
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Investigating Wrist-Based Acceleration Summary Measures
across Different Sample Rates towards 24-Hour Physical Activity
and Sleep Profile Assessment

Citation for published version:
Tsanas, T 2022, 'Investigating Wrist-Based Acceleration Summary Measures across Different Sample
Rates towards 24-Hour Physical Activity and Sleep Profile Assessment', Sensors, vol. 22, no. 16, 6152.
https://doi.org/10.3390/s22166152

Digital Object Identifier (DOI):
10.3390/s22166152

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Sensors

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.3390/s22166152
https://doi.org/10.3390/s22166152
https://www.research.ed.ac.uk/en/publications/b8328f2b-4529-4f80-bd55-fc14f1d7d39f


Citation: Tsanas, A. Investigating

Wrist-Based Acceleration Summary

Measures across Different Sample

Rates towards 24-Hour Physical

Activity and Sleep Profile

Assessment. Sensors 2022, 22, 6152.

https://doi.org/10.3390/s22166152

Academic Editors: Chao Liu,

Wenfeng Zheng, Yichao Yang and

Wenshuo Zhou

Received: 1 July 2022

Accepted: 13 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Investigating Wrist-Based Acceleration Summary Measures
across Different Sample Rates towards 24-Hour Physical
Activity and Sleep Profile Assessment
Athanasios Tsanas 1,2,3

1 Usher Institute, Edinburgh Medical School, University of Edinburgh, NINE Edinburgh BioQuarter,
9 Little France Road, Edinburgh EH16 4UX, UK; atsanas@ed.ac.uk or tsanasthanasis@gmail.com

2 School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road,
Edinburgh EH9 3FD, UK

3 Alan Turing Institute, London NW1 2DB, UK

Abstract: Wrist-worn wearable sensors have attracted considerable research interest because of their
potential in providing continuous, longitudinal, non-invasive measurements, leading to insights
into Physical Activity (PA), sleep, and circadian variability. Three key practical considerations for
research-grade wearables are as follows: (a) choosing an appropriate sample rate, (b) summarizing
raw three-dimensional accelerometry data for further processing (accelerometry summary measures),
and (c) accurately estimating PA levels and sleep towards understanding participants’ 24-hour
profiles. We used the CAPTURE-24 dataset, where 148 participants concurrently wore a wrist-
worn three-dimensional accelerometer and a wearable camera over approximately 24 h to obtain
minute-by-minute labels: sleep; and sedentary light, moderate, and vigorous PA. We propose a new
acceleration summary measure, the Rate of Change Acceleration Movement (ROCAM), and compare
its performance against three established approaches summarizing three-dimensional acceleration
data towards replicating the minute-by-minute labels. Moreover, we compare findings where the
acceleration data was sampled at 10, 25, 50, and 100 Hz. We demonstrate the competitive advantage
of ROCAM towards estimating the five labels (80.2% accuracy) and building 24-hour profiles where
the sample rate of 10 Hz is fully sufficient. Collectively, these findings provide insights facilitating
the deployment of large-scale longitudinal actigraphy data processing towards 24-hour PA and
sleep-profile assessment.

Keywords: 24-hour activity profile; actigraphy; Axivity AX3; metabolic equivalents (METs); physical
activity; smartwatch; wrist-worn wearable sensor

1. Introduction

Activities of Daily Living (ADLs) have been intrinsically associated with healthcare
outcomes; for example, a range of studies have demonstrated links between day-to-day
activities and cardiorespiratory status [1–3], sleep with physical and mental health [4,5],
and more broadly with disease burden [6]. Assessing ADL including day-to-day Physical
Activity (PA) and sleep patterns over the short- to long-term has traditionally been achieved
through using self-reports (e.g., using standardized questionnaires and diaries), which
are known to be prone to recall and reporting biases [7,8]. Using smartphone apps can
potentially be more engaging than paper-based forms, it enables time-stamping participants’
responses, and there is evidence of successful long-term adherence in daily questionnaires
even for long periods of time (e.g., over a year) [9]. Nevertheless, there is an increasing
understanding and recent work highlighting the need to be moving beyond smartphone
apps and integrate additional technologies to facilitate objective, longitudinal monitoring
of ADL towards assessing both physical and mental health [10,11].
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Advances in sensor design, data acquisition and processing, and smart device con-
nectivities through Bluetooth and other protocols, along with increasing affordability and
understanding of the benefits of monitoring one’s physical and mental health, have spurred
a boom in the development of wearable health-technology devices [12]. For a succinct
description of the evolution of accelerometer-based methods for PA assessment, we refer
the reader to Troiano et al. [13]. There is an abundance of consumer wearable devices;
wrist-worn wearables (smartwatches) have particularly captivated the attention of the
public, making it a multi-billion market which is expected to grow further over the next few
years [14]. Wrist-worn accelerometers have shown greater promise in terms of adherence
and potential for multiple days’ worth of 24-hour monitoring compared to placing the
accelerometers elsewhere, e.g., at the waist or hip [15]. In most cases, the processing of
the recorded data relies on proprietary algorithms which are embedded in the devices to
provide estimates of steps, floors climbed, calories consumed, and overall sleep quality,
aiming to provide overall health indicators. A key challenge with consumer-grade devices
is that they lack standardization and often thorough validation [12], which is difficult to
establish given that the raw data and algorithms are not made available.

Research-grade wrist-worn wearable devices, on the other hand, provide access to the
raw data, thus providing researchers with opportunities to develop advanced algorithms,
for example, towards the assessment of PA, sleep, and circadian variability characteris-
tics [4,16]. Early research-grade accelerometers focused on activity counts, with different
manufacturers using different approaches to record them, and this, in turn, complicated
cross-device comparisons [16]. For an outline of additional challenges with the use of activ-
ity counts, we refer to Bai et al. [17]. Contemporary research-grade wrist-worn wearables
are more advanced: they typically provide measurements of three-dimensional acceler-
ation data and often additional modalities such as ambient light and wrist temperature
(see [18–20] for examples).

There is intense research interest towards developing algorithms that process raw
three-dimensional accelerometry data which are typically provided from contemporary
research-grade devices, developing custom-based algorithms. In principle, this means
that we can achieve cross-device compatibility and demonstrably compare findings with
transparent algorithms that are applicable across different brands of wearables and hence
standardize measurements in the field of actigraphy. A key challenge when processing
raw three-dimensional accelerometry data is the sheer volume and the need to develop
some approach to summarize the data to visualize patterns and enable further processing.
To appreciate the size of a dataset, it is useful to consider the typical sample rate, which
is 10–100 Hz in actigraphy studies [21]: thus, it can be easily inferred that we can collect
1 TeraByte (TB) of data for a single participant within a few weeks. Then it becomes obvious
that researchers may be confronted with many TeraBytes of data for a moderate number of
participants when collecting longitudinal actigraphy data.

The first step before analyzing the three-dimensional accelerometry data is typically
the application of an algorithmic approach to project the recorded acceleration data onto
a single vector, which is easier to process. For convenience, we refer to these algorithmic
approaches as acceleration summary measures in this study. Other studies have used the terms
‘metric’ or ‘activity metric’ instead; however, arguably, this might create some confusion
when considering the strict definition in mathematics of a metric, and, therefore, we avoid
it here. Intuitively, the acceleration summary measures need to meaningfully summarize
the three-dimensional acceleration data in epochs, which, in actigraphy studies, are usually
per-minute assessments [3,18,21]. There is an ongoing debate on the merits of different
acceleration summary measures both in terms of their robustness (for example, considering
sensor properties and potentially adjusting for temperature changes) and also in terms of
their subsequent use to facilitate further accurate inferences of PA-related outcomes [20–22].

