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ABSTRACT2

Microbial biofilms show high phenotypic and genetic diversity, yet the mechanisms underlying3
diversity generation and maintenance remain unclear. Here, we investigate how spatial patterns of4
growth activity within a biofilm lead to spatial patterns of genetic diversity. Using individual-based5
computer simulations, we show that the active layer of growing cells at the biofilm interface6
controls the distribution of lineages within the biofilm, and therefore the patterns of standing7
and de novo diversity. Comparing biofilms of equal size, those with a thick active layer retain8
more standing diversity, while de novo diversity is more evenly distributed within the biofilm. In9
contrast, equal-sized biofilms with a thin active layer retain less standing diversity, and their de10
novo diversity is concentrated at the top of the biofilm, and in fewer lineages. In the context of11
antimicrobial resistance, biofilms with a thin active layer may be more prone to generate lineages12
with multiple resisance mutations, and to seed new resistant biofilms via sloughing of resistant13
cells from the upper layers. Our study reveals fundamental ‘baseline’ mechanisms underlying the14
patterning of diversity within biofilms.15

Keywords: biofilm, genetic diversity, lineage dynamics, evolution, spatial structure, agent-based simulation16

1 INTRODUCTION

Understanding how diversity is maintained within populations is one of the most important challenges in17
ecology and evolution (Barton and Keightley, 2002; Gibbons and Gilbert, 2015; Shade, 2017). Populations18
can adapt to changing environments via selection on pre-existing diversity (standing variation), and/or via19
selection on new (de novo) mutations, with different implications for the speed and nature of adaptation20
(Barrett and Schluter, 2008). The factors controlling the balance between standing and de novo diversity21
remain a topic of debate even for well-mixed populations (Barrett and Schluter, 2008). For spatially22
structured populations such as microbial biofilms the picture is more complex, since spatial structure can23
have drastic effects on evolutionary dynamics (Korona et al., 1994; Stewart and Franklin, 2008; Stacy et al.,24
2015).25
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Expanding populations are often characterised by genetic drift at the expanding front, leading to lineage26
loss and spatial segregation of surviving lineages (Mitri et al., 2016; Nadell et al., 2010; Hallatschek and27
Nelson, 2010, 2008; Korolev et al., 2011; Excoffier et al., 2009; Habets et al., 2006; Perfeito et al., 2008;28
Freese et al., 2014; Giometto et al., 2018). This has implications for the evolutionary maintenance of29
cooperative phenotypes (Nadell et al., 2016, 2010; Mitri et al., 2011; Mitri and Foster, 2013; Mitri et al.,30
2016; Habets et al., 2006; Ben-Jacob et al., 1994; Perfeito et al., 2008; Hallatschek and Nelson, 2010, 2008;31
Korolev et al., 2011; Excoffier et al., 2009; Frost et al., 2018; Kreft, 2004; Park and Krug, 2007; Martens32
and Hallatschek, 2011; Bollback and Huelsenbeck, 2007; Good et al., 2012). However, some lineages that33
are located right at the growing front can expand dramatically, in a phenomenon known as gene surfing34
(Hallatschek et al., 2007; Hallatschek and Nelson, 2008, 2010; Gralka et al., 2016). Such spatial effects35
strongly influence the distribution of clone sizes for de novo mutations: bacterial colonies exhibit more36
jackpot events (large clones) compared to well-mixed populations (Fusco et al., 2016). Spatial effects37
can also lead to fragmentation of the population into independently evolving subpopulations (Steenackers38
et al., 2016; Fux et al., 2005). Moreover, evolutionary dynamics feeds back on the spatial structure of the39
population, for example through changes in growth speed or adhesive capacity (Kim et al., 2014; Kayser40
et al., 2018; Steenackers et al., 2016).41

Microbial biofilms are widely observed to be phenotypically and genetically diverse (Stewart and Franklin,42
2008; Stacy et al., 2015; Hall-Stoodley et al., 2004). This diversity is ecologically important, and probably43
contributes to the tolerance of clinical biofilms to antibiotic treatment (Mah and O’Toole, 2001; Stewart,44
2002; Nadell et al., 2016; Excoffier et al., 2009; Kim et al., 2014; Hallatschek and Nelson, 2010; Frost45
et al., 2018; Fux et al., 2005). In environmental or clinical contexts, biofilms are likely to be seeded from46
genetically diverse inocula, such as skin, gut, soil, ocean or river microbiota, so that standing variation may47
play a significant role. However, biofilms can also act as sources of de novo variation (Korona et al., 1994;48
Stewart and Franklin, 2008; Stacy et al., 2015). As we discuss below, spatial structure can drastically affect49
mutant fixation probabilities (Fusco et al., 2016; Kim et al., 2014). Spatial gradients of selection pressure,50
such as antibiotic, within the biofilm may also accelerate the emergence of resistant mutants, while the51
biofilm environment may favour the emergence of mutator strains and/or the horizontal transfer of genetic52
material (Stewart, 2002). In addition, spatial structure may promote the evolution of specific phenotypes53
that are well-adapted to the biofim environment (Frost et al., 2018; Nadell et al., 2016, 2010; Mitri et al.,54
2011; Mitri and Foster, 2013; Ben-Jacob et al., 1994).55

