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Abstract 
Studies indicate that mito-genome variation impacts phenotypes in a range of species. In dairy 
cattle up to 5% of phenotypic variation for milk production has been associated to mito-genome 
variation. Bearing in mind that milk production is a very energy demanding process that inflicts 
systemic physiological changes, it is logical to expect that it depends on well-functioning 
mitochondria. Here we evaluated the impact of accounting for nuclear- and mito-genome 
variation in genetic evaluation and breeding of dairy cattle with the means of stochastic 
simulations. Results show that accounting for mito-genome variation can increase the accuracy 
of estimated breeding values by up to 0.04, particularly in females, and consequently increase 
genetic gain. 
 
Introduction 
Mitochondria are involved in many critical cellular processes via proteins encoded in nuclear-
genome and mito-genome. While variation in nuclear-genome is driven by mutations, 
recombinations and combination of parental genomes, variation in mito-genome is driven by 
mutations that are inherited from dams to their offspring in haploid form without recombination. 
Dorji et al. (2021) recently reported a high level of variation in mito-genomes across globally 
important cattle breeds, with most of the variation attributed to within-breed component. 
Considering the critical role of mitochondria and the observed variation, it is expected that mito-
genome variation impacts livestock production. Recent and past studies suggest that mito-
genome accounts for up to five percent of phenotypic variation for yield traits in cattle 
(Boettcher et al., 1996; Gibson et al., 1997; Brajković, 2019). Previous studies have evaluated 
the impact of accounting for mito-genome variation in genetic evaluation in livestock using 
pedigree information, while this impact has not yet been evaluated with genomic information. 
Furthermore, given that mito-genome has a different mode of inheritance than nuclear-genome, 
we need to revise the definition of a breeding value that accounts for the inheritance of each 
genome in males and females. 
The goal of this study was to evaluate the impact of accounting for nuclear-genome and mito-
genome variation in estimating breeding values and using different definitions of breeding 
values and their estimates in a dairy cattle breeding programme with a stochastic simulation. 
 
Materials & Methods 
 
Simulation setting: Dairy cattle breeding scheme was simulated using AlphaSimR R-package 
(Gaynor et al., 2020). We simulated nuclear-genome and mito-genomo independently. To 
generate nuclear-genome chromosomal haplotypes, we used the option “CATTLE” in 
“AlphaSimR” with 10 diploid chromosomes (to reduce computation time) with 108 base pairs 
each, mutation rate of 2.5*10-8, recombination rate 1*10-8, and effective population size as in 
MacLeod et al. (2013). We chose 1,000 loci per chromosome as SNP markers and another 
1,000 as QTL. For the mito-genome haplotypes we considered 1 haploid chromosome with 
16,202 base pairs, mutation rate of 2.5*10-7, no recombination, and effective population size of 



1,000 to obtain a level of diversity that matched values found in literature (Brajković, 2019; Xia 
et al., 2019; Dorji et al., 2021). We chose all polymorphic loci (on average 1084 across 10 
replicates) in mito-genome as SNP markers and as QTL at the same time. We also evaluated a 
setting where only one locus was a QTL. Both simulated haplotypes were randomly sampled 
giving rise to nuclear-genomes and mito-genomes of founding individuals. The nuclear-
genomes were passed between generation with recombination and combining two parental 
nuclear-genomes, while mito-genomes were passed only from mothers to their progeny without 
recombination. We defined one polygenic trait with heritability of 0.3, partitioned between 
nuclear-genome (σ𝑎𝑎𝑛𝑛

2 = 0.25) and mito-genome (σ𝑎𝑎𝑚𝑚
2 = 0.05) components in the base 

population with allele substitution effects of the QTL sampled from a Gaussian distribution that 
gave rise to targeted genetic variances. The trait was expressed only in cows for each lactation 
and generated as: 
 
𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝑎𝑎𝑛𝑛,𝑖𝑖 + 𝑎𝑎𝑚𝑚,𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖                                                                                           (1) 
 
where 𝑦𝑦𝑖𝑖𝑖𝑖 is the phenotype of cow j in lactation i, 𝜇𝜇𝑖𝑖 is the population mean for lactation i, 𝑎𝑎𝑛𝑛,𝑖𝑖, 
the value of nuclear-genome for animal j, 𝑎𝑎𝑚𝑚,𝑖𝑖 the value of mito-genome for animal j, which 
was the same as for its mother, maternal grand-mother, etc., 𝑝𝑝𝑖𝑖 the permanent environment 
effect of animal j ~N(0, 0.10), and 𝑒𝑒𝑖𝑖𝑖𝑖 is the environmental effect ~N(0, 0.60). 
 
