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Abstract A key unknown for SARS-CoV-2 is how asymptomatic infections contribute to

transmission. We used a transmission model with asymptomatic and presymptomatic states,

calibrated to data on disease onset and test frequency from the Diamond Princess cruise ship

outbreak, to quantify the contribution of asymptomatic infections to transmission. The model

estimated that 74% (70–78%, 95% posterior interval) of infections proceeded asymptomatically.

Despite intense testing, 53% (51–56%) of infections remained undetected, most of them

asymptomatic. Asymptomatic individuals were the source for 69% (20–85%) of all infections. The

data did not allow identification of the infectiousness of asymptomatic infections, however low

ranges (0–25%) required a net reproduction number for individuals progressing through

presymptomatic and symptomatic stages of at least 15. Asymptomatic SARS-CoV-2 infections may

contribute substantially to transmission. Control measures, and models projecting their potential

impact, need to look beyond the symptomatic cases if they are to understand and address ongoing

transmission.

Introduction
The ongoing COVID-19 pandemic has spread rapidly across the globe, and the number of individu-

als infected with SARS-CoV-2 outstrips the number of reported cases (Wang et al., 2020;

Golding et al., 2020). One key reason for this may be that a substantial proportion of cases proceed

asymptomatically, that is, they either do not experience or are not aware of symptoms throughout

their infection but may still transmit to others. In this sense, asymptomatic infections differ from pre-

symptomatic infections, which describes the portion of the incubation period before symptoms

develop during which onward transmission is possible.

While pre- and asymptomatic individuals do not directly contribute to morbidity or mortality in an

outbreak, they can contribute to ongoing transmission, as has been shown for COVID-19

(Rothe et al., 2020; Chen et al., 2020; Ganyani et al., 2020) and other diseases (Dean et al., 2016;

Slater et al., 2019; Esmail et al., 2018). In particular, purely symptom-based interventions (e.g.,

self-isolation upon onset of disease) will not interrupt transmission from asymptomatic individuals

and hence may be insufficient for outbreak control if a substantial proportion of transmission origi-

nates from pre- and asymptomatic infections (Chen et al., 2020).

An estimate of the proportion of infections that progress to symptomatic disease, also known as

the case-to-infection ratio, provides an indicator of what proportion of infections will remain unde-

tected by symptom-based case detection (Salomon and COVID-19 Statistics, Policy modeling, and

Epidemiology Collective, 2020). Evidence so far have suggested that the proportion of SARS-CoV-
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2 infections that proceed asymptomatically is likely non-trivial (Li et al., 2020; Liu et al., 2020a;

He et al., 2020; Mizumoto et al., 2020; Lavezzo et al., 2020; Bendavid et al., 2020), although

empirical data are often difficult to interpret due to opportunistic sampling frames (Nishiura et al.,

2020) combined with low (Fontanet et al., 2020) and imbalanced participation from individuals with

and without symptoms (Gudbjartsson et al., 2020). While it is likely that transmission from asymp-

tomatic individuals can occur, (Bai et al., 2020) quantitative estimates are effectively absent.

Improved understanding of the relative infectiousness of asymptomatic SARS-CoV-2 infection, and

its contribution to overall transmission will greatly improve the ability to estimate the impact of inter-

vention strategies (Salomon and COVID-19 Statistics, Policy modeling, and Epidemiology Collec-

tive, 2020). What is known is that in the presence of active case-finding, presymptomatic infections

and symptomatic cases contribute almost equally to overall transmission, as both modelling and

empirical studies have shown (Liu et al., 2020a; He et al., 2020).

Documented outbreaks in a closed population with extensive testing of individuals regardless of

symptoms provide unique opportunities for improved insights into the dynamics of an infection, as

knowledge of the denominator and true proportion infected are crucial, yet often unavailable in

other datasets. Here, we use data from the well-documented outbreak on the Diamond Princess

cruise ship to capture the mechanics of COVID-19 in a transmission model with explicit asymptom-

atic and presymptomatic states to infer estimates for the proportion, infectiousness and contribution

to transmission of asymptomatic infections. Available data included the date of symptom onset for

symptomatic disease for passengers and crew, the number of symptom-agnostic tests administered

each day, and the date of positive tests for asymptomatic and presymptomatic individuals

(Mizumoto et al., 2020; Nishiura, 2020; NIID, 2020).

