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RESEARCH ARTICLE

Assessment of genotyping array 
performance for genome‑wide association 
studies and imputation in African cattle
Valentina Riggio1,2*†   , Abdulfatai Tijjani3†, Rebecca Callaby1,2, Andrea Talenti1, David Wragg1, 
Emmanuel T. Obishakin4,5, Chukwunonso Ezeasor6, Frans Jongejan7, Ndudim I. Ogo8, Fred Aboagye‑Antwi9, 
Alassane Toure10, Jahashi Nzalawahej11, Boubacar Diallo12, Ayao Missohou13, Adrien M. G. Belem14, 
Appolinaire Djikeng1,2, Nick Juleff15, Josephus Fourie16, Michel Labuschagne17,18, Maxime Madder19, 
Karen Marshall20,21, James G. D. Prendergast1,2 and Liam J. Morrison1,2 

Abstract 

Background:  In cattle, genome-wide association studies (GWAS) have largely focused on European or Asian breeds, 
using genotyping arrays that were primarily designed for European cattle. Because there is growing interest in per‑
forming GWAS in African breeds, we have assessed the performance of 23 commercial bovine genotyping arrays for 
capturing the diversity across African breeds and performing imputation. We used 409 whole-genome sequences 
(WGS) spanning global cattle breeds, and a real cohort of 2481 individuals (including African breeds) that were geno‑
typed with the Illumina high-density (HD) array and the GeneSeek bovine 50 k array.

Results:  We found that commercially available arrays were not effective in capturing variants that segregate among 
African indicine animals. Only 6% of these variants in high linkage disequilibrium (LD) (r2 > 0.8) were on the best per‑
forming arrays, which contrasts with the 17% and 25% in African and European taurine cattle, respectively. However, 
imputation from available HD arrays can successfully capture most variants (accuracies up to 0.93), mainly when using 
a global, not continent-specific, reference panel, which partially reflects the unusually high levels of admixture on the 
continent. When considering functional variants, the GGPF250 array performed best for tagging WGS variants and 
imputation. Finally, we show that imputation from low-density arrays can perform almost as well as HD arrays, if a 
two-stage imputation approach is adopted, i.e. first imputing to HD and then to WGS, which can potentially reduce 
the costs of GWAS.

Conclusions:  Our results show that the choice of an array should be based on a balance between the objective of 
the study and the breed/population considered, with the HD and BOS1 arrays being the best choice for both taurine 
and indicine breeds when performing GWAS, and the GGPF250 being preferable for fine-mapping studies. Moreover, 
our results suggest that there is no advantage to using the indicus-specific arrays for indicus breeds, regardless of the 
objective. Finally, we show that using a reference panel that better represents global bovine diversity improves impu‑
tation accuracy, particularly for non-European taurine populations.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
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to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
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Background
The African continent is home to many livestock breeds 
that are adapted to their local environments across 
diverse agro-ecological zones, with a diversity that has 
been shaped by a delicate balance between human and 
environmental selection [1]. Livestock, particularly 
cattle, are central to the African society and economy. 
They are sources of food and generate income through 
meat, milk, and hide. They also provide draft power and 
manure in crop production, are a means of transporta-
tion, are used in festivals and traditional ceremonies 
(marriage, birth, death, coronation, and initiation cer-
emonies) and are a source of pride, prestige, and sta-
tus [1]. However, in spite of these benefits, livestock 
productivity in Africa is currently less than optimal. 
Hence, developing genetic improvement programmes 
to increase the productivity of African cattle breeds 
is essential to ensure that they can match and fulfil 
demand and population growth.

In a study that aimed at the genome characterisation 
of five indigenous African cattle breeds, Kim et  al. [2] 
highlighted and mapped several unique African adap-
tation-related traits, representing responses to climatic 
challenges, disease resistance, and artificial selection. 
Thus, these results provided genomic evidence and 
options for implementing genetic strategies to improve 
cattle productivity and resilience in Africa [2]. A key 
step to understand African livestock production is 
to map the genetic loci that underlie important traits 
and phenotypes. Traditionally, this is most commonly 
achieved through the use of genome-wide association 
studies (GWAS) that have successfully identified hun-
dreds of single-nucleotide polymorphisms (SNPs) asso-
ciated with complex traits in cattle. However, these 
studies have focused mainly on cattle that derive from 
European or Asian breeds. Furthermore, the existing 
genotyping arrays that are used in GWAS cover only 
a limited repertoire of sequence variation, which is 
often biased towards variants that are common to the 
European breeds used in the SNP discovery step of the 
development of arrays.

In cattle, the densities of commercially avail-
able SNP genotyping arrays range from ~ 3000 up 
to ~ 777,000 variants. The first array used was the 
BovineSNP50 Genotyping (now V3) BeadChip 
(https://​www.​illum​ina.​com/​Docum​ents/​produ​cts/​
datas​heets/​datas​heet_​bovine_​snp5O.​pdf; SNP50V3) 
soon after followed by the Illumina HD (https://​www.​
illum​ina.​com/​docum​ents/​produ​cts/​datas​heets/​datas​
heet_​bovin​eHD.​pdf ) and the Axiom Genome-Wide 
BOS1 array (https://​www.​therm​ofish​er.​com/​order/​
catal​og/​produ​ct/​90179​1#/​901791). Several other 
arrays have been subsequently developed for more 

specific purposes. Some arrays that were intended to 
be used for genomic selection were designed with a 
lower density of variants, such as the Illumina Golden 
Gate Bovine3K Genotyping Beadchip (BOVGGPV3K; 
http://​www.​illum​ina.​com/​Docum​ents/​produ​cts/​datas​
heets/​datas​heet_​bovin​e3k.​pdf ); the BovineLD Geno-
typing BeadChip (BOVLDC and BOVLDV2A; https://​
www.​illum​ina.​com/​Docum​ents/​produ​cts/​datas​heets/​
datas​heet_​bovin​eLD.​pdf ); and the GeneSeek Genomic 
Profiler (GGP) low-density BeadChip for Dairy Cattle 
(GGPLDV1; GGPLDV3; and GGPLDV4). Other arrays 
have been developed for more specific applications, 
for example, the GGPF250 array that contains 34,000 
common variants present on many of the genotyp-
ing assays currently used by the cattle industry and 
199,000 predicted functional variants [3]; the GGP 
BeadChip GGPHDV3 (https://​www.​neogen.​com/​en-​
gb/​categ​ories/​genot​yping-​arrays/​ggp-​bovine-​150k/) 
that uses the most informative SNPs from the three 
Illumina chips, plus comprehensive parentage, dis-
ease and trait relevant SNPs; the IDBV3 array (http://​
www.​icbf.​com/?​page_​id=​2170) that contains diag-
nostic probes for genetic diseases and traits; and the 
GGP Bovine 50K for Dairy (BOVG50V1) array, which 
comprises SNPs that were selected for maximum 
informativeness in the Holstein, Jersey, Brown Swiss, 
Ayrshire, Guernsey, Gyr, and Girolando dairy breeds. 
Although indicine breeds have been used in the design 
of many of these arrays, they tend to focus on provid-
ing a more uniform genome coverage for a majority 
of the taurine breeds. However, two arrays have been 
designed and used specifically for indicine breeds: 
the GGP Bos indicus HD array (IND90KH) and the 
GGP indicus array (GGPIND35; https://​www.​neogen.​
com/​globa​lasse​ts/​pim/​assets/​origi​nal/​10000/​offic​ial_​
ggp-​indic​us_​broch​ure.​pdf ). Therefore, in view of this 
wide range of available arrays, it is difficult to predict 
which one would be optimal and suitable for African 
cattle (which are often a mixture of taurine and indi-
cine breeds).

Although assessment of genome-wide genetic vari-
ation is now possible using next-generation sequenc-
ing technologies, it remains prohibitively expensive 
to whole-genome sequence large cohorts of animals 
[4]. Consequently, genotyping arrays remain the most 
commonly used tool in GWAS, but how well these dif-
ferent arrays capture the genetic variation of African 
breeds and work in GWAS of such breeds is unclear.

Imputation is often used to improve coverage in 
GWAS, where untyped variants are inferred by com-
bining partial haplotypes found in a study sample (i.e., 
a target set) using genotyping arrays, with the full 
haplotypes available in a more densely characterised 

https://www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovine_snp5O.pdf
https://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
https://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
https://www.illumina.com/documents/products/datasheets/datasheet_bovineHD.pdf
https://www.thermofisher.com/order/catalog/product/901791#/901791
https://www.thermofisher.com/order/catalog/product/901791#/901791
http://www.illumina.com/Documents/products/datasheets/datasheet_bovine3k.pdf
http://www.illumina.com/Documents/products/datasheets/datasheet_bovine3k.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovineLD.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovineLD.pdf
https://www.illumina.com/Documents/products/datasheets/datasheet_bovineLD.pdf
https://www.neogen.com/en-gb/categories/genotyping-arrays/ggp-bovine-150k/
https://www.neogen.com/en-gb/categories/genotyping-arrays/ggp-bovine-150k/
http://www.icbf.com/?page_id=2170
http://www.icbf.com/?page_id=2170
https://www.neogen.com/globalassets/pim/assets/original/10000/official_ggp-indicus_brochure.pdf
https://www.neogen.com/globalassets/pim/assets/original/10000/official_ggp-indicus_brochure.pdf
https://www.neogen.com/globalassets/pim/assets/original/10000/official_ggp-indicus_brochure.pdf
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reference set or panel (for a review see [5]). Highly 
accurate genotype imputation methods have been 
developed to predict large numbers of genetic vari-
ants from a much smaller subset of known genotypes 
[6]. In humans, it has been reported that imputation 
works very well for common variants but compara-
tively much less well at lower minor allele frequencies 
[7]. Performing imputation to the whole-genome level 
requires a high-density, high-quality reference panel 
and has been successfully achieved in several species 
including cattle [8, 9]. However, imputation perfor-
mance has been little explored in African cattle breeds. 
Since the design of the bovine genotyping arrays has 
primarily been focused on European taurine cattle 
breeds, they may perform less well on African cattle, 
which are composed of a mixture of African taurine 
and indicine backgrounds. Since these lineages have 
arisen from two different ancestral Auroch (Bos primi‑
genius) populations for which the last common ances-
tor is estimated to have lived at least 210,000 years ago 
[10, 11], they display substantial genetic divergence 
that is poorly represented by the current arrays. Fur-
thermore, only a few suitable reference haplotypes 
are available, which hampers the use of imputation in 
African cattle breeds and means that imputation has 
relied on haplotypes from other less suitable, primarily 
European taurine, breeds.