Biofilms are characterised by an uneven distribution of growth activity. Nutrients are rapidly consumed56
at the growing edge of the biofilm, so that the interior becomes nutrient-depleted. Therefore, growth is57
limited to a well-defined layer close to the biofilm front, where nutrient has not yet been consumed (Stewart58
and Franklin, 2008; Stewart et al., 2016; Stacy et al., 2015). This is known as the active layer; it has been59
observed in in vitro experiments (Pamp et al., 2008; Stewart et al., 2016) and in ex vivo clinical lab samples60
(Stewart et al., 2016), as well as in simulations (Nadell et al., 2010, 2013; Xavier et al., 2004; Young et al.,61
2022) and theory (Korolev et al., 2010). The width of the active layer is controlled by the balance between62
nutrient supply and consumption (Nadell et al., 2010). Hence, nutrient availability, nutrient consumption63
rate, nutrient diffusivity, biomass density and growth yield all affect the active layer width (Nadell et al.,64
2010). The active layer width is closely coupled to biofilm morphology: biofilms with thin active layers65
tend to have rough interfaces, while those with thick active layers tend to be smooth (Nadell et al., 2010;66
Farrell et al., 2013; Young et al., 2022) – although dynamical fluctuations of the active layer are also67
important (Young et al., 2022).68

Frontiers 2



Young et al. Patterns of biofilm diversity

In this study, we investigate in detail how the spatial pattern of growth activity within biofilms leads to69
spatial patterns of standing and de novo diversity. Using individual-based biofilm simulations, we track the70
fate of hundreds of neutral cell lineages in growing biofilms. Our simulations allow direct observation of71
the loss of standing diversity, and we infer the gain of de novo diversity from patterns of lineage length. In72
this work, we choose to compare biofilms grown to equal size, under conditions where the active layer73
thickness is different. Our study complements previous work by Mitri et al. (2016), who studied diversity in74
bacterial colonies, grown for equal time with differing nutrient availability. Increasing nutrient availability75
increases the active layer width (Nadell et al., 2010). Mitri et al. (2016) observed that well-fed colonies76
retain standing diversity over more generations than poorly fed colonies; however over a similar timescale,77
well-fed colonies undergo more generations of growth than poorly-fed ones. Therefore, comparing colonies78
over the same timescale, well-fed and poorly-fed colonies retain similar amounts of standing diversity79
since the differences in colony size compensate for the differences in active layer thickness. Here, our aim80
is to understand the fundamental role of the active layer, for which the picture is clearer when we compare81
biofilms of equal size.82

We find that active layer thickness controls both the balance between standing and de novo variation, and83
the spatial patterns of de novo mutations within the biofilm. For biofilms of equal size, those with a thick84
active layer retain more standing diversity and their de novo diversity is more evenly distributed across85
the biofilm. In contrast, biofilms with a thin active layer retain less standing diversity, and their de novo86
diversity is concentrated close to the growing interface. Since de novo diversity is concentrated in fewer87
lineages, the occurrence of multiple mutations along the pathway to high-level antibiotic resistance is more88
likely in biofilms with thinner active layers. In this study, we do not aim to represent biofilm growth and89
evolution in realistic detail, but rather to provide a baseline model that reveals fundamental mechanisms90
connecting spatial patterning of growth and diversity, onto which more complex effects can be superposed.91

2 METHODS

2.1 Agent-based simulation algorithm92

In this work, we use the individual-based biofilm modelling software iDynoMiCS (Lardon et al., 2011).93
iDynoMiCS models the microbes in a biofilm as individual agents whose behaviour is coupled to a94
nutrient reaction-diffusion equation Lardon et al. (2011). The agents, which in this work are assumed95
to be discs in continuum 2D space, grow with specific growth rate µ according to the Monod equation96
µ = µmaxS/(kS + S), where µmax is the maximum specific growth rate, kS is the concentration of97
nutrient at which the growth is half maximal, and S is the local nutrient concentration at the position98
of the microbial agent (Monod, 1949). Once a microbial agent reaches a maximum radius (which has a99
stochastic element), it divides into two daughters. Microbes interact with one another mechanically via100
a shoving algorithm. Briefly, this algorithm detects pairs of agents whose ‘zones of influence’ (defined101
to be the radius multipled by a ‘shove parameter’) overlap, and shuffles the agent positions to avoid such102
overlaps (Lardon et al., 2011). Although iDynoMiCS has the facility to model extra-cellular matrix (EPS)103
as non-replicating particles, we did not model EPS in this study.104