Results

Model calibration
The model reflected the data well (Figure 1), including the differently timed peaks for confirmed

symptomatic cases for crew (Figure 1A) and passengers (Figure 1B). In addition, the model

matched the expected impact of quarantine of passengers on transmission from February 4th as

illustrated by the drop in reproductive number (Figure 1E), followed by a later drop in transmission

after February 10th, which was driven by a change in contact pattern in crew. See Figure 1—figure

supplements 1–2 for full calibration outputs.

Asymptomatic infections
We estimated that 74% of infections proceeded asymptomatically (70–78%, 95% Posterior Interval

(PI)) (see Figure 2A). The strong identifiability of this parameter is driven by the relative proportions

of individuals testing positive with and without symptoms, combined with the time-delay between

symptom-based and symptom-agnostic testing. As a result, our model estimated that in total 1304

(1,198–1,416) individuals were infected, representing 35% (32–38%) of the initial total population on

the Diamond Princess. Over half of these infections had not been detected at disembarkation on

February 21 st (53%, 51–56%) consisting of infected individuals who had recovered and became test

negative before they were tested (37%, 34–40%), were yet to be tested (15%, 13–16%), or had

recently been exposed and were not yet detectable at that point (1%, 1–3%). Nearly two-thirds of

pre- and asymptomatic infections (67%, 66–68%) and 8% (6–9%) of symptomatic infections went

undetected up until disembarkation (Figure 2C).

In contrast to the strong identifiability of the proportion of infections that were asymptomatic,

the model was unable to identify the relative infectiousness of asymptomatic infections from the

data, that is, a uniform prior was effectively returned (see Figure 2B). This is because the relative

infectiousness of asymptomatic infections was degenerate with the overall contact rate, meaning the

data were consistent with either relatively frequent contact with less infectious individuals or rela-

tively infrequent contact with more infectious individuals (see Figure 1—figure supplement 1).

Despite this, the estimated proportion of transmission due to asymptomatic infections is 69%, with a

wide confidence interval (20–85%) and an interquartile range of 56–76% (Figure 2D). The reason this

estimate is not effectively 0–100%, as might be expected by the unidentifiable relative infectious-

ness, is the combination of the strongly identified, relatively high proportion of infections that are
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asymptomatic and the non-linear relationship between the relative infectiousness of asymptomatics

and their contribution to transmission, which quickly saturates to its maximal value (see Figure 2—

figure supplement 1). The result is that only a modest relative infectiousness is required to produce

a non-trivial contribution to transmission. The relative infectiousness of presymptomatics was also

unidentifiable, however, in all scenarios the remaining transmission was equally distributed between

the presymptomatic (14%, 1–44%) and symptomatic (17%, 11–42%) individuals. Figure 3 shows the

instantaneous proportion of transmission from symptomatic (A), presymptomatic (B) and asymptom-

atic (C) individuals over the course of the epidemic.

Because of the non-identifiability of the relative infectiousness of asymptomatic infections we

investigated marginal posterior estimates (Table 1). We find that low relative infectiousness of

asymptomatic infections (0–25% compared to symptomatic individuals) would need to be compen-

sated by a net reproduction number for individuals during their presymptomatic and symptomatic

phase of 15.5–29.1.

Sensitivity analyses
Without an asymptomatic state the model was unable to reconstruct the dynamics of the outbreak

(Appendix 2—figures 1–3, Deviance Information Criterion (DIC) = 974 vs 329 for the primary

Figure 1. Data from the Diamond Princess and model calibration. Figure shows data from the Diamond Princess (points (A-D) and bars (F)) and results

from model calibration. Red lines = median, shading = 95% posterior plus observational interval (A-C) and 95% posterior interval only (D-E). Two

vertical lines show the date of the first confirmed diagnosis (left) and the start of quarantine measures (right). (A-B) show confirmed symptomatic cases

among crew (A) and passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals by test date; (D) shows the

prevalence of pre/asymptomatic individuals by test date. Points and error bars show point estimates and 95% confidence intervals; (E) shows the basic

reproduction number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number of tests administered irrespective of

symptoms, by test date.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Marginal posterior parameter values from model calibration.

Figure supplement 1. Parameter correlation plot from model calibration.

Figure supplement 2. Parameter trace plot from model calibration.
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Figure 2. Proportion of infections that are asymptomatic and their contribution to transmission. (A) Prior (blue) and posterior (red) probability

distribution for the proportion progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution for the relative

infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic infections and symptomatic cases detected (dark red) and not

detected (light red) during the outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for proportion of transmission

that is from asymptomatic individuals. Dashed and dotted lines show median and interquartile range, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Non-linear correlation between relative infectiousness of asymptomatics and their contribution to transmission.

