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Abstract. This paper extends a standard process algebra with a time-out operator,
thereby increasing its absolute expressiveness, while remaining within the realm of un-
timed process algebra, in the sense that the progress of time is not quantified. Trace and
failures equivalence fail to be congruences for this operator; their congruence closure is
characterised as failure trace equivalence.

1. Motivation

This work has four fairly independent motivations, in the sense that it aims to provide a
common solution to four different problems. How it yields a solution to the last two of these
problems is left for future work, however.

1.1. The passage of time in processes modelled as labelled transition systems.

The standard semantics of untimed non-probabilistic process algebras is given in terms
of labelled transition systems (LTSs), consisting of a set of states, with action-labelled
transitions between them. The behaviour of a system modelled as a state in an LTS can be
visualised as a token, starting in this initial state, that travels through the LTS by following
its transitions. A question that has plagued me since I first heard of this model, in December
1984, is where exactly (and how) does time progress when this token travels: in the states,
during the transitions, or maybe both?

In some sense this question is more of a philosophical than an practical nature. Process
algebra has flourished, without any convincing answer to this question sitting in its way.

One reasonable attitude is that in untimed progress algebra we abstract from time,
which makes the entire question meaningless. While this does make sense, I still desire
seeing an untimed process as a special case of a timed process, one where any period of
time that might be specified in a timed formalism is instantiated by a nondeterministic
choice allowing any amount of time. Such a point of view would certainly assist in relating
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timed and untimed process algebras. It is from this perspective that my question is in need
of an answer.

The common answer given by the process algebra community is that there is no need
to model transitions that take time, for a durational transition can simply be modelled as
a pair of instantaneous transitions with a time-consuming state in between. Here I follow
this train of thought, and regard transitions as occurring instantaneously. This implies that
time must elapse in states, if at all.

Now visualise a system reaching a state s in an LTS, that has a single outgoing tran-
sition u leading to a desired goal state. Assume, moreover, that this transition cannot be
blocked by the environment. A fundamental assumption made in most process algebraic
formalisms is that the system will eventually reach this goal state, that is, that it will not
stay forever in state s. In [GH19] this assumption is called progress. Without it it is not
possible to prove meaningful liveness properties [Lam77], saying that “something [good]
must eventually happen”.

When our LTS would model all activities of the represented system, it is hard to believe
how the system, upon reaching state s, comes to a rest, spends a finite amount of time in
state s while doing nothing whatsoever, and then suddenly, and without any clear reason,
takes the transition to the desired goal state. It appears more plausible that if we allow the
system to stay in state s for a finite amount of time, it can (and perhaps even must) stay
there for an infinite amount of time.

The way out of this paradox is that our system, being discrete, necessarily abstracts
from a lot of activity. The abstracted activity that is relevant for the visit of the system to
state s must be some durational activity, an amount of work to be done, that for a while
sits in the way of taking transition u. As soon as that work is done, and nothing further
sits in the way, transition u takes place.

In this paper this abstracted activity is made explicit, in the shape of a time-out tran-
sition t−→. Similar to the internal transition τ−→, modelling the occurrence of an instan-
taneous action from which we abstract, the time-out transition t−→ models the end of a
time-consuming activity from which we abstract. A state s in which the system is supposed
to spend some time—a positive and finite, but otherwise unquantified amount—can now
be modelled as a pair of states s1 and s2 with a time-out transition between them; the
outgoing transitions of s are then moved to s2. Time will be spent in state s1 only, where
some abstracted time-consuming activity takes place. The only thing in the model that
testifies to this activity is the time-out transition s1

t−→ s2, that is guaranteed to occur as
soon as the time-consuming work is done. Immediately afterwards, the system will take one
of the outgoing transitions of s2, unless they are all blocked by the environment in which
our reactive system is running.

An alternative proposal on how systems spend finite amounts of time in states is essen-
tially due to Milner [Mil90]. It says that the states in an LTS model reactive systems that
merely react on stimuli from the environment. This reaction may be instantaneous, but
the environment itself takes time between issuing stimuli. Usually, each outgoing transition
of a state s is labelled by a visible action a, and only when the environment chooses to
synchronise on channel a will such a transition occur. Normally, it may take a while before
the environment is ready to synchronise with any outgoing transition of state s, and this
is exactly what accounts for the time spent in state s. A special case occurs when state
s has an outgoing τ -transition. Since such transitions do not require synchronisation with
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the environment, it appears that the represented system is not allowed to linger in such a
state.

The current paper combines the time-out transitions proposed above with the reactive
viewpoint adopted by Milner. So any time the system spends in a state is either due to
the environment not allowing an outgoing transition, or the system waiting for a time-out
transition to occur (or both).

Admitting time-out transitions in an LTS not only allows the specification of states in
which the system spends a positive but finite amount of time, as described above; it also
allows the specification of states in which the system spends no time whatsoever, unless
forced by the environment—this is achieved by not using any time-out transitions leaving
that state. Moreover, we can model states s in which some outgoing transitions have to
wait for a time-out to occur, and others do not.1 This is done by modelling s as s1

t−→ s2,
were the outgoing transitions of s2 have to wait for the time-out, and the ones of s1 do
not. In that case the time-out will occur only if the environment fails to synchronise in
time with any of the outgoing transitions from s1. This implements a priority mechanism,
in which from the system’s perspective the outgoing transitions of s1 have priority over the
ones of s2.

1.2. Failure trace semantics. In [Gla01, Gla93] I classified many semantic equivalences
on processes, and proposed testing scenarios for these semantics in terms of button-pushing
experiments on reactive and generative machines, such that two processes are inequivalent iff
their difference can be detected through the associated testing scenario. Figure 1 shows the
various equivalences in the absence of internal transitions τ (or t). For equivalences such as
simulation equivalence (point S in Figure 1), or bisimilarity (B), the testing scenarios require
a replication facility, allowing the experimenter to regularly make copies of a system in its
current state, and expose each of those copies to further tests. This facility could be regarded
as fairly unrealistic, in the sense that one would not expect an actual implementation of
such a facility to be available. When one takes this opinion, (bi)similarity makes distinctions
between processes that are not well justified. Likewise, readiness equivalence (R∗) has a
testing scenario that allows us, in certain states, to see the menu of all available actions
the environment (= tester) can synchronise with. It may be deemed unrealistic to assume
such a menu to be generally available. Or for systems in which such a menu is available,
one might say that it has to be specified as part of the system behaviour, so that we do not
need it explicitly in a testing scenario. When one takes this opinion, readiness equivalence,
and its finer variants, also makes distinctions between processes that are not well justified.

Following this line of reasoning, the finest (= most discriminating) semantic equivalence
that does have a realistic testing scenario is failure trace semantics (FT ). Its testing scenario
allows the tester to control which actions may take place (are available for synchronisation)
and which are not. It also allows the tester to record sequences of actions that take place
during a run of the system, interspersed with periods of idling, where each idle period is
annotated with the set of actions made available for synchronisation by the tester during
this period. Such a sequence is a failure trace, and two systems are distinguished iff one has
a failure trace that the other has not. In Figure 1 two variants of failure trace equivalence

1Enriching the model with this kind of of states is not merely a luxury in which I indulge; such states

arise naturally through parallel composition. In my interleaving semantics it will turn out that t.a‖t.b t−→
a‖t.b = a.t.b+ t.(a.b+ b.a).
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are recorded (FT ∗ and FT∞), depending on whether one only allows finite observations,
leading to partial failure traces, or also infinite ones.

Failures semantics (F ∗) is the default semantics of the process algebra CSP [BHR84,
Hoa85]. It is coarser than failure trace semantics, in the sense that it makes more identifi-
cations. Its testing scenario is the variant of the one for failure trace semantics described
above, in which the environment/tester cannot alter the set of allowed actions once the sys-
tem idles (= reaches a state of deadlock). Thus, when two systems are failures inequivalent,
one can think of an environment such that when placed in that environment one of them
deadlocks and the other does not. An important insight is that such an environment can
always be built from some basic process algebraic operators. So when P are Q are failures
inequivalent, there is process algebraic context C[ ], such that C[P ] has a deadlock which
C[Q] has not (or vise versa).

Given that two processes P are Q are failure trace inequivalent iff, under a realistic
testing scenario, an environment can see their difference, one would expect, analogously
to the situation with failures semantics, that one can build an environment from process
algebraic operators that exploits that difference, i.e., that one can find a context C[ ], such
that the difference between C[P ] and C[P ] becomes much more tangible. However, standard
process algebras lack the expressiveness to achieve this.

So far the search for suitable process algebraic operators that allow us to exploit the
difference between failure trace inequivalent processes has not born fruit. Most operators fall
short in doing so, whereas others have too great a discriminating power. A prime example
of the latter is the priority operator of Baeten, Bergstra & Klop [BBK87]. It allows building
contexts that distinguish processes whenever they are ready trace equivalent. Here ready
trace semantics (RT ∗) is a bit finer than failure trace semantics (FT ∗). When analysing
how priority operators distinguish processes that are failure trace equivalent, one finds that
the priority operator in fact has unrealistic powers, and is not likely implementable.

The present paper shows that the addition of a time-out operator to a standard process
algebra suffices to exploit the difference between failure trace inequivalent processes. Here
the time-out operator is simply an instance of the traditional action prefixing operator α. ,
taking for α the time-out action t. I show that with this operator one can build, for any
two failure trace inequivalent processes P and Q, a context C[ ] such that C[P ] and C[P ]
are trace inequivalent. In fact, P and Q can be distinguished with may testing, as proposed
by De Nicola & Hennessy [DH84]. Without the time-out operator, may testing merely
distinguishes processes when they are trace inequivalent.

1.3. Capturing liveness properties while assuming justness. In [Gla19] I present a
research agenda aiming at laying the foundations of a theory of concurrency that is equipped
to ensure liveness properties of distributed systems without making fairness assumptions.
The reason is that fairness assumptions, while indispensable for some applications, in many
situations lead to false conclusions [GH19, Gla19]. Merely assuming progress, on the other
hand, is often insufficient to obtain intuitively valid liveness properties. As an alternative
to fairness assumptions, [GH19] proposes the weaker assumption of justness, that does not
lead to false conclusions.

As pointed out in [Gla19], when assuming justness but not fairness, liveness properties
are not preserved by strong bisimilarity, let alone by any of the other equivalences in the
linear time – branching time spectrum. An adequate treatment of liveness therefore calls
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for different semantic equivalences, ones that do not make all the identifications of strong
bisimilarity.

Whereas adapting the notion of bisimilarity to take justness considerations properly into
account is far from trivial, it appears that a version of failure trace semantics that preserves
liveness properties when assuming justness but not fairness comes naturally, and is in a
denotational approach to semantics hard to avoid. Here it is crucial that the semantics is
based on complete failure traces, modelling potentially infinite observations of systems.

The present paper paves the way for such an approach by considering partial failure
traces. This yields a semantic equivalence that is coarser than strong bisimilarity, and can
be justified from an operational point of view, although it completely fails to respect liveness
properties. The move from partial to complete failure trace equivalence is left for future
work.

1.4. Absolute expressiveness. In comparing the expressiveness of process algebraic lan-
guages, an important distinction between absolute and relative expressiveness is made
[Par08]. Relative expressiveness deals with the question whether an operator in one lan-
guage can be faithfully mimicked by a context or open term in another. It is usually studied
by means of valid encodings between languages [Gor10, Gla18]. As there is a priori no up-
per bound on how convoluted an operator one can add to a process algebra, it may not be
reasonable to aim for a universally expressive language, in which all others can be expressed,
unless a thorough discipline is proclaimed on which class of operators is admissible.

Absolute expressiveness deals with the question whether there are systems that can be
denoted by a closed term in one language but not in another. It can for instance be argued
that up to strong bisimilarity the absolute expressiveness of a standard process algebra
like CCS with guarded recursion is not decreased upon omitting the parallel composition
(although its relative expressiveness surely is). Namely, up to strong bisimilarity, each
transition system that can be denoted by a closed CCS expression can already be denoted
by such a CCS expression that does not employ parallel composition. This consideration
occurs in the proof of Theorem 2.3. When using absolute expressiveness, the goal of a
universally expressive process algebra becomes much less unrealistic. In fact, when not
considering time, probabilities, or other features that are alien to process algebras like CCS,
it could be argued, and is perhaps widely believed, that the version of CCS with arbitrary
infinite sums and arbitrary systems of recursive equations is already universally expressive.
The reason is that all that can be expressed by CCS-like languages are states in LTSs, and
up to strong bisimilarity, each state in each LTS can already be denoted by such a CCS
expression.

This conclusion loses support when factoring in justness, as discussed in Section 1.3,
for in this setting strong bisimilarity becomes too coarse an equivalence to base a theory
of expressiveness upon. In fact, the idea that standard process algebras like CCS are
universally expressive has been challenged in [Gla05] and [GH15], where concrete and useful
distributed systems are proposed that can not be modelled in such languages. In [Gla05] this
concerns a system that stops executing a repeating task after a time-out goes off, whereas
the systems considered in [GH15] are fair schedulers and mutual exclusion protocols. In both
cases a proper treatment of justness appears to be a prerequisite for the correct modelling
of such systems, and for this reason this task falls outside the scope of the current paper.
However, additionally, both examples need something extra beyond what CCS has to offer,
and both papers indicate that a simple priority mechanism would do the job.
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Table 1: Structural operational interleaving semantics of CCSPt

α.x α−→ x
x α−→ x′

x+ y α−→ x′
y α−→ y′

x+ y α−→ y′
x α−→ x′

R(x) β−→ R(x′)

(

α=β=τ
∨ α=β=t
∨ (α,β)∈R

)

x α−→ x′

x ‖S y α−→ x′ ‖S y
(α 6∈ S)

x a−→ x′ y a−→ y′

x ‖S y a−→ x′ ‖S y′
(a ∈ S)

y α−→ y′

x ‖S y α−→ x ‖S y′
(α 6∈ S)

x α−→ x′

τI(x)
α−→ τI(x′)

(α 6∈ I)
x a−→ x′

τI(x)
τ−→ τI(x′)

(a ∈ I)
/
\SX |S\

/
α−→ y

/
\X|S\

/
α−→ y

The current paper offers such a simple priority mechanism, and thereby paves the way
for expressing the systems that have been proposed as witnesses for the lack of universal
expressiveness of standard process algebras.

2. The process algebra CCSPt

Let A and V be countably infinite sets of visible actions and variables, respectively. The
syntax of CCSPt is given by

E ::= 0 | α.E | E + E | E ‖S E | τI(E) | R(E) | X | /
\X|S\

/ (with X ∈ VS)

with α∈Act := A⊎{τ, t}, S, I ⊆A, R⊆A×A, X ∈V and S a recursive specification: a set
of equations {Y = SY | Y ∈ VS} with VS ⊆ V (the bound variables of S) and SY a CCSPt

expression.
The constant 0 represents a process that is unable to perform any action. The process

α.E first performs the action α and then proceeds as E. The process E + F will behave as
either E or F . ‖S is a partially synchronous parallel composition operator; actions a ∈ S
must synchronise—they can occur only when both arguments are ready to perform them—
whereas actions α /∈ S from both arguments are interleaved. τI is an abstraction operator;
it conceals the actions in I by renaming them into the hidden action τ . The operator R is
a relational renaming: it renames a given action a ∈ A into a choice between all actions b
with (a, b) ∈ R. I require that all sets {b | (a, b) ∈ R} are finite. Finally, /

\X|S\
/ represents

the X-component of a solution of the system of recursive equations S. A CCSPt expression
E is closed if every occurrence of a variable X is bound, i.e., occurs in a subexpression /

\Y |S\
/

of E with X ∈ VS .
The interleaving semantics of CCSPt is given by the labelled transition relation → ⊆

P×Act×P on the set P of closed CCSPt terms or processes, where the transitions P a−→ Q
are derived from the rules of Table 1. Here /

\E|S\
/ for E an expression and S a recursive

specification denotes the expression E in which /
\Y |S\

/ has been substituted for the variable
Y, for all Y ∈ VS .

The language CCSP is a common mix of the process algebras CCS [Mil90] and CSP
[BHR84, Hoa85]. It first appeared in [Old87], where it was named following a suggestion by
M. Nielsen. The family of parallel composition operators ‖S stems from [OH86], and incor-
porates the two CSP parallel composition operators from [BHR84]. The relation renaming
operators R( ) stem from [Vaa93]; they combine both the (functional) renaming operators
that are common to CCS and CSP, and the inverse image operators of CSP. The remaining
constructs are common to CCS and CSP. The syntactic form of inaction 0, action prefixing
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α.E and choice E + F follows CCS, whereas the syntax of abstraction τI( ) and recursion
/
\X|S\

/ follows ACP [BW90]. The only addition by me is the prefixing operator t. ; so far
it is merely an action that admits no synchronisation, concealment, or renaming.

Definition 2.1. A strong bisimulation is a symmetric relation R on P, such that, for all
(P,Q) ∈ R and α ∈Act,

• if P α−→ P ′ then Q α−→ Q′ for some Q′ with P ′RQ′.

Processes P,Q ∈P are strongly bisimilar, P ↔ Q, if PRQ for some strong bisimulation R.

Strong bisimilarity lifts in the standard way to open CCSPt expressions, containing free
with variables: E ↔ F iff P ↔ Q for each pair of closed substitution instances P and Q of
E and F .

