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Disease Extinction for Susceptible-Infected-Susceptible Models on Dynamic Graphs

and Hypergraphs
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UK

(Dated: August 11, 2022)

We consider stochastic, individual-level susceptible-infected-susceptible models for

the spread of disease, opinion, or information on dynamic graphs and hypergraphs.

We set up “snaphot” models where the interactions at any time are independently

and identically sampled from an underlying distribution that represents a typical

scenario. In the hypergraph case this corresponds to a new Gilbert-style random

hypergraph model. After justifying this modelling regime, we present useful mean

field approximations. With an emphasis on the derivation of spectral conditions that

determine long-time extinction, we give computational simulations and accompanying

theoretical analysis for the exact models and their mean field approximations.

a) Corresponding author
b)d.j.higham@ed.ac.uk

1

mailto:d.j.higham@ed.ac.uk


Lead Paragraph: Humans typically interact in groups, not just in pairs. More-

over, interactions may vary over time. For these reasons, it has recently been

argued that the spread of information, opinion or disease should be modelled

over dynamic graphs or hypergraphs rather than a fixed graph. The use of hy-

peredges naturally allows for a nonlinear rate of transmission, in terms of both

the group size and the number of affected group members. In the context of

opinion dynamics, an individual may be affected differently if multiple members

of the same group (such as a workplace or household) express a view than if

the same number of contacts from different groups express that view; this is an

example of a majority effect. Similarly, in the spread of a disease, having mul-

tiple infected contacts in the same group may lead to a different infection rate

than having the same number of contacts across independent groups. In this

work, we develop and study mathematical models for processes that spread over

graphs and hypergraphs and we consider the case where interactions vary over

time, allowing for the dynamic nature of typical encounters in, for example,

offices, schools, retail and leisure outlets, public transport and entertainment

events. Our overall aim in this work is to develop new mathematical models,

derive useful conditions that predict when a process (such as a disease) will die

out, and to test our theory with computational experiments.

I. INTRODUCTION

We consider susceptible-infected-susceptible (SIS) disease spread on a dynamically evolv-

ing graph, where the dynamic edges represent interactions between individuals in a pop-

ulation over time. We also consider a generalisation to the case where a disease spreads

on a dynamically evolving hypergraph, where individuals interact in groups of size larger

than two. Several previous works have considered SIS spreading on a dynamically evolving

graph1–12. There, some general conditions were found which guarantee that the disease will

vanish asymptotically. However, in several of those works these conditions require full exact

knowledge of the dynamic graph evaluated at all times. In this work, we motivate and study

the case where the dynamic graph is a sequence of i.i.d. random graphs, sampled from a

static underlying expected graph, and we show how this assumption allows us to derive
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simple and practical vanishing conditions. Based on a mean field approximation, we find

that, in this setting, the spread of the disease on the underlying expected graph provides

an accurate description of the spread of the disease on the dynamically evolving graph. We

provide both numerical evidence and theoretical analysis to support this observation. We

then extend our investigation to the case of a dynamically evolving hypergraph. There too

we proceed via a mean field approximation, in order to derive a static hypergraph on which

the spread of the disease is accurately predicted. We illustrate this approximation through

numerical simulations.

The main contributions of this manuscript can be summarized as follows.

• We compare two different models of an SIS disease spreading on a (fixed or dynamic)

graph, and identify the one which is more amenable for extension to the hypergraph

case. In particular, we formulate and justify a new model, (18) for the spread of disease

over a dynamic hypergraph.

• We propose mean field approximations (14), (17), (20) and (22) to these exact models,

and illustrate their accuracy via numerical experiments. We also show that these

mean field approximations provide spectral conditions which, if satisfied, guarantee

the asymptotic vanishing of the disease in the population—see Theorems V.2 and V.3,

and the discussion in Section VI.

• We contribute further to the theoretical analysis by estimating the difference between

the infection rate of dynamic and static exact and mean field models—see Lemma V.7.

• In developing the new dynamic hypergraph model, in Section III B 1 we set up and

analyse a hypergraph analogue of the classical Gilbert random graph model.

As mentioned in more detail in section II B, concepts and results in this area are relevant

to many scenarios concerning the spread of information, opinion or disease; however, to be

concrete, we describe the models and analysis in the language of epidemiology.
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II. REVIEW OF PREVIOUS MODELS FOR THE SPREAD OF AN SIS

DISEASE

A. SIS on static graphs

We first consider a population of n individuals for which we have a nonnegatively

weighted, undirected graph represented by a symmetric matrix W ∈ Rn×n that character-

izes pairwise affinity. Here 0 ≤ wij = wji ≤ 1 represents the strength of the connection

between i and j, and hence will be used when we quantify the likelihood of transmission

of the infection. In this graph setting, it is natural to have no self-loops; that is, wii = 0

for 1 ≤ i ≤ n, but we note that self-loops will arise when we consider a flattening of a

hypergraph—see the discussion after Definition II.3.

The SIS modelling framework places every individual in exactly one of two categories:

susceptible or infected. Associated with these categories are a parameter β > 0, which

quantifies the overall virulence of the disease, and a parameter δ > 0, which quantifies

the recovery rate. We will assume throughout that recovery of an infected individual is

independent of the state of the system.

In describing various SIS models, to avoid an excess of notation we will use pi(t) to denote

both the exact probability that individual i is infected at time t, according to a discrete or

continuous time process, and an approximation to this quantity arising from, for example,

a mean field assumption. By referring to specific models, we hope that the precise meaning

of pi(t) is clear at each point in the manuscript.

In the literature there are two main approaches to modelling an SIS disease spreading

on a graph. One common approach, initiated in13, considers the parameters β and δ to be,

respectively, the probability that an infected individual infects a neighbor during one unit

of time, and the probability that an infected individual recovers from the disease during one

unit of time. One can then derive a model as follows. Let h > 0 denote the time between

two consecutive steps of the process. The probability 1− pi(t+h) that node i is susceptible

at time t + h can be expressed as the probability hδpi(t) that it was infected at time t but

recovered at time t+h, plus the probability ((1− pi(t))
∏n

j=1(1−hβwij(t)pj(t))) that it was

susceptible at time t and did not get infected by any neighbor at time t+ h. This gives the
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following equation for all 1 ≤ i ≤ n

1− pi(t+ h) = hδpi(t) + (1− pi(t)
n∏
j=1

(1− hβwijpj(t))). (1)

In13 spectral conditions were found which concern the asymptotic vanishing of the disease.

These conditions were derived by linearizing the system, keeping only first order terms,

yielding

pi(t+ h) = pi(t)− hδpi(t) + hβ

n∑
j=1

wijpj(t). (2)

We could also move to a continuous-time setting by subtracting pi(t), dividing by h and

taking the limit h→ 0, yielding

dpi(t)

dt
= −δpi(t) + β

n∑
j=1

wij(t)pj(t). (3)

We note that (2) may be viewed as an Euler approximation to (3). Use of (1) or (2) or

(3) may be regarded as a mean field approach, where we directly consider the probabilities

for the nodes to be infected, rather than keeping track of the individual states of the nodes

themselves.

Analysing the linearised model (2) with h = 1, it was shown in13 that the disease asymp-

totically vanishes, that is, for all 1 ≤ i ≤ n we have limt→∞ pi(t) = 0, if ρ(W ) < δ/β, where

ρ(·) denotes the spectral radius. Hence, βρ(W )/δ may be viewed as a graph-level analog of

the classical basic reproduction number.

