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Abstract 
The microbiome composition influences the host response to selection and shapes 
complex phenotypes. It is a multifactorial complex trait in which the microbial 
inheritance, the host-genome, and the own microbial interactions influence its 
variability. The expensive sequence-based techniques limit the availability of empirical 
data. Thus, other approaches are necessary to evaluate strategies for microbiome 
studies. This study aimed to develop a simulator following a long-term phenotype 
selection experiment in rabbits, considering both genome and microbiome inheritance. 
The result showed genetic, microbiome, and phenotypic trends across 13 generations. 
Differences in the microbiome contribution to the phenotype were shown only in the 
scenario with a high host genetic effect of the microbiome. This is a preliminary work 
and further improvements to the simulator will be shared with the research community. 
 
Introduction 
Each year, new research underpins the importance of the effect of microbiota on 
animals’ phenotypes suggesting that this contribution is on par with the host genome 
(Camarinha-Silva et al., 2017; Difford et al., 2018). However, how the microbiome 
composition shapes complex phenotypes and mediates the host response to selection 
remains unclear (Henry et al., 2021).  
 
Animal’s microbiome composition is established by both the transmission mode 
(microbial inheritance) and the host genome (microbial heritability). Microbial 
inheritance could be vertical or horizontal (Koskella et al., 2017), depending on whether 
and in what quantity the microbiota in offspring came from their parents (Parental 
microbiota; PM) or their environment (Environmental microbiota; EM). Thus, the 
transmission mode plays a crucial role in the individual pool of available microbes 
(Dominguez-Bello et al., 2010). On the other hand, microbial heritability could 
influence the dynamic nature of the microbiome in the host, so microbial composition 
can be considered as another quantitative trait of an animal (Pérez-Enciso et al., 2021). 
Furthermore, other factors such as the microbial genome and the microbial interactions 
also shape the microbiome composition, which is clearly a multifactorial complex trait. 
 
The expensive sequence-based techniques limit the availability of empirical data to 
study microbiome composition at scale. Moreover, the lack of consensus on theoretical 
models and analytic methodologies constrains comparisons between experiments and 
learning how various microbiome-related factors impact animal’s phenotypes. Here we 
take a simulation approach to gain understanding of the key principles in studying the 
effect of the microbiome on phenotypes and selection response. To this end we have 
developed a simulator following a long-term phenotype selection experiment in rabbits 
(Blasco et al., 2017), considering both genome and microbiome inheritance. The overall 
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aim is to develop a tool for testing different data collection strategies and statistical 
models to further the study of microbiome in animal breeding. 
 
Materials & Methods 
The developed simulator allows users to simulate a host genome, microbiome 
composition, and animal’s phenotype as a function of genome, microbiome, and 
environment. In this study, we used this simulator to mimic a phenotypic divergent 
selection experiment modulated by the host-microbiome (Blasco et al., 2017). 
Moreover, three scenarios were implemented to study microbial heritability and its 
effect on the phenotype. The simulation was repeated 10 times. 
 
Genome simulation. The simulation of 1000 diploid genomes in the base population 
was performed with the AlphaSimR R package (Gaynor et al., 2021), using the genome 
and demographic history of rabbits (Oryctolagus cuniculus). We simulated 21 
chromosomes with a length of 1.2810 base pairs, 10,000 segregating sites, and 100 
Quantitative Trait Loci (QTL) per chromosome. The allele substitution effects of loci 
QTLs (𝜶𝜶) were sampled from gamma distribution, 𝜶𝜶~Г(k=0.2, θ=1). In the base 
population, the genetic values (gv) were distributed with mean 0 and genetic variance of 
0.81 with a targeted heritability of 0.13 (for litter size from Blasco et al., (2017)). 
 
Microbiome simulation. We simulated a parental (PM) and an environmental 
microbiome (EM) to model both aspects of microbiome inheritance. The species 
abundances (𝑥𝑥𝑘𝑘) in PM and EM were sampled from a negative binomial distribution, 
𝑥𝑥𝑘𝑘~NB (r=2, q=0.0001). The total number of species was 1,000 in EM and 600 in PM 
(with overlap between them). Both, PM, and EM, were simulated with a total species 
abundance of 108. The average of species abundance (µ𝑘𝑘) varied depending on the 
combination of the species in the individuals due to the microbiome inheritance. Hence, 
a simulation of 100,000 microbiome profiles was done to obtain µ𝑘𝑘 in the founder 
population, considering that the microbiome inheritance was 100% of the microbial 
species from the PM (assuming a vertical transmission from the dam due to the delivery 
mode) and 15% from the EM. The stability of microbial species was computed as a 
coefficient of variation (CV), sampled from a uniform distribution U(0.01, 2). This CV 
allowed us to compute the species variance (𝜎𝜎𝑚𝑚𝑘𝑘

2 ) and simulate the microbiome for each 
animal in the base population (PMi), sampling the abundance of each microbial species 
𝑘𝑘 from a normal distribution N(µ𝑘𝑘, 𝜎𝜎𝑚𝑚𝑘𝑘

2 ). A total of 35 microbial species were assigned 
an effect on the phenotype, following a gamma distribution, 𝜔𝜔𝑘𝑘~Г(k=0.2, θ=5) (Pérez-
Enciso et al., 2021). The individual’s microbiome value (mv) in the base population 
was distributed with mean 0 and microbiome variance (𝜎𝜎𝑚𝑚2 ) of 0.81, to match the 
genetic variance (Pérez-Enciso et al., 2021).  
 