The common strong bisimulation semantics of process algebras like CCSPt interprets
closed expressions as ↔-equivalence classes of processes, thereby identifying strongly bisim-
ilar processes. Operators, or more generally open terms E, then denote n-ary operations
on such equivalences classes, with n the number of free variables occurring in E. To make
sure that the meaning of the operators is independent of the choice of representative pro-
cesses within their equivalences classes, it is essential that ↔ is a congruence for all n-ary
operators f :

if Pi ↔ Qi for all i = 1, . . . , n then f(P1, . . . , Pn) ↔ f(Q1, . . . , Qn).

This property holds for CCSPt since the structural operation semantics of the recursion-free
fragment of the language, displayed in Table 1, fits the tyft/tyxt format of [GV92]. Likewise,
to make sure that also the meaning of the recursion construct is independent of the choice of
representative expressions within their equivalences classes, ↔ needs to be full congruence
for recursion [Gla17]:

if SY ↔ S ′
Y for all Y ∈ VS = VS′ then /

\X|S\
/ ↔ /

\X|S ′\
/

for all recursive specifications S and S ′ and variables X with X ∈ VS = VS′ . Again, this
property holds since the semantics of Table 1 fits the tyft/tyxt format with recursion of
[Gla17].

Definition 2.2. Given a recursive specification S, write X u−→ Y , for variables X,Y ∈ VS ,
if Y occurs in the expression SX outside of all subexpressions α.E of SX . S is guarded iff
there is no infinite chain X0

u−→ X1
u−→ X2

u−→ . . . . A process is guarded if all recursive
specifications called by it are guarded.

Often, one restricts attention to guarded processes. The axioms of Table 2 are sound for
↔, meaning that writing ↔ for =, and substituting arbitrary expressions for the variables
x, y, z, or the meta-variables Pi and Qj, turns them into true statements. In these axioms
α, β range over Act and a, b over A. All axioms involving variables are equations. The
axiom involving P and Q is a template that stands for a family of equations, one for each
fitting choice of P and Q. This is the CCSPt version of the expansion law from [Mil90]. The
axiom /

\X|S\
/ = /

\SX |S\
/ is the Recursive Definition Principle (RDP) [BW90]. It says that

recursively defined processes /
\X|S\

/ satisfy their set of defining equations S. In particular,
this entails that each recursive specification has a solution. The axiom RSP [BW90] is a
conditional equation, with as antecedents the equations of a guarded recursive specification
S. It says that the X-component of any solution of S—a vector of processes substituted
for the variables VS—equals /

\X|S\
/. This is equivalent to the statement that the solutions

of guarded recursive specifications must be unique.
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Table 2: A complete axiomatisation for strong bisimilarity on guarded CCSPt processes

x+ (y + z) = (x+ y) + z τI(x+ y) = τI(x) + τI(y) R(x+ y) = R(x) +R(y)
x+ y = y + x τI(α.x) = α.τI(x) if α /∈ I R(τ.x) = τ.R(x)
x+ x = x τI(α.x) = τ.τI(x) if α ∈ I R(t.x) = t.R(x)
x+ 0 = 0 /

\X|S\
/ = /

\SX |S\
/ R(a.x) =

∑

{b|(a,b)∈R}

b.R(x)

If P =
∑

i∈I

αi.Pi and Q =
∑

j∈J

βj .Qj then

P ‖S Q =
∑

i∈I, αi /∈S

αi.(Pi ‖S Q) +
∑

j∈J, βj /∈S

βj .(P ‖S Qj) +
∑

i∈I, j∈J, αi=βj∈S

αi.(Pi ‖S Qj)

Recursive Specification Principle (RSP) S ⇒ X = /
\X|S\

/ (S guarded)

Theorem 2.3. For guarded P,Q ∈ P, one has P ↔ Q iff P = Q is derivable from the
axioms of Table 2.

Proof Sketch. “If”, the soundness of the axiomatisation of Table 2, is an immediate conse-
quence of the soundness of the individual axioms.

“Only if”, the completeness of the axiomatisation: Using the axioms from the first box
of Table 2 any guarded CCSPt process P can be brought in the form

∑

i∈I αi.Pi—a head

normal form. In fact, {(αi, Pi) | i ∈ I} can be chosen to be {(αi, Pi) | P
α−→ Pi}. Given a

process P , let reach(P ) be the smallest set of processes containing P , such that R α−→ R′

with R ∈ reach(P ) implies R′ in reach(P ). Now dedicate to each R ∈ reach(P ) a variable
XR, and consider the recursive specification S with VS the set of all those variables, and
as equations XR =

∑

k∈K αk.XRk
, using the head normal form of R. Using RSP, we derive

P = /
\XP |S

\
/. Likewise, we can derive Q = /

\XQ|S
′\
/ for a recursive specification S ′, consisting

of equations of the form XS =
∑

l∈L βl.XSl
.

Once we have two such recursive specifications, as described for instance in [Mil90]
we can create a combined recursive specification S ′′ such that both P and Q are the X-
components of solutions of S ′′. With RSP one then derives P = Q. �

The above proof idea stems from Milner [Mil90] and can be found in various places in the
literature, but always applied to finite-state processes, or some other restrictive subset of
a calculus like CCSPt. Since the set of true statements P ↔ Q, with P and Q processes
in a process algebra like CCSPt, is well-known to be undecidable, and even not recursively
enumerable, it was widely believed that no sound and complete axiomatisation of strong
bisimilarity could exist. Only in March 2017, Kees Middelburg [Mid17] observed (in the
setting of the process algebra ACP [BW90]) that the above standard proof applies verbatim
to arbitrary guarded processes. His result does not contradict the non-enumerability of the
set of true statements P ↔ Q, due to the fact that RSP is a proof rule with infinitely many
premises.

3. Adding a time-out to CCSP

The process algebra CCSP, just like CCS, CSP and ACP, is an untimed process algebra,
meaning that its semantics abstracts from a quantification of the amounts of time that
elapse during or between the execution of the actions. Untimed process algebras do not
deny that the execution of processes takes time; they abstract from timing merely in not
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specifying how much time elapses here and there. An untimed process could therefore be
seen as a timed process, in which each occurrence of a particular period of time is replaced
by a nondeterministic choice allowing any amount of time.

From this perspective, one could wonder whether time elapses during the execution of
the actions α ∈ Act, or between the actions, that is, in the states. In some works, notably
[GV87], it is assumed that time happens during the execution of actions. This leads to a
rejection of equations like a‖b = a.b+b.a,2 which are fundamental for interleaving semantics
[Mil90, BHR84, Hoa85, BW90, OH86], for the left-hand side allows an overlap in time of
the actions a and b, whereas the right-hand side does not. The default opinion, however, is
that the execution of actions is instantaneous, so that time must elapse between the actions.
The following formulation of this assumption is taken from Hoare [Hoa85, Page 24]:

The actual occurrence of each event in the life of an object should be regarded as an
instantaneous or an atomic action without duration. Extended or time-consuming
actions should be represented by a pair of events, the first denoting its start and
the second denoting its finish.

In [GV97] it is pointed out that simply replacing each occurrence of a durational action α
by a sequence α+.α− of two instantaneous actions, one denoting the start and one the end
of α, is insufficient to adequately capture the durational nature of actions—it even makes
a difference whether actions are split into two or into three parts. The problem arises
from the possibility that two actions α may occur independently in parallel, and the above
splitting allows for the possibility that the end of one such action is confused with the end
of the other. A possible solution is to model a durational action α as a process

∑

i∈I α
+
i .α

−
i ,

where each start action α+ is equipped with a tag i ∈ I that has to be matched by the
corresponding end action α−. When the choice I of tags is large enough, this suffices to
model durational actions in terms of instantaneous actions and durational states. It is for
that reason that in the present paper I focus on time elapsing in states only.

Let s be the state between the a- and τ -transitions in the process a.τ.P . Assume that
time may elapse in state s, in the sense that after the execution of a and before the execution
of τ , the modelled system, for some positive amount of time, does nothing whatsoever. Then
it is hard to imagine what could possibly trigger the system to resume activity after this
amount of time. A system that does nothing whatsoever may be regarded as dead, and
remains dead.

The philosophy of Milner [Mil90] appears to be that once a system reaches state s, it
will proceed with the τ -transition immediately. However, once it reaches a state

∑

i∈I ai.Pi,
where the ai are visible actions, it remains idle until the environment of the system triggers
the execution of one of the actions ai. The system is reactive, in the sense that visible actions
occur only in reaction to stimuli from the environment. The latter could be modelled as
the environment being a user of the system that may press buttons labelled a, for a ∈ A.
In a state where the system is not able to engage in an a-transition, the user may exercise
pressure on the a button, but it will not go down. In this philosophy, all time that elapses
is due to the system waiting on its environment.

An unsatisfactory aspect of the above philosophy is that there is an asymmetry between
a system and its environment. The latter can spontaneously cause delays, but the former
may delay only in reaction to the latter. When we would model the environment also as a
closed process algebraic expression, and put it in parallel with the system, in such a way

2I abbreviate a.0 by a and ‖∅ by ‖. Moreover, + binds weaker than a. , and ‖S binds weakest of all.
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that no action depends on triggers from outside the system/environment composition, then
the resulting composition performs all its actions instantaneously, possibly until it reaches
a deadlock, from which it cannot recover.

The present paper offers an alternative account on the passage of time, with a symmetric
view on systems and their environments. In fact, it tries to be as close as possible to the
philosophy of Milner described above, but adds the expressiveness to model delays caused by
a system rather than its environment. Here there are two overriding design decisions. First,
amounts of time will not be quantified, for I aim to remain in the realm of untimed process
algebras. Second, the assumption of progress [GH19] needs to be maintained. Progress says
that from state s above one will sooner or later reach the process P , i.e., an infinite amount
of waiting is ruled out. This assumption is essential for the formulation and verification of
liveness properties, saying that a system will reach some goal eventually [GH19].

Following [Gla01, Gla93], I explicitly allow the environment of a system to exercise
pressure on multiple buttons at the same time. The actions for which, at a given time, the
environment is exercising pressure, are allowed at this time, whereas the others are blocked.
Instead of a model with buttons, one may imagine a model with switches for each visible
action, where the environment, at discrete points in time, can toggle the switches of any
action between allowed and blocked. In particular the occurrence of a visible action may
trigger the environment to rearrange it switches.

To model time elapsing in a state, I assume that the state may be equipped with one
of more time-outs. A time-out is a kind of clock that performs some internal activity, from
which I abstract, and at the end of this activity emits a signal that causes a state-change.
The time-out always runs for an unspecified, but positive and finite amount of time. For
each time-out of a state there is an outgoing transition labelled t that models this state-
change. A t-transition is not observable by the environment. So, apart from the associated
time-out, it is similar to a τ -transition.

The state a.P + b.Q + t.R, for instance, has one outgoing t-transition, corresponding
with one time-out. If, upon reaching this state, the environment is allowing one of a or
b, this action will happen immediately, reaching the follow-up state P or Q; in case the
environment allows both a and b, the choice between them is made nondeterministically,
i.e., by means that are not part of my model. If, upon reaching the state a.P+b.Q+t.R, the
environment is not allowing a or b, the system idles, until either the environment changes
and allows a or b after all, or the time-out goes off, triggering the t-transition.

A state like a.P + t.Q + t.R simply has two time-outs; which one goes off first is not
predetermined. If the transition to R occurs, the other time-out is simply discarded. A
state like a.P + b.Q has no time-outs. Upon reaching this state the system idles until the
environment allows a or b to happen.

Note that in a.P + b.Q+ t.R the action t should not be seen as a durational τ -action,
for that would suggest that as soon as that action starts, one has lost the option to perform
a or b. Instead, the options a and b remain open until the instantaneous transition to R
occurs.

The expressive power of time-outs. To model that a process like a.τ.P simply spends
some time in the state s right before the τ -action, one could write a.t.τ.P . Furthermore, a
durational action α, contemplated above, could be modelled as

∑

i∈I α
+
i .t.α

−
i . Both uses

do not involve placing a process t.P in a +-context. The latter is useful for modelling a
simple priority mechanism. Suppose one wants to model a process like a.P + b.Q, which
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can react on a- and b-stimuli from the environment. However one has a preference for a.P ,
in the sense that if the environment allows both possibilities, a.P should be chosen. This
can be modelled as a.P + t.b.Q or a.P + t.(a.P + b.Q). In an environment allowing both
a and b, this system will perform a.P . But in an environment just allowing b, first some
idling occurs, and then b.Q.

Three crucial laws. The most fundamental law concerning time-outs, which could be
added as an axiom to Table 2, is

τ.P + t.Q = τ.P . (3.1)

It says that a choice between τ.P and t.Q will always be resolved in favour of τ.P , because
the τ -action is not contingent on the environment and thus can happen immediately, before
the time-out associated with t.Q has a chance to go off.

A process t.(τ.P + b.Q) will, after waiting for some time, make a choice between τ.P
and b.Q. In case the environment allows b, this choice is nondeterministic. In case the
environment blocks b at the time the time-out associated with the t-transition goes off, the
system will immediately take the τ.P branch, thereby discarding b.Q. Henceforth I will
substitute τ{b}(P ) for P , to indicate that this is a process that cannot perform a b-action.
Now consider two such processes placed in parallel, synchronising on the action b. Each of
these processes acts as the environment in which the other will be placed. In this paper I
assume that here the synchronisation on b can not occur:

t.(τ.τ{b}(P ) + b.Q) ‖{b} t.(τ.τ{b}(S) + b.T ) = t.τ.τ{b}(P ) ‖{b} t.τ.τ{b}(S) . (3.2)

Intuitively, the reason is that the time-outs on the left and on the right go off at random
points in real time. I explicitly assume no causal link of any kind between the relative
timing of these events. Hence the probability that the two time-outs go off at the very
same moment is 0, and this possibility can be discarded. So either the left-hand side in the
parallel composition reaches the state L := τ.τ{b}(P ) + b.Q before the right-hand process
reaches the state R := τ.τ{b}(S)+b.T , or vice versa. For reasons of symmetry I only consider
the former case. When the state L is reached, the environment of that process is not yet
ready to synchronise on b, so τ.τ{b}(P ) will happen instead. This forces the right-hand side,
when reaching the state R, to choose τ.τ{b}(S), for τ{b}(P ) cannot synchronise on b.

Algebraically, (3.2) can be derived from (3.1) and the axioms of Table 2, when taking for
granted the obvious identity τ{b}(x)‖{b} t.(y+ b.z) = τ{b}(x)‖{b} t.y (whose closed instances

with guarded recursion are derivable from the axioms of Table 2):

t.L ‖{b} t.R
(Expansion Law)

=

t.
(

L ‖{b} t.R
)

+ t.
(

t.L ‖{b} R
)

(Expansion Law)
=

t.
(

τ.
(

τ{b}(P ) ‖{b} t.R
)

+ t.
(

L ‖{b} R
))

+ t.
(

t.L ‖{b} R
)

(3.1)
=

t.
(

τ.
(

τ{b}(P ) ‖{b} t.R
))

+ t.
(

t.L ‖{b} R
)

(obvious identity; same reasoning on the right)
=

t.
(

τ.
(

τ{b}(P ) ‖{b} t.τ.τ{b}(S)
))

+ t.
(

τ.
(

t.τ.τ{b}(P ) ‖{b} τ{b}(S)
))

(same way back)
=

t.τ.τ{b}(P ) ‖{b} t.τ.τ{b}(S) .
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To reject (3.2) one would need to take into account seriously the possibility that the two
time-outs take exactly equally long. This corresponds to the addition of the rule

x t−→ x′ y t−→ y′

x ‖S y t−→ x′ ‖S y′

to the structural operational semantics of CCSPt, and the summand

+
∑

i∈I, j∈J, αi=βj=t

t.(Pi ‖S Qj)

to the expansion law of CCSPt. While this could very well lead to an interesting alternative
treatment of timeouts, I will not pursue this option here.

Another law, that could also be added as an axiom to Table 2, is

a.P + t.(Q+ τ.R+ a.S) = a.P + t.(Q+ τ.R) . (3.3)

When the process a.P+t.(Q+τ.R+a.S) runs in an environment that allows a, the summand
t.(Q+τ.R+a.S) will not be taken, so it does not matter if there is a summand a.S after the
t-action. And when this process runs in an environment that keeps blocking a long enough,
the summand a.S will not be taken. So the only way to execute a.S is in an environment
that initially blocks a, but then makes a change to allow a. In this case we need to consider
two independently chosen points in time: time te where the environment starts allowing
a, and time ts where the time-out goes off that makes the system take the (unobservable)
t-transition to the state Q+ τ.R + a.S. Following the same reasoning as for law (3.2), the
probability that te = ts is 0, so this possibility can be ignored. In case te occurs before ts,
the system will never reach the state Q+ τ.R + a.S. In case te occurs after ts, the system
will, in state Q+ τ.R + a.S, choose τ.R (or a branch from Q) over a.S. In either case, the
summand a.S can just as well be omitted.

Time guardedness. CCSPt allows expressions such as /
\X|X = τ.X\

/ or /
\X|X = a.X\

/

where infinitely many actions could happen instantaneously. When this is felt as a draw-
back, one could impose syntactic restrictions on the language to rule out such behaviour.
The following is an example of such a restriction.

Definition 3.1. Given a recursive specification S, write X tu−→ Y , for variables X,Y ∈ VS ,
if Y occurs in expression SX outside of all subexpressions t.E of SX . S is time guarded
iff there is no infinite chain X0

tu−→ X1
tu−→ . . . . A process is time guarded if all recursive

specifications called by it are time guarded.