Genetic evaluation: We analysed the phenotype data using the generative model (1) with 
pedigree- and genome-based information accounting for the mito-genome or not. In the 
pedigree-based model we assumed 𝒂𝒂𝑛𝑛~N(𝟎𝟎,𝐀𝐀0.25) with 𝐀𝐀 being pedigree relationship matrix 
for nuclear-genome and 𝒂𝒂𝑚𝑚~N(𝟎𝟎, 𝐈𝐈0.05) with 𝐈𝐈 being an identity matrix of dimension equal to 
the number of different maternal founder lineages. In the genomic-based model we assumed 
𝒂𝒂𝑛𝑛~N(𝟎𝟎,𝐇𝐇𝑛𝑛0.25) with 𝐇𝐇𝑛𝑛 being the “single-step” joint pedigree and genomic (SNP marker) 
relationship matrix for nuclear-genome (Aguilar et al., 2010) and 𝒂𝒂𝑚𝑚~N(𝟎𝟎,𝐆𝐆𝑚𝑚0.05) with 𝐆𝐆𝑚𝑚 
being genomic (SNP marker) relationship matrix for mito-genome with dimension equal to the 
number of distinct mito-genomes, 𝑛𝑛𝑚𝑚. We calculated it as 𝐆𝐆𝑚𝑚 = 𝐌𝐌𝐌𝐌T/𝑘𝑘, where 𝐌𝐌 is an 
𝑛𝑛𝑚𝑚 × 𝑛𝑛𝑠𝑠 matrix of 0 (ancestral allele) and 1 (mutation) for 𝑛𝑛𝑚𝑚 mito-genomes and its 𝑛𝑛𝑠𝑠 
polymorphic loci (we assume we know all these loci by sequencing mtDNA within pedigrees), 
𝑘𝑘 = ∑ 𝑝𝑝𝑙𝑙(1 − 𝑝𝑝𝑙𝑙)

𝑛𝑛𝑠𝑠
𝑙𝑙=1 , and 𝑝𝑝𝑙𝑙 is the frequency of mutations. For both models we firstly assumed 

that 𝐩𝐩~N(𝟎𝟎, 𝐈𝐈0.10) and 𝐞𝐞~N(𝟎𝟎, 𝐈𝐈0.60) during a burn-in phase. Following we estimated the 
components and used the new estimates as fixed parameters for the remainder of simulation. 
We fitted the models with the BLUPF90 suite (Misztal et al., 2018). 
 
Breeding value definition: We defined breeding value of individual 𝑗𝑗 in two ways: (i) as nuclear 
breeding value 𝑎𝑎𝑛𝑛,𝑖𝑖; or (ii) as the sum of nuclear and mitochondrial breeding value, 𝑎𝑎𝑛𝑛,𝑖𝑖 + 𝑎𝑎𝑚𝑚,𝑖𝑖. 
The definition (ii) is the correct definition for females because they transmit both nuclear-
genome and mito-genome to the next generation. However, males potentially express the effect 
of mito-genome they inherited from their mother, but they only transmit their nuclear genome 
to the next generation. Hence, for males, the definition (i) is the correct definition. 
 
Breeding Scenarios: We evaluated sixteen scenarios driven by three factors across 10 
replicates. The first factor was a breeding scheme: (i) progeny testing-based selection (PT) and 
(ii) genomic selection (GS). The second factor was a modelling and selection scenario: (a) using 
a model without mito-genome effect and selecting both females and males on their nuclear 
breeding values (STANDARD); (b) using a model with mito-genome effect and selecting both 
females and males on their nuclear breeding values (BASELINE); (c) using a model with mito-



genome effect and selecting both females and males on their nuclear plus mito breeding values 
(EXTREME); and (d) using a model with mito-genome effect and selecting females on their 
nuclear plus mito breeding values and selecting males on their nuclear breeding values 
(OPTIMAL). The third factor was assuming that all or just one polymorphic locus in mito-
genome is a QTL. We evaluated all the scenarios with (i) accuracy of genetic evaluation (as 
correlation between true breeding value and estimated breeding value) in scenarios 
STANDARD vs BASELINE and (ii) genetic gain in nuclear breeding value over 20 years in 
scenarios STANDARD, BASELINE, EXTREME, and OPTIMAL. 
 