Figure 3. Instantaneous proportion of transmission from symptomatic, presymptomatic and asymptomatic individuals. Instantaneous proportion of

transmission from symptomatic (A), presymptomatic (B) and asymptomatic (C) individuals over the course of the epidemic, following the introduction of

a single symptomatic individual on 20th Jan. Red lines = median, shading = 95% posterior interval. Two vertical lines show the date of the first

confirmed diagnosis (left) and the start of quarantine measures (right).
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analysis). Moreover, adjusting the relative value for mixing between crew and passengers did not

have a qualitative effect on the results (Appendix 2—figures 4–11).

Biased symptom-agnostic testing had a greater impact on the results. Those testing negative hav-

ing a 50% higher probability of being tested compared to the primary analysis led to a correspond-

ing greater proportion of infections that were asymptomatic (84%, 82–87%), total number infected

(2,097, 1,914-2,292) and contribution of asymptomatics to transmission (78%, 36–91%) (see Appen-

dix 2—figures 12–15). Conversely, those testing positive having a 50% higher probability of being

tested compared to the primary analysis led to a corresponding smaller proportion of infections that

were asymptomatic (66%, 61–71%), total number infected (1,051, 965-1,161) and contribution of

asymptomatics to transmission (59%, 9–79%) (see Appendix 2—figures 16–19).

When we assumed a fixed age-specific ratio for the proportion of infections that progress asymp-

tomatically, the model was able to fit the data, although the number of correlated parameters was

high. Overall results were similar to the main analysis, with a proportion asymptomatic of 42% (41–

44%) and 89% (85–91%) for passengers and crew, respectively. The proportion of all transmission

from asymptomatics was 69% (IQR = 59–74%). Relative infectiousness was again unidentifiable. See

Appendix 2—figures 20–23 for details.

A longer latent period provided a poorer fit to the data (DIC = 361) (Appendix 2—figures 24–

27). Adjusting the duration of the asymptomatic state to half or double the sum of the presymptom-

atic and symptomatic states made little qualitative difference to the results (Appendix 2—figures

28–35), although the shorter asymptomatic period was a marginally poorer fit to the data (DIC =

338). Finally, recalibrating the model assuming the 35 confirmed pre/asymptomatic cases where a

test date was not available were allocated to the last feasible day (13th Feb) made no qualitative dif-

ference to our results (see Appendix 2—figures 36–39).

Discussion

Summary
We find that in this well-documented outbreak in a closed population, 74% (70–78%) of infections

proceeded asymptomatically, equaling a 1:3.8 (1:3.3-1:4.4) case-to-infection ratio. The majority of

asymptomatic infections remained undetected, but may have contributed substantially to ongoing

transmission. While the relative infectiousness of asymptomatic infections could not be identified,

low infectiousness (e.g. 0–25% compared to symptomatic individuals) would have required a very

high net reproduction number for individuals during their presymptomatic and symptomatic stages

of (15.5–29.1).

Table 1. Model outputs by relative infectiousness of asymptomatic individuals.

Relative infectiousness expressed as proportion compared to symptomatic individuals. All values are 95% posterior ranges from model

scenarios. Net reproduction number represents the typical number of infections generated by a single infected individual during their

presymptomatic and symptomatic stages.

Range of relative infectiousness of
asymptomatic individual

Model output

Transmission from asymptomatic
individuals (%)

Net reproduction number for
presymptomatic passengers

Basic reproduction
number

0–1% 0–3 22.7–29.1 6.7–7.6

1–25% 7–58 15.5–25.5 7.0–8.8

25–50% 44–75 11.1–17.6 8.0–9.6

50–75% 60–82 8.7–13.6 8.7–10.2

75–99% 68–86 7.2–11.4 9.3–10.8

99–100% 72–87 6.7–10.2 9.5–10.9

Relative infectiousness expressed as proportion compared to symptomatic individuals. All values are 95% posterior ranges from model scenarios. Net

reproduction number represents the typical number of infections generated by a single infected individual during their presymptomatic and symptomatic

stages.
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Interpretation
Our results are strongly informed by data, which show that when extensive symptom-agnostic test-

ing was ramped up, substantial numbers of pre- or asymptomatic infections were identified. Given

the clear suppression of transmission through quarantining, as indicated by the drop in incident

symptomatic disease, this finding is most likely explained by a large proportion of undetected

asymptomatic individuals.