In iDynoMiCS, the computational domain is set up to resemble a flow cell, in which the biofilm grows on105
a hard surface and nutrients diffuse from above. The nutrient is represented by a concentration field which106
varies in space and time due to diffusion and consumption by the microbes. A separation of timescales107
is assumed, such that the reaction-diffusion equation for the nutrient is assumed to reach steady state108
faster than the timescale for microbial growth; hence the reaction-diffusion equation for the nutrient109

Frontiers 3



Young et al. Patterns of biofilm diversity

concentration is solved to steady state at each iteration of the microbial growth algorithm. Convective flow110
is not modelled, but rather it is assumed that there is a stationary layer of fluid close to the biofilm: the111
‘boundary layer’ (Lardon et al., 2011; Kreft et al., 2001). It is also assumed that the diffusion constant for112
nutrient is reduced inside the biofilm by a fixed factor compared to outside the biofilm. The input values113
used in our simulations are based on experimental values for oxygen-limited Pseudomonas aeruginosa114
biofilms; see Table 1. We vary the bulk nutrient concentration (Sbulk) and the maximum specific growth rate115
(µmax) in order to simulate biofilms with different spatial structures. They could in principle be controlled116
experimentally by changing the nutrient concentration of the fluid medium in a flow cell setup, and the117
bacterial strain.118

To be able to simulate biofilm growth over long times, we use a ‘clipping’ algorithm in combination119
with iDynoMiCS (Young et al., 2022). This algorithm periodically removes inactive agents far below the120
growing front, such that a computationally feasible number of agents remain in the simulation space. This121
is achieved by pausing the iDynoMiCS simulation and removing the relevant agents, or clipping, and122
then restarting the simulation. This clipping procedure is done at regular time intervals. In the clipping123
procedure, microbial agents which are located both below the lowest actively growing agent and below the124
minimum point of the interface (which can be different points depending on the biofilm configuration), are125
removed. The complete algorithm has been described by Young et al. (2022).126

2.2 Tracking microbial lineages127

To study the microbial lineages in our simulations, we use built-in iDynoMiCS variables that relate to128
the genetic tree, namely the family number and the generation number (Lardon et al., 2011). The family129
number (1 . . . N0) labels the descendants of each of the N0 agents that were present at the start of the130
simulation. Upon a division event, both daughter agents inherit the family number of the parent. The131
generation number allows us to measure the lineage lengths of the agents, i.e. the number of divisions that132
have happened in the lineage of that agent since the start of the simulation. The generation number is set133
to zero for all agents at the start of the simulation. Upon a division event, both daughters are assigned a134
generation number which is greater by 1 than the generation number of the parent.135

2.3 Defining and measuring the active layer136

We define the active layer as the layer of growing microbial agents at the top of the biofilm. More137
specifically, we define a threshold growth rate; agents which grow faster than this rate are defined to be138
part of the active layer. We consider an agent to be in the active layer if its growth rate is greater than 0.1%139
of the maximal growth rate µmaxSbulk/(kS + Sbulk) that is possible under the conditions of the simulation140
(i.e. for the chosen values of µmax and Sbulk). Therefore the condition for an agent to be part of the active141
layer is µ > (1/1000)× µmaxSbulk/(ks + Sbulk).142

To calculate the average active layer thickness we define a grid spanning the simulation domain with D143
columns (horizontal bins) and H rows (vertical bins) of width 8µm. Within each of the D columns, we144
find the total number of ‘active’ grid squares whose biomass has an average specific growth rate above the145
active layer threshold. The local active layer thickness is then the number of active grid squares within the146
column, multiplied by the 8µm height of a grid square. We note that for some biofilm configurations, for147
example if the biofilm is rough, the active grid squares within one column may not necessarily be adjacent148
to one another. Once the local active layer thickness for each vertical column has been found, the mean149
active layer thickness across the biofilm is found by averaging these values over all the D columns.150
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3 RESULTS

3.1 Agent-based simulations show diverse biofilm morphology and active layer structure151

We used agent-based simulations with iDynoMiCS (Lardon et al., 2011) to model the growth of microbial152
biofilms over long times, starting from an initial population of 300 ‘founder’ microbes. Our simulations153
model individual microbes as disc-shaped agents which consume nutrients, grow, divide, and push each154
other out of the way (see Methods). Our model is neutral, in the sense that all microbes are, a priori,155
equally fit. To focus on spatial patterns of growth and diversity, without confounding effects of biofilm size,156
we compare biofilms growth to equal size, for different parameter values.157