The objective of this study was to determine the best 
strategy for performing GWAS in African cattle. We 
assessed which of the currently available bovine arrays 
best capture the diversity across African breeds, and 
which are the most effective for performing genome-
wide imputation. We compared imputation perfor-
mance using different reference panels and evaluated 
which approaches and arrays best capture putatively 
functional variants. Finally, we demonstrate the util-
ity of these approaches on a real cohort of 2481 geno-
typed African cattle samples.

Methods
Evaluation of the performance of bovine genotyping 
arrays for African cattle
This analysis was undertaken to assess the relative 
merits of using the currently available bovine genotyp-
ing arrays on African cattle breeds. Thus, we evaluated 
the performance of 23 commercial bovine genotyping 
arrays with densities ranging from ~ 3000 to ~ 777,000 
SNPs on a European taurine breed (Holstein–Friesian) 
and two indigenous African cattle breeds, West Afri-
can taurine (NDama) and East African indicine Zebu 
(Boran). Table  1 provides the list of the arrays tested 
and the number of variants on each array. It should be 
mentioned that the names used in this paper for the 

arrays are not the official designation; instead, for con-
sistency with previous studies and ease of cross-refer-
ence, we use the nomenclature used for the arrays on 
the NGARP Data Repository (https://​www.​anima​lgeno​
me.​org/​repos​itory/​cattle/​UMC_​bovine_​coord​inates).

We collated 120 Illumina whole-genome sequences 
(WGS) from 40 individuals of each of the three bovine 
breeds. The NDama sequences included samples from 
Guinea (n = 21), Nigeria (n = 10) and Senegal (n = 9); 
and the Boran samples from Ethiopia (n = 30) and 
Kenya (n = 10). The sequences of the 40 NDama and 
20 Ethiopian Boran samples were recently generated 
as part of the Genomic Reference Resource for Afri-
can Cattle (GRRFAC) Initiative (https://​grrfac.​ilri.​
org), while the remaining 20 African cattle and 40 Hol-
stein–Friesian sequences were retrieved from public 
databases, for more details on the samples and project 
accession numbers (see Additional file 1: Tables S1 and 
S2).

Sequencing reads were aligned to the cattle refer-
ence ARS-UCD1.2 genome [12], using the BWA-mem 
version 0.1.17 software [13], and the GATK best prac-
tice recommendations were followed to call SNPs. The 
identified SNPs were subjected to the GATK’s variant 
quality score recalibration (VQSR) approach, follow-
ing the steps specified in [14], using multiple sources 
of predefined high-quality SNPs. These include the 
BQSR file from the 1000 Bulls genome project [15], 24 
SNP chip datasets, and known variants from Ensembl 
v95 (ftp://​ftp.​ensem​bl.​org/​pub/​relea​se-​95/​varia​tion/​
vcf/​bos_​taurus/). After VQSR, we retained the SNPs 
in the 99% tranche. Additional file 2: Figure S1 shows 
the tranche-specific true positives (TP), false positives 
(FP) and the cumulative TP, as well as the ratio of tran-
sition (Ti) to transversion (Tv) SNPs (i.e., Ti/Tv ratio), 
generated using VQSR. Furthermore, we used the 
BCFtools version 1.11 [16] to select biallelic SNPs with 
a QUAL score > 100 and excluded the variants with a 
high proportion (> 25%) of missingness in each cattle 
breed, thus approximately 5500 variants were further 
excluded from the final SNP call.

For each cattle breed, we used the VCFtools ver-
sion 0.1.15 package [17] to select the WGS SNPs that 
overlap with the positions of the SNPs in each of the 
23 available bovine genotyping arrays. Subsequently, 
we used the PLINK software [18] v1.90b4 64-bit (www.​
cog-​genom​ics.​org/​plink/1.​9/) to estimate the pairwise 
linkage disequilibrium (LD, r2) correlation between the 
WGS variants and the array SNPs, which was calcu-
lated across 500-kb genome windows. The WGS SNPs 
that were highly correlated (r2 > 0.8) with those on each 
array were identified and used for further analyses. 
PLINK was also used to estimate the allele frequencies 

https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
https://grrfac.ilri.org
https://grrfac.ilri.org
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/bos_taurus/
ftp://ftp.ensembl.org/pub/release-95/variation/vcf/bos_taurus/
http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
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of the SNPs, and the LD decay was compared in the 
three cattle breeds.

Imputation analysis
Reference genotype data
Reference panel 1—whole‑genome sequence data  In 
addition to the 120 WGS for the three breeds of interest, 
Illumina WGS data for 427 other bovine genomes repre-
senting a wide diversity of global cattle breeds were col-
lated to act as an imputation reference panel. These were 
aligned to the cattle reference ARS-UCD1.2 genome [12]. 
More details on how the WGS data were processed are 
in Dutta et al. [14]. For quality control (QC), we applied 
the following criteria: individuals with a high proportion 
(> 25%) of missing genotypes were again removed, as well 
as all highly related individuals (relatedness value from 
vcftools -relatedness2 > 0.0625, [17]) to minimise biases 
in the downstream analyses, and variants with a call rate 
(CR) ≥ 75% and genotype quality (GQ) ≥ 25 were retained. 
The final WGS reference panel, referred to as the Global 
Reference Panel, comprised 289 distinct individuals, 
which spanned a diverse range of breeds and geographic 

locations (55 populations, among which 13 European, 12 
African, 28 Asian, and 2 Middle Eastern) (see Additional 
file 1: Table S1 and Additional file 3: Figure S2). We also 
evaluated imputation accuracy using three subset refer-
ence panels that were derived from the global 289 sample 
set, which hereafter we refer to as the African Reference 
Panel (87 individuals), the Asian Reference Panel (106 
individuals) and the European Reference Panel (77 indi-
viduals), to test the effect of using a mixed reference panel 
compared to using continent-specific panels.

Reference panel 2—Illumina bovine HD array  In the 
two-step imputation analysis [19, 20] from 50 k to WGS 
(50 k > HD > WGS), a slightly different QC was applied for 
the HD data used as the intermediate imputation refer-
ence panel. The same criteria were applied for minor allele 
frequency (MAF) as well as SNP and individual missing-
ness, as described in the “Target genotype data” section. 
Furthermore, individuals represented in the 50  k data 
were removed from the HD reference panel, as well as the 
highly related individuals (relatedness value from vcftools 
-relatedness2 > 0.0625, [17]).

Table 1  Arrays used in this study, numbers of variants per array, number of retained variants from the WGS data, before and after 
quality control (QC), whether imputation was successful or not

Values in brackets are percentages relative to the overall number of variants on each array

Array Number of variants on the 
array

Number of variants retained from 
WGS before QC

Number of variants retained from 
WGS after QC

Imputation 
successful or 
not

HD 777,962 685,468 (88%) 409,013 (53%) Yes

BOS1 648,875 595,938 (92%) 257,217 (40%) Yes

GGPF250 227,234 137,609 (61%) 51,803 (23%) Yes

GGPHDV3 139,977 125,712 (90%) 72,456 (52%) Yes

GGP90KT 76,999 70,603 (92%) 40,749 (53%) Yes

IND90KH 74,150 66,879 (90%) 42,484 (57%) Yes

ZMD2 68,213 53,314 (78%) 25,223 (37%) Yes

ZOETIS1 59,825 45,559 (76%) 22,657 (38%) Yes

BOVMD 57,134 43,860 (77%) 20,151 (35%) Yes

IDBV3 53,450 44,447 (83%) 20,711 (39%) Yes

SNP50V3 53,218 47,788 (90%) 21,341 (40%) Yes

ANGGS 49,541 44,082 (89%) 21,957 (44%) Yes

BOVG50V1 47,844 41,214 (86%) 25,304 (53%) Yes

GGPIND35 35,339 31,903 (90%) 22,253 (63%) Yes

GGPLDV4 30,105 26,330 (87%) 16,072 (53%) Yes

GGPLDV3 26,504 23,035 (87%) 14,216 (54%) Yes

ZLD4 20,503 17,378 (85%) 9358 (46%) No

ZLD2 18,206 15,769 (87%) 8649 (47%) No

GGPLDV1 8762 6265 (71%) 3645 (42%) No

BOVLDV2A 7931 7163 (90%) 4234 (53%) No

BOVLDC 6909 6305 (91%) 3670 (53%) No

DAIRYULDB 4227 3651 (86%) 2276 (54%) No

BOVGGPV3K 2900 2603 (90%) 1720 (59%) No
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Target genotype data
Subsets of  the WGS data  For the masked analysis, tar-
get sets were created by retaining the WGS genotypes 
that overlapped with the variants of each of the 23 avail-
able bovine genotyping arrays from the Global Reference 
Panel as well as its three African (n = 87), Asian (n = 106) 
and European (n = 77) subsets. These target sets were 
then used to impute to WGS level, using the Global Refer-
ence Panel. Table 1 shows the number of variants on each 
array and how many were retained from the WGS data 
before and after QC (65,107,956 and 10,282,187 variants, 
respectively), and also whether the imputation was suc-
cessful or not.