The model and data were unable to identify a value for the relative infectiousness, although we

showed how different ranges for this key parameter required specific trade-offs, as reflected in the

net reproduction number for infected individuals who will develop symptomatic disease. One can

argue that a net reproduction number for presymptomatic passengers at the start of the outbreak of

over 20 in this population, as required if asymptomatic individuals are effectively unable to transmit

(range for relative infectiousness of 0–1%) is unlikely. Such high reproductive numbers are not usually

seen, exceeding for example values found for norovirus outbreaks on cruise ships (Gaythorpe et al.,

2018). While SARS-CoV-2 has been shown to survive on surfaces (van Doremalen et al., 2020), this

does not seem to be the primary mode of transmission. In combination with growing evidence

around viral load in asymptomatic infections and their involvement in transmission chains

(Lavezzo et al., 2020), as well as anecdotal evidence about transmission from asymptomatic individ-

uals (Bai et al., 2020; Chau et al., 2020) including in closed populations (Arons et al., 2020), it is

reasonable to assume that asymptomatic infections play some role in ongoing SARS-CoV transmis-

sion. In our model, asymptomatic infections were responsible for more than half of all transmission in

83% of the scenarios compatible with the data.

It is important to note that our conclusion that asymptomatic infections may have contributed

substantially to ongoing transmission is critically dependent on the setting. In this case symptomatic

infections were quickly identified and removed from the ship before symptom-agnostic testing

began, thereby leaving asymptomatic infections to dominate transmission. Such dominance should

therefore not be interpreted as a constant of nature, but instead an important consideration in set-

tings where prompt isolation of symptomatic infections is already in place but with little to no con-

sideration for asymptomatic infections.

Comparison to other studies
Our estimated proportion of asymptomatic infections in this outbreak is higher than previous stud-

ies, which relied on diagnosed cases only (Mizumoto et al., 2020). As we have shown, a substantial

number of infections were not detected, which would explain some of the difference. Other empiri-

cal studies have found usually lower values, while some found similar ranges. While underestimation

in other estimates due to low (Fontanet et al., 2020) and imbalanced participation from individuals

with and without symptoms (Gudbjartsson et al., 2020) will be part of the explanation, there

remains scope for unexplained variation from more complete samples (Lavezzo et al., 2020). In

addition, it is possible that PCR-based testing has a lower sensitivity for asymptomatic individuals,

which would further increase the proportion of infections that were asymptomatic (Chau et al.,

2020).

A sensitivity analysis showed that our results were robust to age-specific probabilities of progress-

ing to asymptomatic infections, as well as other assumptions made in the model, and driven by

trends in the data.

Our estimated substantial contribution to transmission from asymptomatic infections confirms a

hypothesis from Nishiura after analysing symptomatic cases occurring post-disembarkation (Nish-

iura, 2020). Our initial reproduction number of 9.3 (7.4–10.6) reflects the high transmission environ-

ment expected on cruise ships via increased contacts in a confined space, although lower than the

value found in an earlier analysis by Rocklöv et al., 2020.

Our finding of similar contribution to transmission from presymptomatic and symptomatic individ-

uals also matches findings by others (Ganyani et al., 2020; Liu et al., 2020a; He et al., 2020). In

line with this, it is clear that having symptoms, or at least being aware of them, is not required in the

transmission of SARS-CoV-2 (Ganyani et al., 2020; Liu et al., 2020a; He et al., 2020; Kimball et al.,

2020; Wei et al., 2020). Although cough is often considered essential for transmission of respiratory

infections (Patterson and Wood, 2019), work in tuberculosis, influenza and other coronaviruses has

shown that while a cough may increase spread, it is not a requirement. Transmission from breathing,
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talking and sneezing is also possible, as well as transmission from contaminated surfaces

(van Doremalen et al., 2020; Leung et al., 2020; Asadi et al., 2019; Williams et al., 2020).

Limitations
Additional data, in particular on the distribution of asymptomatic infections across crew and passen-

gers, by age and shared quarantine environments would have benefited the model and potentially

enabled us to estimate a range for the relative infectiousness of asymptomatic infections. A serologi-

cal survey of the population, and the date and testing history of individuals who developed symp-

toms post-disembarkation, would also have likely informed more precise model estimates. In

addition, better evidence on performance of the test used, and the associated likelihood of false-

negative or false-positive results would help refine estimates. As more data become available, future

model analyses of SARS-CoV-2 dynamics in closed populations should further inform the key ques-

tions we have looked to address here.