In practice, we often want to process the three-dimensional acceleration data to provide
insights into PA. One of the most frequent measures assessing the extent of PA in lab-based
settings is via the computation of Metabolic Equivalent Tasks (METs), which provide a
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meaningful and practical procedure for expressing the energy cost of physical activities as a
multiple of the resting metabolic rate [1]. Often we use discretized bands of METs to define
activity behaviors, where the categorization into (i) sleep, (ii) sedentary PA, (iii) light PA,
(iv) moderate PA, and vigorous PA are often used and have been integrated into PA
guidelines to promote well-being, including by the World Health Organization (WHO)
(https://www.who.int/initiatives/behealthy/physical-activity, last accessed on 30 June
2022) and other health organizations related to morbidities and mortality [23]. Given how
important and practical this five-level PA categorization is and the inherent link of acceler-
ation with PA, many researchers have proposed algorithmic methods to infer these (or a
subset of these) five levels, using the three-dimensional acceleration data. Traditionally, this
has been achieved by using acceleration summary measure thresholds [8,24,25] or building
statistical machine learning models [3]. Whereas there is a valid argument to be made for
using advanced statistical machine learning models if that approach improves PA catego-
rization estimates substantially over threshold-based methods [3,26], there is still value in
pursuing threshold-based approaches because they are arguably more generalizable and
easier to interpret and also can serve as useful performance benchmarks for more advanced
methods [27].

A further topic of crucial importance which has not been sufficiently carefully studied
in the context of actigraphy studies is the use of different sample rates. Indicatively, a
large systematic review study aiming to provide practical considerations for actigraphy
studies endorsed using the highest sample rate possible, e.g., 90 or 100 Hz [15]. This
recommendation is questionable from a practical perspective because there is an inher-
ent trade-off between the sample rate and data-capture duration. Furthermore, from a
general signal-processing perspective and following Nyquist’s theorem [28], we know
that we need to sample the data with at least twice the maximum frequency of interest
for the task at hand. Resorting to the default highest sample rate that contemporary
research-grade accelerometers provide (typically 100 Hz) may be excessive for practical
applications for the purpose of assessing PA and sleep, and it, indeed, drains the memory
of the device faster, thus prohibiting the collection of longitudinal data in a single device
charge. This can be a considerable practical limitation if we want to design longitudi-
nal actigraphy studies, where it would be advisable to strive to use the lowest sample
rate that can provide sufficiently good data for the purposes of a particular study. Sur-
prisingly, hitherto there have been few studies systematically investigating the effect of
sample rate upon the further analysis of raw three-dimensional accelerometry data for
wrist-worn devices, e.g., for different accelerometer summary measures and for specific
tasks such as PA and sleep assessment. Most of the studies investigating the effect of
sample rates have focused on activity counts, e.g., [29]. Clevenger et al. [30] investigated
the effect of two sample rates (30 and 100 Hz) on acceleration and activity counts on both
hip- and wrist-worn accelerometers. They found that there were differences between the
100 and 30 Hz activity count data; however, they reported that there were no considerable
differences in the acceleration data for the wrist-worn accelerometers and that there was
excellent agreement (99%) in the estimated PA categories between the two sample rates.
It is noteworthy that their study focused on children between the ages 7.3 and 12.5 years,
so it does not automatically transpire that these findings necessarily generalize for adults.
A further open question is whether using a lower sample rate (e.g., the lowest that many
research-grade accelerometers provide, 10 Hz) would still be sufficiently good for sleep
and PA assessment, whilst ensuring that we can maximize the data-capture duration in a
single accelerometer charge of a wrist-worn device.

Therefore, the motivation for this study was two-fold: (1) explore acceleration sum-
mary measures towards estimating PA and sleep, using interpretable threshold-based
approaches; and (2) explore whether we need a very high sample rate in the raw three-
dimensional acceleration data to accurately estimate sleep and the PA categories. The
second part is guided by our ongoing work aiming to collect many weeks’ worth of data
in a single device charge to infer sleep and PA towards monitoring healthcare outcomes,

https://www.who.int/initiatives/behealthy/physical-activity
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and hence we wanted to explore whether the minimum typical sample rate (10 Hz) is
sufficient. The aims of the study are, thus, as follows: (a) introducing a new accelera-
tion summary measure, which is usefully summarizing the raw three-dimensional data;
(b) empirically investigating the performance of the new acceleration summary measure,
along with three well-established acceleration summary measures towards PA assessment;
and (c) comparing performance in PA assessment when using raw accelerometry data
sampled at four different sample rates, namely 10, 25, 50 and 100 Hz, to explore the gener-
alizability of the proposed algorithms and establish whether we need the high-resolution
data for sleep and PA assessment.

2. Materials and Methods
2.1. Data

This study used a publicly available resource which was released recently, the Com-
paring Annotated Pictures with Time-Use Diaries’ Recording of Events over 24-hours
(CAPTURE-24) dataset [31]. CAPTURE-24 received ethics approval from the Univer-
sity of Oxford Inter-Divisional Research Ethics Committee (IDREC), reference number
SSD/CUREC1A/13-262. CAPTURE-24 contains data from 151 participants (52 males),
aged between 18 and 91; in the public version of the database, the ages are available in dis-
cretized age categories to protect participant confidentiality, and, hence, we cannot provide
more detailed summary demographics beyond those already reported in the original study.

Participants wore the Axivity AX3 wrist-worn activity tracker (https://axivity.com/
product/ax3, last accessed on 30 June 2022) on their dominant hand for approximately
24-hours, recording three-dimensional acceleration. Concurrently, they also wore Vicon
autograph wearable cameras to record images automatically at 20-to-30-second intervals:
in total, approximately 1500–2000 images were typically recorded for each participant
during the hours they were awake. Participants also kept a time-use diary and recorded
their sleep by using Whitehall sleep diaries. The images and the diaries were reviewed by
participants and the CAPTURE-24 researchers to obtain the ground truth activities both
regarding sleep and PA behaviors. Moreover, the developers of the database also attached
appropriate estimated METs to each diary/camera event [31], building on the widely
accepted and used compendium of physical activities providing METs estimates across
diverse tasks [32]. Thus, CAPTURE-24 provides concurrent three-dimensional acceleration,
along with detailed labels in the form of METs and PA behaviors. For three participants,
there are no available labels in CAPTURE-24; hence, they were excluded from further
analysis. The labels are provided on a per-minute basis, and in total, we processed 159,008
labeled actigraphy minutes across the 148 participants.

The Axivity AX3 has a configurable sample rate, providing time-stamped entries
measuring acceleration across three axes in terms of gravitational force (g). In CAPTURE-24,
three-dimensional accelerometer data were recorded at 100 Hz, with a dynamic range of
±8 g (‘g’ is a gravity unit, 1 g = 9.81 m/s2). We remark that, although Axivity AX3 can also
record ambient light and wrist temperature, these modalities are not available in the public
release of CAPTURE-24.