The authors of14 consider an alternative approach based on Markov chains. There, we

regard the state of each individual as a stochastic process (Xi(t))t≥0 taking values in {0, 1},

with 0 for susceptible and 1 for infected. To this two-state valued process we associate a

rate of transition matrix, where the transition rates between 0 and 1 are given as follows. If

Xi(t) = 0, the rate of infection is given by

λi(X(t)) := β
n∑
j=1

wijXj(t). (4)

Here, in a very similar manner to (2), the overall chance of a new infection is taken to be

linearly proportional to the number of currently infected neighbors, using the affinity weights.

If Xi(t) = 1 the rate of recovery is given by δ. Thus, for every 1 ≤ i ≤ n, the stochastic

process (Xi(t))t≥0 satisfies the Markov property. It is not a Markov process however, the
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rates of infection being random variables. In order to use Markov theory to analyse the model

further, the authors in14 effectuate a mean field approximation by considering instead the

expected infection rate E[λ(Xi(t))] = β
∑n

j=1wijpj(t), where pi(t) := E[Xi(t)] = P(Xi(t) =

1). We can now associate to the process (Xi(t))t≥0 the transition rate matrix

Qi(t) =

−β∑n
j=1wijpj(t) β

∑n
j=1wijpj(t)

δ −δ

 ,

which makes (Xi(t))t≥0 into a continuous-time Markov process. Using Markov theory for

continuous-time Markov processes (e.g.,15 (Chapter 10)), we can then deduce that (pi(t))

satisfies the differential equation

dpi(t)

dt
= β

n∑
j=1

wijpj(t)(1− pi(t))− δpi(t), 1 ≤ i ≤ n. (5)

Let us note that (5) is very similar to the linearised model in (3), but for the (1− pi(t))

factor which, when multiplied with
∑n

j=1wijpj(t), induces some second order terms. It is ar-

gued in14 how the simplification in13 of (1) to the linear system (2) does not provide a rigorous

mean field approximation of the underlying exact processes {(Xi(t))t≥0}ni=1. Nonetheless,

we are primarily interested, in this manuscript, in the derivation of sufficient spectral con-

ditions to guarantee the asymptotic vanishing of the disease. To this end, it is sufficient to

consider a linear ODE which dominates the processes {(pi(t))t≥0}ni=1 in order to find suffi-

cient spectral conditions. We note furthermore that the spectral vanishing conditions found

in13 were identical to those found in14.

B. SIS on static hypergraphs

Another important difference to note between (1) and (5), which is of particular relevance

when we wish to capture higher-order interactions between individuals, is that only the

Markov chain approach (5) naturally extends to a hypergraph setting. Indeed, the rate of

infection λi(X(t)) defined in (4) does not restrict us to pairwise interactions. The model in

(1) on the other hand, via the product term in the equation, directly uses the assumption

that individuals interact pairwise; an assumption that ceases to hold in the hypergraph

setting. Thus previous works which studied epidemic spreading on hypergraphs (e.g.,16–20)

consider a Markov chain approach, extending model (5). We refer to21–23 for further details

of recent work on deterministic and stochastic models for dynamics on hypergraphs.
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To set up our hypergraph regime, we begin with some definitions.

Definition II.1. Let V be a finite set, and let E ∈ P(V ) be a set of subsets of V . We call

the tuple (V,E) a hypergraph, where V denotes the set of nodes and E denotes the set of

hyperedges.

In particular, if all hyperedges have size two, then the hypergraph (V,E) is a standard

graph with nodes V and edge set E. From now on, let n := |V | and m := |E|.

Definition II.2. Given a hypergraph (V,E) with |V | = n and |E| = m, the n×m incidence

matrix I is such that for every (i, h) ∈ V × E, Iih = 1 if node i belongs to hyperedge h and

Iih = 0 otherwise.

Definition II.3. Given a hypergraph (V,E) and incidence matrix I, we define the n × n

weighted clique expansion matrix W = IIT . Here, wij records the number of hyperedges

containing both nodes i and j.

We note that in the graph case, where two nodes can be involved in at most one edge,

the off-diagonal elements of the clique expansion matrix W reduce to those of the affinity

matrix and the diagonal elements of W contain the node degrees—these diagonal entries

may be interpreted as weighted self-loops.

In16, the authors introduced a nonlinear function f , according to which individuals within

a hyperedge may propagate the disease in a nonlinear fashion; here, the likelihood for an

individual to become infected is not linearly proportional to the number of infected neigh-

bors. Similar models were further investigated in17,18. The introduction of the nonlinear

function f marks a significant departure from the linearity assumption that is used in typi-

cal graph-based models, and it allows us to capture features such as the majority effect24 in

opinion dynamics and the viral load effect25 in disease spreading. We refer to16–20 for further

justification, noting that there is particular interest in the collective suppression case19,20,

where the function f is assumed to be concave, and the collective contagion case17,18,26,

where a virus spreads in a hyperedge only if at least a threshold number of individuals in

the hyperedge are infected. Given any such function f , we can define the rate of infection

of a node i by

λi(X(t)) = β
∑
h∈E

Iihf

 n∑
j=1

IjhXj(t)

 . (6)
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In the special case of a graph, the rate in (4) is recovered when f is the identity map.

As in the graph setting, we wish to make the rates deterministic in order to apply Markov

theory to this process, yielding a mean field approximation model. Two mean field approx-

imations have been proposed and studied in17,19,20. In19,20, spectral conditions were found

that guarantee the asymptotic vanishing of an SIS disease spreading on a hypergraph for the

different mean field models. One of the insights of20 is that the two mean field models, while

having slightly different vanishing conditions, provide very similar approximations of the

exact model. Hence we shall only focus on one of the two models, the behavior of the other

mean field model being conjectured to provide comparable approximations. We consider the

mean field approximation obtained by replacing the infection rate (6) with a deterministic

rate involving the processes given in {(pi(t) := E[Xi(t)] = P(Xi(t) = 1))t≥0}ni=1, to obtain

λi(X(t)) = β
∑
h∈E

Iihf

 n∑
j=1

Ijhpj(t)

 . (7)

This ensures that (Xi(t))t≥0 is a Markov process, and as in the graph setting, we can apply

Markov theory to find an ODE system for {(pi(t))t≥0}ni=1. We have

dpi(t)

dt
= β

∑
h∈E

Iihf

 n∑
j=1

Ijhpj(t)

− δpi(t), 1 ≤ i ≤ n. (8)

This mean field approximation and the exact model were studied in19 (Theorems 6.5, 8.1,

9.1), where it was found that the disease asymptotically vanishes if

ρ(W ) <
δ

cfβ
, (9)

where cf > 0 is a constant depending on the choice of f (for instance, if f is concave,

cf := f ′(0) is a valid choice).

We note that the internal sum in (6) runs from j = 1 to n, and hence includes j = i.

Removing the j = i term from this sum would not have any effect, since the infection rate

for node i is only relevant when node i is uninfected; that is, Xi(t) = 0. However, when we

move to mean field models, such as (7), removing the j = i term from the sum would make

a difference. In this work, in keeping with previous works, we use the full sum, and we note

that computational tests suggest that specifying j 6= i produces very similar results.

8



C. SIS on dynamic graphs

We are interested in analysing an SIS disease spread on dynamically evolving graphs and

hypergraphs. Several settings for dynamic graphs have been investigated.