Whilst symptom-agnostic testing provided valuable insights into the pre- and asymptomatic

states, such testing was not necessarily random, as was assumed in our primary analysis. Indeed, it is

known that individuals were generally screened in reverse-age order (NIID, 2020). Sensitivity analy-

ses considering biased testing still produced non-trivial results for the proportion of infections that

were asymptomatic however.

Our model also assumed that the infectiousness of all transmissible states was constant over

time. If instead symptomatic individuals are most infectious immediately after symptom onset

(He et al., 2020), an estimate of their contribution to transmission would in principle increase. Given

the likely heightened awareness of symptoms on board however, such an increase is likely to be mar-

ginal. Indeed, since our assumption of an average one-day, exponentially distributed delay between

symptom onset and removal from the ship is likely to be an overestimate, a prompter removal distri-

bution would at least in part offset such an increase.

A similar simplification was made by assuming that the probability of an individual progressing to

either a presymptomatic or asymptomatic infection was independent of who infected whom. It is

possible, however, that transmission from a symptomatic infection may be more likely to ultimately

result in another symptomatic infection, owing to a higher infecting dose for example.

Conclusion
Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. This is essential

to consider for countries when assessing the potential effectiveness of ongoing control measures to

contain COVID-19.

Materials and methods

Data
Data from the Diamond Princess outbreak have been widely reported. (Mizumoto et al., 2020;

Nishiura, 2020; NIID, 2020) On January 20th, the Diamond Princess cruise ship departed from

Yokohama on a tour of Southeast Asia. A passenger that disembarked on January 25th in Hong

Kong subsequently tested positive for SARS-CoV-2 on February 1st, reporting the date of symptom

onset as January 23rd.

After arriving back in Yokohama on February 3rd, all passengers and crew were screened for

symptoms, and those screening positive were then tested. The ship began quarantine on February

5th with all passengers confined to their cabins and crew undertaking essential activities only. At the

start of quarantine there were 3711 individuals on board (2666 passengers and 1045 crew) with a

median age of 65 (45–75 interquartile range).

Testing capacity was limited until February 11th and before then the majority of individuals tested

had reported symptoms, referred to here as ‘symptom-based testing’. All individuals with a positive

test at any stage were promptly removed from the ship and isolated. After February 11th, testing

capacity increased and the testing of individuals irrespective of symptoms, referred to here as ‘symp-

tom-agnostic testing’, was scaled up. In total, 314 symptomatic and 320 pre- or asymptomatic infec-

tions were reported before disembarkation was principally completed on February 21st.
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We extracted the following data from Mizumoto et al., 2020; Nishiura, 2020; NIID, 2020 (see

Figure 1). Firstly, the number of symptomatic cases per day (i.e. those testing positive having

reported symptoms) by date of symptom onset, separately for passengers and crew. The date of

symptom onset was not available for 115 cases, which we accounted for in our model structure by

assuming they were distributed over time proportional to those cases with a reported date of symp-

tom onset (see Appendix 1—table 1). Secondly, we extracted the number of pre- or asymptomatic

infections identified per day (i.e. individuals testing positive having not reported symptoms) by date

of test. The test date was not available for 35 pre- or asymptomatic individuals between the Febru-

ary 6-14th, which we assumed were distributed over time proportional to the daily number of tests

performed amongst individuals not reporting symptoms. No data were available on how many indi-

viduals that tested positive in the absence of symptoms became symptomatic after disembarkation.

Finally, we extracted the number of tests performed per day amongst individuals not reporting

symptoms (see Appendix 1—table 2).

Model
We built a deterministic, compartmental model to capture transmission, disease development and

the effect of interventions on board the Diamond Princess. Following exposure, after which an indi-

vidual is assumed to test negative for SARS-CoV-2 for the duration of the latent phase (see Table 2),

a proportion of individuals proceed asymptomatically with the remainder becoming presymptom-

atic. This proportion equates to a universal probability of becoming either presymptomatic or

asymptomatic, independent of who infected whom. Individuals in the presymptomatic, asymptom-

atic or symptomatic state are assumed to test positive and have independent infectiousness,

expressed relative to those with symptomatic disease.

Individuals with presymptomatic infection are either detected through symptom-agnostic testing

before being removed from the ship, or develop symptomatic disease. Once symptomatic disease

starts, individuals can either recover undetected on the ship or, following the start of quarantine on

February 5th, be detected through symptom-based testing and removed from the ship with an aver-

age delay of one day following symptom onset. We allowed for individuals to test positive after their

infectious period for an average of seven days (Woelfel et al., 2020). After this, we assume they

would test negative.