Illumina bovine HD array data  In total, 3092 cattle from 
four African countries (Tanzania, Ghana, Nigeria, and 
Burkina Faso) were genotyped using the Illumina bovine 
HD array (777,962 SNPs). These 3092 cattle were com-
bined with other available samples genotyped with the 
Illumina HD array producing a final set of 3852 samples. 
For more details on the number of animals genotyped 
with the Illumina HD array per breed/population from 
each data source (see Additional file  4: Table  S3). After 
lifting-over the positions to the cattle reference ARS-
UCD1.2 [12] and fixing allele strand inconsistencies (fully 
described in the relevant section), 718,874 genotypes 
were retained [(see Additional file  5: Table  S4) for the 
coordinates of the variants retained after liftover on both 
the UMD3.1 and ARS-UCD1.2 assemblies].

The PLINK software [18] v1.90b4 64-bit (www.​cog-​
genom​ics.​org/​plink/1.​9/) was used to remove: (i) SNPs 
located on the sex chromosomes, or the mitochon-
drial genome or without position information on the 
ARS-UCD1.2 genome; (ii) SNPs with a call rate lower 
than 0.90; (iii) SNPs with a MAF lower than 0.01; and 
(iv) individuals with more than 10% missing genotypes. 
Furthermore, highly related individuals (i.e., duplicated 
genotypes of the same individuals; relatedness value from 
vcftools -relatedness2 > 0.40, [17]) were also removed. 
After QC, 2481 samples (among which 1740 were from 
four African countries, Tanzania, Ghana, Nigeria, and 
Burkina Faso) and 577,345 variants were retained.

GeneSeek bovine 50  k array (BOVG50V1) data  From 
the 3092 cattle sampled from the four African countries 
and genotyped with the Illumina HD array, 668 were also 
genotyped using the GeneSeek (a Neogen Company, 
Lincoln, NE, USA) bovine 50 k array (47,844 SNPs). The 
same QC criteria as for the HD data were applied. After 
QC, 602 samples and 37,118 variants were retained.

LiftOver and strand fixing  Since the coordinates of the 
array variant data were originally mapped to the bovine 

UMD3.1 genome assembly (http://​www.​cbcb.​umd.​edu/​
produ​ction_​assem​blies), it was necessary to lift them over 
to the ARS-UCD1.2 bovine genome assembly [12], mak-
ing sure to account for any strand switches. Bovine HD 
genotype data in the TOP coding format were converted 
to the FOR coding format using the iConvert.py tool from 
SNPchiMp v.3 (https://​webse​rver.​ibba.​cnr.​it/​SNPch​imp/; 
https://​github.​com/​nicol​azzie/​SNPch​impRe​po). Map 
positions were updated from UMD3.1 (http://​www.​cbcb.​
umd.​edu/​produ​ction_​assem​blies) to the cattle reference 
ARS-UCD1.2 genome [12] for the Bovine HD array map, 
by cross-referencing SNP ID with those in a file of updated 
Bovine HD array coordinates that is available online at the 
NGARP Data Repository (https://​www.​anima​lgeno​me.​
org/​repos​itory/​cattle/​UMC_​bovine_​coord​inates). Bovine 
HD array data were processed in PLINK [18] v1.90b4 
64-bit (www.​cog-​genom​ics.​org/​plink/1.​9/) using the 
updated map file to retain only autosomal SNPs and to 
set the reference allele (-a1-allele) for each SNP to match 
a VCF file of Bovine HD array SNPs extracted from WGS 
data aligned to ARS-UCD1.2 [12]. To address any remain-
ing allele inconsistencies between the datasets that were 
not resolved by the iConvert and PLINK reference allele 
setting steps above, we partitioned each dataset by chro-
mosome and applied two custom scripts. The first script, 
written in R (http://​www.r-​proje​ct.​org), reads as inputs a 
VCF file and a CSV file of the SNPchiMp v.3 data for the 
Bovine HD array and its allele coding formats (A/B for-
ward and A/B top) from the native platform. The script 
identifies SNPs with missing REF and/or ALT allele anno-
tations in the VCF file, cross-references the CSV file for 
the appropriate alleles according to its coding format, 
and updates the missing values. The second script, writ-
ten in Python (Python Software Foundation, https://​www.​
python.​org/), reads as inputs a query VCF file and a refer-
ence VCF file, and uses the latter to re-annotate the former. 
Briefly, it identifies different types of allele inconsistencies 
(REF and ALT in reverse order, REF and/or ALT strand 
mismatch, allele ambiguity AT and CG) and updates those 
that can be corrected faithfully, and discards those that 
cannot (due to ambiguity, or absent in the reference VCF, 
or non-biallelic). The fixed chromosomal VCF files were 
concatenated and the resulting VCF files for each dataset 
were merged using bcftools v1.3 [16].

Imputation approaches  Imputation performance was 
tested in two scenarios:

1.	 a masked analysis was carried out using the four tar-
get sets (i.e. Global, African, Asian, and European) 
that were created by retaining only the WGS geno-
types that overlapped with the variants of each avail-
able bovine genotyping array. These target sets were 

http://www.cog-genomics.org/plink/1.9/
http://www.cog-genomics.org/plink/1.9/
http://www.cbcb.umd.edu/production_assemblies
http://www.cbcb.umd.edu/production_assemblies
https://webserver.ibba.cnr.it/SNPchimp/
https://github.com/nicolazzie/SNPchimpRepo
http://www.cbcb.umd.edu/production_assemblies
http://www.cbcb.umd.edu/production_assemblies
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
https://www.animalgenome.org/repository/cattle/UMC_bovine_coordinates
http://www.cog-genomics.org/plink/1.9/
http://www.r-project.org
https://www.python.org/
https://www.python.org/
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then used to impute to WGS level, using the Global 
Reference Panel. This analysis allowed us to evaluate 
which array would, in general, perform better and 
whether some arrays might be better than others in 
some subsets, depending on how they were designed.

2.	 Using the 50  k and HD genotype data directly 
imputed to WGS as well as the two-step imputation 
from 50 k to WGS (50 k > HD > WGS), both using the 
Global Reference Panel and the subsets (i.e., African, 
Asian and European Reference Panels), to evalu-
ate whether imputation worked better when using a 
mixed Reference Panel or a continent-specific panel.

Imputation analysis and estimation of  imputation accu‑
racy  The reference panels were pre-phased using BEA-
GLE v5.0 [21], whereas phasing of the target sets was 
tested with both BEAGLE v5.0 [21] and SHAPEIT4 [22], 
using one genotyping array (BOVMD). Since the imputa-
tion accuracies were similar [(see Additional file 6: Figure 
S3), for an example of the comparison of the imputation 
accuracies when phasing was done with either BEAGLE 
or SHAPEIT4], BEAGLE-phased data were used in all 
subsequent analyses.

Imputation was performed with Minimac4 (https://​
genome.​sph.​umich.​edu/​wiki/​Minim​ac4), which uses an ad-
hoc method to estimate imputation accuracy at genotyped 
sites in the target set. For each genotyped site, Minimac4 
hides all known genotypes for that site and calculates an 
imputed dosage (in addition to the usual alternate allele 
dosage that is calculated by assuming the genotypes are 
known at the site). This special imputed value is called 
Leave-One-Out dosage (LooDosage) and is only available 
for genotyped sites and is used to calculate empirical R2 
(ER2) which is the correlation between the true genotyped 
values and the imputed dosages that were obtained by hid-
ing all known genotypes for the given variant.

In the masked analyses, imputed genotypes were com-
pared to those called in the WGS data (except for the var-
iants that overlapped with the bovine genotyping arrays) 
by calculating genotype concordance (i.e., dosage R2) 
using bcftools stats [16].

Imputation accuracy was evaluated by leave-one-out 
cross-validation using 100 of the 289 animals from the 
WGS data as the target set. In this procedure, one indi-
vidual was removed from the reference panel and its 
genotypes were imputed using the remaining animals as 
the reference panel. This was repeated for each of the 100 
animals, randomly selected from the WGS data.

Annotated variants
Variants in both sets of WGS data were annotated using 
the Ensembl Variant Effect Prediction (VEP) v95 tool [23] 

configured to define the impact of variants (LOW, MOD-
ERATE and HIGH) according to their locations. Impu-
tation accuracy (i.e., dosage R2) was calculated using 
bcftools stats [16] for each of the three classes (LOW, 
MODERATE and HIGH) using the target sets from the 
masked analysis with the Global Reference Panel.

Results
To determine the best strategy for performing GWAS in 
African cattle, we compiled two large datasets of geno-
typing data. The first dataset was a collection of 409 WGS 
spanning the three lineages (European taurine, African 
taurine and indicine) from which global cattle breeds 
derive, and that included 40 genomes each of the NDama, 
Boran and Holstein–Friesian breeds. The second dataset 
included 1740 animals genotyped with the Illumina HD 
array and originating from four African countries (Tanza-
nia, Ghana, Nigeria, and Burkina Faso). For comparison 
purposes, these data were combined with other available 
samples that spanned global breeds and genotyped with 
the same Illumina HD array, for a combined total of 2481 
samples. Among the 1740 cattle sampled from the four 
African countries and genotyped with the Illumina HD 
array, 602 samples genotyped with the GeneSeek bovine 
50 k array were also available.