Clearly, the time guarded CCSPt expressions, a subset of the guarded CCSPt expressions,
allow only finitely many actions to occur between any two time-out transitions.

4. Trace and failures equivalence fail to be congruences

The paper [Gla01] presents a spectrum of semantic equivalences on processes encountered
in the literature. It only deals with concrete processes, not featuring the internal action τ .
Of course, the time-out action t does not occur in [Gla01] either. Figure 1 reproduces the
spectrum of [Gla01, Figure 9], while omitting those semantic equivalences that fail to be
congruences for the τ -free fragment of CCSP—those were coloured red in [Gla01, Figure 9].
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Figure 1: The linear time – branching time spectrum [Gla01]

(Strong) bisimilarity (B) [Mil90, Par81], cf. Definition 2.1, is the finest semantics of
Figure 1, i.e., making the fewest identifications between processes, or yielding the smallest
equivalence classes. It sits at the branching time side of the spectrum, as it distinguishes
processes based on the timing of choices between different execution sequences, e.g., a.(b.c+
b.d) 6= a.b.c+ a.b.d.

(Partial) trace semantics (T ∗) [Hoa80] is the coarsest semantics of Figure 1, i.e., making
the most identifications. It sits at the linear time side of the spectrum, as it abstracts a
process into the sequences of action occurrences that can be observed during its runs, its
traces, and identifies two processes when they have the same traces.

Failures semantics (F ∗) is the default semantics of the process algebra CSP [BHR84,
Hoa85]. When restricting to concrete processes, its falls neatly between T ∗ and B. Similar
to bisimulation semantics, failures semantics rejects the equation a.(b+ c) = a.b+ a.c that
holds in trace semantics. The main reason for doing so is that in an environment where
action c remains blocked, the left-hand side will surely do the b-action, whereas the right-
hand side may deadlock instead. However, no such argument distinguishes a.(b.c+ b.d) and
a.b.c+ a.b.d, and hence these processes are identified in failures semantics.

Failure trace semantics (FT ∗) was proposed in [Gla01], and first presented in [Bae86], as
the natural completion of the square suggested by failures, readiness [OH86] and ready trace
semantics [BBK87]. For finitely branching processes it coincides with refusal semantics,
introduced by Phillips in [Phi87]. Like failure semantics it rejects the identity a.(b + c) =
a.b + a.c, but accepts a.(b.c + b.d) = a.b.c + a.b.d. The standard example of two processes
that are failures equivalent but not failure trace equivalent is displayed in Figure 2.
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Figure 2: Failures and ready equivalent, but not failure trace or ready trace equiva-
lent [Gla01]

The following argument shows that neither trace nor failures equivalence are congru-
ences for the operators of CCSPt. That is, there are failures equivalent processes P and Q
(that are therefore certainly trace equivalent) and a recursion-free CCSPt-context C[ ] such
that C[P ] and C[P ] are trace inequivalent.

Example 4.1. Take P := a.(b+ c.d) + a.(f + c.e) and Q := a.(b+ c.e) + a.(f + c.d).
Use the context C[ ] := τ{a,b,c}(a.(b + t.c) ‖{a,b,c,f} ). Then only C[Q] can ever perform

the action d. Namely, the context, enforcing synchronisation on the actions a, b, c and
f , implements a priority of b over c (while blocking f altogether); whenever its argument
process P or Q faces a choice between a b- and a c-transition, within this context it must
take the b-transition. This explains why C[P ] can never reach the action d. The abstraction
operator τ{a,b,c} is not redundant, although τ{b} would have worked as well. Without such
an operator, the process C[P ] might run in an environment in which b is blocked, and here
the d could occur after all.

Interestingly, I could make this argument without even providing definitions of trace and
failures equivalence on LTSs that feature time-out transitions. The only two things we need
to know about such equivalences are that they must (a) distinguish a process that can never
do the action d from one that can, and (b) identify the two processes of Figure 2. Property
(b) is satisfied when merely requiring that on concrete process (without τ and t) these
equivalences agree with the definitions in [Gla01]. The argument is thus also independent
of the question how these equivalences are extended to a setting with the hidden action τ .

The same example, with its above analysis, also shows that ready equivalence (R∗) fails
to be a congruence for CCSPt, for it also identifies the processes P and Q.

In Figure 1 I have coloured red all those semantics that can be seen to fail the congruence
requirement by a similar argument. For the infinitary versions of trace, failures and readiness
semantics (T∞, F∞ and R∞), the same example applies. For possible-futures equivalence
(PW ∗ and PW∞) one takes as witness the two processes of [Gla01, Counterexample 7], in
combination with the obvious context that gives priority of b over a as well as c. Simulation
equivalence (S) and its finitary variants (S∗ and Sω) make the identification a.b+ a = a.b
[Gla01, Counterexample 2]. Using this, the following argument shows that these semantics
also fail to be congruences for CCSPt.

Example 4.2. Take P := a.b + a and Q = a.b, and use the context C[ ] := τ{a,b}(a.(b +
t.d) ‖{a,b} ). Then only C[P ] can ever perform the action d. Here d can be done by the
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context only, rather than by the processes P or Q. However, after synchronising on a, the
context will proceed towards d only when the environment of b+ t.d, which is the process
P or Q synchronising on b, blocks the b-transition. This is possible for P but not for Q. In
this example the possibility to deadlock (or the impossibility to perform a certain action)
is made observable through a context.

It follows that failure trace semantics is in fact the coarsest semantics reviewed in [Gla01]
that could be a congruence for the operators of CCSPt. By the arguments in Section 1.2
it also is the finest semantics with a convincing testing scenario, in the sense that all finer
semantics make distinctions that are hard to justify. Together, this tells us that failure
trace semantics may be the only reasonable semantics for CCSPt.

The next section proposes an extension of the definition of failure trace semantics (in
[Gla01] only given for concrete processes, without the special actions τ and t) to arbitrary
LTSs featuring τ and t, and thereby to CCSPt. Of course on LTSs with τ but without t it
coincides with the definition given in [Gla93].

Then Section 6 shows that, when restricting the choice operator + of CCSPt to guarded
choice, failure trace equivalence is in fact a congruence for the operators of CCSPt. To obtain
a congruence for the +, a rooted version of failure trace equivalence is defined that records
more information on the behaviour of process around their initial states. This situation is
the same as for weak bisimilarity [Mil90] and virtually all other semantic equivalences that
partially abstract from the hidden action τ .

In Section 8 I then show that for any two failure trace inequivalent processes P and
Q one can find a recursion-free CCSPt-context C[ ] such that C[P ] and C[P ] are trace
inequivalent. This means that the arguments from Examples 4.1 and 4.2 not only apply to
the semantics surveyed in [Gla01], but in fact to any semantics that is incomparable with
or coarser than failure trace semantics.

5. Partial failure trace semantics of CCSPt

A finite failure trace is a sequence σ ∈ (A ∪ P(A))∗ of actions and sets of actions. It
represents an observation of a system. Each action a ∈ A occurring in σ represents the
observation of the instantaneous occurrence of that action. Each set X ⊆ A occurring in
σ represents the observation of a period of idling (meaning that no actions occur) during
which the environment allows (i.e., is ready to synchronise with) exactly the actions in X.
Such a set is called a refusal set [BHR84, Gla01], because it it corresponds with an offer X
from the environment that is refused by the system. A partial failure trace σ⊤ consists of a
finite failure trace σ followed by the tag ⊤. It represents a partial observation of a system.
The symbol ⊤ indicates the act, on the part of the observer, of ending the observation.

Table 3: Operational failure trace semantics of CCSPt

⊤ ∈ FT ∗(x)
x a−→ y ρ ∈ FT ∗(y)

aρ ∈ FT ∗(x)

x τ−→ y ρ ∈ FT ∗(y)

ρ ∈ FT ∗(x)

x α−6→ for all α ∈X ∪ {τ}

ρ ∈ FT ∗(x)

Xρ ∈ FT ∗(x)

x α−6→ for all α ∈X ∪ {τ}

x t−→ y Xρ ∈ FT ∗(y)

Xρ ∈ FT ∗(x)

x α−6→ for all α ∈X ∪ {τ}

x t−→ y aρ ∈ FT ∗(y)

Xaρ ∈ FT ∗(x)
(a ∈X)
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Table 3 derives the set FT ∗(P ) of partial failure traces of a process P . Here concate-
nation of sequences is denoted by juxtaposition. The first rule testifies that it is always
possible to end the observation and just record ⊤. The next two rules say that visible
actions are observed, whereas hidden actions are not. The fourth rule says that, when the
environment allows the set of actions X, idling in a given state x is possible iff from that
state no actions a ∈ X, nor the hidden action τ , can occur. These four rules stem in essence
from [Gla01, Gla93]. The last two rules deal with the time-out t. To follow a transition

x t−→ y, the system must be idling in state x until the time-out occurs. Let X be the set
of actions allowed by the environment at this time. As explained with Law (3.3), I ignore
the possibility that the environment changes the set of allowed actions at the exact same
time as the occurrence of the time-out. So right after the time-out occurs, X is still the set
of actions allowed by the environment. At this time there are two possibilities. Either the
system keeps idling, namely when none of the actions from X can occur in state y; or the
system performs one of the actions a ∈ X (possibly after some τ -transitions). These two
possibilities correspond with the remaining two rules.

Definition 5.1. Processes P,Q ∈ P are partial failure trace equivalent, P ≡∗
FT Q, iff

FT ∗(P ) = FT ∗(Q).

A path-based characterisation of partial failure traces.

Definition 5.2. A finite path π : P0
α1−→ P1

α2−→ · · · αℓ−→ Pℓ is an alternating sequence of
states/processes and transitions, starting and ending with a state, each transition going
from the state before it to the state after it. One says it is a path of P ∈ P if its first state
P0 is P .

A process P ∈ P is stable, notation stable(P ), if P τ−6→, i.e., if it has no outgoing

τ -transitions. The set I(P ) of initial visible actions of a process P is {a ∈ A | P a−→},
provided P is stable. Here P a−→ means that P a−→ Q for some Q ∈ P. If P is unstable,
I(P ) := ⊥.

The concrete ready trace crt(π) of a finite path π as above is I(P0)α1I(P1)α2 · · ·αℓI(Pℓ).
The (abstract) ready trace rt(π) of π is obtained from crt(π) by leaving out all occurrences
of τ and ⊥.

Note that each partial failure trace σ of a process P is generated by a path π of P , and is
in fact completely determined by rt(π). Each occurrence of action a in σ originates from

a transition a−→ occurring in π (by application of the second rule of Table 3) and each
occurrence of a refusal set X in σ originates (by application of the fourth or sixth rule)
from a stable process Pi in π such that I(Pi) ∩X = ∅. The last symbol ⊤ of σ originates
from the last state Pℓ of π (by application of the first rule). The mapping from the action
occurrences in σ to the A-labelled transitions in π must be bijective, and any two elements
(actions, refusal sets or ⊤) of σ occur in the same order in σ as their originators occur in π.

Let ξ be the occurrence of an action, refusal set or ⊤ in σ, originating from αj−→ or Pj.
If ξ is the first element of σ, the realm of ξ is the prefix of π ending in Pj . In case a or Y

is the symbol in σ preceding ξ, with a originating from αi−→ or Y originating from Pi, then
j ≥ i and the realm of ξ is the subpath Pi

αi+1−−−→ · · · αj−→ Pj . Thus, σ partitions π into realms,
with each two adjacent realms having exactly one state in common.

Each transition in the realm of ⊤ must be labelled τ , matching an application of the
third rule of Table 3. Each transition αk−→ in the realm of a refusal set X must be labelled t
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or τ , matching applications of the third and fifth rules; if αk = t then Pk−1 must be stable
and I(Pk−1)∩X = ∅. Only the first transition in the realm of an action occurrence a could
be labelled t; if it is then in σ action a is preceded with a refusal set X such that a ∈ X.
This matches an application of the sixth rule.

In particular, a path featuring a t-labelled transition leaving from an unstable state
does not generate any partial failure traces.

System- versus environment-ended periods of idling.

Observation 5.3. σXρ ∈ FT ∗(P ) ⇔ σXXρ ∈ FT ∗(P ).

An occurrence of a set X in a partial failure trace σ denotes a period p of idling, during
which X is the set of actions allowed by the environment. During period p the system idles
because none of the actions in X is enabled by the system, and none of the others is allowed
by the environment. Such a period can end in exactly two ways: either by a time-out within
the modelled system, or by the environment changing the set of actions it allows. The latter
can be thought of as the occurrence of time-out outside the modelled system. In this paper
I ignore the possibility that a time-out within the system occurs at the exact same moment
as a time-out outside the system. Hence there can never be ambiguity on which party ends
a period of idling.

I will now show how from the shape of a partial failure trace one can deduce which
party ends a given period of idling. If, within σ, X is followed by a set Y 6= X, the period
p is followed by a period q of idling, this time with Y the set of actions allowed by the
environment. The transfer from period p to period q must therefore be triggered by the
environment, namely by changing the set of actions it allows to occur. If, within σ, X is
followed by an action a ∈ X, the state of the system in which action a occurs must be
different from the state of the system in which X is refused, and action a not enabled. It
follows that period p must be ended by a time-out occurring within the system. If, within
σ, X is followed by an action a /∈ X, period p must be ended by the environment. For if the
set of actions allowed by the environment is not changed after period p, the action a /∈ X
would still not be allowed.

Definition 5.4. An occurrence of X in a partial failure trace σ is system-ended iff within
σ, X is followed by an action a ∈ X.

6. Congruence properties

In this section I show that partial failure trace equivalence is a congruence for the operators
of CCSPt, with the exception of the choice operator +. I also characterise the coarsest
equivalence included in ≡∗

FT that also is a congruence for +.

Definition 6.1. Let F ⊆ (A ∪ P(A))∗⊤, meaning F is a set of partial failure traces with
the end tag ⊤. Then col(F ) is the smallest set containing F such that σXXρ ∈ col(F ) ⇒
σXρ ∈ col(F ).

Theorem 6.2. ≡∗
FT is a congruence for the parallel composition operators ‖S .
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Proof. I need to show that P ≡∗
FT P ′ and Q ≡∗

FT Q′ implies P ‖S Q ≡∗
FT P ′ ‖S Q′. This

is equivalent to showing that FT ∗(P ‖S Q) is completely determined by FT ∗(P ), S and
FT ∗(Q).

Below I define, for each S ⊆ A, a binary operator ‖S that takes as arguments sets of
partial failure traces, and produces again a set of partial failure traces. In the appendix—
Proposition A.1—I prove that

FT ∗(P ‖S Q) = col(FT ∗(P ) ‖S FT ∗(Q)) . (6.1)

This yields Theorem 6.2.

In order to define the operator ‖S , I analyse how a partial failure trace of P ‖SQ decomposes
into partial failure traces of P and Q.

Definition 6.3. A decomposition of a partial failure trace σ=σ1σ2 · · · σn⊤∈(A∪P(A))∗⊤
w.r.t. a set S ⊆ A is a pair σL, σR of partial failure traces, obtained by leaving out all ⋆-
elements from sequences σL = σL

1 σ
L
2 · · · σL

n⊤ and σR = σR
1 σ

R
2 · · · σR

n⊤∈ (A∪{⋆}∪P(A))∗⊤,
such that, for all i = 1, . . . , n,

• if σi ∈ A \ S then either σL
i = σi and σR

i = ⋆, or σR
i = σi and σL

i = ⋆,
• if σi ∈ S then σL

i = σR
i = σi, and

• if σi ∈ P(A) then σL
i ∈ P(A) and σR

i ∈ P(A).

This decomposition is valid if, for each i = 1, . . . , n for which σi ∈ P(A), one has

σi is system-ended in σ ⇔
(

(σL
i is system-ended in σL)∨(σ

R
i is system-ended in σR)

)

(6.2)

¬
(

(σL
i is system-ended in σL)∧(σ

R
i is system-ended in σR)

)

(6.3)

σL
i \ S = σi \ S = σR

i \ S and (σL
i ∩ S) ∪ (σR

i ∩ S) = σi ∩ S . (6.4)

For F,G ⊆ (A ∪P(A))∗⊤ sets of partial failure traces, let F ‖S G ⊆ (A ∪P(A))∗⊤ be the
set of partial failure traces σ, such that for some valid decomposition one has σL ∈ F and
σR ∈ G.

Definition 6.3 says that in any partial failure trace σ ∈ FT ∗(P ‖S Q), each occurrence of
an action a /∈ S in σ must stem from either P or Q, whereas each occurrence of an action
a ∈ S must stem from both. A set X occurring in σ denotes a period of idling; necessarily
both P and Q idle during this period. I justify (6.2)–(6.4) informally below; formally, these
requirements are fully justified by the fact that they allow me to prove (6.1).

In a parallel composition P ‖S Q there are three parties that can block actions, or end
idle periods: P , Q and the global environment E of the composition. The environment of
P consists of Q and E .

An idle period of P ‖SQ ends through a single time-out. If this timeout occurs in P ‖SQ
itself, rather then in its environment, it must occur in exactly one of the components P and
Q. And if the time-out stems from the environment it occurs in neither component. This
explains conditions (6.2) and (6.3).