In1–3,5–8,27,28, the setting consists of a dynamic graph generated from a finite number of

graphs, a typical example being a periodic graph (W (t))∞t=0, where there exists T ∈ N such

that for each k ∈ N, W (k+ T ) = W (k). Then, and in other cases where the dynamic graph

is generated by finitely many graphs, a spectral condition for the vanishing of the disease

was given as

max{ρ(W (t)) | 0 ≤ t ≤ T} < δ

β
.

In8, the authors derive spectral conditions for the asymptotic vanishing of an SIS disease

spreading on a dynamic graph under various assumptions ensuring that the dynamic graph

is generated by finitely many affinity matrices {A(t) | t ∈ {1, . . . , T}}. They argue that

a vanishing condition can be found to be generally related to a weighted average of the

spectral radii of the finitely many matrices generating the dynamic graph, the weights being

proportional to the frequency of occurrence of each affinity matrix in the dynamic evolution

of the graph. For instance, if the graph is periodic, cycling through each affinity matrix one

by one following a fixed order, the vanishing condition they derive is given by

1

T

T∑
t=1

ρ(A(t)) <
δ

β
. (10)

We note that the authors in8 claim that this sufficient condition can be replaced by the more

compact condition

ρ

 1

T

T∑
t=1

A(t)

 <
δ

β
. (11)

However, since it is not true that the sum of the spectral radii is bounded above by the

spectral radius of the sum, but rather that it is bounded below by the spectral radius of the

sum when the matrices are Hermitian (the spectral radius then being a norm), which is the

case here, we do not see how (11) arises.

From (10) we may derive a simple spectral vanishing condition that was also obtained in

Theorem 2 of6:

max{ρ(A(t)) | 1 ≤ t ≤ T} < δ

β
.
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In general, we note that the vanishing conditions derived in these works require full exact

knowledge of the dynamic graph, which is not a realistic assumption in many settings.

Alternatively, one can model a dynamic graph as a family of random graphs indexed

by time. This is the approach considered in4,9–11, and the relationship between discrete

and continuous time network propagation is discussed in29. In10, the random edges of the

graphs evolve according to a Markov process. There the authors argue that the spectral

vanishing condition provided by the static aggregated graph, for which the affinity matrix

can be regarded as the long-time average of the affinity matrices of the random graphs, is

less informative about the disease-free state of the process than another condition proved in

Theorem 3.10 of10. This may suggest, although this was not tested by the authors of10, that

the mean field approximation induced by the static aggregated graph does not provide an

accurate prediction of the exact dynamic model. This observation is an interesting contrast,

but is not in contradiction with the results of this manuscript, where we show that the mean

field model induced by the static underlying expected graph (which could be regarded as the

analogue of the static aggregated graph) provides an accurate approximation of the exact

dynamic model in a different dynamic setting (see Sections III A 2,V and Figure 1), and

where the associated spectral vanishing condition is sharp.

III. SETTING AND MAIN RESULTS

A. Dynamic graphs

We define our dynamic graph with a different approach to1–3,5–8. Similarly to4,9–11, we

suppose that the dynamic graph is generated by random graphs. The main difference in

our setting is that we assume independence of the random graphs from one time step to the

other. We assume the existence of a static underlying expected graph, from which we sample

at each time step, identically and independently, a new random sample matrix to represent

the interactions of the individuals of the population. Intuitively, the expected graph contains

information about all potential interactions a person may have over that time period (of a

time step), each interaction carrying a probability weight proportional to the likelihood of

this interaction occurring. To simulate a typical day (or some other relevant time period),

we thus draw a random sample using the expected graph, which yields random interactions
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between individuals based on the expected potential interactions which could occur. We

will refer to this as a snapshot modelling regime for the dynamic interactions.

1. A Gilbert graph model

Let W be the affinity matrix of the static underlying expected graph. In practice, in

order to build W synthetically, we will draw the entries of W at random, after which they

will be treated as fixed in the model. We assume that W is a real symmetric n× n matrix,

and for all 1 ≤ i ≤ n, wi,j ∈ [0, 1]. It is reasonable to assume that interactions are sparse

in any time period; e.g., we don’t expect that a person has an equal probability to visit

any place in a city, but rather that they will focus a small number of places, typically in a

limited neighborhood. To keep W sparse, we use a Gilbert graph model. Recall the Gilbert

graph distribution G(n, p), where every (undirected) edge of a random graph on n nodes, has

independent probability p ∈ [0, 1] to exist30. We can view p as a sparsity parameter, tuned

as a function of n, which allows us to control the expected degree of each node, (n−1)p, and

to ensure the generated graph does not have too many connections, which could also make

related computations too costly to perform. Let [xij]
n
i,j=1 ∈ [0, 1]n

2
, such that xij = xji, and

let

wij :=

xij with probability p

0 with probability 1− p.

The dynamic graph is then generated as an i.i.d. sequence of random graphs, sampled

independently and identically from W as follows. Letting T ′ ⊂ R+ be the time domain,

for each t ∈ T ′, we sample independently Wij(t) := wij(t) ∼ Bi(1, wij) if i < j, and we

let wij = wji if i > j. Informally, we toss a biased coin, with bias determined by wij, to

decide whether the undirected edge is created. We set wii := 0 for all 1 ≤ i ≤ n. This

gives us a dynamic graph (W (t))t∈T ′ . We summarize this construction by writing that

each random graph was sampled independently as W (t) ∼ Bi(1,W ). In particular, if all

the entries of W are equal to 1, then Bi(1,W ) = G(n, p). To each node i we associate a

stochastic process (Xi(t))t∈T , where T ′ ⊂ T ⊂ R+. In practice T ′ is assumed to be discrete,

while T may be discrete or continuous, but must contain T ′ as a subset. We can naturally

extend the definition of W to the possibly larger time domain T , where for all t ∈ T , letting

t0 := max{s ∈ T ′ | s ≤ t}, we let W (t) := W (t0).
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2. Mean field approximations

Motivated by (4), in this dynamic setting we consider the infection rate of the process to

be

λi(X(t)) := β
n∑
j=1

wij(t)Xj(t). (12)

This rate may be approximated as before by

λi(X(t)) := β
n∑
j=1

wij(t)pj(t), (13)

where pi(t) := E[Xi(t)] = P(Xi(t) = 1), from which we derive the following ODE system to

approximate the expected processes

dpi(t)

dt
= β(1− pi(t))

n∑
j=1

wij(t)pj(t)− δpi(t). (14)

In a discrete time setting, for instance with constant time increment equal to 1, we have

the corresponding recurrence

pi(t+ 1) = β(1− pi(t)))
n∑
j=1

wij(t)pj(t) + (1− δ)pi(t). (15)

This last model, (15), is studied in previous work on dynamic graphs8. In Theorems V.2

and V.3 we show that E[ρ(W0)] < δ/β, where W0 ∼ Bi(1,W ) is a random sample indepen-

dent from W (t), t ≥ 0, is sufficient to ensure that limt→∞ pi(t) = 0, almost surely (a.s.), for

all 1 ≤ i ≤ n in the continuous case (14) and discrete case (15), respectively.