We observe different biofilm morphologies for different parameter values, consistent with previous work158
(Nadell et al., 2010; Korolev et al., 2010; Stacy et al., 2015; Xavier et al., 2004; Young et al., 2022) (Figure159
S1; see also the Supplementary Movies). For high nutrient concentration or low values of the microbial160
maximal growth rate parameter µmax the biofilm interface is smooth, while for low nutrient concentration161
or high µmax it becomes fingered (Figure S1). We designate individual microbes as ‘active’ if their growth162
rate exceeds a threshold of 0.1% of the maximum growth rate achieveable in the simulation (see Methods).163

As expected, active microbes are located in a layer close to the biofilm interface (coloured region in164
Figure S1; shaded region in Figures 1 and 4). Tracking the average thickness of this active layer across165
the biofilm interface (see Methods), we find that it stabilizes early in biofilm growth (Figure S2). High166
nutrient concentration, or low values of the maximal growth rate µmax, lead to a thick, continuous, active167
layer while low nutrient concentration or high µmax lead to a thin active layer that has gaps, corresponding168
to the troughs between the biofilm fingers (Figure S1, Figure S2 and Table S1; Young et al. (2022)). For169
intermediate nutrient concentration or µmax the active layer is of intermediate thickness and is dynamic,170
with transient gaps appearing and disappearing (see the kymograph in Fig 3; Young et al. (2022)).171

3.2 Active layer thickness controls loss of standing diversity via genetic drift172

We first investigate the loss of standing diversity during biofilm growth. We label each of the 300173
founder cells with a different ‘colour’ that is inherited upon division, allowing us to track the founder cell’s174
descendants (see Methods). The colours in Figure 1 illustrate the fates of the 300 founder cell lineages,175
for three simulations with different active layer thickness. In all simulations, genetic drift leads to loss of176
standing diversity, such that the active layer becomes dominated by just a few founder lineages (Figure 1).177

However, the loss of standing diversity proceeds very differently in our three simulations. Comparing178
biofilms of equal size, more standing diversity is lost from the biofilm with the thinner active layer (bottom179
row in Figure 1), while less standing diversity is lost from the biofilm with a thicker active layer (top row180
in Figure 1).181

To probe the link between active layer thickness and loss of standing diversity, we performed more182
simulations to generate biofilms with a wide range of active layer thicknesses (Table S1). We counted the183
number of founder lineages that remained in the active layer at a biofilm size of 50,000 microbes: this184
provides a quantitative measure of the retention of standing diversity. Retention of standing diversity is185
strongly correlated with the active layer thickness (Figures 2 and S3). Comparing biofilms of equal size,186
those with thicker active layers have larger effective population size and are less subject to genetic drift, so187
they retain more standing diversity.188
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3.3 Active layer dynamics causes local losses of standing diversity189

We hypothesized that loss of standing diversity might depend not just on the average active layer190
thickness but also on the local dynamics of the active layer. Across the biofilm interface, the local active191
layer thickness can vary quite dramatically (Young et al., 2022) (Figures S1 and S2). For example, our192
simulation with intermediate active layer thickness shows transient gaps in the active layer, corresponding193
to troughs between bulges in the interface (Figures 1 and S1). In previous work, we have shown that these194
gaps cause pinning of the interface, leading to a rough morphology (Young et al., 2022).195

Our simulations show that founder lineages tend to be lost at local sites where there are active layer196
gaps. To observe this, we plot an ‘active layer kymograph’ for the simulation at intermediate nutrient197
concentration (Figure 3(a)). Here, the colors represent the local active layer thickness along the biofilm198
interface (horizontal axis), with biofilm size being shown on the vertical axis (Young et al., 2022). Local199
gaps in the active layer appear as dark lines, whose dynamics can be observed by reading from bottom to200
top. The merger of two active layer gaps corresponds to an event where a bulge in the interface is subsumed201
by two adjacent larger bulges (Young et al., 2022).202

To correlate loss of standing diversity with active layer dynamics, we also make a kymograph for the203
dynamics of the 300 founder lineages in the same simulation (Figure 3(b)). To make this plot, we record in204
the horizontal direction the founder ancestor of every microbial agent along the biofilm interface (using the205
same colours as in Figure 1), and juxtapose data for different biofilm sizes along the vertical axis. This206
allows us to visualise the dynamics of loss of founder lineages as the biofilm grows (bottom to top in Figure207
3(b)). Eventually, only 2 founder lineages remain.208