The commercial arrays tagged indicine cattle poorly
After variant QC, we identified 32.0, 17.8 and 13.3 mil-
lion SNPs in the Boran, NDama and Holstein–Friesian 
cohorts, respectively. Although more than twice the 
number of SNPs segregated among the Boran (indicine) 
than among the taurine breeds, the percentage of WGS 
variants tagged by the arrays was consistently higher in 
the NDama and Holstein–Friesian breeds than in the 
Boran breed (Fig. 1). This is potentially partly due to the 
fact that the Boran breed has a slightly lower LD profile 
compared to the taurine breeds (see Additional file 7: Fig-
ure S4). Furthermore, the performance of any given array, 
in terms of the number of variants that it tags with a high 
R2, is largely a function of the number of variants it car-
ries. It may be surprising, but the arrays that target indi-
cine breeds did not show a substantial improvement for 
the Boran compared to the NDama and Holstein–Frie-
sian cattle. This confirms that variants on commercially 
available arrays do not tag well the variants that segregate 
in indicine breeds, which has implications for performing 
GWAS in African breeds.

This comparison reveals more differences between the 
taurine breeds than between the indicine breeds across 
the 23 commercial bovine genotyping arrays. For exam-
ple, the HD array tagged up to 25 and 17% (for Holstein–
Friesian and NDama breeds, respectively) of the WGS 
variants, considering an LD r2 > 0.8, whereas only about 

https://genome.sph.umich.edu/wiki/Minimac4
https://genome.sph.umich.edu/wiki/Minimac4
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6% for the indicine Boran (Fig. 1). Intriguingly, there were 
more tagged variants for the taurine breeds than for the 
Boran breed, even in the indicus-based array such as 
IND90KH.

Imputation performance in African cattle
Consequently, it seems that a large proportion of the 
variants specific to African indicine cattle are poorly cap-
tured across all of the major genotyping arrays. Thus, we 
investigated to what extent imputation could help miti-
gate this issue. For this analysis, we used the WGS data 
of 289 broadly unrelated individuals [14], belonging to 
a diverse range of breeds and geographic locations (55 
populations, among which 13 were European, 12 African, 
28 Asian, and 2 Middle Eastern), as a Reference Panel 
(i.e., Global Reference Panel). The target sets were cre-
ated by retaining the WGS genotypes that overlapped 
with the variants of each of the 23 available bovine geno-
typing arrays. The Global Reference Panel was also split 
into African (n = 87), Asian (n = 106) and European 
(n = 77) subsets, which allowed us to perform imputation 
with only the subset of variants found on each specific 
array and to compare the imputed genotypes to those 
found in the WGS data, and thus to evaluate which array 
performed better in African cattle.

Table  1 shows the numbers of variants on each of 
the 23 commercially available arrays and how many 
were retained from the WGS data, before and after QC 
(65,107,956 and 10,282,187 variants, respectively). Eight-
een of the 23 arrays are well represented in the unfiltered 
WGS, with more than 80% of variants retained before 
QC, suggesting that the sites were mostly polymorphic 
among the 289 samples. The panel with the lowest pro-
portion of variants retained from the unfiltered WGS 

was the GGPF250 array (61%). After QC, these propor-
tions dropped further, with only 23% variants from the 
GGPF250 array retained. This likely reflects the allelic 
frequencies of the variants in the population under study. 
The GGPF250 array contains many very rare variants. 
For a variant occurring at a very low allele frequency, the 
probability of observing it in 289 samples is close to zero, 
even if it is present in the population.

Arrays with less than 10,000 variants remaining after 
QC were excluded from further analysis (Table  1) and 
imputation was performed using Minimac4 (https://​
genome.​sph.​umich.​edu/​wiki/​Minim​ac4). Two related 
metrics were calculated for each array. ER2 is calculated 
directly by Minimac4 and measures the imputation accu-
racy of variants on the array, with each variant being left 
out one by one when performing imputation, and dos-
age R2 represents the genotype concordance between 
imputed and WGS genotypes at the variants that are not 
on the array.

Figure 2 shows the mean ER2 for all the bovine arrays 
when using the Global target set (i.e., the complete set of 
289 samples as the reference panel). The highest accura-
cies were observed for the HD and BOS1 arrays (mean 
ER2 across target sets ranging from 0.55 to 0.96 and from 
0.48 to 0.91, respectively), which is consistent with the 
fact that these two arrays have the largest number of 
variants. These results were supported by those obtained 
with the leave-one-out cross-validation (see Additional 
file 8: Figure S5) and in the comparison of the number of 
variants per array vs. mean accuracy (either ER2 or dos-
age R2) per array (Fig. 3).

The scatterplot in Fig. 3 shows that the HD and BOS1 
arrays present the highest mean accuracies. Since our 
results show that the best performing arrays are those 
with the largest number of variants, the result that the 

Fig. 1  Percentage of variants tagged by the bovine genotyping arrays in European and African cattle breeds. Percentage of variants tagged in the 
whole-genome sequence data, with an  LD r2 > 0.8, by the 23 currently available bovine genotyping arrays

https://genome.sph.umich.edu/wiki/Minimac4
https://genome.sph.umich.edu/wiki/Minimac4
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GGPHDV3 array outperforms the GGPF250 array on 
these metrics (i.e., ER2 and dosage R2) may appear con-
tradictory although they have almost half as many vari-
ants. However, as reported in Table  1, the number of 
variants retained from the WGS data for GGPHDV3 is 
larger than the number retained for GGPF250 (72,456 vs. 
51,803).

A similar trend was observed when considering the 
dosage R2 between imputed genotypes and those called 
in the WGS data (Fig. 4). Although the HD and BOS1 
arrays were primarily designed by focusing on Euro-
pean taurine cattle breeds, they perform better than 
lower density arrays that were designed explicitly for 
indicine breeds (i.e., IND90KH and GGPIND35), which 
suggests that a large number of variants in the target set 
is the most critical array feature for imputation. How-
ever, the GGPF250 array is a notable outlier. Although 
GGPF250 is the third largest commercially available 

bovine array, after the HD and BOS1 arrays, the num-
ber of variants retained from the WGS was relatively 
small, with only 61 and 23% retained when considering 
the WGS before and after QC, respectively. While the 
ER2 was reasonably high for this array (~ 0.6–0.7 across 
MAF thresholds ≥ 0.05), i.e. the variants on the array 
could be imputed with reasonable accuracy, imputation 
performance was much poorer for variants that were 
not on the array (dosage R2 < 0.4) and worse than for 
arrays with less than half the number of variants.

Effect of breed on imputation performance
As the genotyping arrays were originally designed for dif-
ferent breeds and lineages (i.e., taurine vs. indicine), we 
investigated whether imputation performance was bet-
ter for specific populations of animals and whether some 
arrays might perform better than others when applied to 
these population subsets.
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As shown in Fig. 5, imputation performance of the Afri-
can and European animals (i.e., African and European 
target sets) were broadly similar when imputing from 
the HD array variants to the Global Reference Panel. In 
contrast, imputation was notably lower among the Asian 
samples, which likely reflects that Asian cattle originate 
predominantly from Bos indicus, and are less well repre-
sented by the variants on the HD array. For most arrays, 
the highest accuracies were estimated when imputing 
European samples, with the mean ER2 or dosage R2 being 
similar to or higher than for the global set (see Additional 
file 9: Figures S6–S20). In general, the imputation perfor-
mance of the Asian samples was poorest across all arrays, 
including those that were designed to capture indicine 
variation, such as IND90KH and GGPIND35.

Array performances at functional variants
In GWAS, the ability to genotype or impute functional 
variants is essential, given their role in driving pheno-
types. Thus, we characterised the performance for pre-
cisely capturing these variants. First, we investigated 
the proportions of functional variants annotated by the 
Ensembl VEP v95 software (LOW, MODERATE, and 

HIGH predicted functional impact) that were tagged by 
the genotyping arrays in the WGS data, for both taurine 
(i.e., Holstein–Friesian and NDama) and indicine (i.e., 
Boran) breeds. Figure 6 shows the trends for two arrays 
(GGPF250 and HD).

Although the HD array can tag more variants at an 
r2 > 0.80 than the other arrays (Fig. 1), it does not perform 
well for tagging functional variants, especially those pre-
dicted to have a moderate or high impact. In spite of its 
lower density, the GGPF250 array tagged higher propor-
tions of functional variants across all allele frequencies, 
which is consistent with its design that is  aimed at tar-
geting functional variants. However, the performance of 
an array for tagging functional variants is potentially also 
partly due to the similarity between the allele frequen-
cies of the two sets of variants. Since the LD between 
two variants, as measured by r2, is maximised when 
they have equal allele frequencies, the common variants 
(moderate to high MAF) on most arrays will do a poor 
job at tagging the functional variants simply due to the 
difference in allele frequency. Therefore, the GPPF250 
array potentially performs better than the other arrays 
for tagging functional variants because, besides including 
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a high proportion of variants in genic regions, the allele 
frequencies of these variants are more closely matched. 
However, functional variants that segregate among the 
Boran cattle were still less well captured by this array than 
those among the taurine breeds. Notably, the GGPF250 
array performed best at tagging variants with a MODER-
ATE impact (missense variants) rather than those with a 
HIGH impact (e.g. stop gain or splice variants).