Another approximation of the infection rate (12), more simple than (13), is given by

λi(X(t)) = β
n∑
j=1

wijpi(t), (16)

yielding the following ODE system for the associated mean field approximation in a contin-

uous time setting
dpi(t)

dt
= β

n∑
j=1

wijpj(t)(1− pi(t))− δpi(t). (17)

This approximation has the advantage that it summarizes the spread of the disease using

a static graph. Such models are better understood (see Section II A), and it is known that

if ρ(W ) < δ/β, then the disease vanishes asymptotically. From a computational point of

12



view, running a simulation of the spread of a disease on a dynamically evolving graph can

be very costly when we work at the scale of a whole city, with a very high number of

nodes and interactions. The mean field approximation (17) suggests that we can obtain

an accurate prediction of the disease evolution by considering the spread on a static graph,

understood as the underlying expected graph of the model, where weighted edges represent

the probabilities for an interaction between two individuals to occur. This mean field model

thus provides us with an efficient computational method to simulate the spread of disease

when the dynamically changing graph is too large to handle directly.

We compare in Section V the spectral vanishing conditions and the infection rates as-

sociated with the two mean field models (14) and (17). Under the assumption that the

sparsity parameter satisfies p = ω(log n/n), we show in Lemma V.7 that for a random sam-

ple W0 ∼ Bi(1,W ) we have ρ(W0) = ρ(W )(1 + O(1/
√
pn)), and we show in Lemma V.6

that Sn(i) = E[Sn(i)](1 + o(1)), where Sn(i) := β
∑

j=1wij(t)pj(t).

In Section IV, we verify numerically that the mean field model (17) induced by W pro-

vides us indeed with an accurate approximation of the behavior of the exact processes

{(Xi(t))t≥0}ni=1, thus allowing us to approximate our exact model with a disease spreading

on a static graph. We do not show the other mean field approximation (14) in the figures

below, since the results were visually indistinguishable from those with the more simple

mean field model (17).

B. Dynamic hypergraphs

As discussed in Section II, modelling the spread of an SIS disease via a Markov process

provides us with a more flexible setting, where we can consider interaction within a hyper-

edge, i.e., where individuals can interact in groups of size larger than two and contaminate

each other in a nonlinear fashion. This more general and realistic setting has already been

studied in various works16,17,19,20,22,26,31 in the case where the higher-order structure remains

static in time.

Here we investigate instead the setting where the disease spreads on a dynamically evolv-

ing hypergraph. This poses an important prior problem: which model should we use to

generate a random hypergraph? Indeed, based on the various requirements one may want

to impose on the hypergraph (hyperedges sizes, degree distributions, etc.), various models
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can be used. Here we develop what we feel is a natural extension of the Gilbert graph model

that we used in Section III A 1 to generate the random graphs.

1. A Gilbert hypergraph model

Recalling that n ∈ N represents the number of nodes (i.e., the number of individuals

in the population), we now regard m ∈ N as the targeted number of hyperedges (i.e., the

number of places where individuals can interact). We will assign nodes at random to each

available hyperedge.

Definition III.1. Let H(n,m, q) denote the probability space on the set of hypergraphs of n

nodes and m hyperedges, such that the incidence matrix I of a random hypergraph satisfies,

for all (i, h) ∈ {1, . . . , n} × {1, . . . ,m}

Iih =

1 with probability q

0 with probability 1− q.

This definition is similar in construction to the Gilbert graph model. For instance if

n = m, the incidence matrix of a random hypergraph in H(n,m, q) corresponds to the

affinity matrix of a random directed graph in G(n, q). The motivation to use this model is

similar to the intuition behind the model described in Section III A at the graph level. We

assume that each individual has a list of potential places to visit on any given day, with a

certain probability. Drawing a new random incidence matrix independently and identically

at each time step simulates a typical day of people visiting places in their neighborhood.

Just as in Section III A 1, it is more realistic here to consider that the probabilities for

a node to be in a hyperedge (i.e., for an individual to visit a place) vary for every pair

(i, h) ∈ {1, . . . , n} × {1, . . . ,m}, so that visits can focus on a subset of locations. We also

wish to keep the connections sparse. We therefore let [xih]
n,m
i,h=1 ∈ [0, 1]nm, q be a sparsity

parameter, and set

I ih :=

xih with probability q

0 with probability 1− q.

We thus consider a weighted n×m incidence matrix I which, similarly toW being the affinity

matrix of the underlying expected graph in Section III A, can be thought of as the incidence
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matrix of the underlying expected hypergraph from which we sample independently and

identically an incidence matrix I(t) at every time t ∈ T ′.

Our sampling procedure of (I(t))t∈T ′ from I is similar to the sampling procedure of

(W (t))t∈T ′ from W in Section III A 1. At each time step t ∈ T ′, and for each node i ∈

{1, . . . , n} and hyperedge h ∈ {1, . . . ,m}, we draw independently Iih(t) ∼ Bi(1, I ih). We

can observe that this model does not fix a specific configuration of hyperedges of various

sizes, the size of a hyperedge being unknown a priori.

As in the graph case, we then consider the Markov processes {(Xi(t))t∈T }ni=1, and we

can naturally extend the time domain T ′ of I to the possibly larger domain T by letting

for all t ∈ T , I(t) := I(t0), where t0 := max{s ∈ T ′ | s ≤ t}. Following our discussion of

hypergraph models in Section II, let f be a nonlinear function representing the manner in

which the virus spreads in a hyperedge, and define the infection rate of a node i at time

t ∈ T by

λi(X(t)) := β
∑
h∈E

Iih(t)f

 n∑
j=1

Ijh(t)Xj(t)

 . (18)

Generating the random graphs in Section III A 1 as random Gilbert graphs sets all diagonal

entries to 0. On the other hand, note that the sum index j spans through all values in

{1, . . . , n} including i in (18). Assuming that f = Id, we recover the infection rate (12)

of a dynamic graph, but the induced graph here would be given by W = IIT , hence the

diagonal entries would be nonzero, indicating the degree of each node instead. As discussed

at the end of section II B, we could for instance modify our infection rate (12) by restricting

the inner sum to j ∈ {1, . . . , n} \ {i}, leading to slightly different mean field models. Such a

change was found to have negligible impact on the final plots in the numerical experiments

in Section IV, and would not affect the spectral vanishing conditions derived in Section V.

2. Comparison with the Gilbert graph model

Note that H(n,m, q) also induces a probability space on the set of weighted graphs with n

nodes. From Definition II.3, given the incidence matrix of a hypergraph I, there corresponds

a graph represented by W := IIT , which we could call the weighted clique expansion of the

15



hypergraph. Every entry of this matrix is a random variable defined by

Wij :=
m∑
h=1

IihIjh.

Thus the entries of the induced affinity matrix W take random values in {0, 1, . . . ,m}.

Little seems to be known about how the choice of the parameters in H(n,m, q) can affect

properties of the induced random graph associated with W . In practice, it is important

to know, for instance, how the sparsity parameter can be tuned to control the expected

degree of the nodes and ensure that the graph is connected with high probability. In the

case of a random Gilbert graph, it is known that connectivity of the graph holds with high

probability if p = C log n/n, for C > 132. One may ask whether knowledge about the

well-studied properties of random Gilbert graphs leads to results about the random Gilbert

hypergraphs described above, and their induced random graph.

Let W = IIT , where I ∈ H(n,m, q), and let M ∈ G(n, p) be a random Gilbert graph.

By independence, we have

E[Wij] =
m∑
h=1

E[Iih]E[Ijh] = mq2,

while E[Mij] = p. Turning to the variance, we have

Var(Wij) = E[(
m∑
h=1

IihIjh)2]−m2q4

=
m∑
h=1

E[IihIjh] +
∑
h1 6=h2

Iih1Ijh1Iih2Ijh2 −m2q4

= mq2 +m(m− 1)q4 −m2q4

= mq2(1− q2),

while Var(Mij) = p(1− p).