Comparing the active layer dynamics with the founder lineage dynamics (Figure 3(a) and (b)) shows a209
clear correlation. Local losses of founder lineages happen when active layer gaps merge, i.e. when local210
bulges in the biofilm interface become subsumed behind the growing front. When this happens, all founder211
lineages that are located within the subsumed bulge are lost. Therefore, local active layer dynamics can212
produce hot spots for loss of standing diversity. This suggests both local active layer dynamics and the213
average thickness of the active layer are relevant factors controlling the loss of standing diversity as the214
biofilm grows.215

3.4 Active layer thickness controls distribution of de novo genetic diversity in space and216
among lineages217

Next, we investigate how de novo diversity is affected by active layer thickness. Our simulations do not218
model mutation events directly. However, in our neutral model, mutations can be assumed to occur with219
equal probability at each division event. The number of mutations that a lineage accumulates is expected to220
be proportional to the number of divisions in that lineage, going back to the founder cell – in other words,221
the lineage length (see Methods). Our simulations allow us to track the lineage length of every microbial222
agent within the biofilm, and therefore to infer the number of (neutral) mutations that are expected to have223
accumulated.224

In this work, we compare biofilms of equal size. Therefore each biofilm has undergone the same number225
of divisions and is expected to contain the same total de novo diversity (number of mutations). However,226
the spatial patterning of de novo diversity within the biofilm, and its distribution among lineages, may be227
different.228

Mapping the spatial distribution of lineage length in our simulated biofilms, we observe clear patterns229
(Figure 4 and Supplementary Movies). In all our simulations, lineage length increases linearly with vertical230
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height within the biofilm (Figure S4). This happens because lineages are terminated when they fall behind231
the growing front (Schreck et al., 2019); the trend is linear because the biofilm grows linearly in time.232
Since longer lineages accumulate more mutations, our results imply that mutations will be concentrated233
preferentially in the upper parts of a growing biofilm. This is relevant, because mutations in the upper parts234
of the biofilm are more likely to propagate as the biofilm grows, and also have more chance of spreading if235
cells detach from the biofilm and go on to seed new biofilms.236

Comparing our simulations for high, intermediate and low active layer thickness (Figure 4), we see clear237
differences in the spatial pattern of lineage lengths. In the biofilm with the thinner active layer, lineage238
length varies more across the biofilm, whereas it is more homogeneous in the biofilm with the thicker239
active layer (Figure 4). This implies that, comparing biofilms of equal size, mutations will be more strongly240
concentrated at the growing edge if the biofilm has a thin active layer, and more evenly spread across the241
biofilm if the active layer is thick.242

To further investigate the link between active layer thickness and spatial patterning of mutations, we243
re-analysed our more extensive set of simulations with a broad range of active layer thicknesses (Table S1).244
Since we compare biofilms of equal size we would expect (on average) the same total number of mutations245
for all these biofilms. However, mutations may be differently distributed within the biofilm. To estimate the246
extent to which mutations concentrate at the top of the biofilm, we computed the sum of lineage lengths for247
all microbes in the active layer. This quantity correlates strongly with the active layer thickness (Figure 5(a)248
and Figure S5). Therefore, in biofilms with a thinner active layer, we expect mutations to be concentrated249
at the top of the biofilm, within the active layer, while for biofilms with a thicker active layer, we expect250
mutations to be more widely distributed, occurring within the dormant lower layers of the biofilm as well251
as within the active layer.252

High-level resistance to antibiotics often requires multiple sequential mutations (Toprak et al., 2011;253
Greulich et al., 2012). Long lineages are more likely to accumulate multiple resistance mutations. To254
estimate the propensity for biofilms to gain high-level antibiotic resistance, we computed the average255
lineage length for individual microbes in the active layer, for our simulation set. This quantity also correlates256
strongly with the active layer thickness (Figures 5(a) and S5). This suggests that, a priori, biofilms with a257
thin active layer are more prone to de novo evolution of high-level resistance, compared to biofilms of the258
same size with a thicker active layer.259

How does active layer thickness control the patterning of de novo genetic diversity within a biofilm? Put260
simply, replication events are confined to the active layer (i.e. the active layer thickness determines the261
effective population size). If the active population is of size Nact and the biofilm contains Ntot microbes in262
total, then the average lineage length of microbes in the active population must be Ntot/Nact. Biofilms263
with a thin active layer have small Nact and therefore long lineages for microbes at the biofilm interface.264
In contrast, biofilms with a thicker active layer have larger Nact and the lineage length at the interface is265
correspondingly shorter.266