An action a /∈ S can, from the perspective of one component, not be blocked by the
other component. So it is blocked by the environment of that component iff it is blocked
by the environment E of the parallel composition. Hence a ∈ σL

i ⇔ a ∈ σi ⇔ a ∈ σR
i . This

gives the first formula of (6.4).
An action a ∈ S requires cooperation of all three parties, P , Q and E , so it can be

blocked by any of them. If such an action is in σL
i (resp. σR

i ), it is not blocked by the
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environment of P (resp. Q), and thus certainly not by E . This gives direction ⊆ of the
second formula of (6.4).

To justify the other direction, note that each set X occurring in a partial failure trace
of a process R corresponds with path R0

α1−→ R1
α2−→ · · · αn−→ Rn (its realm), where R0 is

reachable from R, such that (i) all αj are either τ or t, and (ii) for each j ∈ {0, . . . , n−1}

such that αj+1 = t, and also for j = n, one has Rj
β−6→ for all β ∈ X∪{τ}. In the special case

that R = P ‖S Q, and where X(= σi) is decomposed into XL(= σL
i ) and XR(= σR

i ), each

such Rj has the form Pj ‖S Qj, with Pj
β−6→ for β ∈ XL ∪ {τ} and Qj

β−6→ for β ∈ XR ∪ {τ}.

Since, for a ∈ S, Pj ‖S Qj
a−6→ iff either Pj

a−6→ or Qj
a−6→, one can always choose the

decomposition of X into XL and XR in such a way that a ∈ X implies a ∈ XL ∨ a ∈ XR.
This gives direction ⊇ of the second formula of (6.4).

There is one circumstance, however, where the above argument breaks down, namely
if different choices of j ∈ {0, . . . , n} give rise to a different decomposition of X into XL and
XR. However, in such a case one can simply write the occurrence of X as XX . . . X, such
that now each occurrence of X has a unique decomposition. The original failure trace is
then recovered by the closure operator col in (6.1).

The following example shows the necessity of Condition (6.2).

Example 6.4. Consider the process a ‖∅ t.b. Here {b}a⊤ ∈ FT ∗(a) and {b}b⊤ ∈ FT ∗(t.b).
So without Condition (6.2) one would obtain {b}ab⊤ ∈ FT ∗(a ‖∅ t.b). Yet a ‖∅ t.b has no
such partial failure trace.

Two similar examples, without and with synchronisation, show the necessity of Condi-
tion (6.3).

Example 6.5. Consider the process t.a ‖∅ t.b. Here {a, b}a⊤ ∈ FT ∗(t.a) and {a, b}b⊤ ∈
FT ∗(t.b). So without Condition (6.3) one would obtain {a, b}ab⊤ ∈ FT ∗(t.a ‖∅ t.b). Yet
t.a ‖∅ t.b has no such partial failure trace.

Example 6.6. Consider the process t.(τ + b) ‖{b} t.(τ + b). Here {b}b⊤ ∈ FT ∗(t.(τ + b)).

So without Condition (6.3) one would obtain {b}b⊤ ∈ FT ∗(t.(τ + b) ‖{b} t.(τ + b)). Yet, as

explained at (3.2), t.(τ + b) ‖{b} t.(τ + b) has no such partial failure trace.

The next example shows that the operation col in (6.1) cannot be omitted.

Example 6.7. One has σ := {b}{b}a⊤ ∈ FT ∗(b + t.a) ‖{a,b} FT ∗(t.(b + t.a)), taking

σL := ∅{b}a⊤ and σR := {b}∅a⊤. Namely ⊤ ∈ FT ∗(0), a⊤ ∈ FT ∗(a), {b}a⊤ ∈ FT ∗(a),
∅{b}a⊤ ∈ FT ∗(a), so ∅{b}a⊤ ∈ FT ∗(b+ t.a), and ∅a⊤ ∈ FT ∗(a), ∅a⊤ ∈ FT ∗(b+ t.a),
∅a⊤ ∈ FT ∗(t.(b+ t.a)), so {b}∅a⊤ ∈ FT ∗(t.(b+ t.a)).
Yet {b}a⊤ /∈ FT ∗(b+ t.a) ‖{a,b} FT ∗(t.(b + t.a)).

Theorem 6.8. ≡∗
FT is a congruence for the abstraction operators τI .

Proof. A partial failure trace ρ survives abstraction from I ⊆ A iff

(i) each set X occurring in ρ satisfies I ⊆ X,
(ii) each subsequence Xc0 . . . cnY with c0, . . . , cn ∈ I satisfies X = Y , and
(iii) each subsequence Xc0 . . . cna with c0, . . . , cn ∈ I and a /∈ I satisfies a ∈ X.

If this is the case, then τI(ρ) is the result of contracting any subsequence Xc0 . . . cnX of ρ
to X, and omitting all remaining occurrences of actions c ∈ I. If this is not the case τI(ρ)
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is undefined. Let σ ∪ I denote the partial failure trace obtained from a partial failure trace
σ by replacing each occurrence of X in σ by X ∪ I. I claim that

σ ∈ FT ∗(τI(P )) ⇔ ∃ρ ∈ FT ∗(P ). τI(ρ) = σ ∪ I . (6.5)

This shows that FT ∗(τI(P )) is completely determined by FT ∗(P ) and I, which yields
Theorem 6.8. A formal proof of (6.5) is given in the appendix—Proposition A.2.

Intuitively, an occurrence of X in σ denotes a period of idling in which X is the set of
actions allowed by the environment E of τI(P ). The environment EP of P when P is placed
in a τI( )-context always allows the actions from I, and for the rest is like E . This explains
(i) and the use of σ ∪ I in (6.5). Conditions (ii) and (iii) express that the instantaneous
occurrence of a sequence of internal actions does not constitute an opportune moment for
the environment to change its mind on which actions are allowed. Since c0 ∈ X (by (i)), the
period X of idling ends through a time-out action of the system, right before the occurrence
of c0. Whereas in P the action c0 could synchronise with the environment, and thus cause
a change in the set of allowed actions, this option is no longer available for τI(P ). So after
the sequence of internal actions, the same set of actions X is allowed by the environment,
either resulting in further idling, or in the execution of an action a ∈ X.

An occurrence of X in σ imposes the requirement on some reachable states τI(P
′) of

τI(P ) that τI(P
′) α−6→ for all α ∈ X ∪ {τ}. It is satisfied iff P ′ α−6→ for all α ∈ X ∪ I ∪ {τ}.

The particular way of hiding actions c ∈ I in τI(ρ), together with Conditions (ii) and (iii),
exactly matches the two rules for bridging a time-out transition in Table 3.

Theorem 6.9. ≡∗
FT is a congruence for the relational renaming operators R.

Proof. For X ⊆ A, let R−1(X) := {a ∈ A | ∃b ∈ X. (a, b) ∈ R}. Furthermore, let R−1(σ)
denote the set of partial failure traces obtained from σ by (i) replacing each occurrence of a
set X by the set R−1(X), and (ii) replacing each occurrence of an action b by some action
a with (a, b) ∈ R, subject to the condition that if the occurrence of b is preceded by an
occurrence of a set X, then b ∈ X iff a ∈ R−1(X). Now, as shown by Proposition A.3 in
the appendix,

σ ∈ FT ∗(R(P )) ⇔ ∃ρ ∈ FT ∗(P ). ρ ∈ R−1(σ) . (6.6)

The side condition ensures that for each period of idling, the party that ends it (system or
environment) does not differ between σ and ρ. This shows that FT ∗(R(P )) is completely
determined by R and P , which yields Theorem 6.9.

The following example shows that the side condition in the definition of R−1(σ) cannot be
omitted.

Example 6.10. Let P = t.a and R = {(a, b), (a, c)}. Then ρ = {a}a⊤ ∈ FT ∗(P ), so
without the side condition one would obtain σ = {b}c⊤ ∈ FT ∗(R(P )). However, R(P ) has
no such failure trace, for if the environment allows just b when the time-out occurs, R(P )
will proceed with b rather than c.

Rooted partial failure trace semantics. Partial failure trace equivalence, however, like
all default equivalences that abstract from internal activity [Mil90], fails to be a congruence
for the choice operator +. In particular, FT ∗(b) = FT ∗(τ.b), yet FT ∗(a+b) 6= FT ∗(a+τ.b),
for only a + τ.b has a partial failure trace {a}⊤, and only a + b has a partial failure trace
∅a⊤. The classical way to solve this problem for languages like CCSP is to add one bit
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of information to the semantics of processes. Two CCSP processes could be called partial
failure trace congruent iff FT ∗(P ) = FT ∗(Q) ∧ stable(P ) ⇔ stable(Q). This turns out to
be a congruence for CCSP, and moreover the coarsest congruence finer than partial failure
trace equivalence. In the presence of time-outs this one-bit modification of partial failure
trace equivalence is insufficient, for FT ∗(t.b) = FT ∗(t.t.b), yet FT ∗(a+t.b) 6= FT ∗(a+t.t.b).
Namely, only a+ t.t.b has a partial failure trace {b}{a, b}b.

To make partial failure trace equivalence a congruence, one needs additionally to keep
track of partial failure traces of the form Xσ that are lifted by the fifth rule of Table 3
through an initial t-transition. I also use an additional bit, telling that a stable state is
reachable along a nonempty path of τ -transitions.

Definition 6.11. Let FT r∗(P ) :=

FT ∗(P ) ∪ {stab | P τ−6→} ∪ {tXσ | ∃P ′. P t−→ P ′ ∧Xσ ∈ FT ∗(P ′) ∧ P τ−6→ ∧ I(P ) ∩X = ∅}
∪ {poststab | P τ−→∧ ∅⊤ ∈ FT ∗(P )}.

Processes P,Q ∈ P are rooted partial failure trace equivalent, P ≡r∗
FT Q, iff FT r∗(P ) =

FT r∗(Q).

One has t.b 6≡r∗
FT t.t.b because t{a, b}b ∈ FT r∗(t.t.b) but t{a, b}b /∈ FT r∗(t.b).

For the purpose of defining ≡r∗
FT , the poststab bit is redundant, as it is clearly determined

by the other elements of FT r∗(P ). However, it will turn out to be useful in defining a rooted
partial failure trace preorder ⊑r∗

FT in Section 7.

Observation 6.12. Rooted partial failure trace equivalence is finer than partial failure
trace equivalence.

Let iniZ(F ), for Z ⊆A and F ⊆ (A ∪P(A))∗⊤, be the least set such that (a) F ⊆ iniZ(F ),
(b) ⊤ ∈ iniZ(F ), and (c) if σ ∈ iniZ(F ) and X ∩ Z = ∅ then Xσ ∈ iniZ(F ). It represents
the set of partial failure traces of a stable process P derivable by the first and fourth rule
of Table 3 when F ⊆ FT ∗(P ) and I(P ) = Z.

Theorem 6.13. Rooted partial failure trace equivalence (≡r∗
FT ) is a congruence for the

operators of CCSPt.

Proof. It suffices to show that FT r∗(P +Q) is fully determined by FT r∗(P ) and FT r∗(Q),
that FT r∗(α.P ) is fully determined by α and FT r∗(P ), and similarly for FT r∗(P ‖S Q),
FT r∗(τI(P )) and FT r∗(R(P )). The following equations establish this.

FT r∗(a.P ) = ini{a}
(

{aσ | σ ∈ FT ∗(P )}
)

∪ {stab} (6.7)

FT r∗(τ.P ) = FT ∗(P ) ∪ {poststab | ∅⊤ ∈ FT ∗(P )} (6.8)

FT r∗(t.P ) = ini∅
(

{Xσ | Xσ ∈ FT ∗(P )} ∪ {Xaσ | aσ ∈ FT ∗(P ) ∧ a ∈ X}
)

∪ {stab} ∪ {tXσ | Xσ ∈ FT ∗(P )}
(6.9)

FT r∗(P +Q) =















FT r∗(P ) ∪ FT r∗(Q) if ¬stable(P ) ∧ ¬stable(Q)
{aσ | aσ ∈ FT r∗(P )} ∪ FT r∗(Q) if stable(P ) ∧ ¬stable(Q)
FT r∗(P ) ∪ {aσ | aσ ∈ FT r∗(Q)} if ¬stable(P ) ∧ stable(Q)
iniI(P )∪I(Q)

(

H
)

∪ {stab} ∪K if stable(P ) ∧ stable(Q)

(6.10)

FT r∗(P ‖S Q) = col(FT r∗(P ) ‖S FT r∗(Q)) (6.11)
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FT r∗(τI(P )) = {σ | (stab 6= σ 6= poststab) ∧ ∃ρ ∈ FT r∗(P ). τI(ρ) = σ ∪ I}
∪ {stab | stab ∈ FT r∗(P ) ∧ I(P ) ∩ I = ∅}
∪ {poststab | (∃c0c1 . . . cnI⊤ ∈ FT r∗(P ) where n ≥ 0 and all ci ∈ I)

∨ (poststab ∈ FT r∗(P ) ∧ I⊤ ∈ FT r∗(P ))}

(6.12)

FT r∗(R(P )) = {σ | ∃ρ ∈ FT r∗(P ). ρ ∈ R−1(σ)} (6.13)

Here H := {aσ | aσ ∈ FT r∗(P ) ∪ FT r∗(Q)} ∪
{Xσ | tXσ ∈ FT r∗(P ) ∪ FT r∗(Q) ∧ (I(P ) ∪ I(Q)) ∩X = ∅} ∪
{Xaσ | Xaσ ∈ FT r∗(P ) ∪ FT r∗(Q) ∧ a ∈X ∧ (I(P ) ∪ I(Q)) ∩X = ∅}

and K = {tXσ | tXσ ∈ FT r∗(P ) ∪ FT r∗(Q) ∧ (I(P ) ∪ I(Q)) ∩X = ∅}.

The first four equations follow immediately from Definition 6.11 and Table 3. In (6.9)
the argument of ini∅ generates the partial failure traces contributed by the fifth and sixth
rule of Table 3; the operation ini∅ then closes this set under applications of the first and
fourth rule. In the fourth case of (6.10), the three lines of H generate the partial failure
traces contributed by the second, fifth and sixth rule of Table 3, respectively; the operation
iniI(P )∪I(Q) then closes this set under applications of the first and fourth rule.

To see that (6.7)–(6.10) fulfil their intended purpose, note that FT ∗(P ) is fully de-
termined by FT r∗(P ), namely by dropping the bits stab and poststab, and all traces tσ.
Moreover stable(P ) holds iff stab∈FT r∗(P ) and for stable P the set I(P ) can be computed
by I(P ) = {a ∈A | ∃σ. aσ ∈ FT r∗(P )}.

To explain (6.11), the definition of decomposition needs to be extended to rooted partial
failure traces tXσ. In the first bullet-point of Definition 6.3, “σi ∈ A \ S” should now be
read as “σi ∈ (A\S)∪{t}”. The definition of F ‖SG is unchanged, except that rooted partial
failure traces tXσ are dropped from F ‖S G unless stab ∈ F and stab ∈ G; furthermore stab

is deemed to be in F ‖S G iff it is in both F and G, and poststab is deemed to be in F ‖S G
if either poststab ∈ F ∧ poststab ∈ G, or poststab ∈ F ∧ stab ∈ G, or stab ∈ F ∧ poststab ∈ G.
Moreover, the operator col extends to sets of rooted partial failure traces. In the appendix
it is shown that with these definitions (6.11) holds—see Proposition A.4.

In (6.12), the concept “survives abstraction from I ⊆ A” from the proof of Theorem 6.8
is applied verbatim to rooted partial failure traces tXσ, as is the operation τI . The validity
of (6.12) is shown in the appendix—Proposition A.5.

In (6.13), the operator R−1 extends verbatim to rooted partial failure traces. The
validity of (6.12) is shown in the appendix—Proposition A.6.

As remarked in [Gla94], the countable choice operator
∑

i∈N Pi is expressible in terms
of the binary choice operator + and recursion:

∑

i∈N Pi =
/
\X0|S

\
/, where Xi = Pi+Xi+1 for

i ∈ N. An equation similar to (6.10) shows that ≡r∗
FT also is a congruence for the countable

choice.

Theorem 6.14. Rooted partial failure trace equivalence (≡r∗
FT ) is the largest congruence

for the operators of CCSPt that is included in ≡∗
FT .

Proof. In view of Observation 6.12 and Theorem 6.13 it suffices to find, for any two
rooted partial failure trace inequivalent processes P 6≡r∗

FT Q, a CCSPt-context C such that
C(P ) 6≡∗

FT C(Q).
First of all, one can apply a bijective renaming operator on P and Q, mapping A to

A \{f} for some action f ∈A. Consequently, I may assume that f is fresh in the sense that
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for each process R reachable from P or Q one has R f−6→. For any such R one has

σXρ ∈ FT ∗(R) ⇔ σ(X∪{f})ρ ∈ FT ∗(R). (*)

Let σ ∈ FT r∗(Q) \ FT r∗(P ). (The other case proceeds by symmetry.) The only
relevant cases are that σ = (post)stab or σ = tXρ, since in all other cases one immediately
has σ ∈ FT ∗(Q) \ FT ∗(P ).

Let σ = stab, that is, Q is stable but P is not. Then ∅f⊤ ∈ FT ∗(Q + f) but ∅f⊤ /∈
FT ∗(P + f). So it suffices to take the context C( ) = + f .

Now let σ = tXρ. So Q α−6→ for all α ∈ X ∪ {τ}, Q t−→ Q′ and Xρ ∈ FT ∗(Q′). I may
assume that P is stable, as the case that Q is stable but P is not has been treated already.
By Observation 5.3 one has XXρ ∈ FT ∗(Q′), and (*) yields X−X+ρ ∈ FT ∗(Q′), where
X− := X \ {f} and X+ := X ∪ {f}. The fifth rule of Table 3 gives X−X+ρ ∈ FT ∗(Q+f),

using that Q+f α−6→ for all α ∈ X− ∪ {τ}. It suffices to show that X−X+ρ /∈ FT ∗(P+f),
for then the context C( ) = + f finishes the proof.