To assess how well functional variants can be imputed, 
we calculated the imputation accuracy (i.e., dosage R2) 
for each of the three classes (LOW, MODERATE and 
HIGH) of functional variants (both SNPs and indels). The 
masked analysis was performed considering the four tar-
get sets (i.e., Global, African, Asian, and European) and 
the Global Reference Panel. As shown in Fig.  7a, when 
considering the Global set of 289 individuals, SNPs with 
a low to moderate frequency (MAF < 0.15) and of HIGH 
predicted impact (e.g. stop gained or splice variants) are 

particularly poorly imputed in general by the HD array. 
In contrast, the imputation of the SNPs of MODERATE 
and LOW predicted impact generally follows the trend 
of all the other SNPs. Therefore, these results suggest 
that although the HD array is the best performing array 
according to the results from our masked analysis, it 
might not be ideal for imputing high impact SNPs, espe-
cially if they are rare.

A similar trend was observed for most arrays (see 
Additional file 10: Figures S21–S35, panels a). However, 
the GGPF250 and GGPIND35 arrays performed better 
when imputing HIGH, MODERATE and LOW impact 
SNPs than when imputing all other SNPs at any frequen-
cies (see Additional file 10: Figures S22 and S33, respec-
tively). This reflects the design of these arrays, with the 
GGPF250 array including 199,000 predicted functional 
variants [3], and the GGPIND35 array including 35,090 
SNPs that are optimally selected for Bos indicus breeds 
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[24] as well as Bos indicus specific SNPs for parentage 
testing; GGPIND35 also includes variants known to be 
causative for particular genetic diseases (https://​www.​
neogen.​com/​globa​lasse​ts/​pim/​assets/​origi​nal/​10000/​
offic​ial_​ggp-​indic​us_​broch​ure.​pdf ). Similar trends were 
also observed when using the continent-specific target 
sets (i.e., African, Asian and European). However, dos-
age R2 tended to be consistently lower for all target sets 
(see Additional file  10: Figures  S21–S35, panels b–d), 
which might be explained by the relatively smaller size of 
these target sets compared to the global one. It should be 
noted that imputation for high impact variants generally 
performed less well when considering the European com-
pared to the African target set.

We also examined the imputation performance of 
indels that are more likely to be functionally important. 
These were consistently poorly imputed across arrays, 
irrespective of their frequencies and the target set used 
[i.e., Global, African, Asian, and European; (see Addi-
tional file 11: Figures S36–S51)]. It should be noted that 
this may partly reflect the difficulty of accurately calling 
indels in WGS data, rather than necessarily being only a 
problem with their imputation.

Validation analysis imputing 50 k and HD genotype target 
sets to WGS
An issue with testing imputation performance by subset-
ting variants from WGS data is that not all variants for 
an array can be called in the dataset, which reduces the 
apparent performance of each array. Thus, we also tested 
imputation performance using large collections of real 
array data collected from four African countries (Tan-
zania, Ghana, Nigeria, and Burkina Faso). This included 
602 African samples genotyped on the GeneSeek 50  k 
array and 1740 on the Illumina HD array. Principal com-
ponent analysis (PCA) of these samples shows that they 
represent well cattle from both West and East Africa 
(see Additional file  12: Figures  S52 and S53). The 1740 
samples were combined with other available samples 
genotyped with the Illumina HD array, reaching a total 
of 2481 samples. The PC plot of PC1 and PC2 for the 
combined HD genotyped individuals (see Additional 
file  12: Figure S54) shows a distinct separation between 
the European taurine, African taurine and indicine sam-
ples. PC1 seems to separate individuals by their degree 
of taurine or indicine lineage, with the Jersey and Hol-
stein breeds to the left of the plot, whereas PC2 separates 
European and African taurine animals. The 1740 samples 
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collected across the four African countries separate from 
the former breeds, and form a cluster between the Afri-
can taurine and the indicine breeds. Using these data, we 
compared the use of different imputation approaches and 
reference panels on imputation accuracy. The flowchart 
for this analysis is in Fig. 8.

We compared two imputation approaches. The 50  k 
and HD genotype data imputed directly to WGS, as well 
as a two-step imputation from 50  k to HD then WGS 
(50  k > HD > WGS), both using the Global Reference 
Panel and the continent level subsets (i.e., African, Asian 
and European Reference Panels). Generally, imputation 

from the 50  k array directly to WGS performed poorly 
irrespective of the reference panel used (Fig.  9), with 
mean ER2 lower than 0.4 across all allele frequencies. The 
global and Africa-specific reference panels performed 
the best, with little difference in their respective perfor-
mances. The reference panels of European and Asian 
cattle breeds also performed poorly when attempting to 
impute from the Illumina HD array, with mean ER2 val-
ues of 0.65 or lower across the allele frequency spectrum. 
In spite of this, supplementing the African reference 
panel with these European and Asian panels produced 
the best imputation performance (mean ER2 ranging 
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Fig. 7  Dosage R2 for all imputed variants and for functional variants when imputing from HD array to WGS level, using the Global Reference 
Panel (i.e., 289 individuals) and several target sets. Dosage R2 for all imputed variants and for functional variants (as annotated by the Ensembl VEP 
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Fig. 8  Flowchart of the imputation analysis for the real data cohort. Flowchart of the imputation analysis from either the 50 k or the combined HD 
data to WGS (50 k > WGS and HD > WGS, respectively), as well as the two-step approach from 50 k to WGS (i.e., 50 k > HD > WGS) using the Global 
Reference Panel and the continent-specific reference panels (i.e., African, Asian, and European Reference Panels)
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from 0.81 to 0.93). This Global reference panel performed 
better than the Africa specific reference panel alone 
(mean ER2 ranging from 0.41 to 0.89).

The performance of the two-step imputation from 
50 k to WGS (50 k > HD > WGS) was between that of the 
imputation from 50  k or Illumina HD directly to WGS, 
with ER2 trends similar to those of the Illumina HD array, 
for all panels tested. Consequently, larger global reference 
panels are likely to be more effective for imputation than 
more targeted representative panels, and this is consist-
ent with previously reported results e.g., [3, 25]. Likewise, 
a two-step imputation strategy performs better when 
starting from a low-density array.

Considering the variety of breeds/populations rep-
resented in the HD combined data [for a PC plot (see 
Additional file 12: Figure S54)], another analysis was car-
ried out by splitting the samples to be imputed into six 
subsets (samples collected across the four African coun-
tries, all African, African taurine, European taurine, all 

indicine, and Asian indicine samples). The sizes of the 
sets were balanced to 55 individuals each, and imputation 
accuracies (ER2) are shown in Fig.  10. All subsets show 
very low ER2 at low MAF, probably due to the compara-
tively small size of the sets.

While the imputation accuracies obtained when 
considering the first two African target subsets (i.e., 
samples collected from the four African countries 
and all African) were consistent with those obtained 
for the combined HD data, a slightly different trend 
was observed when all indicine and the European tau-
rine target subsets were used. All indicine sets (which 
included Asian and African indicine cattle) performed 
better than the combined HD data at lower MAF but 
followed the same trend as the latter at MAF higher 
than 0.3. In contrast, the European taurine set per-
formed better, with mean ER2 ranging from 0.88 (at 
MAF ≈  0.03) to 0.97. We hypothesise that the Euro-
pean taurine subset performs better because, although 
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its sample size is small, the individuals are more similar 
to each other (given the small effective population size 
of these breeds), and it is therefore easier to define hap-
lotypes and subsequently impute missing data. Moreo-
ver, the Illumina HD array was primarily designed for 
European cattle breeds.

Discussion
A critical step for improving production in cattle and 
other livestock species is to map the genetic loci that 
underlie important traits and phenotypes, so that they 
can potentially be used in marker-assisted selection pro-
grams. During the last few decades, the use of GWAS 
has allowed the successful identification of hundreds of 
SNPs associated with complex traits in cattle. However, 
these studies have focused mainly on cattle that derive 
from European or Asian breeds, using genotyping arrays 

mostly designed for European breeds, and are there-
fore biased towards variants common to these breeds. 
To determine the best strategy for carrying out GWAS 
in African cattle, we assessed the performance of cur-
rently available bovine genotyping arrays using two large 
datasets of genotyping data; a collection of 409 WGS 
spanning global cattle breeds, and a cohort of 2481 indi-
viduals genotyped with the Illumina HD array (1740 of 
which were collected from four African countries) and 
the GeneSeek bovine 50  k array (602 samples collected 
from four African countries). We have demonstrated 
that the HD and BOS1 arrays (i.e., arrays with the largest 
number of variants) are those that best capture the diver-
sity across African breeds (calculating the proportions 
of variants tagged by the genotyping arrays in the WGS 
data, with an LD r2 > 0.80) and are consequently the most 
effective arrays for performing genome-wide imputation. 
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However, these arrays might not be the best choice when 
the aim is to tag functional variants, especially when con-
sidering rare variants. We have also shown that using 
a reference panel that better represents global bovine 
diversity improves imputation accuracy, particularly for 
non-European taurine populations.

Our analysis demonstrates that a substantial propor-
tion of the variants present in a population of the indi-
cine Boran breed are poorly captured across all the major 
genotyping arrays, with the number of WGS variants that 
are highly correlated with SNPs on the genotyping arrays 
being much larger for the populations of taurine breeds 
(i.e., NDama and Holstein–Friesian). Although the WGS 
data of the Boran (indicine) breed has more than twice 
the number of variants than that of the taurine breeds 
(i.e., 32 million SNPs for Boran vs. 17.8 and 13.3 million 
SNPs for NDama and Holstein–Friesian, respectively), 
the proportions of variants tagged by the genotyping 
arrays in the WGS data (with LD r2 > 0.8) is higher in 
the taurine samples (i.e., NDama and Holstein–Friesian) 
than in the Boran samples. For example, the Illumina 
HD array tagged up to 25% and 17% of the variants in the 
WGS data for Holstein–Friesian and NDama, respec-
tively, but only 6% for the Boran. While the other arrays 
overall performed poorly compared to the Illumina HD, 
their performance followed the same trend across the 
three breeds. The taurine breeds had more highly cor-
related WGS SNPs than the Boran, even with the indi-
cus-specific arrays, such as IND90KH and GGPIND35. 
Therefore, these results suggest that using any of the 
currently available genotyping arrays for African indi-
cine breeds is likely to result in significantly underpow-
ered analysis and lack of ability to detect most linkages 
between phenotype and genotypes. It could be hypoth-
esised that combining two different arrays (which poten-
tially tag different variants) could be beneficial. However, 
it should be taken into account that the amount of DNA 
required to process both arrays, and the budget, are likely 
to be limiting factors.