Equating the expected values, which is equivalent to equating the expected nodal degree

of the two random graphs, we would choose p := (q/m)1/2. Hence we see that for equal

expected value, the variance of the entries of W is larger than the variance of the entries

of M , but remains finite and contained in [0, 1]. We may then argue heuristically that by

equating the two expected degrees of the two graph models, the variance does not differ

greatly, hence the connectivity properties of the two graphs should remain similar. We have

thus chosen q := (C log n/(mn))1/2, for some C > 1, to sparsify the H(n,m, q)-induced
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graph while making sure that it remains connected with high probability. Let us emphasize

that this is just a rule of thumb to derive a sensible value for the sparsity parameter q, and

should not be regarded as a rigorous argument.

3. Mean field approximation

The function f in (18) represents the nonlinearity of the infection rate: specifying how

the probability for a node to get infected depends on the number of infected group members.

A typical choice for f is a concave function, e.g., x 7→ log(1 +x) or x 7→ arctan(x). Another

classic choice is to consider a collective suppresion model, where f has the form x 7→ c21(x ≥

c1), c1, c2 > 0.

As in Section III A, we can consider a mean field approximation with the expected pro-

cesses {(pi(t))t∈T }ni=1 := (E[Xi(t)])t∈T and the deterministic infection rate at node i

β
∑
h∈E

Iih(t)f

 n∑
j=1

Ijh(t)pj(t)

 , (19)

yielding

dpi(t)

dt
= β

∑
h∈E

Iih(t)f

 n∑
j=1

Ijh(t)pj(t)

− δpi(t), 1 ≤ i ≤ n. (20)

Following Section III A, we propose to further approximate this rate of infection by substi-

tuting Iij(t) by its expected value Iij for all t ∈ T , thus making the infection rate completely

deterministic, yielding at node i

β
∑
h∈E

Iihf

 n∑
j=1

Ijhpj(t)

 , (21)

which corresponds to the rate of infection for a disease spreading on a static hypergraph, a

setting which was already studied in16,19, yielding the ODE system

dpi(t)

dt
= β

∑
h∈E

I ihf

 n∑
j=1

Ijhpj(t)

− δpi(t), 1 ≤ i ≤ n. (22)

There, it was shown that this model satisfied a similar spectral condition for the vanishing

of the disease to the graph-based model. Namely, if f ′(0)ρ(W ) < δ/β, then for all 1 ≤ i ≤ n,

limt→∞ pi(t) = 0, where W := IIT . We check the accuracy of this mean field approximation

in Section IV.
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IV. COMPUTATIONAL EXPERIMENTS

A. Simulation algorithm for dynamic graphs

Let us first summarize our approach to simulating the exact individual-level SIS model

and its mean field approximation on a dynamic graph. In the simulations, we chose n = 600.

We used i.i.d. weights wij, where 1 ≤ i < j ≤ n, sampled uniformly at random in [0, 1],

a sparsity parameter p := 8(log n/n), and we let (aij)i<j be i.i.d. random variables where

aij = 1 with probability p, and aij = 0 otherwise. We then built the symmetric matrix

W , where W ij := wij aij. The sparsity parameter p controls the amount of connectivity

between the nodes of the graph. Choosing p too small will make the graph disconnected,

while choosing p too large will make the graph behave like a complete graph, increasing the

computational cost and failing to capture the levels of interaction that typically arise. We

know from the study of random Gilbert graphs32 that the asymptotic connectivity threshold

of these random graphs occurs at log n/n. Here we choose p = 8(log n/n) so that the

connectivity threshold is satisfied even for small n = 600.

The weights of the matrix W indicate the probability for any two individuals i and j in

the population to meet at any given time t. We let T ′ := N ∩ [0, T ], where we choose the

final time step to be T := 200, so that at every time t ∈ T ′, we draw an i.i.d. random sample

W (t) from W , where W (t) is symmetric, and such that for every i < j, Wij(t) := wij(t) = 1

with probability wij, and wij(t) = 0 otherwise.

We then proceed with a standard time discretization of the stochastic processes {(Xi(t))t∈[0,T ]}ni=1.

We fix a small time step ∆t := 0.1 and advance from time t to time t+ ∆t at each iteration.

As explained in Section II C, we extend the definition of W := (W (t))t∈T ′ over this finer

time partition by setting W (t) := W (t0), where t0 := max{t′ ∈ T ′ | t′ ≤ t}. We choose a

vector r ∈ [0, 1]n of i.i.d. uniformly random values in [0, 1], and for every node i ∈ {1, . . . , n},

• when Xi(t) = 0, we set Xi(t+ ∆t) = 1 if

ri < 1− exp
(
−λi(X(t))∆t

)
,

and set Xi(t+ ∆t) = 0 otherwise;

• when Xi(t) = 1, we set Xi(t+ ∆t) = 0 if

ri < 1− exp (−δ∆t) ,
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and set Xi(t+ ∆t) = 1 otherwise.

In Section II C, we proposed a mean field model (17) to approximate and simplify the

above exact individual-based model. This allows us to consider the spread of a disease on

the static underlying expected graph W from which we draw the random dynamic graph

W = (W (t))t∈T , a setting which is well-understood and investigated in previous works

(see Section II A). We simulated this system of ODE using Euler’s method with time step

∆t = 0.1, and tested numerically how accurately it matches the behavior of the exact process

described above.

B. Simulation algorithm for dynamic hypergraphs

We simulated the exact individual-level SIS model on a dynamic hypergraph similarly,

following Section III B. We chose n = 600 nodes, m = 500 hyperedges, and following the

heuristic in Section II B and our choice of p in Section IV A, we chose the sparsity parameter

as q :=
(
8 log n/(mn)

)1/2
. We then created the n×m incidence matrix I. As in Section IV A,

we chose i.i.d. weights xih sampled uniformly at random in [0, 1]. Then, we let aih := 1 with

probability q, and aih := 0 otherwise, and we let Iih := xihaih, for all (i, h) ∈ {1, . . . , n} ×

{1, . . . ,m}.

As in the graph setting, we then discretized the stochastic processes {(Xi(t))t∈[0,T ]}ni=1

with time step ∆t = 0.1. The construction of the processes is the same than in Section IV A

so we do not repeat it here.

The mean field approximation proposed in Section III B follows the ODE system (22) As

in Section IV A, we simulated this system using Euler’s method with time step ∆t = 0.1.

C. Computational results

1. Dynamic graphs

In these simulations, we fixed the recovery parameter to δ = 1, and varied the value of

the infection parameter β, taking all the values in {(0.02)k | k ∈ {0, . . . , 15}}. The plots in

Figure 1 show the proportion of infected individuals after a large time T = 200, as a function

of the infection rate parameter β. The blue crosses represent the proportion of infected
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individuals given by the exact model, averaged over 10 runs. The red asterisks represent the

proportion of infected individuals predicted by our mean field model (17). We observe from

Figure 1 that our mean field model (17) provides a very accurate approximation of the exact

model. The vertical line in Figure 1 intersects the abscissa at βc := δ/ρ(W ). In the case

where an SIS disease is spreading on a fixed graph with affinity matrix W , βc represents a

threshold value, in the sense that if β < βc, then the disease vanishes asymptotically from the

population (e.g.,14,33). Here, the mean field model is defined on a fixed graph with affinity

matrix W , hence we can expect that the vertical line in Figure 1 serves as a threshold value

for extinction of the disease, i.e., that the red asterisks will be set to 0 for β < βc, but not

necessarily for β > βc. On the other hand, there is no such theory available to analyse SIS

diseases spreading on dynamic graphs (blue crosses in Figure 1). We observe nonetheless

that due to the close approximation of the exact model by the mean field model (17), βc

can also serve as a useful threshold value for extinction for the exact model spreading on

the dynamic graph (W (t))t∈T .