Our simulations also show that the local active layer dynamics affects spatial patterns of lineage length.267
Figure 3(c) illustrates with a kymograph the local dynamics of lineage length at the biofilm interface, during268
biofilm growth. Here, the colour scale shows the lineage length for microbes along the biofilm interface,269
relative to the average lineage length for microbes at the interface. The horizontal axis indicates position270
along the biofilm interface, while the vertical axis indicates cell number. Lighter colours show local regions271
of greater than average lineage length, which are predicted to be local hot spots, where mutations are more272
likely to be found. Comparing the pattern of lineage length (Figure 3(c)) to that of active layer thickness273
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(Figure 3(a)) shows that lineage length is locally longer where the active layer is locally thicker, in other274
words, at the peaks of bulges along the biofilm interface. However, this local effect is minor compared to275
the effect of the average active layer thickness.276

4 DISCUSSION

Biofilms often show high levels of genetic diversity, which is believed to contribute to antibiotic tolerance277
and resistance (Mah and O’Toole, 2001; Stewart, 2002). Understanding whether this diversity primarily278
arises from pre-existing (standing) variation or from newly generated (de novo) variation has significant279
implications. For example, adaptation to environmental challenges is generally faster from a basis of280
standing variation (Barrett and Schluter, 2008). Here, we used an individual-based biofilm model, to show281
how the spatial patterns of microbial growth within a biofilm lead to spatial patterns of standing and de novo282
diversity. Our work reveals a central role for the active layer of growing microbes at the biofilm interface.283
Comparing biofilms of equal size, a biofilm with a thick active layer retains more standing diversity, and284
its de novo diversity is more evenly distributed, both spatially and among individuals in the population.285
In contrast, a biofilm with a thin active layer retains less standing diversity, and its de novo diversity is286
concentrated close to the biofilm interface, with relatively less de novo diversity being located in the deeper287
parts of the biofilm. This implies that microbes with multiple mutations, leading to high-level antibiotic288
resistance, are more likely in biofilms with a thin active layer, compared to biofilms of equal size with a289
thick active layer. We also find that the local dynamics of the active layer plays a role, for example, causing290
local hot spots of loss of standing variation when interface bulges are lost behind the growing front.291

Putting our results together, our model predicts contrasting spatial patterns of standing diversity and292
de novo diversity. Standing diversity is greatest in the lower parts of the biofilm, while de novo diversity293
is greatest at the top of the biofilm. This could have consequences when biofilms are subjected to294
environmental challenges. For example, antibiotics that target primarily the active, upper, part of the295
biofilm would tend to select on de novo diversity, while those that target primarily the lower part of the296
biofilm might select on standing diversity (Pamp et al., 2008). Likewise, sloughing of the upper layers of297
a biofilm might disperse de novo diversity to the wider environment, while leaving standing diversity in298
place.299

In this work, we compared biofilms grown to equal size, with different active layer thickness, achieved300
by varying the parameters of our individual-based model. In doing this, we follow the work of Drescher301
et al. (2016), who also points to biofilm size, rather than age, as a key control parameter. This contrasts302
with the work of Mitri et al. (2016), who compared bacterial colonies grown for equal time, on media with303
varying nutrient availability. Mitri et al. (2016) found that, overall, nutrient availability had little effect on304
loss of standing diversity, because the differences in colony size counteracted the effects of the active layer305
thickness. In this work, we aimed to elucidate the fundamental mechanisms by which growth patterning306
leads to patterning of diversity. These mechanisms are clearer when we compare biofilms of equal size.307
One might argue that comparing biofilms of equal size restricts the practical relevance of our conclusions,308
since slow-growing biofilms will generally be smaller than fast-growing ones. However, in the natural309
environment, biofilm maturity does not necessarily correspond to increasing size: biofilm growth can be310
limited by space (e.g. inside a cavity in a medical implant) or by chemical interactions (e.g. the secretion of311
pulcherrimin which causes growth arrest in Bacillus subtilis colonies (Arnaouteli et al., 2019)). Bearing in312
mind that our comparison is made for biofilms of equal size, it would be important to carefully define the313
conditions for any experimental test of these predictions.314
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To control the active layer thickness in our simulations, we varied two model parameters: the bulk nutrient315
concentration Sbulk and the maximal specific growth rate µmax. We could have chosen to vary a single316
parameter. For example, increasing Sbulk alone (as in the study of Mitri et al. (2016)) increases the active317
layer thickness, but it also increases the average activity of microbes within the active layer (Table S1318
and Fig. S6). Increasing µmax alone decreases the active layer thickness, while increasing the average319
activity of microbes within the active layer (Table S1 and Fig. S6). By varying multiple parameters, we can320
identify the active layer thickness as the controlling factor, rather than other factors, such as the activity of321
individual microbes, that correlate with individual parameters.322