Although the performance of the genotyping arrays for 
directly capturing the diversity of African indicine cattle 
is not promising, the results obtained in the imputation 
analyses were quite different, which is probably because 
imputation is based on haplotypes rather than individual 
SNPs. In the imputation analyses, the highest accuracies 
considering both metrics (i.e., ER2 and dosage R2) were 
obtained from arrays with the largest number of variants 
(i.e., HD and BOS1), regardless of the target sample set 
used (Global, African, Asian or European). This suggests 
that, although the HD and BOS1 arrays were designed 
primarily to focus on European taurine cattle breeds, 
they perform better than arrays designed specifically for 
indicine breeds (i.e., IND90KH and GGPIND35), which 

indicates that for imputation a large number of variants 
in the target set is more important than the way it is 
designed. Marker density is indeed one of the main fac-
tors that affect genotype imputation accuracy, together 
with the size of the reference population, the relation-
ship between the reference population and the validation 
population, MAF, and reference population composition 
[26]. However, it should be mentioned that the accuracies 
obtained in our study might be slightly biased by the fact 
that we did not remove variants that are within poten-
tially misassembled regions, as suggested by Null et  al. 
[27].

Since the four target sets were generated by retaining 
the individuals from the reference panel (i.e., 289 for the 
Global target set, 87 for the African, 106 for the Asian 
and 77 for the European), we tested whether having the 
same individuals in the reference and target set popula-
tions could cause an overestimation of the accuracies. 
This was done by carrying out a leave-one-out cross-val-
idation using 100 of the 289 animals from the WGS data 
as the target set, in which one individual was removed 
from the reference panel and its genotypes imputed using 
the remaining animals as the reference panel, repeated 
for each of the 100 animals, randomly selected from the 
WGS data. The leave-one-out cross-validation analysis 
was consistent with the results of the masked analysis, 
across all genotyping arrays analysed.

One of the most interesting results was that although 
GGPF250 is the third largest array currently available 
in terms of number of SNPs, it did not perform well in 
either of the analyses (i.e. capturing diversity in African 
cattle or imputation). However, GGPF250 was the array 
that performed better when considering the functional 
variants, which is probably related to its design. The 
GGPF250 array was designed to query genotypes at many 
rare, potentially functional variants and is very gene-
centric (i.e. focusing on SNPs located within the coding 
regions of genes) [3]. It contains only ~ 30  k common 
variants, which have been included to allow for imputa-
tion and genomic prediction applications. Rowan et  al. 
[3] suggested that using the GGPF250 array would help 
researchers to refine GWAS signals, identify putative 
quantitative trait nucleotides due to increased marker 
density within QTL regions, and improve imputation 
accuracy to WGS level within genic regions. Thus, our 
results suggest that it is not possible to establish a single 
array that would perform the best in any scenario. Still, 
the choice of an array over the others should be based 
on a balance between the objective of the study and 
the breed/population considered. For example, the HD 
and BOS1 arrays may be the best choice for taurine and 
indicus breeds, when performing genome-wide associa-
tion or related studies, whereas the GGPF250 array may 
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be preferable for fine-mapping analyses or for searching 
for functional variants in general. However, leaving aside 
cost issues, our data suggest that there is no advantage 
to using the indicus-specific arrays for African indicus 
breeds, regardless of the objective.

The analysis on imputation performance on the cohort 
genotyped with the HD array (including the African cat-
tle deriving from Nigeria, Ghana, Burkina Faso and Tan-
zania) showed that the African breed WGS reference 
panel performed very well. However, using the Global 
WGS reference panel (i.e. supplementing the African ref-
erence panel with the European and Asian panels) pro-
duced the best imputation performance. This is likely due 
to the increased size of the reference panel as well as the 
increased haplotype diversity present in a mixed refer-
ence panel, which improves the accuracy of the imputa-
tion of haplotypes that are not present in a more specific 
reference panel [3]. This result is in agreement with most 
reports on livestock [3, 8, 28, 29] and humans (e.g., [25, 
30]). Moreover, Howie et al. [30] showed that a mixed ref-
erence panel can improve imputation accuracy for SNPs 
with a low MAF because an allele with a low frequency 
in one population can be more frequent in another pop-
ulation. However, Mdyogolo et  al. [31] reported quite 
a  different result when assessing the accuracy of geno-
type imputation in the Afrikaner, Brahman and Brangus 
breeds of South Africa. In that study, animals were geno-
typed with the GeneSeek Genomic Profiler 150  k array, 
genotypes were masked and then imputed to array level, 
using both a breed-specific and a multi-breed reference 
panel. They observed that the imputation accuracy was 
reduced by more than 10% when a multi-breed reference 
panel was used, compared to breed-specific reference 
panels [31]. However, their sample sizes were very small, 
with only a small percentage of SNPs (i.e., less than 10% 
for each breed) being masked and imputed. In contrast in 
our study, we imputed from HD to WGS level (i.e., from 
577,345 variants after QC to over 10 million variants of 
the WGS, increasing genome coverage by almost 20%). It 
is worth noting that increasing genome coverage by only 
10% as reported by these authors, has minimal benefit 
from a practical point of view.

Generally, imputation from the 50  k array directly to 
WGS performed poorly, with mean ER2 lower than 0.4 
across all allele frequencies. However, our results showed 
that the two-step approach (i.e., from 50  k to HD and 
then to WGS) yielded high imputation accuracies, with 
an increase in accuracy of almost 50%. Similar results 
were previously reported (e.g., [32, 33]), even when start-
ing from lower density arrays (e.g., [33]). In particular, 
VanRaden et  al. [33] reported an increase in accuracy 
of about 2% when imputing from 3000 SNPs to 50 k and 
then to HD, rather than imputing directly from 3000 to 

HD. Although the increase of 2% reported by VanRaden 
et  al. [33] seems small, one must take into account that 
the accuracy obtained in the one-step imputation (i.e., 
from 3000 SNPs to HD) was already high, which was 
probably achieved because of the large sample size geno-
typed in that study with the 3 k array (i.e., 38,441), com-
pared with 602 samples genotyped with the 50 k array in 
our study. One potential reason for the two-step impu-
tation being more effective than the one-step imputation 
from lower density to WGS is the larger sample size of 
the intermediate reference panel (i.e., HD array data), 
which allows for a better estimation of haplotypes when 
imputing from 50  k to HD, thus refining the haplotype 
blocks for the second step. In the one-step imputation 
from lower density to WGS, it is indeed more difficult for 
the imputation algorithm to select the correct haplotype 
since there might be multiple possible matches between 
the lower density (i.e., 50 k in our case) haplotypes and 
the WGS haplotypes. In contrast there are fewer possi-
ble matches when HD SNPs are added as an intermediate 
step. In this case, there is a higher probability of selecting 
the long-range haplotypes in the first step and the short-
range haplotypes in the second step, which increases 
imputation accuracy [32].

Our results clearly show the limitations of the existing 
arrays for imputation in samples from Africa, i.e. imputa-
tion accuracy decreases as genetic distance increases. A 
solution for these populations could be to use low-pass 
sequencing and imputation, with one caveat being that a 
sufficient number of individuals needs to be included in 
the WGS reference panels used for imputation from low-
pass sequencing.

Conclusions
In this study, our aim was to determine the best strategy 
for carrying out GWAS in African cattle by assessing the 
performance of the bovine genotyping arrays that are 
currently available to capture the diversity across Afri-
can breeds and their utility in performing genome-wide 
imputation. Our results show that the choice of an array 
over the others should be based on a balance between 
the objective of the study and the breed/population con-
sidered. The HD and BOS1 arrays performed best for 
both capturing diversity and performing imputation, so 
they would be the best choice for both taurine and indi-
cus breeds when performing  genome-wide association 
or related studies. However, the GGPF250 array may be 
preferable when undertaking fine-mapping studies or 
assessing functional variants in general. Moreover, our 
results suggest that there is no advantage to using the 
indicus-specific arrays for African indicus breeds, regard-
less of the objective. We also show that using a refer-
ence panel that better represents global bovine diversity 
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improves imputation accuracy, particularly for non-Euro-
pean taurine populations.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​022-​00751-5.

Additional file 1: Table S1. Populations with whole-genome sequence 
data. Number of animals, with whole-genome sequence data per breed/
population used in this study, indicating sources and/or project accession 
numbers. Table S2.  Accession numbers of the Boran samples used in this 
study, which are publicly available.

Additional file 2: Figure S1. Variant Quality Score Recalibration for WGS 
variants using GATK: tranches plot (a) and specificity versus tranche truth 
sensitivity (b). Quality metrics of the WGS data. Tranche-specific TP are 
true-positive calls gained when adding a slice to the plate. Cumulative TP 
are true-positive calls contained in all the slices already added. Thus, this 
differentiation allows to evaluate how many more TP are gained vs. the 
additional false positives (FP) that have to be taken on, when going to the 
next tranche up. The ratio of transition (Ti) to transversion (Tv) SNPs (i.e., Ti/
Tv ratio) is a useful diagnostic tool to measure the quality of the WGS data 
generated. A high Ti/Tv ratio (> 2.0) often indicates a high-accuracy SNP 
set, whereas a low value (~ 0.5) implies low-quality SNP calling.