Individuals with asymptomatic infections either recover undetected on the ship, or are detected

by symptom-agnostic testing before being removed from the ship. See Appendix 1—figure 1 for a

diagram of the model.

Symptom-agnostic testing was assumed to have been random amongst those not reporting

symptoms and no delay was introduced between testing and removal of those that tested positive

from the ship. As such, the number of people that tested positive through symptom-agnostic testing

before being removed from the ship per day was calculated using the number of tests performed

per day (Figure 1F) and the proportion of individuals that were either presymptomatic, asymptom-

atic or recovered but continued to test positive for up to seven days, amongst all individuals on the

ship not reporting symptoms. All testing was assumed to have 100% sensitivity and specificity.

Crew and passengers were modelled separately, using stratified data on the number of confirmed

symptomatic cases (Figure 1A–B). We estimated the within-crew and within-passenger contact rates

through calibration to the data, but assumed that the between-group contact rate was a fixed factor

of 1/10th of the within-passenger rate, and explored the impact of this assumption in sensitivity anal-

yses. We enabled the model to capture potential changes in contact behaviour between individuals

by representing contact rates as sigmoid functions over time, reflecting any reductions in contact.

The dates and extent of the changes were determined solely through model calibration to the data.

Model parameterisation
We used data from the literature to inform the natural history of COVID-19, in particular for the

duration of presymptomatic and symptomatic phases (see Table 2).

Model calibration
The model was calibrated in a Bayesian framework. We fitted to the daily incidence of confirmed

symptomatic cases with a known onset date, separately for passengers and crew, assuming a
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Poisson distribution in the likelihood. We simultaneously fitted to the daily number of confirmed pre-

and asymptomatic infections for passengers and crew combined by using the number of tests

administered per day and the prevalence of presymptomatic, asymptomatic and post-infection test-

positive individuals, assuming a binomial distribution in the likelihood. We used uniform priors for

the parameters to be estimated (see Table 2) and sampled the posterior of the model parameters

using sequential Markov Chain Monte-Carlo (MCMC). A burn in phase during which the proposal

distributions were adapted in both scale and shape to provide optimal sampling efficiency was

Table 2. Model parameters and priors/values.

Parameter Description Prior/value Source/Notes

�b Overall contact rate (1/days) Estimated:
Uniform
(0,100)

c ccð Þ Relative initial contact rate between crew/crew Fixed: 1

c ppð Þ Relative initial contact rate between passengers/
passengers

Estimated:
Uniform
(0,100)

c pcð Þ Relative initial contact rate between passengers/
crew

Fixed relative

to cðppÞ

X Ratio: cðpcÞ

cðppÞ
Fixed: 0.1 Assumed. Varied in sensitivity analyses

b1 Percentage reduction in all initial contact rates (%) Estimated:
Uniform
(0,100)

b2 Rate of change of all contact rates (1/days) Fixed: 10 Assumed. Transitions completed over approximately one day

t
ðppÞ; t ðpcÞ Time of transition for contacts between passengers/

passengers and passengers/crew (days)
Estimated:
Uniform(0,32)

Assumed to be equal to each other

t
ðccÞ Time of transition for contacts between crew/crew

(days)
Estimated:
Uniform(0,32)

�p Relative infectiousness of presymptomatic state Estimated:
Uniform(0,1)

Relative to symptomatic state

�a Relative infectiousness of asymptomatic state Estimated:
Uniform(0,1)

Relative to symptomatic state

� Proportion of infections that proceed to
asymptomatic state

Estimated:
Uniform(0,1)

1

v
Latent period (days) Fixed: 4.3 Derived from Backer et al., 2020

1

ga

Mean duration in asymptomatic state (days) Fixed: 5.0 Assumed. Sum of mean durations in presymptomatic and symptomatic
states.
Varied in sensitivity analyses.

1

gp

Mean duration in presymptomatic state (days) Fixed: 2.1 Derived from Backer et al., 2020

1

gs

Mean duration in infectious symptomatic state
(days).

Fixed: 2.9 From Liu et al., 2020b Applicable only until quarantine starts on 5th
Feb

1

�
Mean delay between onset of symptomatic disease
and symptom-based testing and removal (days).

Fixed: 1 Assumed. Applicable only after quarantine starts on 5th Feb.