Importantly, we have assumed neutrality in this study: a priori, all microbial agents in our simulations323
have equal fitness and identical traits. This allows us to predict patterns of mutations within the biofilm324
from lineage lengths, without explicitly simulating mutation events. Neutral models have a distinguished325
history in ecology and evolution (Volkov et al., 2003; Azaele et al., 2006); they are useful for predicting326
baseline phenomena, deviations from which can point to specific biological mechanisms. In this study, the327
predicted baseline phenomenon is the connection between the active layer and patterns of standing and de328
novo diversity. Neutral models do not provide a realistic description of the real biological system, but they329
do provide a useful reference to which to compare biological measurements (Nee, 2005).330

Similarly, our study aims to elucidate baseline mechanisms, rather than to provide a realistic model for331
an evolving biofilm. Our model neglects many biological and physical factors, including fitness effects of332
mutations, antibiotic effects on mutation rates, the emergence of hypermutators, persisters, physical effects333
of exopolysaccharide production, 3D geometric effects and fluid flow. All of these could produce different334
outcomes for the patterning of standing and de novo diversity within a biofilm, and should be investigated335
in future work. Feedback between evolutionary processes and the spatial structure of the population (e.g.336
the formation of biofilm bulges by fitter mutant clones, or a change in the local active layer thickness due337
to a mutant with a different growth yield) could also have interesting effects.338

Previous work on evolution in spatially expanding microbial populations has focused on the distribution339
of clone sizes, i.e. the number of descendants of a mutant that emerges within the population (Hallatschek340
et al., 2007; Hallatschek and Nelson, 2008, 2010; Fusco et al., 2016; Farrell et al., 2017; Schreck et al.,341
2019; Gralka et al., 2016). The clone size distribution is different in a spatially expanding population342
compared to a well-mixed population; for example, mutants that emerge right at the front can be carried343
along at the front and produce large clone sizes even in the absence of fitness benefits, in a phenomenon344
known as gene surfing (Hallatschek et al., 2007; Hallatschek and Nelson, 2008, 2010; Gralka et al., 2016;345
Farrell et al., 2017). In this work, we consider de novo diversity from a different perspective. While the346
clone size distribution considers the number of descendants arising from an individual mutation event,347
here we predict the total number of mutations (of any type) that are located at a particular spatial position348
within the biofilm. By tracking the lineages of microbes within the biofilm, we can predict patterns of349
de novo diversity, in terms of predicted mutation density, within the biofilm. However, since we do not350
connect the lineages of different microbes within the biofilm (i.e. we do not measure relatedness between351
individuals), we cannot track the fate of particular mutations. Therefore our work provides a different and352
complementary approach to understanding patterns of de novo diversity.353