Additional file 3: Figure S2. Principal component plot of the individuals 
included in the WGS data. Plot for principal component (PC) 1 and PC2 
as well as PC1 and PC3 for the 289 distinct individuals included in the 
WGS data. The data spanned a diverse range of breeds and geographic 
locations (55 populations, among which 13 European, 12 African, 28 Asian, 
and 2 Middle Eastern). Coloured by population and location [34].

Additional file 4: Table S3. Populations represented in the combined HD 
data. Number of animals genotyped with the Illumina HD array per breed/
population used in this study, and data source

Additional file 5: Table S4. Coordinates (chromosome and position in 
bp) of the variants retained after lift-over on both UMD3.1 and ARS-
UCD1.2 assemblies. Variants retained after combining and lifting-over the 
different HD array data. Coordinates (chromosome and position in bp) on 
both UMD3.1 and ARS-UCD1.2 assemblies are provided.

Additional file 6: Figure S3. Comparison between imputation accuracies 
(ER2) when phasing was done with either BEAGLE or SHAPEIT4. Compari‑
son between imputation accuracies (ER2, as estimated in Minimac4) when 
phasing was done with either BEAGLE or SHAPEIT4. Since the imputation 
accuracies were similar, BEAGLE phased data were used for all subsequent 
analyses.

Additional file 7: Figure S4. Linkage disequilibrium (r2) decay in Euro‑
pean and African cattle breeds. Comparison of linkage disequilibrium 
decay in taurine (both European and African) and African indicine breeds.

Additional file 8: Figure S5. Imputation accuracy (ER2) with the leave-
one-out cross-validation, using 100 of the 289 animals from the WGS data, 
for all bovine genotyping arrays considered. In this procedure, one indi‑
vidual was removed from the reference panel and its genotypes imputed 
using the remaining animals as the reference panel. This was repeated for 
each of the 100 animals, randomly selected from the WGS data and for 
each array. The results are presented only for 16 arrays (i.e., those retaining 
more than 10,000 variants after QC), for which imputation was success‑
ful. The number of variants retained from the WGS data for each array is 
between brackets.

Additional file 9: Figure S6. Imputation accuracies ER2 (A) and dosage R2 
(B) for the BOS1 array when using the Global Reference Panel and four 
target sets (i.e., Global, African, Asian and European). The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the BOS1 array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 

to impute to WGS level using the Global Reference Panel. The results for 
the HD array when using the Global target set are also reported. Figure 
S7. Imputation accuracies ER2 (A) and dosage R2 (B) for the GGPHDV3 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). The target sets were created by 
retaining only the WGS genotypes that overlapped with the variants of 
the GGPHDV3 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S8. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the GGPF250 array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPF250 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S9. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the IND90KH array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
IND90KH array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S10. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the GGP90KT array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGP90KT array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S11. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the ZMD2 array when 
using the Global Reference Panel and four target sets (i.e., Global, African, 
Asian and European). The target sets were created by retaining only the 
WGS genotypes that overlapped with the variants of the ZMD2 array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. The results for the HD array when using the Global 
target set are also reported. Figure S12. Imputation accuracies ER2 (A) and 
dosage R2 (B) for the ZOETIS1 array when using the Global Reference Panel 
and four target sets (i.e., Global, African, Asian and European). The target 
sets were created by retaining only the WGS genotypes that overlapped 
with the variants of the ZOETIS1 array, from the Global Reference Panel as 
well as its subsets, generated according to the continent of origin (African 
(87 individuals), Asian (106 individuals) and European (77 individuals) 
subsets). These target sets (i.e. Global, African, Asian, and European) were 
then used to impute to WGS level using the Global Reference Panel. The 
results for the HD array when using the Global target set are also reported. 
Figure S13. Imputation accuracies ER2 (A) and dosage R2 (B) for the 
BOVMD array when using the Global Reference Panel and four target sets 
(i.e., Global, African, Asian and European). The target sets were created by 
retaining only the WGS genotypes that overlapped with the variants of 
the BOVMD array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
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impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S14. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the IDBV3 array when 
using the Global Reference Panel and four target sets (i.e., Global, African, 
Asian and European). The target sets were created by retaining only the 
WGS genotypes that overlapped with the variants of the IDBV3 array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. The results for the HD array when using the Global 
target set are also reported. Figure S15. Imputation accuracies ER2 (A) and 
dosage R2 (B) for the SNP50V3 array when using the Global Reference 
Panel and four target sets (i.e., Global, African, Asian and European). The 
target sets were created by retaining only the WGS genotypes that 
overlapped with the variants of the SNP50V3 array, from the Global 
Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. The results for the HD array when using the Global 
target set are also reported. Figure S16. Imputation accuracies ER2 (A) and 
dosage R2 (B) for the ANGGS array when using the Global Reference Panel 
and four target sets (i.e., Global, African, Asian and European). The target 
sets were created by retaining only the WGS genotypes that overlapped 
with the variants of the ANGGS array, from the Global Reference Panel as 
well as its subsets, generated according to the continent of origin (African 
(87 individuals), Asian (106 individuals) and European (77 individuals) 
subsets). These target sets (i.e. Global, African, Asian, and European) were 
then used to impute to WGS level using the Global Reference Panel. The 
results for the HD array when using the Global target set are also reported. 
Figure S17. Imputation accuracies ER2 (A) and dosage R2 (B) for the 
BOVG50V1 array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). The target sets were created 
by retaining only the WGS genotypes that overlapped with the variants of 
the BOVG50V1 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S18. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the GGPIND35 array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPIND35 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S19. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the GGPLDV4 array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPLDV4 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported. Figure S20. 
Imputation accuracies ER2 (A) and dosage R2 (B) for the GGPLDV3 array 
when using the Global Reference Panel and four target sets (i.e., Global, 
African, Asian and European). The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPLDV3 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 

impute to WGS level using the Global Reference Panel. The results for the 
HD array when using the Global target set are also reported.

Additional file 10: Figure S21. Dosage R2 for all imputed variants and for 
functional variants for the BOS1 array when using the Global Reference 
Panel and four target sets (i.e., Global, African, Asian and European). 
Dosage R2 for all imputed variants and for functional variants (as 
annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the BOS1 array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the BOS1 array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S22. 
Dosage R2 for all imputed variants and for functional variants for the 
GGPF250 array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional variants (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the GGPF250 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the GGPF250 array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S23. Dosage R2 for all imputed variants 
and for functional variants for the GGPHDV3 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the GGPHDV3 array to WGS level. The target sets 
were created by retaining only the WGS genotypes that overlapped with 
the variants of the GGPHDV3 array, from the Global Reference Panel as 
well as its subsets, generated according to the continent of origin (African 
(87 individuals), Asian (106 individuals) and European (77 individuals) 
subsets). These target sets (i.e. Global, African, Asian, and European) were 
then used to impute to WGS level using the Global Reference Panel. 
Figure S24. Dosage R2 for all imputed variants and for functional variants 
for the GGP90KT array when using the Global Reference Panel and four 
target sets (i.e., Global, African, Asian and European). Dosage R2 for all 
imputed variants and for functional variants (as annotated by the Ensembl 
VEP software (LOW, MODERATE and HIGH)) when imputing from the 
GGP90KT array to WGS level. The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGP90KT array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S25. 
Dosage R2 for all imputed variants and for functional variants for the 
IND90KH array when using the Global Reference Panel and four target sets 
(i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional variants (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the IND90KH 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the IND90KH array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S26. Dosage R2 for all imputed variants 
and for functional variants for the ZMD2 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the ZMD2 array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the ZMD2 array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
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individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S27. 
Dosage R2 for all imputed variants and for functional variants for the 
ZOETIS1 array when using the Global Reference Panel and four target sets 
(i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional variants (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the ZOETIS1 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the ZOETIS1 array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S28. Dosage R2 for all imputed variants 
and for functional variants for the BOVMD array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the BOVMD array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the BOVMD array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S29. 
Dosage R2 for all imputed variants and for functional variants for the IDBV3 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional variants (as annotated by the Ensembl VEP software 
(LOW, MODERATE and HIGH)) when imputing from the IDBV3 array to 
WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the IDBV3 array, from the 
Global Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S30. Dosage R2 for all imputed variants 
and for functional variants for the SNP50V3 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the SNP50V3 array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the SNP50V3 array, from the Global Reference Panel as well as 
its subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S31. 
Dosage R2 for all imputed variants and for functional variants for the 
ANGGS array when using the Global Reference Panel and four target sets 
(i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional variants (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the ANGGS 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the ANGGS array, from the 
Global Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S32. Dosage R2 for all imputed variants 
and for functional variants for the BOVG50V1 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the BOVG50V1 array to WGS level. The target sets 
were created by retaining only the WGS genotypes that overlapped with 
the variants of the BOVG50V1 array, from the Global Reference Panel as 
well as its subsets, generated according to the continent of origin (African 

(87 individuals), Asian (106 individuals) and European (77 individuals) 
subsets). These target sets (i.e. Global, African, Asian, and European) were 
then used to impute to WGS level using the Global Reference Panel. 
Figure S33. Dosage R2 for all imputed variants and for functional variants 
for the GGPIND35 array when using the Global Reference Panel and four 
target sets (i.e., Global, African, Asian and European). Dosage R2 for all 
imputed variants and for functional variants (as annotated by the Ensembl 
VEP software (LOW, MODERATE and HIGH)) when imputing from the 
GGPIND35 array to WGS level. The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPIND35 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S34. 
Dosage R2 for all imputed variants and for functional variants for the 
GGPLDV4 array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional variants (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the GGPLDV4 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the GGPLDV4 array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S35. Dosage R2 for all imputed variants 
and for functional variants for the GGPLDV3 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional variants 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the GGPLDV3 array to WGS level. The target sets 
were created by retaining only the WGS genotypes that overlapped with 
the variants of the GGPLDV3 array, from the Global Reference Panel as well 
as its subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel.