1

h
Mean duration of test positivity following recovery
(days)

Fixed: 7 From Woelfel et al., 2020

f Proportion of symptomatic cases with a reported
onset date

Fixed: 0.661
(199/314)

From Mizumoto et al., 2020; Nishiura, 2020

f ðtÞ Rate of symptom-agnostic testing and removal (1/
days)

Fixed:
Calculated

From Mizumoto et al., 2020 Calculated using the number of tests
administered per day amongst individuals not reporting symptoms (see
Appendix 1)

NðpÞ Total number of passengers on the ship as at start of
quarantine on 5th Feb

Fixed: 2666 From NIID, 2020

NðcÞ Total number of crew on the ship as at start of
quarantine on 5th Feb

Fixed: 1045 From NIID, 2020
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discarded, leaving chains with 1.5 million iterations. The resultant MCMC chains were visually

inspected for convergence.

Model outputs
Model outputs were calculated by randomly sampling 100,000 parameter values from the posterior

distribution. Model trajectories were generated and compared to the data in Figure 1A–C to

inspect model fit. The basic reproduction number was also calculated over time using the next-gen-

eration matrix (Diekmann et al., 2010), as a measure of ongoing transmission. We estimated the

proportion of infections that become asymptomatic and the relative infectiousness of asymptomatic

infections using their respective marginal posterior parameter values. Finally, the contribution of

asymptomatic infections to overall transmission, as well as the net reproduction number for pre-

symptomatic passengers at the beginning of the outbreak (i.e. the typical number of infections gen-

erated by a single presymptomatic individual) were estimated, both overall and by specific ranges of

relative infectiousness. We report the median and 95% equal-tailed posterior intervals throughout.

Sensitivity analyses
We recalibrated the model for a number of alternative scenarios to assess model sensitivity. Firstly,

we assessed the impact of removing the asymptomatic phase (i.e. 100% of infections progressed to

symptomatic disease). Secondly, we explored the impact of assuming different values for the relative

mixing between crew and passengers as well as shorter and longer durations of asymptomatic infec-

tion. Thirdly, we considered the impact of biased symptom-agnostic testing. Specifically, we first

assumed that those that would test positive were 50% more likely to be tested, before then assum-

ing that those that would test negative were 50% more likely to be tested, both compared to purely

random testing as per the primary analysis. We also explored the impact of assuming a different pro-

portion of asymptomatic infections for crew and passengers based on their distinct median ages (36

years for crew, 69 years for passengers), using a fixed ratio for the two proportions taken from the

results of a model fitted to epidemic data in six countries by Davies et al., 2020. In addition, we

explored a longer latent period given the relatively high age in our population (Jiang et al., 2020).

Finally, we recalibrated the model assuming the 35 confirmed pre/asymptomatic cases where a test

date was not available were allocated to the last feasible day (13th Feb) instead of proportionate to

the overall number of tests over the period February 6-14th(see Appendix 2 for further details).

All analyses were conducted using R version 3.5.0 (R Development Core Team, 2014). Bayesian

calibration was performed in LibBi (Murray, 2013) using RBi (Funk, 2019) as an interface. Replica-

tion data and analyses scripts are available on GitHub at https://github.com/thimotei/covid19_

asymptomatic_trans (Emery et al., 2020; copy archived at https://github.com/elifesciences-publica-

tions/covid19_asymptomatic_trans).

Role of funding source
The funder of the study had no role in study design, data collection, data analysis, data interpreta-

tion, or writing of the report. The corresponding author had full access to all the data in the study

and had final responsibility for the decision to submit for publication.
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Graham Medley; Amy Gimma; Rachel Lowe; Samuel Clifford; Matthew Quaife; Charlie Diamond;

Hamish P Gibbs; Billy J Quilty; Kathleen OReilly

Funding

Funder Grant reference number Author

European Research Council Action Number 757699 Jon C Emery
Rein MGJ Houben

Bill and Melinda Gates Foun-
dation

INV-003174 Yang Liu

Bill and Melinda Gates Foun-
dation

NTD Modelling Consortium
OPP1184344

Carl AB Pearson

Department for International
Development, UK Government

Epidemic Preparedness
Coronavirus research
programme 221303/Z/20/Z

Carl AB Pearson

Horizon 2020 project EpiPose (101003688) Yang Liu

HDR UK MR/S003975/1 Rosalind M Eggo

National Institute for Health
Research

16/137/109 Yang Liu

Medical Research Council MC_PC 19065 Rosalind M Eggo

Medical Research Council MR/P014658/1 Gwenan M Knight

Wellcome 206250/Z/17/Z Timothy W Russell
Adam J Kucharski

Wellcome 208812/Z/17/Z Stefan Flasche

Emery et al. eLife 2020;9:e58699. DOI: https://doi.org/10.7554/eLife.58699 11 of 48