Phenotype simulation. The phenotype was simulated as: 
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where 𝑦𝑦𝑖𝑖 is the phenotype of individual 𝑖𝑖; µ𝑃𝑃 is the phenotypic mean in the base 
population; ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑛𝑛

𝑗𝑗=1  is the 𝑔𝑔𝑔𝑔𝑖𝑖 of individual 𝑖𝑖, where 𝑧𝑧𝑖𝑖𝑖𝑖 is the genotype of individual 
𝑖𝑖 for SNP 𝑗𝑗 and 𝛼𝛼𝑗𝑗 is the allele substitution effect of the SNP 𝑗𝑗; ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜔𝜔𝑘𝑘
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of individual 𝑖𝑖, where 𝑥𝑥𝑖𝑖𝑖𝑖 is the abundance of species 𝑘𝑘 in individual 𝑖𝑖 (see equation 2) 
and 𝜔𝜔𝑘𝑘 is the effect of species 𝑘𝑘 on the host phenotype; and 𝑒𝑒𝑖𝑖 is the residual of 
inidividual i distributed as N(0, 𝜎𝜎𝑒𝑒2), were 𝜎𝜎𝑒𝑒2 is the residual variance. 



 

 
Inheritance. A divergent selection based on the female’s phenotypes was simulated 
according to Blasco et al. (2017). In the base population, 125 individuals with the 
highest phenotype and 125 with the lowest phenotype were selected to initiate divergent 
populations. Breeding males were full-sibs of the best 25 breeding females from each 
divergent population. Each breeding male was mated with five breeding females, 
avoiding a close relationship among them. Thirteen discrete generations of selection 
were simulated simultaneously for the two divergent populations. In each generation, 
125 breeding females and 25 breeding males were selected in each population. The 
breeding females were selected as in the base population, and the breeding males were 
males from the offspring of the best female for each sire (best mating). Mating and 
genome inheritance were simulated using the AlphaSimR package (Gaynor et al., 
2021). Microbiome inheritance was 100% from the PM and 15% from the EM. The 
transmission EM was the same for all animals and the two divergent populations, but 
different between generations (EMg). Hence, the microbiome composition in the 
offspring was computed using equation 2. 
 
Scenarios considered. Three scenarios were simulated to study how microbial 
heritability affected response to selection. The first scenario assumed the absence of 
microbial heritability (NMH), so there was no host genome effect on its microbiome. In 
the second and third scenarios, microbial heritability was included in the simulation. 
The second scenario assumed intermediate microbial heritability (IMH) from 0.25 to 
0.50 and the third scenario assumed high microbial heritability (HMH) from 0.5 to 0.9. 
Consequently, the species abundance was considered as another quantitative trait 
simulated following Pérez-Enciso et al. (2021): 

𝑥𝑥𝑖𝑖𝑖𝑖 = µ𝑘𝑘 + �𝑧𝑧𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗
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where 𝑥𝑥𝑖𝑖𝑖𝑖 is the abundance of the specie 𝑘𝑘 in the individual 𝑖𝑖; µ𝑘𝑘 is the average 
abundance of the specie 𝑘𝑘 in the base population; ∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1  is the genetic value (𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖) 
of individual 𝑖𝑖 for the abundance of specie 𝑘𝑘, 𝑧𝑧𝑖𝑖𝑖𝑖 is the genotype of SNP 𝑗𝑗 for individual 
𝑖𝑖, 𝛽𝛽𝑗𝑗𝑗𝑗 being the substitution allele effect of SNP 𝑗𝑗 for the species 𝑘𝑘; and 𝑒𝑒𝑖𝑖𝑖𝑖 is the 
residual of individual 𝑖𝑖 for the species 𝑘𝑘 distributed as N(0, 𝜎𝜎𝑒𝑒𝑘𝑘

2 ), where 𝜎𝜎𝑒𝑒𝑘𝑘
2  is residual 

variance for the species 𝑘𝑘. The 𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖 were distributed with mean 0 and microbial genetic 
variance (𝜎𝜎𝑚𝑚𝑚𝑚2 ) according to each microbial heritability. We assumed that 10% of the 
total number of species (100) were under the genetic control of 10% of the QTLs (210). 
From these 100 species, 18 of them influence the phenotype (50% of total species 
influencing the phenotype). 
 
Results and Discussion 
The simulation showed expected divergent trends throughout the 13 generations of 
selection (Figure 1). Although there were 35 microbial species with effect on host 
phenotype, and 18 of them under host genetic control, no differences were observed in 
phenotype trends between the scenarios NMH and IMH (Figure 1C). Differences in the 
phenotype trends were only shown with the scenario HMH (Figure 1C), that is when 
microbial heritability was high, from 0.5 to 0.9. In this scenario, microbiome value 
trend diverged more than with the NMH and IMH scenarios (Figure 1B). These 
preliminary results suggested that, under the assumed simulation, a high microbial 
heritability is necessary to observe a significant contribution of microbiome to response 
to selection. Likewise, the microbiome composition is multifactorial, and it has a huge 

 



variability within and between individuals. Another scenario considering only the effect 
of the host genome on the phenotype is necessary to fully assess the degree of 
microbiome contribution on the phenotype. 
 

 
Figure 1. Genetic, microbiome, and phenotypic trends throughout a divergent 
selection experiment. Averages and 95% quantiles over replicates are shown for A) 
genetic value, B) microbiome value, and C) phenotype value. HMH: High microbial 
heritability, IMH: Intermediate microbial heritability, NMH: No microbial heritability. 
High (dashed line) and Low are the two divergent populations. 
 
Conclusion 
In this study, a simulator of the modulation of a host-microbiome evolution has been 
developed. The result showed genetic, microbiome, and phenotypic trends across 13 
generations. Differences in the microbiome effect on the host phenotype were shown 
only in the scenario with high microbial heritability. This could be due to the reduction 
of the impact of the environmental microbiome. This is a preliminary work, and further 
improvements to the simulator will be shared with the research community. 
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