2. Dynamic hypergraphs

We also find that the mean field model (22) provides an accurate approximation of the

exact individual-based model induced by (18), as shown in Figures 2, 4, and 3. Here, as

in Section IV C 1, we fixed the recovery parameter to δ = 1, and varied the value of the

infection parameter β, taking all the values in {(0.02)k | k ∈ {0, . . . , 15}}. The plots show

the proportion of infected individuals as a function of β, after a large time T = 200. The blue

crosses represent the proportion of infected individuals given by the exact model, averaged

over 10 runs. The red asterisks represent the proportion of infected individuals predicted

by our mean field approximation (22). For the nonlinear function f , according to which the

disease spreads in a hyperedge, we used f(x) := log(1 +x) (Figure 2) and f(x) := arctan(x)

(Figure 3). We also tested the collective contagion model, where we apply f(x) := x for

edges, and for each hyperedge of size k ≥ 3, we apply fk(x) := c
(k)
2 1(x ≥ c

(k)
1 ) (Figure 4).

Here we chose c
(k)
2 = c

(k)
1 := (k − 1)/2 for all hyperedges of size k ≥ 3. Choosing c

(k)
1

too large, e.g., c
(k)
1 = k − 1, would prevent the disease from spreading in the hyperedge

even for large values of β, unless the initial proportion of infected individuals i0 is higher

than c
(k)
1 /k, which would cause the plotted functions in Figure 4 to remain flat. On the
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Figure 1. Dynamic snapshot graph computation. Proportion of infected individuals in the pop-

ulation after T = 200 and time step ∆t = 0.1, for various values of β. Here the blue crosses

represent the exact model, averaged over 10 runs, and the red asterisks represent the mean field

approximation. The green vertical line represents the expected spectral threshold for extinction of

the disease.

other hand, choosing c
(k)
1 too small would produce a collective contagion model similar to a

linear graph-based contagion model. We can observe a discontinuity in the plots shown in

Figure 4, both for the mean field approximation and the exact model, indicating that the

predicted long-time proportion of infected individuals in the population is not a continuous

function of the infectiousness parameter, β. This discontinuity is only observed in the

case of collective contagion, and contrasts with Figures 2, 3, where the nonlinear functions

representing the rate of contagiousness in the hyperedges are, respectively, x 7→ log(1+x) and

x 7→ arctan(x), and where the plots appear to be continuous functions of β. In the case of
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the collective contagion model, the nonlinear functions used to represent the contagiousness

of the hyperedges are step functions, with sharply discontinuous changes of value. This

implies that a small perturbation in the value of
∑n

j=1 Ijh(t)pj(t) or
∑n

j=1 Ijh(t)Xj(t) can

induce a large change of value in the resulting probability pj(t) for node j to get infected at

time t. By the construction of the exact model, or by the relation describing the mean field

approximation (20), we thus see that a small change in the value of β can recursively induce

a large change in the value of the pj(t)
′s and hence a large change in the final proportion of

infected individuals. This effect is the same as the one inducing bistability and hysteresis

found in17 for the collective contagion model. The effect does not occur in Figures 2 and 3,

however, since the concave functions used in the models are smooth. The spectral vanishing

condition in Figure 4, represented by the green vertical line, is given by βc := δ/ρ(W (2) +∑K
k=3(c

(k)
2 /c

(k)
1 )W (k)), where W (k) := I(k)(I(k))T , with I(k) being the incidence matrix of the

sub-hypergraph consisting only of hyperedges of size k. We can observe that this condition

is less sharp than those in Figures 2 and 3, which are given by βc := δ/f ′(0)ρ(W ). A

possible explanation for this difference is that f(x) := log(1 + x) and f(x) := arctan(x) are

concave functions, which can be dominated by a simple linear expression: f(x) ≤ f ′(0)x.

For the collective contagion analysis we used the bound fk(x) ≤ (c
(k)
2 /c

(k)
1 )x, which replaces

discontinuous step functions by smoother concave functions, and is likely to introduce greater

inaccuracies. We leave for future work the issue of deriving better vanishing conditions for

non-concave functions such as those in the collective contagion model.
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Figure 2. Dynamic snapshot hypergraph computation. Proportion of of infected individuals in the

population after T = 200 and time step ∆t = 0.1, for various values of β. Here the blue crosses

represent the exact dynamic hypergraph model, where the nonlinearity function is x 7→ log(1 +x),

averaged over 10 runs, and the red asterisks represent the hypergraph mean field approximation.

The green vertical line represents the expected spectral threshold for extinction of the disease.

V. SUPPORTING ANALYSIS FOR THE DYNAMIC GRAPH CASE

In this section we provide theoretical analysis to support the observations made in our

numerical experiments. In previous works on disease spreading on dynamic graphs (2,7,8),

the analysis focused on the discrete-time mean field approximation (15). We analyse this

model and its continuous counterpart (14) with regards to our specific assumptions on

the interaction dynamics. In Section V A we derive spectral conditions which guarantee

the asymptotic vanishing of the disease in the population. A corresponding result for the

hypergraph case is given in Section VI.
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Figure 3. Dynamic snapshot hypergraph computation. Proportion of infected individuals in the

population after T = 200 and time step ∆t = 0.1, for various values of β. Here the blue crosses

represent the exact dynamic hypergraph model, where the nonlinearity function is x 7→ arctan(x),

averaged over 10 runs, and the red asterisks represent the hypergraph mean field approximation.

The green vertical line represents the expected spectral threshold for extinction of the disease.

In Section V B, we provide a comparison between the two mean field approximations (14)

and (17), in order to justify why their plots closely match numerically. The latter model

has the advantage of considering a static graph W , instead of a dynamic graph (W (t))t≥0,

leading to a more straightforward analysis, and as we have seen in Section IV, nonetheless

provides an accurate prediction of the behavior of the exact model on a dynamic graph.
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Figure 4. Dynamic snapshot hypergraph computation. Proportion of infected individuals in the

population after T = 200 and time step ∆t = 0.1, for various values of β. Here the blue crosses

represent the exact dynamic hypergraph model with a collective contagion model of propagation

in hyperedges, averaged over 10 runs, and the red asterisks represent the hypergraph mean field

approximation. The green vertical line represents the expected spectral threshold for extinction of

the disease.

A. Spectral vanishing condition

Here we derive spectral conditions which guarantee the asymptotic vanishing of the dis-

ease for the mean field approximations (14) and (15). Since we focus on deriving sufficient

conditions for the vanishing of the disease, it suffices to find such conditions on a simpler

system that dominates the original version. This approach was also used in previous works,

as described in Section II, where for instance, the authors of13 chose to linearize their ODE

system to make it more amenable to analysis. To this end we appeal to the following result
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from20, which follows as a corollary from34.

Corollary V.0.1 (20). If, for all 1 ≤ i ≤ n, we have u′i(t) ≤ gi(u(t)), y′i(t) = gi(y(t)) and

ui(0) = yi(0), then ui(t) ≤ yi(t) for all t ≥ 0.