The CAPTURE-24 dataset is publicly freely available from https://ora.ox.ac.uk/
objects/uuid:99d7c092-d865-4a19-b096-cc16440cd001 (https://doi.org/10.5287/bodleian:
NGx0JOMP5, last accessed on 30 June 2022). For further details and background on the
CAPTURE-24 study, we refer readers to Gershuny et al. [31] and Willets et al. [33].

2.2. Defining Ground Truth Labels

The developers of CAPTURE-24 used the diaries and METs thresholds to define four
activity behaviors in their recent study [3]: (1) sleep, indicating the time someone is asleep;
(2) sedentary PA, indicating the person is awake in a sitting, lying, or reclining posture with
energy expenditure lower than 1.5 METs; (3) light PA, indicating the person is awake, with
energy expenditure being at least 1.5 METs and lower than 3 METs; and (4) moderate-to-vigorous
PA (MVPA), with energy expenditure 3 METs and above. In this study, we also wanted to

https://axivity.com/product/ax3
https://axivity.com/product/ax3
https://ora.ox.ac.uk/objects/uuid:99d7c092-d865-4a19-b096-cc16440cd001
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distinguish between moderate PA and vigorous PA—this is a meaningful differentiation
in large community studies assessing healthcare outcomes [32], including in PA guidelines
published by WHO. Vigorous PA is characterized by a large increase in breathing and increased
heart rate (e.g., indicating some vigorous sport activity) [32]. Practically, in CAPTURE-24, this
was achieved by identifying entries which were previously labeled as MVPA and re-labeling
those entries that corresponded to METs 6 and above to indicate vigorous PA, in accordance
with the standard approaches used in the literature [32,34]. Thus, in this study, we have five
activity categories (sleep; sedentary, light, moderate, and vigorous PA) which are used as
the ground truth. For convenience, henceforth we collectively refer to these five as the PA
categories, comprising sleep and the remaining four PA levels. In all cases, the ground truth
was summarized in 1-minute epochs to match the corresponding acceleration summaries
that are described next (see Section 2.3) and to be consistent with the assessment resolution
reported previously using the CAPTURE-24 dataset [3] and similar studies in actigraphy and
PA assessment [22].

2.3. Actigraphy Data Processing

The methodology used to process the actigraphy data is graphically illustrated in the
flowchart of Figure 1. In the following sections, we describe in detail the following method-
ological steps: finding a computationally efficient way to summarize the accelerometry
data for further processing, using the processed accelerometry data to map onto activities
of interest (here, the PA categories), and assessing how well the findings might generalize
in new unseen data.
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Figure 1. Flowchart with an overview of the methodology used in the study (Steps 2–4) and how it
could be deployed in more generic applications, e.g., with healthcare outcomes (Step 5), including
sleep-related outputs (see [18]).

2.3.1. Data Preprocessing

As mentioned above, the sample rate for the three-dimensional acceleration data in
CAPTURE-24 is 100 Hz. This leads to a very large file that we want to process in order to
match it with outcomes of interest at a chosen resolution (epoch-length) and characterize
sleep (and potentially sleep patterns), and, if accelerometry data are provided over multiple
days, we could also extract diurnal characteristics (see [18]). In principle, we could proceed
with characterizing the three-dimensional acceleration by using the methods described in
the following sections, and, indeed, the previous studies reporting on CAPTURE-24 have
retained the original sample rate [3,33].

Here, we wanted to investigate both processing the raw three-dimensional accelerome-
try data sampled at 100 Hz and down-sampled versions of the data prior to any processing
(Step 2 in Figure 1) for two reasons: (i) computational efficiency, and, more important,
(ii) to enable the generalization of the current study’s findings across studies that collect
three-dimensional acceleration at lower sample rates. It is important to emphasize that
thresholds and models developed by using three-dimensional acceleration data which were
sampled at a specific sample rate are not directly generalizable when using different sample
rates. In practice, studies collecting raw three-dimensional data configure the sample rate
to be typically in the range of 10–100 Hz. There is an inherent trade-off of sample rate and
data-collection duration (typically, a smaller sample rate enables longer data collection). For
example, in our ongoing actigraphy studies (which will be reported in our future follow-up
work), we use a sample rate of 10 Hz because we want to collect longitudinal data; similarly,
some other studies use intermediate sample rates (e.g., 25 Hz), depending on their specific
needs. Therefore, we have explored four indicative sample rates here: 100, 50, 25 and
10 Hz. We wanted to investigate whether there are objective differences to justify the use
of higher-resolution data for the purpose of assessing the PA categories and, in particular,
focus on the investigation when data have been sampled at 10 Hz: the implication is that
studies which use higher sample rates could always down-sample data to 10 Hz as a
standardized sample rate for their analyses. We used a standard finite impulse response
filter with anti-aliasing for the down-sampling of the original 100 Hz in CAPTURE-24
to resample the original accelerometry data to different sample rates (50, 25 and 10 Hz)
before any further processing and independently repeated the steps that are described in
the following sections.
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We proceeded with the further processing of the data independently each time
(Steps 3 and 4 in Figure 1), as if having four different datasets with the three-dimensional
accelerometry data sampled at each of those four sample rates.

2.3.2. Summarizing Three-Dimensional Actigraphy Data

Most contemporary acceleration-based commercial devices which provide access to
the raw data record three-dimensional raw acceleration signals, such as the Axivity sensors
(used in this study), the Geneactiv sensors (used in similar actigraphy-based healthcare
studies, e.g., [18]), and the ActiGraph sensor, which has also been used in similar PA-related
studies using actigraphy, e.g., [22]. For convenience, we use the conventional notation x, y, z
to denote each of the three axes. In some applications, it might be preferable to focus on one
of the three original acceleration axes for a specific purpose; however, in most applications,
we want to find an expedient approach to summarize activity across all three axes.

The Euclidean Norm (EN) of the three-dimensional accelerometer (vector magnitude)
is arguably the most intuitive and straightforward approach to project the information
from the three vectors (3D acceleration) into a single vector and is defined as the square
root of the sum of the squared values along the three axes. Van Hees et al. [20] suggested
removing the earth gravitational acceleration (1g) from EN, thus developing the Euclidean
Norm Minus One (ENMO). Moreover, to inhibit negative subtraction results in ENMO,
most studies further enforce non-zero ENMO outputs, resulting in the ENMONZ accel-
eration summary measure. ENMONZ is probably the most widely used acceleration
summary measure currently and is the default in the GGIR software package (https://
cran.r-project.org/web/packages/GGIR/index.html, last accessed on 30 June 2022), which
has been widely used in research actigraphy studies. The previous studies reporting on
CAPTURE-24 have similarly used ENMONZ [31,33]. Algorithmically, ENMONZ is com-
puted by using Equation (1).

ENMONZ(t) def
= max


√

x2(t) + y2(t) + z2(t)− 1, 0︸ ︷︷ ︸
ENMO

 (1)

where t refers to the time index, and the operator max{q, 0} indicates that we use the
maximum value between a scalar quantity q and 0, i.e., always obtain non-negative values.
Parenthetically, many studies use the algorithmic definition in Equation (1), and, for
simplicity, they still refer to it as ENMO, e.g., [22,33].

The mean amplitude deviation (MAD), also known as Vector Magnitude Count (VMC),
was proposed by Vähä-Ypyä et al. [35]. It can be thought of as an extension of ENMO in
the sense that it uses the mean EN over a number of samples N to reduce the effect of the
constant gravitational acceleration.

