivalence ≡ on the target language that acts as a
parameter in Gorla’s third criterion is also taken to be weak barbed bisimilar-
ity with explicit divergence. The precise relationships between the proposals of
[16,21] are further discussed in [37].

Further work is needed to sort out to what extent the two approaches have
relevant differences when evaluating encoding and separation results from the
literature. Another topic for future work is to sort out how dependent known
encoding and separation results are on the chosen equivalence or preorder.
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