We also use the following lemma.

Lemma V.1. Let (aT )∞T=1 be a sequence of (strictly) positive real numbers. Suppose that

lim
T→∞

a
1/T
T < 1. (23)

Then

lim
T→∞

aT = 0. (24)

Proof. We have

a
1/T
T = exp

(
1

T
ln(aT )

)
.

Hence, by continuity of the exponential, condition (23) is equivalent to

lim
T→∞

1

T
ln(aT ) < −α, (25)

for some α > 0.

If limT→∞
∣∣ln(aT )

∣∣ <∞, then we would have limT→∞
1
T

ln(aT ) = 0, which is not the case.

Hence we must have

lim
T→∞

∣∣ln(aT )
∣∣ =∞.

The limit being strictly negative in (25), we can thus deduce that

lim
T→∞

ln(aT ) = −∞,

and hence that

lim
T→∞

aT = lim
T→∞

exp
(
ln(aT )

)
= 0.

Theorem V.2. Consider the model described in (14). For all initial conditions, if E[ρ(W0)] <

δ/β, then a.s., for all 1 ≤ i ≤ n, limt→∞ pi(t) = 0, where W0 ∼ Bi(1,W ) is a random sample

independent from W (t), t ≥ 0, and identically distributed.
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Proof. Since (1 − pi(t)) ≤ 1, by Corollary V.0.1, it suffices to find conditions to guarantee

the asymptotic vanishing of the disease described by the following ODE system

dpi(t)

dt
= β

n∑
j=1

wij(t)pj(t)− δpi(t), 1 ≤ i ≤ n. (26)

By assumption, W (t) remains constant on every interval t ∈ [kh, (k + 1)h]. On such an

interval, we can thus express a solution to (26) as P (t) = exp((βW (kh)−δI)(t−kh))P (kh),

where P (t) := [pi(t)]
n
i=1. We thus find recursively that for all K ∈ N∗,

P (Kh) =
K−1∏
k=0

exp((βW (kh)− δI)h)P (0).

Hence a sufficient condition for the disease to vanish asymptotically is given by

lim
K→∞

ρ

K−1∏
k=0

exp((βW (kh)− δI)h)

 = 0.

Since the spectral norm is submultiplicative, it suffices that

lim
K→∞

K−1∏
k=0

ρ
(

exp
(
(βW (kh)− δI)h

))
= 0,

and hence that

lim
K→∞

K−1∏
k=0

ρ
(

exp
(
(βW (kh)− δI)

))
= 0.

By Lemma V.1, it thus suffices that

lim
K→∞

K−1∏
k=0

ρ
(
exp(βW (kh)− δI)

)1/K
< 1,

or equivalently, that

lim
K→∞

K−1∏
k=0

exp
(
βρ(W (kh))− δ)

)1/K
< 1,

or equivalently, by continuity of the exponential, that

lim
K→∞

β
1

K

K−1∑
k=0

ρ(W (kh))− δ < 0.

By the law of large numbers, we have, a.s.,

lim
K→∞

1

K

K−1∑
k=0

ρ(W (kh)) = E[ρ(W0)],

where W0 ∼ Bi(1,W ) is a random sample, and the claim follows.
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Note that there is nothing specific about constructing W0 as a matrix of binomial random

variables in the above proof, i.e., W0 ∼ Bi(1,W ). A similar result holds for any other random

matrix W0 sampled with respect to a fixed expected matrix W .

A similar argument yields to the same spectral vanishing condition in the discrete-time

setting.

Theorem V.3. Consider the model described in (15). For all initial conditions, if E[ρ(W0)] <

δ/β, then a.s., for all 1 ≤ i ≤ n, limt→∞ pi(t) = 0, where W0 ∼ Bi(1,W ) is a random sample

independent from W (t), t ≥ 0, and identically distributed.

Proof. By Corollary V.0.1, it is sufficient to find an epidemic threshold for the system of

linear equations, for 1 ≤ i ≤ n,

pi(t+ 1) = (1− δ)pi(t) + β
n∑
j=1

wij(t)pj(t), (27)

which in matrix notation, gives

P (t+ 1) = ((1− δ)I + βW (t))P (t). (28)

We then find recursively that

P (t+ 1) =
0∏
k=t

((1− δ)I + βW (k))P (0),

and

P∞ = lim
t→∞

0∏
k=t

((1− δ)I + βW (k))P (0)

is well-defined and equal to 0 if

ρ( lim
t→∞

0∏
k=t

((1− δ)I + βW (k))) = 0.

By Lemma V.1, it suffices that

lim
t→∞

ρ

 0∏
k=t

((1− δ)I + βW (k))

1/(t+1)

< 1.

The spectral norm being submultiplicative,

ρ

 0∏
k=t

((1− δ)I + βW (k))

1/(t+1)

≤
t∏

k=0

ρ((1− δ)I + βW (k))1/(t+1),
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and the right hand side above, by the arithmetic-geometric mean inequality, has the bound

t∏
k=0

ρ((1− δ)I + βW (k))1/(t+1) ≤ 1

t+ 1

t∑
k=0

ρ((1− δ)I + βW (k))

= (1− δ) + β
1

t+ 1

t∑
k=0

ρ(W (k)).

Hence it suffices that

lim
t→∞

(1− δ) + β
1

t+ 1

t∑
k=0

ρ(W (k)) < 1,

and by the law of large numbers, we have a.s.

lim
t→∞

1

t+ 1

t∑
k=0

ρ(W (k)) = E[ρ(W0)],

where W0 ∼ Bi(1,W ) is a random sample.

B. Comparison of the mean field approximation models

It was numerically observed that the mean field approximation model in (14) and the

more simple model proposed in (17) closely matched. In this section, we compare the two

mean field models by relating their respective infection rates (13) and (16), and by comparing

the vanishing spectral conditions found in each case.

Let us fix i ∈ {1, . . . , n} and t ∈ T . We are interested in comparing the infection rate

in (13) given by β
∑n

j=1wij(t)pj(t), where ∀ j ∈ {1, . . . , n}, wij(t) ∼ Bi(1, wij), with the

infection rate in (16) given by β
∑n

j=1wijpj(t). It thus suffices to estimate the right hand

side in ∣∣∣∣∣∣
n∑
j=1

(wij(t)− wij)pj(t)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
n∑
j=1

(wij(t)− wij)

∣∣∣∣∣∣ . (29)

Definition V.4. Let Sn(i) :=
∑n

j=1wij, where wij ∼ Bi(1, wij) independently for all j ∈

{1, . . . , n}.

Note that estimating (29) is equivalent to estimating
∣∣Sn(i)− E[Sn(i)]

∣∣ . To this end, we

shall make use of Hoeffding’s inequality, which states here that for all i ∈ {1, . . . , n} and all

ε > 0

P
(∣∣Sn(i)− E[Sn(i)]

∣∣ > εE[S(i)]
)
< exp

(
−2ε2(E[Sn(i)])2∑n

i=1wij
2

)
≤ exp

(
−2ε2E[Sn(i)]

)
.
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Recall from Section II C, that we build the weights [wij]
n
i,j=1 of the underlying static

graph as follows. We let wij = wji ∼ xijBi(1, p), where we let [xij]
n
i,j=1 ∈ [0, 1]n

2
be such

that xij = xji, p ∈ [0, 1] a sparsity parameter to be chosen, and where wii = 0 for all

i, j ∈ {1, . . . , n}.