MAD(t) def
=

1
N ∑N

t=1

∣∣∣∣√x2(t) + y2(t) + z2(t)− 1
N ∑N

t=1

√
x2(t) + y2(t) + z2(t)

∣∣∣∣ (2)

The Activity Index (AI) was proposed by Bai et al. [21] and is a measure of the
relative amplitude of activity across the three axes compared to rest. We followed the
recommendation of Bai et al. [21] and the follow-up work by the same group [22] wherein
AI was originally computed on 1-second epochs, and, subsequently, these entries were
summed to obtain the final 1-minute epochs.

https://cran.r-project.org/web/packages/GGIR/index.html
https://cran.r-project.org/web/packages/GGIR/index.html
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AI(t) def
=

√
max

{
1
3

[
∑3

j=1 σ2
j (t)

]
, 0
}

,

where σ2
j (t) =

1
N ∑N

t=1

[
aj(t)− 1

N ∑N
t=1 aj(t)

]2

where j = x, y, z (i.e., one of the three axes) and, hence, computes the corresponding equation :
σ2

x(t), σ2
y (t), σ2

z (t).

(3)

The fourth acceleration summary measure that we propose in this study is referred
to as Rate of Change Acceleration Movement (ROCAM) and is an extension of what
was recently proposed in our previous work [18,36]. In those studies, we reported that,
empirically, this acceleration summary measure led to visually appealing results and had a
sound conceptual basis, without any further empirical justification or comparison against
competing approaches.

ROCAM(t) def
=

√
[x(t)− x(t− 1)]2 + [y(t)− y(t− 1)]2 + [z(t)− z(t− 1)]2 (4)

ROCAM could be conceptually likened to signal processing algorithms that capture
the instantaneous energy of a signal (for example, see [37,38]); hence, we empirically found
that a postprocessing median filtering would smoothen abrupt instantaneous acceleration
variability. For that reason, the output of Equation (4) is then passed through a median
filter of length that is equal to the number of samples comprising a 1-second window.
Henceforth, we refer to ROCAM as the output of Equation (4), followed by this median
filtering. Conceptually, ROCAM is similar to the standard Euclidean distance using the
three-dimensional data, with the additional twist that successive differences of the raw
acceleration entries are used for the three axes. Using the rate of change focuses on the
short-term local changes along the three axes and overcomes the need for prior calibration
and removing gravitational effects, as, for example, in ENMONZ and other accelerometry
summary measure variants explored by van Hees et al. [20].

In all cases, the three-dimensional acceleration data were summarized on 1-minute
epochs by taking the average of the intermediate values computed for each acceleration
summary measure and are in gravitational units (g). The following steps are about using
the 1-minute epochs of the accelerometry data to match onto the (healthcare) outcomes of
interest, which, in this study, are the PA categories.

2.3.3. Estimating Non-Wear Time from Actigraphy

Before we proceed with estimating the PA categories (sleep and PA levels), it is
important to exclude segments of non-wear time. When the wrist-temperature is available
(increasingly frequently available in many actigraphy studies), this considerably facilitates
the detection of non-wear periods. Here, we used the same approach as the developers
of CAPTURE-24, where stationary episodes lasting for at least 60 min were identified as
device non-wear [31].

2.3.4. Estimating Sleep from Actigraphy

We used the sleep detection algorithm we had previously introduced which we had
optimized to detect sleep onset, offset, and awakenings in both controls and people who
had been diagnosed with posttraumatic stress disorder, in which sleep disturbances are a
hallmark of the condition [18]. In brief, the sleep detection algorithm we had previously
proposed works in two steps: first detecting good sleep candidates by using ROCAM and
an additional sleep-specific acceleration summary measure we had previously defined for
short signal segments [18], and subsequently a postprocessing step to join signal segments
detected as sleep candidates. The key difference compared to our original algorithm [18]
is that we removed the requirement of the rolling 5-minute average light being below a
threshold, since the light modality is not available in CAPTURE-24.
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2.3.5. Estimating PA Categorization from Actigraphy

Subsequently, the segments which are not marked as ‘non-wear’ or ‘sleep’ need to be
matched onto the four remaining PA categories (sedentary, light, moderate, and vigorous
PA). We aimed to achieve this by determining optimized thresholds on a minute-by-minute
basis for the acceleration summary measures, on the basis that this provides a generalizable
and easily interpretable method, thus indirectly serving to assess the validity of the different
acceleration summary measures across the different sample rates.

As a first step, the PA categories can be estimated by defining appropriate thresh-
olds of the acceleration summary measures focusing directly on the minute-by-minute
acceleration summary entries with ENMONZ, MAD, AI, and ROCAM. These thresholds
were determined by using constrained nonlinear optimization [39], where the optimizer
aimed to maximize the overall accuracy (see next section) for the PA differentiation. We
clarify that the optimization algorithm did not aim to also differentiate sleep, which was
separately estimated (see Section 2.3.4, ‘Estimating Sleep from Actigraphy’). The initializa-
tions were determined by following the computations of the densities via diffusion [40]
and algorithmically determining thresholds that maximally separate densities, so these are
very reasonable first tries to explore optimizing thresholds. The optimization boundaries
to guide the optimization algorithm were provided following inspection of the stratified
probability distributions of the acceleration summary measures for each PA category.

Finally, we wanted to explore whether there is any additional value in combining the
outputs of the threshold-based methods for the different acceleration summary measures.
To assess this, we trained a Random Forest (RF) [41,42] to combine the estimates of the
PA categories coming out from the application of the threshold methodology for the four
acceleration summary measures in order to assess whether their combination further
improves accuracy. The RF operates by aggregating the outputs of multiple base learners
(decision trees) which are trained in parallel by using perturbed versions of the training
data obtained via bootstrapping. We used the default options in the RF for the choice of its
hyper-parameters: using 500 decision trees and selecting the best feature at each branch
from the randomly selected subset of available features (computed by the square root of the
original data dimensionality). For further details on RF, we refer the reader to Breiman [41]
and Hastie et al. [42]. The reason we chose RF is that this is a robust statistical learning
algorithm that can learn complicated nonlinear relationships in the data and which has
been described as the ‘best off the shelf’ algorithm because it is very robust to the choice
of its hyper-parameters, in stark contrast with other popular statistical learners [42]. We
used three approaches to investigate whether the use of RF might improve on the use
of thresholds. Firstly, we used the optimized thresholds for each of the four acceleration
summary measures independently, and then we presented their outputs (estimated PA
categories) as inputs to train an RF. Secondly, we presented directly the four acceleration
summary measures as input to train an RF. Thirdly, we jointly presented the estimated PA
categories (using the optimized thresholds) for the four acceleration summary measures
and the raw acceleration summary measures as input into an RF.

The MATLAB source code for all methods is freely available at the author’s Github page
that is dedicated to this project: https://github.com/ThanasisTsanas/ActigraphyToolbox (last
accessed on 30 June 2022).