Additional file 11: Figure S36. Dosage R2 for all imputed indels and for 
functional indels for the HD array when using the Global Reference Panel 
and four target sets (i.e., Global, African, Asian and European). Dosage R2 
for all imputed variants and for functional indels (as annotated by the 
Ensembl VEP software (LOW, MODERATE and HIGH)) when imputing from 
the HD array to WGS level. The target sets were created by retaining only 
the WGS genotypes that overlapped with the variants of the HD array, 
from the Global Reference Panel as well as its subsets, generated 
according to the continent of origin (African (87 individuals), Asian (106 
individuals) and European (77 individuals) subsets). These target sets (i.e. 
Global, African, Asian, and European) were then used to impute to WGS 
level using the Global Reference Panel. Figure S37. Dosage R2 for all 
imputed indels and for functional indels for the BOS1 array when using 
the Global Reference Panel and four target sets (i.e., Global, African, Asian 
and European). Dosage R2 for all imputed variants and for functional indels 
(as annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the BOS1 array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the BOS1 array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S38. 
Dosage R2 for all imputed indels and for functional indels for the GGPF250 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional indels (as annotated by the Ensembl VEP software (LOW, 
MODERATE and HIGH)) when imputing from theGGPF250 array to WGS 
level. The target sets were created by retaining only the WGS genotypes 
that overlapped with the variants of the GGPF250 array, from the Global 
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Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S39. Dosage R2 for all imputed indels and 
for functional indels for the GGPHDV3 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional indels (as 
annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from theGGPHDV3 array to WGS level. The target sets 
were created by retaining only the WGS genotypes that overlapped with 
the variants of the GGPHDV3 array, from the Global Reference Panel as 
well as its subsets, generated according to the continent of origin (African 
(87 individuals), Asian (106 individuals) and European (77 individuals) 
subsets). These target sets (i.e. Global, African, Asian, and European) were 
then used to impute to WGS level using the Global Reference Panel. 
Figure S40. Dosage R2 for all imputed indels and for functional indels for 
the GGP90KT array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional indels (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from theGGP90KT 
array to WGS level. The target sets were created by retaining only the WGS 
genotypes that overlapped with the variants of the GGP90KT array, from 
the Global Reference Panel as well as its subsets, generated according to 
the continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S41. Dosage R2 for all imputed indels and 
for functional indels for the IND90KH array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional indels (as 
annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from theIND90KH array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the IND90KH array, from the Global Reference Panel as well as 
its subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S42. 
Dosage R2 for all imputed indels and for functional indels for the ZMD2 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional indels (as annotated by the Ensembl VEP software (LOW, 
MODERATE and HIGH)) when imputing from the ZMD2 array to WGS level. 
The target sets were created by retaining only the WGS genotypes that 
overlapped with the variants of the ZMD2 array, from the Global Reference 
Panel as well as its subsets, generated according to the continent of origin 
(African (87 individuals), Asian (106 individuals) and European (77 
individuals) subsets). These target sets (i.e. Global, African, Asian, and 
European) were then used to impute to WGS level using the Global 
Reference Panel. Figure S43. Dosage R2 for all imputed indels and for 
functional indels for the ZOETIS1 array when using the Global Reference 
Panel and four target sets (i.e., Global, African, Asian and European). 
Dosage R2 for all imputed variants and for functional indels (as annotated 
by the Ensembl VEP software (LOW, MODERATE and HIGH)) when 
imputing from theZOETIS1 array to WGS level. The target sets were 
created by retaining only the WGS genotypes that overlapped with the 
variants of the ZOETIS1 array, from the Global Reference Panel as well as its 
subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel. Figure S44. 
Dosage R2 for all imputed indels and for functional indels for the BOVMD 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional indels (as annotated by the Ensembl VEP software (LOW, 
MODERATE and HIGH)) when imputing from the BOVMD array to WGS 
level. The target sets were created by retaining only the WGS genotypes 
that overlapped with the variants of the BOVMD array, from the Global 

Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S45. Dosage R2 for all imputed indels and 
for functional indels for the IDBV3 array when using the Global Reference 
Panel and four target sets (i.e., Global, African, Asian and European). 
Dosage R2 for all imputed variants and for functional indels (as annotated 
by the Ensembl VEP software (LOW, MODERATE and HIGH)) when 
imputing from the IDBV3 array to WGS level. The target sets were created 
by retaining only the WGS genotypes that overlapped with the variants of 
the IDBV3 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S46. 
Dosage R2 for all imputed indels and for functional indels for the SNP50V3 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional indels (as annotated by the Ensembl VEP software (LOW, 
MODERATE and HIGH)) when imputing from the SNP50V3 array to WGS 
level. The target sets were created by retaining only the WGS genotypes 
that overlapped with the variants of the SNP50V3 array, from the Global 
Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S47. Dosage R2 for all imputed indels and 
for functional indels for the ANGGS array when using the Global Reference 
Panel and four target sets (i.e., Global, African, Asian and European). 
Dosage R2 for all imputed variants and for functional indels (as annotated 
by the Ensembl VEP software (LOW, MODERATE and HIGH)) when 
imputing from theANGGS array to WGS level. The target sets were created 
by retaining only the WGS genotypes that overlapped with the variants of 
the ANGGS array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S48. 
Dosage R2 for all imputed indels and for functional indels for the 
BOVG50V1 array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional indels (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the 
BOVG50V1 array to WGS level. The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
BOVG50V1 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S49. 
Dosage R2 for all imputed indels and for functional indels for the 
GGPIND35 array when using the Global Reference Panel and four target 
sets (i.e., Global, African, Asian and European). Dosage R2 for all imputed 
variants and for functional indels (as annotated by the Ensembl VEP 
software (LOW, MODERATE and HIGH)) when imputing from the 
GGPIND35 array to WGS level. The target sets were created by retaining 
only the WGS genotypes that overlapped with the variants of the 
GGPIND35 array, from the Global Reference Panel as well as its subsets, 
generated according to the continent of origin (African (87 individuals), 
Asian (106 individuals) and European (77 individuals) subsets). These 
target sets (i.e. Global, African, Asian, and European) were then used to 
impute to WGS level using the Global Reference Panel. Figure S50. 
Dosage R2 for all imputed indels and for functional indels for the GGPLDV4 
array when using the Global Reference Panel and four target sets (i.e., 
Global, African, Asian and European). Dosage R2 for all imputed variants 
and for functional indels (as annotated by the Ensembl VEP software (LOW, 
MODERATE and HIGH)) when imputing from the GGPLDV4 array to WGS 
level. The target sets were created by retaining only the WGS genotypes 
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that overlapped with the variants of the GGPLDV4 array, from the Global 
Reference Panel as well as its subsets, generated according to the 
continent of origin (African (87 individuals), Asian (106 individuals) and 
European (77 individuals) subsets). These target sets (i.e. Global, African, 
Asian, and European) were then used to impute to WGS level using the 
Global Reference Panel. Figure S51. Dosage R2 for all imputed indels and 
for functional indels for the GGPLDV3 array when using the Global 
Reference Panel and four target sets (i.e., Global, African, Asian and 
European). Dosage R2 for all imputed variants and for functional indels (as 
annotated by the Ensembl VEP software (LOW, MODERATE and HIGH)) 
when imputing from the GGPLDV3 array to WGS level. The target sets 
were created by retaining only the WGS genotypes that overlapped with 
the variants of the GGPLDV3 array, from the Global Reference Panel as well 
as its subsets, generated according to the continent of origin (African (87 
individuals), Asian (106 individuals) and European (77 individuals) subsets). 
These target sets (i.e. Global, African, Asian, and European) were then used 
to impute to WGS level using the Global Reference Panel.

Additional file 12: Figure S52. Plot for principal component (PC) 1 and 
PC2 for the individuals collected across four African countries, genotyped 
with the Geneseek 50 k array. Plot for principal component (PC) 1 and PC2 
for the individuals collected across four African countries (namely Tan‑
zania, Ghana, Nigeria, and Burkina Faso), genotyped with the Geneseek 
50 k array. Only individuals unrelated were used (relatedness value from 
vcftools -relatedness2 > 0.0625). Coloured by country. Figure S53. Plot for 
principal component (PC) 1 and PC2 for the individuals collected across 
four African countries, genotyped with the Illumina HD array. Plot for 
principal component (PC) 1 and PC2 for the individuals collected across 
four African countries (namely Tanzania, Ghana, Nigeria, and Burkina Faso), 
genotyped with the Illumina HD array. Only individuals unrelated were 
used (relatedness value from vcftools -relatedness2 > 0.0625). Coloured by 
country. Figure S54. Plot for principal component (PC) 1 and PC2 for the 
combined data of 2,481 individuals genotyped with the Illumina HD array. 
Plot for principal component (PC) 1 and PC2 for combined data of 2,481 
individuals, genotyped with the Illumina HD array. Only individuals unre‑
lated were used (relatedness value from vcftools –relatedness2 > 0.0625). 
Coloured by population, as reported in Additional file 4: Table S3.
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