Computer simulations provide a powerful way to investigate phenomena that might be difficult to study354
experimentally, but they are not a substitute for experimental data. Tracking of lineages within experimental355
microbial populations is now possible, for well-mixed populations, using barcoding methods, although356
this has not been used for spatially structured populations (Blundell et al., 2019; Jasinska et al., 2020). For357
biofilms, advanced image analysis of growing biofilms allows the tracking of cell lineages in space and358
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time (Jeckel and Drescher, 2021). Spatially-resolved detection of point mutations is challenging at present,359
but may well become possible in future. Therefore, experimental tests of the ideas presented in this work,360
although difficult, are not out of the question.361
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Figure 1. Biofilm morphology and loss of standing diversity Snapshots from our simulations at different
stages of biofilm growth (left to right: 25,000, 50,000 and 75,000 microbial agents). The active layer
is shown by the shaded region (see Methods for definition). Three simulations are shown (top, middle
and bottom rows), with different parameters and hence different values of the active layer thickness. Top
row: Sbulk = 0.01g/liter; µmax = 0.1/h; producing an average active layer thickness of 102.8± 0.8 µm.
Middle row: Sbulk = 0.005g/liter; µmax = 0.2/h; average active layer thickness 71.3± 1.4 µm. Bottom
row: Sbulk = 0.001g/liter; µmax = 0.3/h; average active layer thickness 40.8 ± 1.4 µm. The rest of the
simulation parameters are as in Table 1. The descendants of each of the 300 founder cells are shown in a
different colour, allowing visualisation of the patterns of loss of standing diversity.
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Figure 2. Active layer thickness controls loss of standing diversity Correlation between the number of
founder lineages remaining in the active layer, and thickness of the active layer (averaged across the biofilm
interface), for sixteen simulated biofilms of size 50,000 microbial agents. The active layer thickness was
varied by changing the bulk nutrient concentration (Sbulk) and the maximum specific growth rate (µmax).
The values of Sbulk and µmax corresponding to these simulations are shown in Table S1 together with
the active layer thicknesses. The rest of the simulation input parameters are as in Table 1. Supplementary
Figure S3 shows the same plot for biofilms that have reached 25,000, 75,000 and 100,000 microbial
agents.
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Figure 3. Local active layer dynamics affects both loss of standing diversity and patterns of de
novo diversity Kymographs showing (a) dynamical changes in the active layer, (b) dynamics of the 300
founder lineages, and (c) dynamics of the relative lineage length at different positions along the biofilm
interface. Results are shown for the simulation at intermediate active layer thickness (71.30 ± 1.42 µm
(Sbulk = 0.005g/liter; µmax = 0.2; middle row in Figures 1 and 4), In this simulation, the active layer
shows transient gaps (Young et al., 2022). Panel (a) shows how the local active layer thickness (colourscale)
across the width of the biofilm (horizontal axis) changes during biofilm growth (vertical axis show the total
number of agents in the biofilm, as a proxy for time). The darker lines correspond to the movement of
local gaps in the active layer. The merger of two dark lines happens when a bulge in the biofilm interface
is subsumed by two adjacent bulges and is lost behind the growing front (Young et al., 2022). Panel (b)
shows the founder cell lineages present at the biofilm interface. Lineages of the 300 founder microbes are
indicated using the same colours as in Figure 1. Panel (c) shows the dynamics of the relative lineage length
(colour scale) for microbes located at the interface. The relative lineage length is calculated as the lineage
length of an individual microbe located at the interface, divided by the average lineage length of all the
microbes located at the interface at that time point. Plotting the relative lineage length makes it easier to
see local trends which would be obscured by the much larger general increase in lineage length with time
as the biofilm grows (Figure 4).
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Figure 4. Patterns of de novo diversity, inferred from lineage length Snapshots from our simulations at
different stages of biofilm growth, as in Figure 1, but colour-coded according to lineage length (left to right:
25,000, 50,000 and 75,000 microbial agents; top to bottom: average active layer thicknesses 102.8± 0.8,
71.3± 1.4 and 40.8± 1.4 µm; parameters are given in the caption of Figure 1 and Table 1). Agents are
coloured according to their lineage length, i.e. the number of divisions that have occurred in the history of
that agent since the start of the simulation (see Methods). The region of darker shading indicates the active
layer (see Methods).
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Figure 5. Active layer thickness controls patterns of lineage length, hence de novo diversity. (a):
Total de novo diversity in the active layer. The sum of the lineage lengths of all microbial agents in the
active layer is plotted against the active layer thickness (averaged across the biofilm interface) for sixteen
biofilms that have reached 50,000 agents. (b): Average lineage length of a microbial agent in the active
layer, plotted versus the active layer thickness. In both panels, as in Figure 2, the active layer thickness was
varied by changing the bulk nutrient concentration (Sbulk) and the maximum specific growth rate (µmax).
The values of Sbulk and µmax corresponding to these simulations are shown in Table S1 together with the
active layer thicknesses. The rest of the simulation parameters are as in Table 1.
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Parameter Values Description References

Sbulk 10−3 − 10−2 g/liter Bulk concentration of
limiting nutrient (here
assumed to be oxygen). This
value is varied to alter biofilm
morphology.

Saturation concentration of
water at 37oC is 6.6 x 10−3

g/liter (Battino et al., 1983)

Y 0.64 g/g Yield - grams of biomass
produced per gram of oxygen
consumed

Beyenal et al. (2003)

µmax 0.1-0.4 /h Maximum specific growth
rate. This value is varied to
alter biofilm morphology.

Beyenal et al. (2003); Kragh
et al. (2016); Robinson et al.
(1984); Bakke et al. (1984)

kS 8.12× 10−4 g/liter Concentration of oxygen
at which the growth is half
maximal

Kragh et al. (2016)

DS 2.3× 10−4m2/day Diffusion coefficient of
nutrient (oxygen)

Stewart (2003)

Biofilm Diffusivity 0.8 Factor multiplying DS to give
nutrient diffusion coefficient
inside the biofilm

Rittmann and Manem (1992);
Stewart (2003)

h 80µm Diffusion boundary layer
height

Xavier et al. (2005); Alpkvist
et al. (2006); Picioreanu et al.
(1998)

ρB 200 g/liter Biomass density of microbes
in biofilm

Xavier et al. (2005);
Bjarnsholt et al. (2009)

rdiv 2 µm Average radius of microbial
agent at division

Beyenal et al. (2003)

kShov 1.15 Factor multiplying the agent’s
radius to give the shove
radius

Default iDynoMiCS value
(Lardon et al., 2011)

Ly 1032 µm Width of the simulation
domain

N0 300 Number of initialised
microbial agents

Table 1. Input values used in our iDynoMiCS biofilm simulations. These values are loosely based on
Pseudomonas aeruginosa in a flow cell type set up (Melaugh et al., 2016).
.
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