2.4. Statistical Analysis

We used the Spearman correlation coefficient to compute the statistical association
strength between the four acceleration summary measures (ENMONZ, MAD, AI, and
ROCAM) and the PA categories. We denote a statistical relationship between two variables
as statistically strong when the magnitude of the correlation coefficient is 0.3 and above, fol-
lowing standard recommendations in healthcare applications [43]. Similar methodologies
employing the Spearman correlation coefficient to assess the statistical association of the
accelerometry-based data and the PA levels were used in related studies previously [8].

https://github.com/ThanasisTsanas/ActigraphyToolbox


Sensors 2022, 22, 6152 10 of 21

We used the two sample Kolmogorov–Smirnov (KS) statistical hypothesis test to
assess whether there are statistically significant differences when comparing distributions,
assessing statistical significance at the p = 0.01 threshold. The null hypothesis is that the
two distributions are equal, so if the computed probability, p, is below the chosen threshold,
we then reject the null hypothesis and accept the alternative hypothesis suggesting that the
two distributions are statistically significantly different.

2.5. Model Assessment and Generalization

As already indicated above, the sleep detection algorithm was described in our pre-
vious work; therefore, we can directly compare both the minute-by-minute ground truth
segments marked as sleep against the estimates from the algorithm and also directly com-
pare the sleep onset and sleep offset by following the approach we previously used [18].
For the PA levels, given that we obtained the thresholds from the CAPTURE-24 data, we
needed to develop an appropriate strategy. Specifically, we evaluated the performance by
using leave-one-participant-out validation, following a similar assessment methodology
to Walmsley et al. [3]: the thresholds were optimized by using data from N-1 participants,
and the overall model performance is averaged from the successive participant left out.

We used confusion matrices to report the overall performance in terms of estimating
the PA categories. For convenience, the information in the confusion matrix is summarized
by using accuracy to assess the overall agreement of estimates and ground truth, following
the same approach as in the original study reporting on the use of CAPTURE-24 and
assessing activity categories [3]. The confusion matrices and accuracies were computed per
participant (out of sample data) and averaged across the Nth repetitions.

3. Results

Table 1 summarizes the Spearman correlation coefficients of the four acceleration
summary measures explored here (ENMONZ, MAD, AI, and ROCAM) with the five
PA categories (sleep; sedentary, light, moderate, and vigorous PA). For convenience, we
report these correlations for four different versions of the CAPTURE-24 dataset where we
have used the raw 100 Hz data and the down-sampled versions (50, 25 and 10 Hz) of the
three-dimensional accelerometry data.

Table 1. Spearman correlation coefficients of the four acceleration summary measures with the
five activity categories (sleep; sedentary, light, moderate, and vigorous PA) when processing three-
dimensional acceleration data at different sample rates.

(Hz) ENMONZ MAD AI ROCAM

Data sampled at (Hz)

100 0.760 0.837 0.845 0.861
50 0.761 0.844 0.848 0.872
25 0.758 0.845 0.848 0.883
10 0.737 0.843 0.844 0.884

PA stands for Physical Activity, ENMONZ for Euclidean Norm Minus One Non-Zero, MAD for mean ampli-
tude deviation, AI for Activity Index, and ROCAM for Rate Of Change Acceleration Movement (the latter
being a new algorithm proposed in this study). For the algorithmic definitions of these four accelerometer
summary measures, see Equations (1)–(4) in the text. For the MATLAB implementation computing those, see
https://github.com/ThanasisTsanas/ActigraphyToolbox (last accessed on 30 June 2022).

We remark that all four acceleration summary measures exhibit statistically strong asso-
ciations with PA categories (Spearman correlation coefficients well above |0.3|). Therefore,
this is a reassuring finding, as it shows that all four measures capture useful information in
the raw three-dimensional acceleration data towards estimating the PA categories used herein.
ENMONZ is the least correlated acceleration summary measure and ROCAM is consistently
the most strongly associated acceleration summary measure with the PA categories.

A further interesting finding in Table 1 is that the correlations of each of the accel-
eration summary measures with the PA categories are not drastically affected as a result
of using lower-resolution data. ENMONZ exhibits a slightly lower correlation when the

https://github.com/ThanasisTsanas/ActigraphyToolbox
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accelerometry data are sampled at a low sample rate (10 Hz); however, the other established
acceleration summary measures (MAD and AI) appear to be largely unaffected. On the
contrary, ROCAM appears to improve somewhat with lower sample rate; this is, perhaps,
a counter-intuitive finding, and we revisit it later, in the Discussion.

Figure 2 presents the violin plots of the four acceleration summary measures
(ENMONZ, MAD, AI, and ROCAM) for acceleration data sampled at 100, 50, 25 and 10 Hz,
respectively. These plots serve to provide a visual overview of the differences in the
distributions across the five PA categories within a specific sample rate (focusing on the
comparisons within each of the four plots, i.e., Figure 2a–d) and also as a function of
the sample rate in the accelerometry data (comparing the different acceleration summary
measures across the different sample rates). By looking directly at the plots in Figure 2,
we can visually appreciate that the range and distributions of values for all acceleration
summary measures are different as a result of using accelerometry data sampled at different
sample rates. This intuitively suggests that any thresholds and any statistical learning
models developed with data collected when using a particular sample rate would likely
not generalize well in a different dataset collected with a different sample rate. In other
words, we need to have sample-rate-specific thresholds if we want to operate directly with
data sampled at different sample rates.
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with the CAPTURE-24 data sampled at (a) 100 Hz (original raw data); down-sampled at (b) 50 Hz;
(c) 25 Hz; and (d) 10 Hz. Within the violin plot, the circular dot indicates the median. For all accelera-
tion summary measures, the results are presented in gravitational units (g). We have standardized the
scale for each of the acceleration summary measure in order to facilitate visual comparisons across
the different sample rates.
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In the following processing stages for the study, we used the acceleration data when
sampled at 10 Hz. This is both because this is the sample rate that led to the overall highest
correlation with the five categories (see Table 1) and because, practically, this is a more
generalizable setting, given that we can always down-sample accelerometry data if they
were collected at a higher sample rate (whereas we cannot recover information in the higher
frequency ranges if we were to up-sample data).

Figure 3 presents the densities for the four acceleration summary measures, where we
can obtain a visual illustration of the extent of overlap and intuitively get a feel for possible
thresholds we might be exploring to differentiate the five categories. There is considerable
overlap across the five categories, particularly between sleep and sedentary, and between
light, moderate, and vigorous PA. Visually it is not immediately clear if any of the four
acceleration summary measures is superior, although ROCAM arguably has clearer points
that we might use to define thresholds to differentiate the categories (e.g., vigorous PA
stands out more clearly). We remark that, with such high correlation coefficients (in Table 1)
and the illustrations in Figures 2 and 3, we can be quite confident that we should be able
to identify the PA categories correctly most of the time by using acceleration summary
measure thresholds. Intuitively, these plots also serve to caution us about the differentiation
of certain PA categories when using threshold-based methods, for example, where there is
substantive overlap in the distributions (e.g., in light and moderate PA).
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Figure 3. Probability distributions of the four acceleration summary measures (ENMONZ. MAD, AI,
and ROCAM) for the five different categories in order to illustrate the distribution overlap. The plots
are zoomed in to better appreciate possible thresholds we could be deriving (for an appreciation of
the full range of the variable values, see Figure 2d). For brevity, we present only the results with the
CAPTURE-24 data sampled at 10 Hz.