So assume, towards a contradiction, that X−X+ρ ∈ FT ∗(P+f). This could not have
been derived by the fourth rule of Table 3, since surely X+ρ /∈ FT ∗(P+f). Hence the fifth

rule must have been used, so that P α−6→ for all α∈X∪{τ}, P t−→P ′ and X−X+ρ∈FT ∗(P ′).
Now XXρ ∈ FT ∗(P ′) by (*), and Xρ∈FT ∗(P ′) by Observation 5.3. Thus tXρ∈FT r∗(P ),
yielding the required contradiction.

Finally, let σ = poststab. Then {f}⊤ ∈ FT ∗(Q+ f), yet {f}⊤ /∈ FT ∗(P + f).

In the quest for a congruence, an alternative solution to changing partial failure trace
equivalence into rooted partial failure trace equivalence, is to restrict the expressiveness of
CCSPt. Let CCSPg

t be the version of CCSPt where the binary operator + is replaced by
guarded sums

∑n
i=1 αi.Pi, for n ∈N∪ {∞}. Here each guarded sum

∑n
i=1 αi. counts as a

separate n-ary operator. The constant 0 and action prefixing α.P are the special cases with
n = 0 and n = 1. The congruence property for guarded sums demands that Pi ≡

∗
FT Qi

for i = 1, . . . , n implies
∑n

i=1 αi.Pi =
∑n

i=1 αi.Qi. That this holds is an immediately
consequence of Theorem 7.2 below.

7. Partial failure trace preorders

Here I introduce (rooted) partial failure trace preorders ⊑∗
FT and ⊑r∗

FT in such a way that
(rooted) partial failure trace equivalence is its kernel, i.e., P ≡∗

FT Q ⇔ (P ⊑∗
FT Q ∧Q ⊑∗

FT
P ) and, likewise, P ≡r∗

FT Q ⇔ (P ⊑r∗
FT Q ∧Q ⊑r∗

FT P ). These preorders should be defined
in such a way that they are precongruences.

Definition 7.1. Write P ⊑∗
FT Q, for processes P,Q ∈P, iff FT ∗(P ) ⊇ FT ∗(Q).

The orientation of the symbol ⊑∗
FT aligns with that of the safety preorder, discussed in the

next section. The following proposition says that the preorder ⊑∗
FT is a precongruence for

the operators of CCSPg
t , or that recursion-free CCSPg

t -contexts are monotone w.r.t. ⊑∗
FT .

Theorem 7.2. Let C be a unary recursion-free CCSPg
t -context.

If P ⊑∗
FT Q then C(P ) ⊑∗

FT C(Q).

Proof. Let G :=
∑

i∈I α.Pi. In case αi 6= τ for all i ∈ I, then (6.7)–(6.10) imply (or
generalise to)
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FT ∗(G) = iniI(G)









⋃

i∈I
αi∈A

{αiσ | σ ∈ FT ∗(Pi)} ∪
⋃

i∈I
αi=t





{Xσ | Xσ ∈ FT ∗(Pi) ∧ I(G) ∩X = ∅} ∪
{

Xaσ

∣

∣

∣

∣

aσ ∈ FT ∗(Pi)
∧ I(G) ∩X = ∅
∧ a ∈X

}













.

Here I(G) := {αi | i ∈ I} \ {t}. Moreover, if αi = τ for at least one i ∈ I, then

FT ∗(G) =
⋃

i∈I
αi∈A

{αiσ | σ ∈ FT ∗(Pi)} ∪
⋃

i∈I
αi=τ

FT ∗(Pi) .

There equations immediately imply the monotonicity of the guarded choice operators w.r.t.
⊑∗

FT . The monotonicity of ‖S , τI and R follows from Properties (6.1), (6.5) and (6.6).

Definition 7.3. Write P ⊑r∗
FT Q, for P,Q ∈P, iff FT r∗(P ) ⊇ FT r∗(Q).

In this definition, the poststab bit of Definition 6.11 plays a crucial rôle. Without it, we
would have b ⊑r∗

FT τ.b, since FT r∗(b) = FT r∗(τ.b) ⊎ {stab}. This would cause a failure
of monotonicity, as a + b 6⊑r∗

FT a + τ.b, for only the latter process has a partial failure
trace {a}⊤. With the poststab bit one obtains b 6⊑r∗

FT τ.b, since poststab ∈ FT r∗(τ.b), yet
poststab /∈ FT r∗(b). The preorder ⊑r∗

FT still relates processes of which only one is stable; for
instance b ⊑r∗

FT
/
\X|X = b+ τ.X\

/.

Lemma 7.4. If P ⊑r∗
FT Q (or P ⊑∗

FT Q) and P and Q are both stable, then I(P ) = I(Q).

Proof. If a ∈ I(Q) then a⊤ ∈ FT r∗(Q) ⊆ FT r∗(P ), so a ∈ I(P ).
Moreover, if a /∈ I(Q) then {a}⊤ ∈ FT r∗(Q) ⊆ FT r∗(P ), so a /∈ I(P ).

Theorem 7.5. Let C be a unary recursion-free CCSPt-context.
If P ⊑r∗

FT Q then C(P ) ⊑r∗
FT C(Q).

Proof. The monotonicity of ‖S , τI and R follows from Properties (6.11)–(6.13), using
Lemma 7.4. The monotonicity of α. follows from (6.7)–(6.9), using that FT r∗(P ) ⊇
FT r∗(Q) implies FT ∗(P )⊇ FT ∗(Q).

The monotonicity of + can be formulated as P ⊑r∗
FT Q ⇒ P + R ⊑r∗

FT Q + R (the
requirement R+P ⊑r∗

FT R+Q then follows by symmetry). So let P ⊑r∗
FT Q, i.e., FT r∗(P ) ⊇

FT r∗(Q).

• Let ¬stable(P ) and ¬stable(R). Then stab /∈ FT r∗(P ) ⊇ FT r∗(Q), so ¬stable(Q). Hence
FT r∗(P +R) = FT r∗(P ) ∪ FT r∗(R) ⊇ FT r∗(Q) ∪ FT r∗(R) = FT r∗(Q+R).

• The case ¬stable(P ) and stable(R) proceeds likewise.

In all remaining cases I assume stable(P ). Note that poststab /∈ FT r∗(P ) ⊇ FT r∗(Q).
• Let stable(Q) and ¬stable(R). Then FT r∗(P + R) = {aσ | aσ ∈ FT r∗(P )} ∪ FT r∗(R)
⊇ {aσ | aσ ∈ FT r∗(Q)} ∪ FT r∗(R) = FT r∗(Q+R).

• Let ¬stable(Q) and ¬stable(R). Now all σ ∈ FT r∗(Q) must have the form ⊤ or aζ.
Namely if Xζ ∈ FT r∗(Q) then one would have poststab ∈ FT r∗(Q). Hence
FT r∗(P +R) = {aσ | aσ ∈ FT r∗(P )} ∪ FT r∗(R) ⊇ FT r∗(Q)∪ FT r∗(R) = FT r∗(Q+R).

• Let stable(Q) and stable(R). Then I(P ) = I(Q) by Lemma 7.4. Using this, the desired
monotonicity property follows from the fourth case of (6.10).

• Let ¬stable(Q) and stable(R). Again all σ ∈ FT r∗(Q) must have the form ⊤ or aζ. Let
H and K be as in (6.10), but with R substituted for Q. Now

FT r∗(P +R) = iniI(P )∪I(Q)

(

H
)

∪{stab}∪K ⊇ H∪{⊤}

⊇ FT r∗(Q)∪{aσ | aσ ∈ FT r∗(R)} = FT r∗(Q+R).
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Theorem 7.6. ⊑r∗
FT is the largest precongruence for the operators of CCSPt that is included

in ⊑∗
FT .

Proof. Theorem 7.5 shows that ⊑r∗
FT is a precongruence for the operators of CCSPt. By

Definition 6.11, ⊑r∗
FT is included in ⊑∗

FT , i.e., P ⊑r∗
FT Q implies P ⊑∗

FT Q. Thus it suffices
to find, for any two processes P and Q with P 6⊑r∗

FT Q, a CCSPt-context C such that
C(P ) 6⊑∗

FT C(Q). This proceeds exactly as in the proof of Theorem 6.14. Of course the
symmetric case “σ ∈ FT r∗(P ) \ FT r∗(Q)” is skipped, as it is not needed here.

8. The coarsest precongruence respecting safety properties

In [Gla10] I proposed a way to define refinement preorders ⊑ on processes, where P ⊑ Q
says that for all practical purposes under consideration, Q is at least as suitable as P , i.e.,
it will never harm to replace P by Q. In the stepwise design of systems, P may be closer to
a specification, and Q to an implementation. Each such a refinement preorder also yields a
semantic equivalence ≡, with P ≡ Q saying that for practical purposes P and Q are equally
suitable; i.e., one can be replaced by the other without untoward side effects. Naturally,
P ≡ Q iff both P ⊑ Q and Q ⊑ P .

The method of [Gla10] equips the choice of ⊑ with two parameters: a class G of
good properties of processes, ones that may be required of processes in a given range of
applications, and a class O of useful operators for combining processes. The first requirement
on ⊑ is P ⊑ Q ⇒ ∀ϕ ∈ G . (P |= ϕ ⇒ Q |= ϕ) where P |= ϕ denotes that process P has
the property ϕ. If this holds, ⊑ respects or preserves the properties in G . The second
requirement is that ⊑ is a precongruence for O: P ⊑ Q ⇒ C[P ] ⊑ C[Q] for any context C[ ]
built from operators from O. Given the choice of G and O, the preorder recommended by
[Gla10] is the coarsest, or largest, one satisfying both requirements. This preorder is called
fully abstract w.r.t. G and O, and is characterised by

P ⊑ Q ⇔ ∀O-context C[ ]. ∀ϕ ∈ G . (C[P ] |= ϕ ⇒ C[Q] |= ϕ).

The corresponding semantic equivalence identifies processes only when this is enforced by
the two requirements above.

Naturally, increasing the class O of operators makes the resulting fully abstract preorder
finer, or smaller. The same holds when increasing the class G of properties. In [Gla10] I
employed a class O of operators that was effectively equivalent to the operators of CCSPg.
Here I use the operators of CCSPg

t , thus adding time-outs. In this section, following [Gla10,
Section 3], I take as class G of good properties the safety properties, saying that something
bad will never happen. What exactly counts as a safety property could be open to some
debate. However, the canonical safety property, proposed in [Gla10], is definitely in this
class. I first characterise the preorder ⊑safety that is fully abstract w.r.t. the operators of
CCSPg

t and this single safety property. It turns out to be ⊑∗
FT . Then I argue that adding

any other safety properties to the class G could not possible make the resulting preorder
any finer. An immediately corollary of this and Theorem 7.6 is that ⊑r∗

FT is fully abstract
for the operators of CCSPt and the class of safety properties.
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Full abstraction w.r.t. the canonical safety property. To formulate the canonical
safety property, assume that the alphabet A of visible actions contains one specific action
b, whose occurrence is bad. The property now says that b will never happen.

Definition 8.1. A process P satisfies the canonical safety property, notation P |= safety(b),
if no partial failure trace of P contains the action b.

Lemma 8.2. If aη ∈ FT ∗(P ) then P a−→ or P τ−→.

Proof. That aη ∈ FT ∗(P ) can be derived only from the second or third rule of Table 3.

Corollary 8.3. If Xaη ∈ FT ∗(P ) is obtained from the fourth rule of Table 3, then a /∈ X.

Proof. The fourth rule requires that P α−6→ for all α ∈ X ∪{τ}, and that aη ∈ FT ∗(P ). The

latter implies P a−→ or P τ−→ by Lemma 8.2. So P a−→ and a /∈ X.

As encountered already in the proof of Theorem 6.14, I call an action b fresh for a process
P if for each process R reachable from P one has R b−6→. In that case P |= safety(b). I call it
fresh for a partial failure trace σ ∈ (A ∪P(A))∗⊤ if b does not occur in σ, either as action
or inside a refusal set in σ.

Theorem 8.4. For each σ ∈ (A ∪ P(A))∗⊤ for which b is fresh, there exists a CCSPg
t

process Tσ such that
τA\{b}(Tσ ‖A\{b} P ) 6|= safety(b) ⇔ σ ∈ FT ∗(P )

for each CCSPg
t process P for which b is fresh.

Proof. Let B := A\{b}, the set of all visible actions except b. Define Tσ with structural
induction on σ:

T⊤ := t.b Tcρ := τ + c.Tρ TXη := t.Tη +
∑

a∈X a TXdρ := t.(d.Tρ +
∑

a∈X\{d} a) +
∑

a∈X a

where, c, d ∈ B, X ⊆ B, d ∈ X, and η is not of the form dρ with d ∈ X. Note that
τB(Tσ ‖B P ) 6|= safety(b) iff there is a path π := τB(Tρ ‖B P ) α1−→ Q1

α2−→ · · · αn−→ Qℓ
b−→ Q′,

and this path gives rise to a partial failure trace βb⊤ ∈ FT ∗(τB(Tσ ‖B P )) by application
of the rules of Table 3. Due to the operator τB, each of the αi must be τ or t.

To obtain “⇒” I assume τB(Tσ ‖B P ) 6|= safety(b) and apply structural induction on σ.

• Let σ = ⊤. Then σ ∈ FT ∗(P ) for all P .
• Let σ = cρ. For the process τB(Tσ ‖B P ) to ever reach a b-transition, the component
Tσ = τ + c.Tρ must take the c-transition to Tρ. So the beginning of π must have the form

τB(Tσ ‖B P ) α1−→ τB(Tσ ‖B P1)
α2−→ · · · αn−→ τB(Tσ ‖B Pn)

τ−→ τB(Tρ ‖B P ′)

for some n ≥ 0, where τB(Tρ ‖B P ′) 6|= safety(b). Let P0 := P . All of these αi must be τ ,
for t-transitions lose out from the outgoing τ -transition from τB(Tσ ‖B Pi−1). Technically,
if αi = t, for 1 ≤ i ≤ n, then the fifth and sixth rules of Table 3 do not allow any partial
failure trace of τB(Tρ ‖B Pi) to give rise to a partial failure trace of τB(Tσ ‖B Pi−1). The
above path must stem from a path

Tσ ‖B P β1−→ Tσ ‖B P1
β2−→ · · · βn−→ Tσ ‖B Pn

c−→ Tρ ‖B P ′

that in turns stems from a path P β1−→ P1
β2−→ · · · βn−→ Pn

c−→ P ′. All of these βi must be
τ , as the synchronisation on B stops all visible actions stemming from P .

By induction ρ ∈ FT ∗(P ′). The second and third rules of Table 3 yield σ ∈ FT ∗(P ).
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• Let σ = Xη, where X ⊆ B and η is not of the form dρ with d ∈ X. For the process
τB(Tσ ‖B P ) to ever reach a b-transition, the component Tσ = t.Tη +

∑

a∈X a must take
the t-transition to Tη. So the beginning of π must have the form

τB(Tσ ‖B P ) α1−→ τB(Tσ ‖B P1)
α2−→ · · · αn−→ τB(Tσ ‖B Pn)

t−→ τB(Tη ‖B Pn)

for some n ≥ 0, where τB(Tη ‖B Pn) 6|= safety(b). By induction η ∈ FT ∗(Pn). As above,

again using that visible actions from P are blocked by ‖B , it must be that P α1−→ P1
α2−→

· · · αn−→ Pn. I proceed with induction on n.
Base case: It must be that P = Pn

α−6→ for all α ∈ X ∪ {τ}, for otherwise τB(Tσ ‖B Pn)
would have an outgoing τ -transition that wins from the t-transition to τB(Tη ‖B Pn). The
fourth rule of Table 3 yields σ ∈ FT ∗(P ).

Induction step: By induction σ ∈ FT ∗(P1). In case α1 = τ one obtains σ ∈ FT ∗(P )

by the third rule of Table 3. In case α1 = t, it must be that P α−6→ for all α ∈ X ∪{τ}, for
otherwise τB(Tσ‖BP ) would have an outgoing τ -transition that wins from the t-transition
to τB(Tσ ‖B P1). The fifth rule of Table 3 yields σ ∈ FT ∗(P ).

• Let σ =Xdρ with d ∈X. Writing R for d.Tρ +
∑

a∈X\{d} a, the first part of π must have

the form

τB(Tσ ‖B P ) α1−→ τB(Tσ ‖B P1)
α2−→ · · · αn−→ τB(Tσ ‖B Pn)

t−→ τB(R ‖B Pn)

τB(R ‖B Pn)
αn+1−−−→ τB(R ‖B Pn+1)

αn+2−−−→ · · · αm−−→ τB(R ‖B Pm) τ−→ τB(Tρ ‖B P ′)

for some m ≥ n ≥ 0, where τB(Tρ ‖B P ′) 6|= safety(b). By induction ρ ∈ FT ∗(P ′). As

above, it must be that P α1−→ P1
α2−→ · · · αn−→ Pn

αn+1−−−→ Pn+1
αn+2−−−→ · · · αm−−→ Pm

d−→ P ′.
Necessarily, Pn

α−6→ for all α ∈ X∪{τ}, for otherwise τB(Tσ ‖BPn) would have an outgoing

τ -transition that wins from the t-transition to τB(R‖BPn). In particular, Pn
d−6→, whereas

Pm
d−→, so n 6= m. Moreover, αn+1 = t, for αn+1 = τ contradicts with Pn

τ−6→. Let k ≤ m
be the highest index such that αk = t. Then dρ ∈ FT ∗(Pk), by the second and third rules

of Table 3. For each index i with αi = t one must have Pi−1
α−6→ for all α ∈ X ∪ {τ}, for

the same reason as above. The sixth rule of Table 3 yields Xdρ ∈ FT ∗(Pk−1). Successive
applications of the third and fifth rules yield Xdρ ∈ FT ∗(Pj) for all j < k, so in particular
σ ∈ FT ∗(P ).