The following lemma is a direct application of Hoeffding’s inequality.

Lemma V.5. Suppose that the sparsity parameter satisfies p ≥ log n/n, and that for all

i ∈ {1, . . . , n}
n∑
j=1

xij = Θ(n), (30)

then there exists a.s. n0 ∈ N, such that for all n ≥ n0 and all i ∈ {1, . . . , n},
∑n

j=1wij =

Θ(pn).

The condition in (30) is a natural requirement that applies to most models in practice. For

instance asking that the xij are uniformly bounded away from 0 for all i, j, which is natural

for non-zero probability weights, implies (30). Our specific construction in Section IV, where

xij ∼ U [0, 1] for all i < j also satisfies this condition a.s..

Proof. By Hoeffding’s inequality, for all i ∈ {1, . . . , n}, we have

P


∣∣∣∣∣∣
n∑
j=1

wij − p
n∑
j=1

xij

∣∣∣∣∣∣ > εp
n∑
j=1

xij

 ≤ exp(−ε2p
n∑
j=1

xij).

By the assumption in (30), there exists C > 0 such that for all sufficiently large n and all

i ∈ {1, . . . , n},
∑n

j=1 xij > Cn, hence, using the assumption on p,

P


∣∣∣∣∣∣
n∑
j=1

wij − p
n∑
j=1

xij

∣∣∣∣∣∣ > εp

n∑
j=1

xij

 ≤ exp(−2ε2pCn)

≤ exp(−2ε2C log n)

= n−2ε
2C .

Choosing for instance ε :=
√

3/(2C), we can conclude that

P

∃ i ∈ {1, . . . , n},
∣∣∣∣∣∣
n∑
j=1

wij − p
n∑
j=1

xij

∣∣∣∣∣∣ > εp

n∑
j=1

xij

 ≤ n−2,
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hence by the Borel-Cantelli lemma, there exists a.s. n0 ∈ N, such that for all n ≥ n0 and all

i ∈ {1, . . . , n}
n∑
j=1

wij = Θ(p
n∑
j=1

xij) = Θ(pn).

From now on, we shall assume that condition (30) holds.

Lemma V.6. Suppose that the sparsity parameter satisfies p = ω(log n/n), then there exists

a.s. n0 ∈ N such that for all n ≥ n0 and for all i ∈ {1, . . . , n}

Sn(i) = E[Sn(i)](1 + o(1)).

Proof. By Lemma V.5 and the choice of p, there exists α, a function of n tending to ∞

arbitrarily slowly as n → ∞, such that min{E[Sn(i)] | i ∈ {1, . . . , n}} = α(n) log(n). Let

ε be a function of n, chosen such that ε(n) = o(1) and ε(n) = ω(α(n)−1/2). Such a choice

is possible since α(n) = ω(1). Using Hoeffding’s inequality and our choice of ε, there exists

N ∈ N such that for all n ≥ N

P(∃ i ∈ {1, . . . , n},
∣∣Sn(i)− E[Sn(i)]

∣∣ > ε(n)E[Sn(i)])

≤
n∑
i=1

P
(∣∣Sn(i)− E[Sn(i)]

∣∣ > ε(n)E[Sn(i)]
)

≤ n exp(−2ε(n)2α(n) log(n))

= exp(log(n)(1− 2ε(n)2α(n)))

≤ n−2,

and the claim follows by the Borel-Cantelli lemma.

Recall that in Theorems V.2 and V.3 we have found the following spectral vanishing

condition for the mean field approximation given by (14):

E[ρ(W0)] < δ/β,

where W0 ∼ Bi(1,W ) is a random sample. On the other hand, the more simple mean field

model proposed in (17) has the spectral vanishing condition

ρ(W ) < δ/β.
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We can also compare these two spectral vanishing conditions, which comes down to com-

paring E[ρ(W0)] with ρ(W ).

Lemma V.7. Suppose that the sparsity parameter of W satisfies p ≥ log n/n, and let

W0 ∼ Bi(1,W ) be a random sample, we have a.s.

ρ(W0) = ρ(W )(1 +O(
1
√
pn

)).

Proof. Note that we can write W0 = W + R, where R is a zero mean symmetric matrix,

with nonzero entries in the upper triangle that are i.i.d. and have finite variance. By Weyl’s

inequalities, we have in particular∣∣∣ρ(W0)− ρ(W )
∣∣∣ ≤ ρ(R).

By the law of large numbers, we have a.s. ρ(R) = O(
√
pn), while by Lemma V.5 ρ(W ) =

Θ(pn) a.s., from which the claimed result follows.

VI. ANALYSIS FOR THE DYNAMIC HYPERGRAPH CASE

The mean field approximation in (22) was noted in Section III B to be similar to the

model studied in19, where a vanishing spectral condition was shown to be

cfρ(W ) < δ/β,

where cf > 0 depends on the choice of the function f .

We note furthermore that the mean field approximation in (20) can similarly be analysed.

Using Corollary V.0.1, we can find a linear ODE system to dominate (20), given by

dpi(t)

dt
= cfβ

n∑
j=1

wij(t)pj(t)− δpi(t), i ∈ {1, . . . , n}, (31)

where cf > 0 is chosen such that for all x ≥ 0, f(x) ≤ cfx. As noted in20, for the collective

suppression case, where f is concave and f(0) = 0, we may take cf = f(1), and for a collective

contagion model of the form f(x) := c21(x ≥ c1) we may take cf = c2/c1. In (31), we have

wij(t) :=
∑

h∈E Iih(t)Ijh(t). We will define W (t) := [wij(t)]
n
i,j=1, and likewise W := IIT .

Then we can invoke Theorem V.2, noting that the specific construction of W0 ∼ Bi(1,W )
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there is not required, and that any other random matrix construction yields the same result.

Let I0 ∼ Bi(1, I), and let W0 := I0IT0 . By Theorem V.2, if cfE[ρ(W0)] < δ/β, then a.s., for

all 1 ≤ i ≤ n, limt→∞ pi(t) = 0.

VII. DISCUSSION

Interactions between individuals are typically structured but dynamic—at any given time

we may be likely to engage with a small subset of the population and very unlikely to engage

with the rest. Our aim in this work was therefore to develop and analyze SIS spread in a

snapshot-style dynamic graph framework that accounts for such interactions. Moreover, hy-

peredges can be used to capture the group-level interactions that take place in, for example,

workplaces, schools, retail and leisure outlets, public transport and entertainment events.

We therefore extended the graph-based modeling and analysis to a new dynamic hypergraph

setting.

The main take-home message from our work is that a useful spectral threshold for the

infection rate parameter, below which infection dies out, can be expressed in terms of an

overall static expected affinity matrix (or expected clique expansion in the hypergraph case).

One implication is that computationally expensive, dynamic and individual-level stochastic

simulations can be replaced by cheaper deterministic mean field versions. A further impli-

cation is that in a practical scenario we can draw useful conclusions by asking individuals

about their expected, or typical, interactions—this type of information is much easier to

gather than more detailed microscale descriptions.

In terms of future directions, we note that our work has focused on the fundamental

question of disease extinction. It would also be of interest to study more general properties

of these new dynamic models; for example, along the lines developed in16,17,21,22,26,31 for the

static hypergraph case. With access to appropriate real data it would, of course, be of

interest to develop methods to calibrate model parameters, compare functional forms of the

infection rate, and test the predictive power of the modelling frameworks.
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