Table 2 summarizes the optimized thresholds for each of the four acceleration sum-
mary measures following the formal optimization process to maximize accuracy, along
with their overall accuracy in differentiating the PA categories when using accelerometry
data sampled at 10 Hz. For completeness, we also present the optimized thresholds when
using data sampled at 25, 50, and 100 Hz in Supplementary Tables S1–S3, respectively,
in the Supplementary Material. We remark that ROCAM has an edge over the compet-
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ing acceleration summary measures, with a reported accuracy of 80.8%, thus verifying
what we intuitively expected from the findings presented in Table 1 with the reported
correlation coefficients.

Table 2. Thresholds to differentiate the different PA categories for the four acceleration summary
measures and resulting accuracy with accelerometry data sampled at 10 Hz.

ENMONZ MAD AI ROCAM

Sleep
Estimated by using a separate sleep detection algorithm and additional entries

that are below the lowest threshold of sedentary activity for each of the
acceleration summary measures

Sedentary PA 0 < x ≤ 0.032 0.001 < x ≤ 0.059 0.010 < x ≤ 5.308 0.06 < x ≤ 0.175
Light PA 0.032 < x ≤ 0.173 0.059 < x ≤ 0.242 5.308 < x ≤ 17.010 0.175 < x ≤ 0.400

Moderate PA 0.173 < x ≤ 0.382 0.242 < x ≤ 0.38 17.010 < x ≤2 3.628 0.400 < x ≤ 0.483
Vigorous PA x > 0.382 x > 0.38 x > 23.628 x > 0.483
Accuracy (%) 78.8 79.6 78.4 80.8

PA stands for Physical Activity. For determining sleep, we used a slightly modified algorithm that we had
previously proposed [18] (see text for details). Using the sleep detection algorithm and the PA thresholds to
estimate the five categories leads to the computed accuracies reported herein. For all acceleration summary
measures, the results are presented in gravitational units (g).

A relevant question then is whether this difference in performance between ROCAM
and the other acceleration summary measures is statistically significant. We used the
two-sample KS test to assess whether the resulting estimates from the different acceleration
summary measures are statistically significantly different. In all cases, we found that the
results were statistically significantly different (p < 0.0001), and, combined with the results
presented in Table 2, this indicates that ROCAM indeed offers a statistically significant
improvement over its competitors in terms of accurately estimating the PA categories.

Figure 4 shows the confusion matrix for ROCAM that was used towards estimating
the PA categories by using the optimized thresholds reported in Table 2. On the right-
hand side, we also present the percentage of correctly vs. incorrectly matched labels for
each of the five PA categories, as this serves to identify areas of potential improvement
more easily (in combination with the actual entries off the main diagonal in the confusion
matrix). For example, it is clear that sleep and sedentary activity are very accurately
detected and there is space for improving the estimation of light and moderate activity; in
particular, the ‘moderate PA’ is often mistakenly estimated as ‘light PA’. For comparison
with the ROCAM findings presented in Figure 4, we also present the confusion matrices
for ENMONZ, MAD, and AI in Supplementary Figures S1–S3. We note that there are
some fairly substantive differences in the estimation of different PA categories amongst the
different threshold-based methods for the acceleration summary measures. For example,
ROCAM is particularly powerful in correctly identifying sleep, sedentary activity, and
vigorous PA compared to ENMONZ, MAD, and AI, whereas all of these three competing
methods are better at estimating light PA compared to ROCAM. These differences in the
accuracy of estimating particular PA activities could implicitly suggest that some sort of
combination or voting using all four acceleration summary measures and/or the estimated
PA categories might lead to better results and, hence, motivates the following step.

In an attempt to explore improving these findings, we used RF developing statistical
learning models. Specifically, we (i) computed the estimated outputs for the five categories
when applying the optimized thresholds for each of the four acceleration summary mea-
sures independently, and then we presented these outputs to an RF; and (ii, iii) combined
the two steps presented above, presenting them jointly as inputs into an RF. Figure 5
presents the confusion matrix of the trained RF (model where the estimated PA outputs
followed the application of the optimized thresholds): we observed that there is further
improvement in overall accuracy (82.2%) that mainly comes from improving the estimates
for the ‘light’ and ‘moderate’ PA categories. However, this comes at the cost of some
reduction in the estimation accuracy of sedentary and vigorous PA. We remark that the
results of the RF models built either with the use of the acceleration summary measures
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directly, or with the use of jointly the acceleration summary measures along with the PA
estimates following the threshold application were similar to the RF model built using the
PA estimates following the optimized threshold application. Therefore, we opted to present
the approach that is computationally simplest.
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Figure 5. Minute-wise confusion matrix to estimate the five categories (sleep; sedentary, light,
moderate, and vigorous PA) by using the optimized thresholds independently for each of the four
acceleration summary measures and presenting their outputs (estimated categories) as inputs to an
RF. On the right-hand side, we have the percentage of correctly vs. incorrectly matched labels for
each of the five categories. Overall accuracy: 82.2%. The results refer to out-of-sample performance
and were computed by using the leave-one-participant-out approach, wherein we collated all outputs
in a single confusion matrix.
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4. Discussion

We investigated four acceleration summary measures (three widely used and the
new ROCAM proposed here) across four different sample rates (100, 50, 25 and 10 Hz) to
process three-dimensional acceleration data collected from the wrist in order to construct a
24-hour physical-activity-and-sleep-profile assessment. The study has made a number of
key contributions. First, we have demonstrated that the widely used and practically default
approach to summarize three-dimensional accelerometry data in actigraphy (ENMONZ) is
likely not the best method to summarize the raw data, at least not towards the differential
assessment of sleep and the standard PA categorization (sedentary, light, moderate, and
vigorous PA), as reported in Tables 1 and 2. Second, the new acceleration summary
measure, ROCAM, appears to be a very competitive method, particularly towards the
differentiation of sleep and PA, with the additional advantage that it is very robust with
reduced sample rate (in fact, the association strength of ROCAM with the five categories is
practically optimized with data sampled at 10 Hz). Third, we have shown that different
sample rates for the three-dimensional accelerometry data can have a considerable effect
in terms of the range in the acceleration summary measure values (see Figure 2) and, to a
lesser extent, to the resulting statistical association with PA categories (Table 1); this has
important implications for carefully considering how to use reported thresholds and built
models across studies with different sample rates. Fourth, sampling the three-dimensional
acceleration data at 10 Hz is fully sufficient for the purpose of differential assessment of
sleep and PA, at least when it comes to using threshold approaches to estimate the five PA
categories explored in this study. Fifth, by using ROCAM and appropriately optimized
thresholds, we can obtain 80.8% accuracy in differentiating the PA categories; we can
improve accuracy by considering all four acceleration summary measures and presenting
them in an RF to obtain 82.2% accuracy in correctly matching the PA categories. We would
especially like to highlight the very accurate detection of sleep and sedentary activity from
using simple thresholds for ROCAM (see Figure 4), which has important implications in
understanding ADL and their association with healthcare outcomes [4].