To obtain “⇐”, I will show that σ∈FT ∗(P ) implies Ab⊤ ∈ FT ∗(τB(Tσ‖BP )). Here A is
the set of all visible actions. In doing so, I apply induction on the derivation of σ∈FT ∗(P ).

Suppose σ = ⊤ ∈ FT ∗(P ) is derived from the first rule of Table 3. Since Tσ = t.b.0

one has τB(Tσ ‖B P ) t−→ τB(b.0 ‖B P ) b−→ τB(0 ‖B P ). Hence Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )),

using the first, second and sixth rules of Table 3, and using that τB(Tσ ‖B P ) α−6→ for all
α ∈ A ∪ {τ}.

Suppose σ = cρ ∈ FT ∗(P ) is derived from the second rule of Table 3. Then P c−→ P ′

and ρ ∈ FT ∗(P ′). By induction, Ab⊤ ∈ FT ∗(τB(Tρ ‖B P ′)). Since τB(Tσ ‖B P ) τ−→
τB(Tρ ‖B P ′), it follows with the third rule of Table 3 that Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )).

Suppose σ ∈ FT ∗(P ) is derived from the third rule of Table 3. Then P τ−→ P ′ and

σ ∈ FT ∗(P ′). By induction, Ab⊤ ∈ FT ∗(τB(Tσ ‖BP ′)). Since τB(Tσ ‖BP ) τ−→ τB(Tσ ‖BP ′),
it follows with the third rule of Table 3 that Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )).

Suppose σ=Xη∈FT ∗(P ) is derived from the fourth rule of Table 3. Then P α−6→ for all
α ∈X ∪ {τ} and η ∈ FT ∗(P ). In the special case that η = dρ, by Corollary 8.3 d /∈ X. By

induction Ab⊤∈FT ∗(τB(Tη ‖BP )). Since τB(Tσ ‖BP ) t−→ τB(Tη ‖BP ), and τB(Tσ ‖BP ) α−6→
for all α ∈ A ∪ {τ}, the fifth rule of Table 3 yields Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )).
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Suppose σ = Xη ∈ FT ∗(P ) is derived from the fifth rule of Table 3. Then P α−6→ for

all α ∈X ∪ {τ}, P t−→ P ′ and σ ∈ FT ∗(P ′). So τB(Tσ ‖B P ) α−6→ for all α ∈ A ∪ {τ}, and

Ab⊤∈ FT ∗(τB(Tσ ‖B P ′)) by induction. Since τB(Tσ ‖B P ) t−→ τB(Tσ ‖B P ′), the fifth rule
yields Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )).

Suppose σ=Xdρ∈FT ∗(P ) is derived from the sixth rule of Table 3. Then P α−6→ for all

α∈X ∪{τ}, d∈X, P t−→ P ′ and dρ ∈ FT ∗(P ′). So τB(Tσ ‖B P ) α−6→ and τB(R ‖B P ) α−6→ for
all α ∈ A ∪ {τ}, where R := d.Tρ +

∑

a∈X\{d} a. By induction Ab⊤ ∈ FT ∗(τB(Tdρ ‖B P ′)).

As τB(Tσ ‖B P ) t−→ τB(R‖B P ) t−→ τB(R‖B P ′), two applications of the fifth rule of Table 3
yield Ab⊤ ∈ FT ∗(τB(Tσ ‖B P )).

Corollary 8.5. ⊑∗
FT is fully abstract w.r.t. the operators of CCSPg

t and the canonical
safety property.

Proof. By Theorem 7.2, ⊑∗
FT is a precongruence for the operators of CCSPg

t . By definition,
P ⊑∗

FT Q implies P |= safety(b) ⇒ Q |= safety(b). It remains to show that ⊑∗
FT is the

coarsest preorder with these properties. To this end it suffices to find for any processes P
and Q with P 6⊑∗

FT Q a recursion-free CCSPg
t -context C[ ] such that C[P ] |= safety(b), yet

C[Q] 6|= safety(b).
So assume P 6⊑∗

FT Q. By applying a bijective renaming operator on P and Q, mapping
A to A \ {b}, I may assume that b is fresh for P and Q. Take σ ∈ FT ∗(Q) \ FT ∗(P ).
By Property (*) in the proof of Theorem 6.14 I may assume that b is fresh for σ. Now
Theorem 8.4 yields τA\{b}(Tσ ‖A\{b} P ) |= safety(b), yet τA\{b}(Tσ ‖A\{b} Q) 6|= safety(b).

Full abstraction w.r.t. general safety properties. The above says that the unique
preorder ⊑safety that is fully abstract w.r.t. the operators of CCSPg

t and the canonical
safety property coincides with ⊑∗

FT . Without the time-out operator, ⊑safety would be way
less discriminating, and coincides with reverse weak partial trace inclusion [Gla10]. I now
check whether one could get an even finer preorder than ⊑∗

FT by also considering other
safety properties.

To arrive at a general concept of safety property for LTSs, the paper [Gla10] assumes
that some notion of bad is defined. This induces the safety property saying that this bad
thing will never happen. To judge whether a process P satisfies this safety property, one
should judge whether P can reach a state in which one would say that this bad thing had
happened. But all observable behaviour of P that is recorded in an LTS until one comes
to such a verdict, is the sequence of visible actions performed until that point. Thus the
safety property is completely determined by the set sequences of visible actions that, when
performed by P , lead to such a judgement. Therefore, [Gla10] proposes to define the concept
of a safety property in terms of such a set: a safety property is given by a set B ⊆ A∗ of
bad partial traces. A process P satisfies this property, notation P |= safety(B), if P has no
partial trace in B. It follows immediately from this definition that partial trace equivalent
processes satisfy the same safety properties of this kind.

The present paper allows for a stronger concept of safety property. Here the observable
behaviour of a process that is recorded until one comes to the verdict that something bad
has happened can be modelled as a partial failure trace. Based on this, my definition is
analogous to the one in [Gla10]:



Vol. 17:2 FAILURE TRACE SEMANTICS FOR A PROCESS ALGEBRA WITH TIME-OUTS 11:29

Definition 8.6. A safety property of CCSPt processes is given by a set B ⊆ (A∪P(A))∗⊤
of bad partial failure traces. A process P satisfies this property, notation P |= safety(B), if
FT ∗(P ) ∩B = ∅.

It follows immediately that ⊑∗
FT respects all safety properties. Consequently, as in [Gla10],

for the definition of ⊑safety it does not matter whether all safety properties are considered,
or only the canonical one.

Trace equivalence and its congruence closure. A possible definition of a (weak) partial
trace is simply a partial failure trace from which all refusal sets have been omitted. Define
two processes to be (weak) (partial) trace equivalent iff they have the same partial traces.
Now Corollary 8.5 implies that ≡∗

FT is the congruence closure of trace equivalence, that is,
the coarsest congruence for the operators of CCSPt that is finer than trace equivalence.

May testing. May testing was proposed by De Nicola & Hennessy in [DH84] for the
process algebra CCS. Translated to CCSPt it works as follows. A test is a CCSPt process
that instead of visible actions from the alphabet A, uses visible actions from the alphabet
A ⊎ {ω}, where ω is a fresh action reporting “success”. A process P may pass a test T
iff τA(T ‖A P ) has some partial failure trace βω⊤, or, equivalently, has a partial trace
containing the action ω. A process with such a trace represents a system with an execution
that eventually reports success. Now define the preorder ⊑may on CCSPt processes by

P ⊑may Q iff each test T that P may pass, may also be passed by Q.

May testing contrasts with must testing, which requires that each execution leads to a state
that can report success.

Theorem 8.7. P ⊑may Q iff Q ⊑∗
FT P .

Proof. Note that R has some partial failure trace βω⊤ iff R 6|= safety(ω). Using this,
Theorem 8.7 is an immediately consequence of Theorem 8.4, with ω in the rôle of b. The
side conditions of b being fresh in Theorem 8.4 are redundant in this context, as ω is fresh
by construction.

So the may-preorder is the converse of the safety preorder. This is related to calling ω a
success action, instead of b a bad action. The may-preorder preserves the property that a
process can do something good, whereas the safety preorder preserves the property that a
process can not so something bad.

9. Conclusion

This paper extended the model of labelled transition systems with time-out transitions
s1

t−→ s2. Such a transition is assumed to be instantaneous and unobservable by the
environment, just like a transition s1

τ−→ s2, but becomes available only a positive but
finite amount of time after the represented system reaches state s1. This extension allows
the implementation of a simple priority mechanism, thereby increasing the expressiveness
of the model.

To denote such labelled transition systems I extended the standard process algebra
CCSP with the action prefixing operator t. . Many semantic preorders ⊑ have been defined
on labelled transition systems, and thereby on the expressions in CCSP and other process
algebras. P ⊑ Q says that process Q is a refinement of process P , where P is closer to the
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specification of a system, and Q to its implementation. The least one may wish to require
from such a preorder is

(1) that it is a precongruence for the static operators of CCSP: partially synchronous paral-
lel composition, renaming, and abstraction by renaming visible actions into the hidden
action τ ,

(2) and that it respects (basic) safety properties, meaning that any safety property of a
process P also holds for its refinements Q.

The coarsest preorder with these properties is well known to be the reverse weak partial
trace inclusion (see e.g. [Gla10]). Accordingly, weak partial trace inclusion is the preorder
generated by may testing [DH84].

After the extension with time-out transitions, the weak partial trace preorder is no
longer a precongruence for the static operators of CCSP. I here characterised the coarsest
preorder satisfying (1) and (2) above as the partial failure trace preorder. Again, its converse
is the preorder generated by may testing. All the above also applies to semantic equivalences,
arising as the kernels of these preorders.

To obtain a (pre)congruence for all CCSP operators, including the CCS choice +, one
needs to use a rooted version of the partial failure trace preorder, as is common in the study
of preorders that abstract from the hidden action τ .

The work reported here remains in the realm of untimed process algebra, in the sense
that the progress of time is not quantified. In the study of Timed CSP [RR87, DS95, Sch95,
RR99], similar work has been done in a setting where the progress of time is quantified.
Also there a form of failure trace semantics was found to be the right equivalence, and
the connection with may testing was made in [Sch95]. Since the bookkeeping of time in
[RR87, DS95, Sch95, RR99] is strongly interwoven with the formalisation of failure traces,
it is not easy to determine whether my semantics can in some way be seen as a abstraction
of the one for Timed CCSP, for instance by instantiating each quantified passage of time
with a nondeterministic choice allowing any amount of time. This appears to be a question
worthy of further research. A contribution of the present work is that the transformation
of a failures based semantics of CSP [BHR84, Hoa85] to a failure trace based semantics
of Timed CSP [RR87, DS95, Sch95, RR99] is not really necessitated by quantification of
time—often seen as the main difference between CSP and Timed CSP—but rather by the
introduction of a time-out operator (quantified or not).

Future work includes proving a congruence result for recursion, finding complete ax-
iomatisations, and extending the approach from partial to complete failure traces, so that
liveness properties will be respected. In that setting the expressiveness questions of Sec-
tion 1.4 can be studied. The adaption of strong bisimilarity to the setting with time-out
transitions is studied in [Gla20].
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Assume σL ∈ FT ∗(P ) is obtained from the third rule of Table 3. Then P τ−→ P ′ and

σL ∈ FT ∗(P ′). So P ‖S Q τ−→ P ′ ‖S Q by Table 1, and σ ∈ FT ∗(P ′ ‖S Q) by induction.
It follows that σ ∈ FT ∗(P ‖S Q).

The case that σR ∈ FT ∗(Q) is obtained from the third rule of Table 3 proceeds likewise.
So assume σL ∈ FT ∗(P ) and σR ∈ FT ∗(Q) are both obtained from the second rule of

Table 3. Then P a−→ P ′, Q a−→ Q′, ρL ∈ FT ∗(P ′) and ρR ∈ FT ∗(Q′). So P ‖S Q a−→
P ′ ‖SQ

′ by Table 1, and ρ ∈ FT ∗(P ′ ‖SQ
′) by induction. It follows that σ ∈ FT ∗(P ‖SQ).

• Let σ = aρ with a /∈ S. Assume that σL = aρL and σR = ρR—the other case, that
σL = ρL and σR = aρR, will follow by symmetry.

Assume σL ∈ FT ∗(P ) is obtained from the third rule of Table 3. Then P τ−→ P ′ and

σL ∈ FT ∗(P ′). So P ‖S Q τ−→ P ′ ‖S Q by Table 1, and σ ∈ FT ∗(P ′ ‖S Q) by induction.
It follows that σ ∈ FT ∗(P ‖S Q).

Now assume σL ∈FT ∗(P ) is obtained from the second rule of Table 3. Then P a−→ P ′

and ρL ∈ FT ∗(P ′). So P ‖SQ
a−→ P ′ ‖SQ by Table 1, and ρ ∈ FT ∗(P ′ ‖SQ) by induction.

It follows that σ ∈ FT ∗(P ‖S Q).
• Let σ = Xρ. Then σL = XLρL and σR = XRρR. Both these statements must be derived
from the fourth to sixth rule of Table 3. Hence P α−6→ for all α ∈ XL ∪ {τ}, and Q α−6→ for
all α ∈ XR ∪ {τ}. Note that (6.2)–(6.4) hold with X, XL and XR in the rôles of σi, σ

L
i

and σR
i . From (6.4) it follows that P ‖S Q α−6→ for all α ∈ X ∪ {τ}.

Assume σL ∈ FT ∗(P ) is obtained from the fifth rule of Table 3. Then P t−→ P ′ and

σL ∈ FT ∗(P ′). So P ‖S Q t−→ P ′ ‖S Q by Table 1, and σ ∈ FT ∗(P ′ ‖S Q) by induction.
It follows that σ ∈ FT ∗(P ‖S Q).

The case that σR ∈ FT ∗(Q) is obtained from the fifth rule of Table 3 proceeds likewise.
Assume σL ∈ FT ∗(P ) and σR ∈ FT ∗(Q) are both obtained from the fourth rule of

Table 3. Then ρL ∈FT ∗(P ) and ρR ∈FT ∗(Q). So ρ ∈ FT ∗(P ‖S Q) by induction. Hence
σ ∈ FT ∗(P ‖S Q).

Assume σL∈FT ∗(P ) is obtained from the sixth rule of Table 3 and σR∈FT ∗(Q) from

the fourth. Then P t−→ P ′, ρL ∈ FT ∗(P ′) and ρL has the form aηL with a∈XL ⊆ X—the

latter using (6.4). Moreover, ρR ∈ FT ∗(Q). Now P ‖S Q t−→ P ′ ‖S Q by Table 1, and
ρ ∈ FT ∗(P ′ ‖S Q) by induction. Since XL is system-ended in σL, by (6.2) X must be
system-ended in σ. Hence ρ has the form bη with b ∈ X. Using the sixth rule of Table 3
it follows that σ ∈ FT ∗(P ‖S Q).

The case that σL∈FT ∗(P ) is obtained from the fourth rule of Table 3 and σR∈FT ∗(Q)
from the sixth proceeds likewise.

In case σL∈FT ∗(P ) and σR ∈ FT ∗(Q) are both obtained from the sixth rule of Table 3,
XL is system-ended in σL and XR is system-ended in σR. So this case is excluded by
condition (6.3).

“⊆”: Let FT e(x) be defined exactly as FT ∗(x)—see Table 3—except that the conclusion of
the fifth rule reads “XXρ ∈ FT e(x)”. Now FT ∗(P ‖S Q) ⊆ col(FT e(P ‖S Q)), so, using
that col is monotonous, it suffices to show that FT e(P ‖S Q) ⊆ FT ∗(P ) ‖S FT ∗(Q).

So let σ ∈ FT e(P ‖SQ). With structural induction on the derivation of σ ∈ FT e(P ‖SQ)
from the (amended) rules of Tables 1 and 3 I show that σ ∈ FT ∗(P )‖SFT ∗(Q). This means
I have to give a valid decomposition of σ such that σL ∈ FT ∗(P ) and σR ∈ FT ∗(Q).