Results 
We present the results separately for the following five categories: (1) heifers, (2) 1st lactation 
cows (cows1), (3) cows with 2 to 5 lactation records (cows2-5), (4) young bulls, males without 
progeny; and (5) proven bulls, males that have undertaken a progeny test or have been used as 
sires. For the GS scenarios, the female categories were expanded to show the difference 
between genotyped and non-genotyped animals. We present only the scenario where all 
polymorphic loci in mito-genome were QTL (the other scenario was qualitatively the same). 
 
Table 1. Accuracy of nuclear breeding values for different animal categories in the model 
with nuclear-genome (Model N) or nuclear-genome and mito-genome (Model N&M) with 
the pedigree-based model in progeny testing-based selection (PT) or with genomic-based 
model in genomic selection (GS). 

Scenario Category Model N Model N&M Difference 
PT Heifers 0.47±0.02 0.48±0.01 0.02±0.02 

Cows1 0.61±0.02 0.63±0.01 0.03±0.02 
Cows2-5 0.54±0.04 0.58±0.01 0.04±0.04 
Young bulls 0.37±0.03 0.38±0.03 0.01±0.02 
Proven bulls 0.74±0.01 0.76±0.01 0.02±0.01 

GS Heifers (non-geno.) 0.43±0.01 0.44±0.01 0.01±0.01 
Heifers (geno.) 0.72±0.03 0.75±0.01 0.02±0.02 
Cows1 (non-geno.) 0.58±0.02 0.60±0.00 0.02±0.02 
Cows1 (geno.) 0.76±0.02 0.78±0.01 0.02±0.02 
Cows2-5 (non geno.) 0.52±0.03 0.56±0.00 0.04±0.04 
Cows2-5 (geno.) 0.71±0.03 0.73±0.01 0.02±0.03 
Young bulls (geno.) 0.69±0.02 0.72±0.02 0.03±0.03 
Proven bulls (geno.) 0.78±0.01 0.79±0.01 0.01±0.01 

 
The accuracy of mito breeding values in both PT and GS was close to one for all animal 
categories (results not shown) which is expected given the lack of recombination. When 
evaluating the accuracy of the nuclear breeding values (Table 1), accounting for mito-genome 
variation increased accuracy from 0.01 to 0.04, depending on the animal category. In the PT 
scenario, the highest increase in accuracy was observed for “Cows2-5” (+0.04). In the GS 
scenario, the “Cows2-5 (not geno.)” was the category showing the best improvement (+0.04), 
followed by “Young-bulls (geno.)” (+0.03). 
The   results   presented   in   Figure   1   show that considering mitochondrial effect when 
estimating breeding values can increase genetic gain when both males and females are selected 
on their nuclear breeding values (BASELINE scenarios). When using the OPTIMUM scenario, 
results are comparable to that observed for the STANDARD scenario. Lastly, the EXTREME 
scenario seems to induce less gain than all other scenarios in both genomic and progeny-testing 
settings. 



 
Figure 1. Average genetic gain and 95% confidence interval over 20 years of selection with 
progeny testing-based selection (PT) and genomic selection (GS) and four different 
scenarios of modelling and breeding value definition (STANDARD, BASELINE, 
EXTREME, and OPTIMAL) 

Discussion 
Dairy breeders are basing their genetic evaluation and selection solely on nuclear breeding 
values. Gibson et al. (1997), however, defined genetic merit as the sum of nuclear and 
cytoplasmatic components. Southwood et al. (1989) performed a simulation to evaluate 
estimation of additive maternal and cytoplasmic variance. They found inflated estimates of 
additive genetic variance when ignoring cytoplasmic variance or both the cytoplasmic and 
additive maternal effects in the analysis. Our study complemented this past work by extending 
it with genomic information in estimating breeding values and by clarifying the definition of 
breeding values in females and males when both nuclear- and mito-genome affect a trait. 
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