ENMONZ is an intuitively appealing acceleration summary measure which builds on
the standard concept of Euclidean distance. This explains why it is practically the default
option in actigraphy packages (such as GGIR) and its widespread use, including in the
study that reported on the CAPTURE-24 data [31] and many other studies in the research
literature [3,33,44]. However, the findings presented in this study challenge the status quo
and the widespread use of ENMONZ. We have reported (see Table 1) that ENMONZ is
the acceleration summary measure which has the lesser association strength with the five
PA categories amongst the four acceleration summary measures investigated. Moreover,
ENMONZ was the only one of the four acceleration summary measures that has a statistical
association with the five categories that degrades considerably with data sampled at 10 Hz.
This is not a problem in itself, necessarily, if an acceleration summary performs very well, say
at 100 Hz, and degrades considerably when presented with low-resolution data; however,
it is an indicator that, particularly with acceleration data sampled at low sample rates,
one should be cautious when using ENMONZ. Particularly given that ENMONZ is not
better associated with the PA categories at the higher sample rates, there is good evidence
presented here to suggest that competing acceleration summary measures should be strongly
considered for PA categorization and likely also for other actigraphy data-processing tasks.
We reported that there is a small but clear performance improvement of 2% (which is also
statistically significant) when using ROCAM over ENMONZ; this is noteworthy, given that
this is a challenging five-class problem. The developers of MAD and AI had previously
compared their findings to ENMONZ [21,22]; however, those comparisons were limited
from using shorter-period laboratory-based data compared to the 24-hour data collected
under free living conditions explored in this study. Therefore, the comparisons of the four
acceleration summary measures (ENMONZ, MAD, AI, and ROCAM) reported here are
novel in terms of the data-collection environment (non-controlled) and duration of collection,
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which, in principle, should better reflect the generalizability of the presented findings in
other free-living longitudinal actigraphy studies.

Perhaps counter-intuitively, ROCAM appears to be more strongly associated with the
five categories when using lower-resolution acceleration data (sampled at 10 Hz), as can
be seen in Table 1. This likely reflects the instantaneous nature of the ROCAM algorithm,
as it takes successive differences across each of the three axes, and, hence, it might be
that operating at very high granularity (e.g., with the 100 Hz sampled data) might reflect
changes in internal accelerometer noise. Therefore, this empirical finding likely suggests
that ROCAM might be overly sensitive to very high-resolution data, and it is advantageous
to down-sample the data at least for the purpose of estimating the five categories used
herein. It will be interesting to see if this finding can be generalized for other settings where
the actual labels in a problem are different (for example, trying to directly estimate different
activities, as explored in Willetts et al. [33]).

Previous work has reported findings and provided acceleration summary measure
thresholds or models to assess PA when using high-sampled acceleration data, e.g., 80 Hz [22]
and 100 Hz [31,33], as this limits applicability in new datasets that do not use the same high
sample rates since these thresholds and models are sample-rate dependent. Arguably, in
most practical applications in community studies, we do not need a sample rate beyond
25 Hz for a general-purpose assessment of PA because typically people do not move their
hands beyond a few times per second (at least in the sense of what we would be interested
to assess in most research studies for PA). By Nyquist’s theorem [28], we should be aiming
to sample at about twice the maximum frequency of interest in the data; therefore, a sample
rate of 100 Hz would probably be considered excessive for research purposes focusing on the
general population for longitudinal PA assessment. Given that there is usually a trade-off to
be made between the use of the sample rate and the duration of the data collected (indica-
tively, Geneactiv can collect up to 7 days of data at 100 Hz and about 60 days of data at 10 Hz
in a single charge; Axivity AX3 has a maximum logging period of 30 days at 12.5 Hz or
14 days at 100 Hz) and that many research studies often aim to provide longitudinal outcome
assessments, a pragmatic practical decision would be to use 10 Hz to maximize data collec-
tion duration, whilst retaining meaningful signal variability on per-second basis. For these
reasons, and to ensure that the provided algorithms developed herein are generalizable
and deployable in studies planning to focus on longer-term monitoring, we wanted, in
particular, to assess the use of three-dimensional data sampled at 10 Hz. The implication
is that it is easy to down-sample accelerometry datasets which were collected by using a
higher sample rate and directly use the methodology and the thresholds described in this
study. On the contrary, a research study which used a sample rate of 10 Hz would not be
able to benefit from guidelines and recommended thresholds and models developed if these
require high-sample-rate data.

The differences in performance for accelerometry data sampled at different sample
rates can be appreciated by comparing the results presented in Table 2 and the Supple-
mentary Tables S1–S3, which present findings with data sampled at 25, 50, and 100 Hz,
respectively. We note that, as expected from the correlation coefficient results reported in
Table 1, the accuracy of obtaining the PA categories with appropriately optimized thresh-
olds was best when using data sampled at 10 Hz, using ROCAM. A careful comparison
of these tables also reveals important differences in the optimized thresholds when using
acceleration data sampled at different sample rates for all the acceleration summary mea-
sures, a finding which is not unexpected when considering the probability distributions
presented in Figure 2. This serves to highlight the importance of carefully considering the
choice of sample rate on generalizing findings towards PA assessment. Overall, on the basis
of the current evidence in this study, it appears that using three-dimensional accelerometry
data sampled at 10 Hz is fully sufficient for the purposes of the differential assessment of
PA categories explored here.

It is difficult to directly compare side-by-side the accuracy reported here with find-
ings in the research literature, in part because some works use different PA categories,
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exclude sleep assessment (e.g., focusing on shorter time intervals rather than 24-hour
profile assessment), or focus on lab-based recordings where very specific tasks are followed
under controlled conditions to calculate METs. Walmsley et al. [3] were the first to use
CAPTURE-24 data to assess different categories, similarly to this study, towards 24-hour
profile assessment, and they reported a 87.7% accuracy. They used four categories (sleep,
sedentary PA, light PA, and MVPA); that is, compared to this study, they had combined
moderate and vigorous PAs into a single category (since there are relatively few samples in
vigorous PA in the CAPTURE-24 dataset, and they wanted to use a balanced dataset for
training the RF). They had retained the originally sampled 100 Hz data and had trained
a complicated RF to estimate the four categories when presented with 50 advanced fea-
tures extracted from the raw accelerometry data by applying a range of signal processing
algorithms. This is a compelling approach: in practice, we can develop and apply differ-
ent algorithms to characterize the accelerometry data and subsequently select a robust
parsimonious feature subset (e.g., using feature selection or feature transformation meth-
ods [45,46]) which is presented to the statistical learner. Compared to Walmsley et al., we
remark that the approach explored here is (a) generalizable across different sample rates
and, in particular, can be run in emerging actigraphy datasets sampled at 10 Hz that we and
others are currently collecting, thus practically enabling longer data collection on a single
smartwatch charge compared to higher sample rates (we will be reporting on these findings
in future follow-up work); (b) computationally much faster, since it does not involve the
computation of many advanced features that are presented to a statistical learner (and
potentially also involving additional steps in the statistical learning process such as feature
selection or feature transformation); (c) differentiates between moderate and vigorous
PA, as such a distinction is clinically important for certain applications and overall WHO
recommendations regarding weekly exercise. We also stress that the use of threshold-based
methods intrinsically avoids the well-known problem of supervised statistical learning
setups when training on highly unbalanced datasets where the dominant class(es) will
typically be the output of the classifier. Hence, in this study, we did not need to explicitly
account for creating balanced subsets as in Walmsley et al. [3]. Instead, with threshold-
based methods, we can control for potential clear dominance of classes by carefully setting
the lower- and upper-boundaries in the constrained optimization algorithm where we
compute the thresholds (in this study, these were set following visual inspection of the
probability distributions; see Figure 3). In the results not shown in this study, we found
that the resulting complicated trained RF of Walmsley et al. [3] does not generalize well in
datasets sampled at different sample rates (i.e., when down-sampling the CAPTURE-24
data at 25 Hz or in new datasets we are currently in the process of collecting, sampled at
10 Hz). Intuitively, this could be explained by the differences we noted in the acceleration
summary distributions reported when using acceleration data sampled at different sample
rates (see Figure 2). Therefore, the requirement of having data sampled at 100 Hz to use
their trained statistical leaning model is practically very restrictive for actigraphy studies
aiming to collect longitudinal data.