• Let σ = ⊤, with σ ∈ FT e(P ‖S Q) derived from the first rule of Table 3. Then σ has only
one decomposition, which is valid. Trivially, σL = ⊤ ∈ FT ∗(P ) and σR = ⊤ ∈ FT ∗(Q).
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• Let σ=aρ, with σ ∈ FT e(P ‖SQ) derived from the second rule. Then P ‖SQ
a−→ P ′ ‖SQ

′

and ρ ∈ FT e(P ′ ‖S Q′). By induction there is a valid decomposition of ρ such that
ρL ∈ FT ∗(P ′) and ρR ∈ FT ∗(Q′). Depending on which rule of Table 1 was employed to

derive P ‖S Q a−→ P ′ ‖S Q′,

(i) either a /∈ S, P a−→ P ′ and Q′ = Q,

(ii) or a ∈ S, P a−→ P ′ and Q a−→ Q′,

(iii) or a /∈ S, P ′ = P and Q a−→ Q′.
In case (i) take σL := aρL and σR := ρR ∈ FT ∗(Q). As the given decomposition of ρ is
valid, so is the newly constructed one of σ. The second rule of Table 3 yields σL ∈ FT ∗(P ).
In case (ii) σL :=aρL∈FT ∗(P ) and σR :=aρR∈FT ∗(Q). Also this decomposition is valid.
In case (iii) σL := ρL∈FT ∗(P ) and σR :=aρR ∈FT ∗(Q). Also this decomposition is valid.

• Suppose σ ∈ FT e(P ‖S Q) is derived from the third rule of Table 3. Then P ‖S Q τ−→
P ′ ‖S Q′ and σ ∈ FT e(P ′ ‖S Q′). By induction there is a valid decomposition of σ such
that σL ∈ FT ∗(P ′) and σR∈FT ∗(Q′). Depending on which rule of Table 1 was employed

to derive P ‖S Q τ−→ P ′ ‖S Q′,

(i) either P τ−→ P ′ and Q′ = Q,

(ii) or P ′ = P and Q τ−→ Q′.
In either case the third rule of Table 3 yields σL ∈ FT ∗(P ) and σR ∈ FT ∗(Q).

• Let σ = Xρ, with σ ∈ FT e(P ‖S Q) derived from the fourth rule of Table 3. Then

P ‖S Q α−6→ for all α ∈ X ∪ {τ}, and ρ ∈ FT e(P ‖S Q). By induction there is a valid
decomposition of ρ such that ρL ∈ FT ∗(P ) and ρR ∈ FT ∗(Q). Let XL := (X \ S) ∪ {a ∈
X ∩S | P a−6→} and XR := (X \S)∪ {a ∈ X ∩S | Q a−6→}. Considering that, for a∈X ∩S,

P ‖S Q a−6→ iff P a−6→ ∨ Q a−6→, Condition (6.4), with X, XL and XR in the rôles of σi, σ
L
i

and σR
i , is satisfied. Moreover, P α−6→ for all α ∈ XL ∪ {τ}, and Q α−6→ for all α∈XR ∪{τ}.

Take σL = XLρL and σR = XRρR. The fourth rule of Table 3 yields σL ∈ FT ∗(P ) and
σR ∈ FT ∗(Q). It remains to show that this decomposition satisfies Conditions (6.2) and
(6.3).

Suppose ρL has the form aηL. Then, by Corollary 8.3, a /∈ XL. It follows that XL is
not system-ended in σL. In the same manner it follows that XR is not system-ended in
σR, and that X is not system-ended in σ.

• Let σ = XXρ, with σ ∈ FT e(P ‖S Q) derived from the amended fifth rule of Table 3.

Then P ‖S Q α−6→ for all α ∈ X ∪ {τ}, P ‖S Q t−→ P ′ ‖S Q′ and Xρ ∈ FT e(P ′ ‖S Q′). By
induction there is a valid decomposition (XLρL,XRρR) of Xρ such that XLρL ∈ FT ∗(P ′)

and XRρR ∈FT ∗(Q′). Note that P ′ a−6→ for all a ∈ XL ∪ {τ}. Depending on which rule of

Table 1 was employed to derive P ‖S Q t−→ P ′ ‖S Q′,

(i) either P t−→ P ′ and Q′ = Q,

(ii) or P ′ = P and Q t−→ Q′.
For reasons of symmetry, I may assume the former.

Let X ′
L := {a ∈ XL | P a−6→} and X ′

R := (X \S)∪{a ∈ X ∩S | Q a−6→}. Using the fourth
rule of Table 3, σL := X ′

LXLρL ∈ FT ∗(P ′), and by the fifth rule σL ∈ FT ∗(P ), also using

that P τ−6→. Moreover, by the fourth rule of Table 3, σR := X ′
RXRρR ∈ FT ∗(Q), using

that Q α−6→ for all α ∈ (X\S) ∪ {τ}. It remains to show the validity of the decomposition
of σ that yields σL and σR. Conditions (6.2) and (6.3) hold trivially. So it remains to
check Condition (6.4).

Let a ∈ X \ S. Then a ∈ XL \ S and P ‖S Q a−6→, so P a−6→, and a ∈ X ′
L \ S.
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Conversely, X ′
L \ S ⊆ XL \ S = X \ S, and by definition X ′

R \ S = X \ S.

Let a ∈ X∩S. Then P‖SQ
a−6→, so P a−6→ orQ a−6→. In case Q a−6→, by definition a ∈ X ′

R∩S.

In case Q a−→, it is not possible that a ∈ XR. Hence a ∈ XL, by Property (6.4) of the

given valid decomposition of Xρ. Moreover, P a−6→, so a ∈ X ′
L ∩ S.

Conversely, by definition X ′
R ∩ S ⊆ X ∩ S and X ′

L ∩ S ⊆ XL ∩ S ⊆ X ∩ S.

• Let σ = Xaρ, with σ ∈ FT e(P‖SQ) derived from the sixth rule of Table 3. Then P‖SQ
α−6→

for all α ∈ X ∪ {τ}, a ∈ X, P ‖S Q t−→ P ′ ‖S Q′ and aρ ∈ FT e(P ′ ‖S Q′). By induction
there is a valid decomposition of ζ := aρ such that ζL ∈ FT ∗(P ′) and ζR ∈ FT ∗(Q′).

Let XL := (X \ S) ∪ {b ∈ X ∩ S | P b−6→} and XR := (X \ S) ∪ {b ∈ X ∩ S | Q b−6→}.
Then P α−6→ for all α ∈ XL ∪ {τ}, and Q α−6→ for all α ∈ XR ∪ {τ}. Take σL = XLζL and
σR=XRζR. I have to show that this is a valid decomposition of σ, and that σL ∈ FT ∗(P )
and σR ∈ FT ∗(Q).

Considering that, for all b ∈ X ∩ S, P ‖S Q b−6→ iff P b−6→ ∨ Q b−6→, Condition (6.4) is
satisfied.

Depending on which rule of Table 1 was employed to derive P ‖S Q t−→ P ′ ‖S Q′,

(i) either P t−→ P ′ and Q′ = Q,

(ii) or P ′ = P and Q t−→ Q′.
For reasons of symmetry, I may assume the former. By the fourth rule of Table 3,
σR ∈ FT ∗(Q).

I now show that XR is not system-ended in σR. Namely, if ζR is of the form bηR, then
b /∈ XR by Corollary 8.3. Thus Condition (6.3) holds.
– As a further case distinction, assume a /∈ S. Since a ∈ X and thus a ∈ XL and a ∈ XR,

by the above it follows that ζR is not of the form aηR. Hence, ζL has the form aηL.
The sixth rule of Table 3 yields σL ∈ FT ∗(P ). Since XL is system-ended in σL and X
is system-ended in σ, Condition (6.2) holds as well.

– Finally assume a ∈ S. Then ζL has the form aηL and ζR has the form aηR. Since XR

is not system-ended in σR, one has a /∈ XR, that is, Q a−→. As P ‖S Q a−6→, it follows

that P a−6→, and thus a ∈ XL. The sixth rule of Table 3 yields σL ∈ FT ∗(P ). Since XL

is system-ended in σL and X is system-ended in σ, Condition (6.2) holds as well.

Proposition A.2. σ ∈ FT ∗(τI(P )) ⇔ ∃ρ ∈ FT ∗(P ). τI(ρ) = σ ∪ I.

Proof. Since each state R reachable from τI(P ) satisfies R α−6→ for all α ∈ I, a trivial induc-
tion shows that

σ ∈ FT ∗(τI(P )) ⇔ σ ∪ I ∈ FT ∗(τI(P )). (*)

“⇐”: Let ρ ∈ FT ∗(P ) and ρ survives abstraction from I. By Condition (i) in the definition
of abstraction survival, τI(ρ) is of the form σ ∪ I. In view of (*), it suffices to show that
τI(ρ) ∈ FT ∗(τI(P )). I do so with structural induction on the derivation of ρ ∈ FT ∗(P ).
The case ρ = ⊤ is trivial.

Assume ρ ∈ FT ∗(P ) is obtained from the third rule of Table 3. Then P τ−→ P ′ and

ρ ∈ FT ∗(P ′). By induction τI(ρ) ∈ FT ∗(τI(P
′)). By Table 1 τI(P ) τ−→ τI(P

′). Hence
τI(ρ) ∈ FT ∗(τI(P )) by the third rule of Table 3.

Assume ρ = aη ∈ FT ∗(P ) is obtained from the second rule of Table 3. Then P a−→ P ′

and η ∈ FT ∗(P ′). By induction τI(η) ∈ FT ∗(τI(P
′)). By Table 1 τI(P ) α−→ τI(P

′), with
α = τ if a ∈ I and α = a otherwise. In the first case τI(ρ) = τI(η) ∈ FT ∗(τI(P )) by the
third rule of Table 3. In the second case τI(ρ) = aτI(η) ∈ FT ∗(τI(P )) by the second rule
of Table 3.
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Assume ρ=Xη ∈ FT ∗(P ) is obtained from the fourth rule of Table 3. Then P α−6→ for
all α ∈X ∪ {τ} and η ∈ FT ∗(P ). If η has the form aζ, then a /∈ X by Corollary 8.3. In
particular, a /∈ I, using Condition (i) in the definition of abstraction survival. Consequently,

τI(ρ) = XτI(η), for any possibly form of η. Furthermore, τI(P ) α−6→ for all α∈X∪{τ}. Here
I use that I ⊆ X. By induction τI(η) ∈ FT ∗(τI(P )). Hence τI(ρ) ∈ FT ∗(τI(P )) by the
fourth rule of Table 3.

Assume ρ = Xη ∈ FT ∗(P ) is obtained from the fifth rule of Table 3. Then P α−6→ for

all α ∈ X ∪ {τ}, P t−→ P ′ and ρ ∈ FT ∗(P ′). So τI(P ) t−→ τI(P
′) and τI(P ) α−6→ for all

α ∈ X ∪ {τ}, using that I ⊆ X. By induction τI(ρ) ∈ FT ∗(τI(P
′)). Note that τI(ρ) has

the form Xζ, although not necessarily with ζ = τI(η). The fifth rule of Table 3 yields
τI(ρ) ∈ FT ∗(τI(P )).

Assume ρ =Xη ∈ FT ∗(P ) is obtained from the sixth rule of Table 3. Then P α−6→ for

all α ∈ X ∪ {τ}, P t−→ P ′ and η ∈ FT ∗(P ′). So τI(P ) t−→ τI(P
′) and τI(P ) α−6→ for all

α ∈ X ∪ {τ}. By induction τI(η) ∈ FT ∗(τI(P
′)). Using that ρ survives abstraction, I

consider three alternatives for η.

• Let η = c0 · · · cn⊤ with the ci ∈ I. Then τI(ρ) = X⊤. The first and fourth rules of
Table 3 yield τI(ρ) ∈ FT ∗(τI(P )).

• Let η = c0 · · · cnXζ with the ci ∈ I. Then τI(ρ) = τI(η) = τI(Xζ), and τI(η) has the
form Xζ ′. The fifth rule of Table 3 yields τI(ρ) ∈ FT ∗(τI(P )).

• Let η = c1 · · · cnaζ with the ci∈I and a/∈I. Then a∈X (using Condition (iii) of abstraction
survival if n > 0, and the side condition of the sixth rule of Table 3 if n = 0) and
τI(ρ) =XτI(η) with τI(η) = aτI(ζ). The sixth rule of Table 3 yields τI(ρ) ∈ FT ∗(τI(P )).

“⇒”: Let σ ∈ FT ∗(τI(P )); by (*) I may assume that σ = σ∪ I. I have to find a ρ ∈ FT ∗(P )
such that τI(ρ) = σ. I do so with structural induction on the derivation of σ ∈ FT ∗(τI(P )).

Assume σ ∈ FT ∗(τI(P )) is obtained from the first rule of Table 3. Take ρ = ⊤, so that
τI(ρ) = ⊤ = σ. The first rule of Table 3 yields ρ ∈ FT ∗(P ).

Assume σ ∈ FT ∗(τI(P )) is obtained from the second rule of Table 3. Then σ = aζ,

τI(P ) a−→ τI(P
′) and ζ ∈ FT ∗(τI(P

′)). So P a−→ P ′ and a /∈ I. By induction, there is a
ρ∈FT ∗(P ′) such that τI(ρ)= ζ. The second rule of Table 3 yields aρ ∈ FT ∗(P ). Moreover,
τI(aρ) = aζ = σ.

Assume σ∈FT ∗(τI(P )) is obtained from the third rule of Table 3. Then τI(P ) τ−→ τI(P
′)

and σ ∈ FT ∗(τI(P
′)). So P α−→ P ′ with α ∈ I ∪ {τ}. By induction, there is a ρ ∈ FT ∗(P ′)

such that τI(ρ) = σ. In case α = τ , the third rule of Table 3 yields ρ ∈ FT ∗(P ). In case
α 6= τ , the second rule of Table 3 yields αρ ∈ FT ∗(P ); moreover, τI(αρ) = τI(ρ) = σ.

Assume σ ∈ FT ∗(τI(P )) is obtained from the fourth rule of Table 3. Then σ = Xζ,

ζ ∈ FT ∗(τI(P )) and τI(P ) α−6→ for all α ∈ X ∪ {τ}. So P α−6→ for all α ∈ X ∪ {τ}. By
induction, there is a ρ ∈ FT ∗(P ) such that τI(ρ) = ζ. Hence Xρ ∈ FT ∗(P ) by the fourth
rule of Table 3. In case ρ has the form ⊤ or Y η, one has τI(Xρ) = XτI(ρ) = Xζ = σ,
which needed to be shown. So suppose ρ has the form aη. Then a /∈ X by Corollary 8.3. In
particular, a /∈ I, using Condition (i) in the definition of abstraction survival. Consequently,
τI(Xρ) = XτI(ρ) = Xζ = σ.

Assume σ ∈ FT ∗(τI(P )) is obtained from the fifth rule of Table 3. Then σ = Xζ,

τI(P ) t−→ τI(P
′), σ∈FT ∗(τI(P

′)) and τI(P ) α−6→ for all α∈X ∪{τ}. So P t−→ P ′ and P α−6→
for all α ∈X ∪ {τ}. By induction, there is a ρ ∈ FT ∗(P ′) such that τI(ρ) = σ. This ρ must
have the form Xη. Hence ρ ∈ FT ∗(P ) by the fifth rule of Table 3.



Vol. 17:2 FAILURE TRACE SEMANTICS FOR A PROCESS ALGEBRA WITH TIME-OUTS 11:37

Finally, assume σ∈FT ∗(τI(P )) is obtained from the sixth rule of Table 3. Then σ=Xaζ,

a ∈ X, τI(P ) t−→ τI(P
′), aζ ∈ FT ∗(τI(P )) and τI(P ) α−6→ for all α ∈X ∪ {τ}. So P t−→ P ′

and P α−6→ for all α ∈X ∪ {τ}. By induction, there is a ρ ∈ FT ∗(P ′) such that τI(ρ) = aζ.
So a /∈ I and ρ has the form c1 . . . cnaη with ci ∈ I ⊆ X for i = 1, . . . , n and τI(η) = ζ. The
sixth rule of Table 3 yields Xρ ∈ FT ∗(P ). Moreover, τI(Xρ) = XaτI(η) = Xaζ = σ.

Proposition A.3. σ ∈ FT ∗(R(P )) ⇔ ∃ρ ∈ FT ∗(P ). ρ ∈ R−1(σ).

Proof. “⇐”: Let ρ ∈ FT ∗(P ). With structural induction on the derivation of ρ ∈ FT ∗(P )
I show that, for any σ with ρ ∈ R−1(σ), one has σ ∈ FT ∗(R(P )).

If ρ ∈ FT ∗(P ) is obtained from the first rule of Table 3, then σ = ρ = ⊤ and σ ∈
FT ∗(R(P )).

Assume ρ = aη ∈ FT ∗(P ) is obtained from the second rule. Then P a−→ P ′ and η ∈
FT ∗(P ′). Moreover, σ= bζ with (a, b)∈R and η ∈R−1(ζ). So R(P ) b−→ R(P ′) by Table 1,
and ζ ∈ FT ∗(R(P ′)) by induction. It follows that σ ∈ FT ∗(R(P )).

Assume ρ ∈ FT ∗(P ) is obtained from the third rule of Table 3. Then P τ−→ P ′ and

ρ∈FT ∗(P ′). So R(P ) τ−→ R(P ′) by Table 1, and σ ∈FT ∗(R(P ′)) by induction. It follows
that σ ∈ FT ∗(R(P )).

Assume ρ=Y η∈FT ∗(P ) is obtained from the fourth rule. Then P α−6→ for all α∈Y ∪{τ}
and η ∈ FT ∗(P ). Moreover, σ =Xζ with Y = R−1(X) and η ∈ R−1(ζ). So R(P ) α−6→ for
all α ∈X ∪ {τ}, and ζ ∈ FT ∗(R(P )) by induction. It follows that σ ∈ FT ∗(R(P )).

Assume ρ=Y η∈FT ∗(P ) is obtained from the fifth rule. Then P α−6→ for all α∈Y ∪{τ},
P t−→ P ′ and ρ ∈ FT ∗(P ′). Moreover, σ = Xζ with Y = R−1(X). So R(P ) α−6→ for

all α ∈ X ∪ {τ}, R(P ) t−→ R(P ′) and σ ∈ FT ∗(R(P ′)) by induction. It follows that
σ ∈ FT ∗(R(P )).

Assume ρ=Y aη∈FT ∗(P ) is obtained from the sixth rule. Then P α−6→ for all α∈Y ∪{τ},
P t−→ P ′, a∈ Y and aη ∈ FT ∗(P ). Moreover, σ=Xbζ with Y =R−1(X), (a, b) ∈R, b∈X

and aη ∈R−1(bζ). So R(P ) α−6→ for all α ∈X ∪ {τ}, R(P ) t−→ R(P ′) and bζ ∈ FT ∗(R(P ′))
by induction. It follows that σ ∈ FT ∗(R(P )).

“⇒”: Let σ ∈ FT ∗(R(P )). With structural induction on the derivation of σ ∈
FT ∗(R(P )) I show that there exists a ρ ∈ FT ∗(P ) with ρ ∈ R−1(σ).

If σ = ⊤ ∈ FT ∗(R(P )) is obtained from the first rule of Table 3, take ρ = ⊤. Now
ρ ∈ FT ∗(P ).

Assume σ = bζ ∈ FT ∗(R(P )) is obtained from the second rule of Table 3. Then

R(P ) b−→ R(P ′) and ζ ∈ FT ∗(R(P ′)). So P a−→ P ′ for some a with (a, b) ∈ R, and by
induction there is an η ∈ FT ∗(P ′) with η ∈ R−1(ζ). Take ρ = aη. Then ρ ∈ FT ∗(P ) and
ρ ∈ R−1(σ).

Assume σ ∈ FT ∗(R(P )) is obtained from the third rule of Table 3. Then R(P ) τ−→
R(P ′) and σ ∈ FT ∗(R(P ′)). So P τ−→ P ′, and by induction there is a ρ ∈ FT ∗(P ′) with
ρ ∈ R−1(σ). Hence ρ ∈ FT ∗(P ).

Assume σ = Xζ ∈ FT ∗(R(P )) is obtained from the fourth rule of Table 3. Then

R(P ) α−6→ for all α ∈X ∪ {τ} and ζ ∈ FT ∗(R(P )). So P α−6→ for all α ∈ R−1(X) ∪ {τ}. By
induction there is an η ∈ FT ∗(P ) with η ∈ R−1(ζ). Take ρ = R−1(X)η. Then ρ ∈ FT ∗(P )
by the fourth rule of Table 3. In case ζ has the form bζ ′, then η has the form aη′ with
(a, b) ∈ R; moreover, Corollary 8.3 yields b /∈ X as well as a /∈ R−1(X). Consequently,
ρ ∈ R−1(σ).
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Assume σ = Xζ ∈ FT ∗(R(P )) is obtained from the fifth rule of Table 3. ThenR(P ) α−6→
for all α∈X∪{τ}, R(P ) t−→ R(P ′) and σ ∈ FT ∗(R(P ′)). So P α−6→ for all α∈R−1(X)∪{τ},
P t−→ P ′, and by induction there is a ρ∈FT ∗(P ′) with ρ ∈ R−1(σ). Of course ρ must have
the form R−1(X)η. So ρ ∈ FT ∗(P ) by the fifth rule of Table 3.

Finally assume σ = Xbζ ∈ FT ∗(R(P )) is obtained from the sixth rule of Table 3. Then

R(P ) α−6→ for all α ∈X ∪ {τ}, b ∈ X, R(P ) t−→ R(P ′) and bζ ∈ FT ∗(R(P ′)). So P α−6→ for

all α∈R−1(X) ∪ {τ}, P t−→ P ′, and by induction there is an aη ∈FT ∗(P ′) with (a, b) ∈ R
and η ∈ R−1(ζ). So a∈R−1(X). Take ρ = R−1(X)aη. Then ρ ∈ FT ∗(P ) by the sixth rule
of Table 3. Moreover, ρ ∈ R−1(σ).

Proposition A.4. FT r∗(P ‖S Q) = col(FT r∗(P ) ‖S FT r∗(Q)).

Proof. “⊇”: Let σ ∈ FT r∗(P ) ‖S FT r∗(Q), and fix a valid decomposition of σ as a witness.
With the clearly valid generalisation of Observation 5.3 to FT r∗(P ) it suffices to show that
σ ∈ FT r∗(P ‖S Q).

• Let σ = stab. Then stab ∈ FT r∗(P ) and stab ∈ FT r∗(Q). So stable(P ) and stable(Q).
Indeed, this implies stable(P ‖S Q), and thus σ ∈ FT r∗(P ‖S Q).

• Let σ =⊤, σ = aρ or σ =Xρ. Then σL ∈ FT ∗(P ) and σR ∈ FT ∗(Q), so from (the proof
of) Proposition A.1 one obtains σ ∈ FT ∗(P ‖S Q) ⊆ FT r∗(P ‖S Q).

• Let σ = tXρ. Assume that σL = tXLρL ∈ FT r∗(P ) and σR = XRρR ∈ FT r∗(Q); the
other case follows by symmetry. Then σR ∈ FT ∗(Q). Moreover, stab ∈ FT r∗(Q), so Q is

stable. By Definition 6.11, P t−→ P ′, XLρL ∈ FT ∗(P ′) and P α−6→ for α ∈ XL ∪{τ}. Thus
P ‖S Q

t−→ P ′ ‖S Q by Table 1, and Xρ ∈ FT ∗(P ′ ‖S Q) by (the proof of) Proposition A.1.
Furthermore, XRρR ∈ FT ∗(Q) must be derived by the fourth to sixth rule of Table 3, so

Q α−6→ for all α ∈ XR ∪ {τ}. Hence P ‖S Q α−6→ for all α ∈ X ∪ {τ}, using (6.4). Therefore,
σ ∈ FT r∗(P ‖S Q).

• Let σ=poststab. Then either poststab∈FT r∗(P )∧poststab∈FT r∗(Q), or poststab∈FT r∗(P )∧
stab ∈ FT r∗(Q), or stab ∈ FT r∗(P ) ∧ poststab ∈ FT r∗(Q). Either way, P and Q both have
paths of τ -transitions to a stable state, and at least one of them is nonempty. It follows
that P ‖S Q has a nonempty path of τ -transitions to a stable state, so σ ∈ FT r∗(P ‖S Q).

“⊆”: Let FT re(P ) be defined exactly as FT r∗(P )—see Definition 6.11—but writing tXXσ
instead of tXσ, and employing FT e(P ) and FT e(P ′), as defined in the proof of Proposi-
tion A.1, instead of FT ∗(P ) and FT ∗(P ′). Obviously, FT r∗(P ‖SQ) ⊆ col(FT re(P ‖SQ)), so,
using that col is monotonous, it suffices to show that FT re(P ‖S Q) ⊆ FT r∗(P )‖S FT r∗(Q).

So let σ ∈ FT re(P ‖SQ). With structural induction on the derivation of σ ∈ FT re(P ‖S
Q) from the (amended) rules of Tables 1 and 3 I show that σ ∈ FT r∗(P ) ‖S FT r∗(Q). This
means that in case σ 6= stab, poststab I have to give a valid decomposition of σ such that
σL ∈ FT r∗(P ) and σR ∈ FT r∗(Q); moreover, I have to show that stab ∈ FT r∗(P ) and
stab ∈ FT r∗(Q) in case σ has the form tXρ.

• Let σ = ⊤, σ = aρ or σ = Xρ. Then σ ∈ FT e(P ‖S Q). So by the proof of Proposi-
tion A.1 there is a valid decomposition of σ such that σL ∈ FT ∗(P ) ⊆ FT r∗(P ) and
σR ∈ FT ∗(Q) ⊆ FT r∗(Q).

• Let σ = stab. Then P ‖SQ
τ−6→, so P τ−6→ and Q τ−6→. So stab ∈ FT r∗(P ) and stab ∈ FT r∗(Q).

• Let σ = tXXρ. By Definition 6.11, P ‖S Q α−6→ for all α ∈ X ∪ {τ}, P ‖S Q t−→ P ′ ‖S Q′

and Xρ ∈ FT e(P ′ ‖S Q′). It follows that P τ−6→ and Q τ−6→, so stab ∈ FT r∗(P ) and
stab ∈ FT r∗(P ). By the proof of Proposition A.1 there is a valid decomposition of Xρ
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such that XLρL ∈ FT ∗(P ′) and XRρR ∈ FT ∗(Q′). Depending on which rule of Table 1

derived P ‖S Q t−→ P ′ ‖S Q′,

(i) either P t−→ P ′ and Q′ = Q,

(ii) or P ′ = P and Q t−→ Q′.
For reasons of symmetry, I may assume the former.

Let X ′
L := {a ∈ XL | P a−6→} and X ′

R := (X \S)∪{a ∈ X ∩S | Q a−6→}. Using the fourth
rule of Table 3, X ′

LXLρL ∈ FT ∗(P ′), so by Definition 6.11 σL := tX ′
LXLρL ∈ FT r∗(P ).

Moreover, by the fourth rule of Table 3, σR := X ′
RXRρR ∈ FT ∗(Q) ⊆ FT r∗(Q), using

that Q α−6→ for all α ∈ (X\S) ∪ {τ}. It remains to show the validity of the decomposition
of σ into σL and σR. This proceeds exactly as in the corresponding case in the proof of
Proposition A.1 (the case σ = XXρ in direction “⊆”).

• Let σ = poststab. Then P ‖SQ has a nonempty path of τ -transitions to a stable state. This
path projects to paths of τ -transitions from P and fromQ to stable states, and at least one
of them must be nonempty. It follows that either poststab∈FT r∗(P )∧ poststab∈FT r∗(Q),
or poststab ∈ FT r∗(P ) ∧ stab ∈ FT r∗(Q), or stab ∈ FT r∗(P ) ∧ poststab ∈ FT r∗(Q).

Proposition A.5. Let stab 6= σ 6= poststab. Then

σ ∈ FT r∗(τI(P )) ⇔ ∃ρ ∈ FT r∗(P ). τI(ρ) = σ ∪ I.

Moreover, stab ∈ FT r∗(τI(P )) ⇔ stab ∈ FT r∗(P ) ∧ I(P ) ∩ I = ∅,
and poststab ∈ FT r∗(τI(P )) ⇔ (∃c0c1 . . . cnI⊤ ∈ FT r∗(P ) where n ≥ 0 and all ci ∈ I)

∨ (poststab ∈ FT r∗(P ) ∧ I⊤ ∈ FT r∗(P )).

Proof. Let stab 6= σ 6= poststab. Since each state R reachable from τI(P ) satisfies R α−6→ for
all α ∈ I, a trivial induction shows that

σ ∈ FT r∗(τI(P )) ⇔ σ ∪ I ∈ FT r∗(τI(P )). (*)

“⇐”: Let ρ∈FT r∗(P ) and ρ survives abstraction from I. By Condition (i) in the definition
of abstraction survival, τI(ρ) is of the form σ ∪ I. In view of (*), it suffices to show that
τI(ρ) ∈ FT r∗(τI(P )).

Suppose ρ = ⊤, ρ = aη or ρ = Xη. Then ρ ∈ FT ∗(P ). So τI(ρ) ∈ FT ∗(τI(P )) ⊆
FT r∗(τI(P )) by the proof of Proposition A.2.

Suppose ρ = tXη. Then P α−6→ for all α ∈ X ∪ {τ}, P t−→ P ′ and Xη ∈ FT ∗(P ′),
by Definition 6.11. So τI(Xη) ∈ FT ∗(τI(P

′)) by the proof of Proposition A.2. Moreover,

τI(P ) t−→ τI(P
′) and τI(P ) α−6→ for all α ∈ X ∪ {τ}, using that I ⊆ X. Note that τI(Xη)

has the form Xζ, although not necessarily with ζ = τI(η). Definition 6.11 yields τI(ρ) =
tτI(Xη) ∈ FT r∗(τI(P )).

“⇒”: Let σ ∈ FT r∗(τI(P )); by (*) I may assume that σ = σ∪I. I have to find a ρ ∈ FT r∗(P )
such that τI(ρ) = σ.

Suppose σ =⊤, σ = aη or σ =Xη. Then σ ∈ FT ∗(τI(P )). So by the proof of Proposi-
tion A.2 there is a ρ ∈ FT ∗(P ) ⊆ FT r∗(P ) such that τI(ρ) = σ.

Suppose σ = tXζ. Then τI(P ) α−6→ for all α ∈ X ∪ {τ}, τI(P ) t−→ τI(P
′) and Xζ ∈

FT ∗(τI(P
′)), by Definition 6.11. Hence P α−6→ for all α ∈ X ∪ {τ}, and P t−→ P ′. By

the proof of Proposition A.2 there is a Xη ∈ FT ∗(P ′) such that τI(Xη) = Xζ. So
ρ := tXη ∈ FT r∗(P ) by Definition 6.11, and τI(ρ) = σ.

The second statement of Proposition A.5 is trivial. Now consider the third.

“⇐”: Suppose ∃c0c1 . . . cnI⊤ ∈ FT r∗(P ) where n ≥ 0 and all ci ∈ I. Then P has a
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nonempty path, all of which transitions are labelled τ or ci ∈ I, ending in a state P ′

satisfying P ′ α−6→ for all α ∈ I ∪ {τ}. Consequently, τI(P ) has a nonempty part, all of

which transitions are labelled τ , ending in a state τ(P ′) satisfying τI(P
′) τ−6→. Consequently,

τI(P ) τ−→ and ∅⊤ ∈ FT ∗(τI(P )). Thus poststab ∈ FT r∗(τI(P )).

Now suppose poststab ∈ FT r∗(P ) ∧ I⊤ ∈ FT r∗(P ). Then P τ−→ and P has a path, all

of which transitions are labelled τ , ending in a state P ′ satisfying P ′ α−6→ for all α ∈ I ∪ {τ}.
This path must be nonempty. Again it follows that poststab ∈ FT r∗(τI(P )).

“⇐”: Suppose poststab ∈ FT r∗(τI(P )). Then τI(P ) has a nonempty part, all of which

transitions are labelled τ , ending in a state τ(P ′) satisfying τI(P
′) τ−6→. Consequently, P

has a nonempty path, all of which transitions are labelled τ or c ∈ I, ending in a state P ′

satisfying P ′ α−6→ for all α ∈ I ∪ {τ}. In case on this path some transitions are labelled c∈ I,
one obtains ∃c0c1 . . . cnI⊤ ∈ FT r∗(P ) where n≥ 0 and all ci ∈ I. In case there are no such
transitions, poststab ∈ FT r∗(P ) and I⊤ ∈ FT r∗(P ).

Proposition A.6. σ ∈ FT r∗(R(P )) ⇔ ∃ρ ∈ FT r∗(P ). ρ ∈ R−1(σ).

Proof. “⇐”: Let ρ ∈ FT r∗(P ), and let σ satisfy ρ ∈ R−1(σ). I have to show that σ ∈
FT r∗(R(P )).

Let ρ=⊤, ρ=aη or ρ=Xη. Then ρ∈FT ∗(P ), so by Proposition A.3 σ∈FT ∗(R(P )) ⊆
FT r∗(R(P )).

Let ρ = tY η. Then P α−6→ for all α ∈ Y ∪ {τ}, P t−→ P ′ and Y η ∈ FT ∗(P ′). Moreover,

σ=tXζ with Y =R−1(X) and Y η ∈ R−1(Xζ). Consequently R(P ) α−6→ for all α∈X ∪{τ},
R(P ) t−→ R(P ′) and Xζ∈FT ∗(R(P ′)) by Proposition A.3. It follows that σ∈FT r∗(R(P )).

Let ρ = stab. Then stable(P ), so stable(R(P )) and σ = stab ∈ FT r∗(R(P )).

Let ρ = poststab. Then P τ−→ and ∅⊤ ∈ FT ∗(P ). So R(P ) τ−→ and ∅⊤ ∈ FT ∗(R(P )).
Therefore σ = poststab ∈ FT r∗(R(P )).

“⇒”: Let σ ∈ FT r∗(R(P )). I have to find a ρ ∈ FT r∗(P ) with ρ ∈ R−1(σ).
Let σ =⊤, σ = aη or σ =Xη. Then σ ∈ FT ∗(R(P )), so by Proposition A.3 there is a

ρ ∈ FT ∗(P ) ⊆ FT r∗(P ) with ρ ∈ R−1(σ).

Let σ = tXζ. ThenR(P ) α−6→ for all α∈X∪{τ}, R(P ) t−→ R(P ′) and Xζ∈FT ∗(R(P ′)).
By Proposition A.3 there is a Y η ∈ FT ∗(P ′) with Y η ∈ R−1(Xζ). In particular Y =

R−1(X). Therefore, P α−6→ for all α ∈ Y ∪ {τ}. Moreover, P t−→ P ′. Take ρ := tY η. Then
ρ ∈ FT r∗(P ) and ρ ∈ R−1(σ).

Let σ = stab. Then stable(R(P )), so stable(P ) and ρ = stab ∈ FT r∗(P ).

Let σ = poststab. Then R(P ) τ−→ and ∅⊤ ∈ FT ∗(R(P )). So P τ−→ and ∅⊤ ∈ FT ∗(P ).
Therefore ρ = poststab ∈ FT r∗(P ).

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
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