From a practical perspective, the approach proposed here, with the use of acceleration
summary thresholds, needs to be further improved in terms of correctly assessing light
and moderate PA, which are conflated with sedentary and light PA, respectively (see
Figures 4 and 5). There is clear room for improvement, for example, by deploying some
postprocessing approach, possibly invoking dynamic programming concepts or some other
method that takes into account the actual time-state changes to more accurately follow the
trajectory of the five categories for each participant. This is an area that we intend to build
on further in future work. We note that other threshold-based PA categorization studies
had similarly reported challenges in distinguishing between certain categories, for example,
between sedentary and light PA and/or overestimating MVPA [25,44].

We note that the CAPTURE-24 is the largest known freely available accelerometry-
based dataset with detailed minute-by-minute labels, where data have been collected under
real-world conditions rather than in highly controlled lab settings. This makes it an ideal
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dataset upon which to develop and validate an algorithmic framework towards assessing
24-hour activity profiles, with the vision that the lessons learned can be translated to similar
large-scale community studies. For example, the developers of CAPTURE-24 have used
the learnings from their algorithmic framework in CAPTURE-24 and PA assessments to
provide new insights into the UK BioBank study analyzing weekly actigraphy data from
more than 85,000 participants [3]. The provided labels in the form of METs in CAPTURE-24
were estimated by reviewing photos and diaries rather than being directly measured, and
therefore it is possible that the developed algorithms might need to be further refined with
additional datasets where lab-based METs measurements are available. Nevertheless, for
the purposes of obtaining an overall PA categorization (including sleep) and 24-hour profile
assessment under non-controlled lab conditions, the CAPTURE-24 dataset is a particularly
useful resource.

The study has a number of limitations which we acknowledge. Although CAPTURE-24
is the largest publicly available actigraphy database in free living conditions with detailed
labels, findings ideally need to be explored and validated on a larger cohort or additional
external datasets. In particular, it would be useful to have cohorts with different pathologies,
since algorithms developed when processing actigraphy data in healthy controls do not
necessarily generalize well in regard to people with certain pathologies, e.g., sleep-related
pathologies [18]. We focused on four acceleration summary measures (ENMONZ, MAD, AI,
and ROCAM), motivated by the use of the first three computational approaches which have
been widely used in similar reports, and proposing the new acceleration summary measure
ROCAM. There are other acceleration summary measures which have been proposed in
the research literature which have not been explored here due to space and practicality
constraints and the fact they had not shown any tangible advantages over the acceleration
summary measures reported here (see [20], for example). Furthermore, there are some
devices (and also legacy datasets and legacy algorithms) operating on ‘activity counts’,
often focusing on mono-axial accelerometers (i.e., single-axis acceleration), where a popular
acceleration summary measure is zero crossing (ZC). There is existing work to align recent de-
velopments in three-dimensional acceleration processing and count-based or ZC algorithms
to enable backwards compatibility [47], and these approaches and acceleration summary
measures were not investigated herein because, arguably, they offer a more crude measure
of activity compared to sensors, which provide raw three-dimensional acceleration signals.
The methods proposed herein were validated on participants wearing the accelerometer on
their dominant hand; cutoffs to assess PA levels are likely dependent on device placement
(dominant or non-dominant hand; see [15,48]), and, hence, future work should carefully
consider how well the findings can be generalized. Moreover, the findings presented in this
study are for wrist-worn acceleration data; although the methodology presented should, in
principle, be applicable to other body placements, specific detailed thresholds and findings
reported herein would be different for acceleration data recorded elsewhere (e.g., on the
hip), as previous work has shown [15,24,49]. Finally, we did not consider age-, gender-, and
motor-competence-specific analyses due to the relatively limited sample size to perform
these detailed stratifications: there is some work that suggests that these affect accelerometer
outputs, calling for more personalized threshold-based methods [50,51].

5. Conclusions

Collectively, this study contributed new insights into the analysis of wrist-worn actig-
raphy data in three areas. Firstly, it introduced a new robust acceleration summary measure
(ROCAM) which was shown to be very competitive against three established and widely
used acceleration summary measures (ENMONZ, MAD, and AI) in terms of summarizing
the data in 1-minute epochs that can be subsequently mapped onto sleep and PA activities.
For the first time, these thorough acceleration summary measure comparisons were ob-
tained by processing a large dataset collected under free-living conditions (CAPTURE-24)
where we have access to 24-hour minute-wise labeled actigraphy data. Secondly, it pro-
vided solid evidence that acceleration data with a 10 Hz resolution is fully sufficient for
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sleep and differential PA assessment, thus paving the way for the adoption of the 10 Hz
sample rate in actigraphy studies which aim to focus on longitudinal sleep and PA analysis,
thus minimizing the need for regular device recharge. Finally, it demonstrated a straight-
forward, reasonably accurate, and clearly interpretable threshold-based methodology to
infer sleep and the four standard PA categories (sedentary, light, moderate, and vigorous)
which are widely used when processing actigraphy data. In particular, we have shown that
the estimation of sleep and sedentary activity are very accurately estimated, both of which
have important healthcare implications.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/s22166152/s1, Table S1: Thresholds to differentiate the
different PA categories for the four acceleration summary measures and resulting accuracy with
accelerometry data sampled at 25 Hz. Table S2: Thresholds to differentiate the different PA cate-
gories for the four acceleration summary measures and resulting accuracy with accelerometry data
sampled at 50 Hz. Table S3: Thresholds to differentiate the different PA categories for the four
acceleration summary measures and resulting accuracy with accelerometry data sampled at 100 Hz.
Figure S1: Minute-wise confusion matrix to estimate the five categories (sleep, sedentary, light, mod-
erate, vigorous) using optimized thresholds for ENMONZ with accelerometry data sampled at 10 Hz.
On the right hand-side we have the percentage of correctly vs incorrectly matched labels for each
of the five categories. Overall accuracy: 78.8%. The results refer to out-of-sample performance and
were computed using leave-one-participant-out where we collated all outputs in a single confusion
matrix. Figure S2: Minute-wise confusion matrix to estimate the five categories (sleep, sedentary, light,
moderate, vigorous) using optimized thresholds for MAD with accelerometry data sampled at 10 Hz.
On the right hand-side we have the percentage of correctly vs incorrectly matched labels for each
of the five categories. Overall accuracy: 79.6%. The results refer to out-of-sample performance and
were computed using leave-one-participant-out where we collated all outputs in a single confusion
matrix. Figure S3: Minute-wise confusion matrix to estimate the five categories (sleep, sedentary, light,
moderate, vigorous) using optimized thresholds for AI with accelerometry data sampled at 10 Hz.
On the right hand-side we have the percentage of correctly vs incorrectly matched labels for each of
the five categories. Overall accuracy: 78.4%. The results refer to out-of-sample performance and were
computed using leave-one-participant-out where we collated all outputs in a single confusion matrix.
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