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.58699


Wellcome 210758/Z/18/Z Joel Hellewell
Sebastian Funk

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Jon C Emery, Conceptualization, Data curation, Software, Formal analysis, Methodology, Writing -

original draft, Writing - review and editing; Timothy W Russell, Joel Hellewell, Software, Formal anal-

ysis, Methodology, Writing - review and editing; Yang Liu, Data curation, Software, Methodology,

Writing - review and editing; Carl AB Pearson, Sebastian Funk, Software, Methodology, Writing -

review and editing; CMMID COVID-19 Working Group, Data curation, Writing - review and editing;

Gwenan M Knight, Rosalind M Eggo, Adam J Kucharski, Methodology, Writing - review and editing;

Stefan Flasche, Conceptualization, Methodology, Writing - review and editing; Rein MGJ Houben,

Conceptualization, Methodology, Writing - original draft, Writing - review and editing

Author ORCIDs

Jon C Emery https://orcid.org/0000-0001-6644-7604

Gwenan M Knight http://orcid.org/0000-0002-7263-9896

Adam J Kucharski http://orcid.org/0000-0001-8814-9421

Sebastian Funk http://orcid.org/0000-0002-2842-3406

Rein MGJ Houben https://orcid.org/0000-0003-4132-7467

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.58699.sa1

Author response https://doi.org/10.7554/eLife.58699.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

All data analysed during this study are included in the manuscript and supporting files. Model code

and data are available through github at https://github.com/thimotei/covid19_asymptomatic_trans

(copy archived athttps://github.com/elifesciences-publications/covid19_asymptomatic_trans).

References
Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, Jacobs JR, Taylor J, Spicer K, Bardossy AC, Oakley LP,
Tanwar S, Dyal JW, Harney J, Chisty Z, Bell JM, Methner M, Paul P, Carlson CM, McLaughlin HP, Thornburg N,
et al. 2020. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. New England
Journal of Medicine 382:2081–2090. DOI: https://doi.org/10.1056/NEJMoa2008457, PMID: 32329971

Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. 2019. Aerosol emission and
superemission during human speech increase with voice loudness. Scientific Reports 9:2348. DOI: https://doi.
org/10.1038/s41598-019-38808-z, PMID: 30787335

Backer JA, Klinkenberg D, Wallinga J. 2020. Incubation period of 2019 novel coronavirus (2019-nCoV) infections
among travellers from Wuhan, China, 20–28 January 2020. Eurosurveillance 25:2000062. DOI: https://doi.org/
10.2807/1560-7917.ES.2020.25.5.2000062

Bai Y, Yao L, Wei T, Tian F, Jin D-Y, Chen L, Wang M. 2020. Presumed asymptomatic carrier transmission of
COVID-19. Jama 323:1406–1407. DOI: https://doi.org/10.1001/jama.2020.2565

Bendavid E, Mulaney B, Sood N, Shah S, Ling E, Bromley-Dulfano R. 2020. COVID-19 antibody seroprevalence in
santa clara county, California. Epidemiology. http://medrxiv.org/lookup/doi/10.1101/2020.04.14.20062463
[Accessed April 18, 2020].

Chau NVV, Lam VT, Dung NT, Yen LM, Minh NNQ, Hung LM. 2020. The natural history and transmission
potential of asymptomatic SARS-CoV-2 infection. medRxiv. DOI: https://doi.org/10.1101/2020.04.27.20082347

Emery et al. eLife 2020;9:e58699. DOI: https://doi.org/10.7554/eLife.58699 12 of 48

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://orcid.org/0000-0001-6644-7604
http://orcid.org/0000-0002-7263-9896
http://orcid.org/0000-0001-8814-9421
http://orcid.org/0000-0002-2842-3406
https://orcid.org/0000-0003-4132-7467
https://doi.org/10.7554/eLife.58699.sa1
https://doi.org/10.7554/eLife.58699.sa2
https://github.com/thimotei/covid19_asymptomatic_trans
https://github.com/elifesciences-publications/covid19_asymptomatic_trans
https://doi.org/10.1056/NEJMoa2008457
http://www.ncbi.nlm.nih.gov/pubmed/32329971
https://doi.org/10.1038/s41598-019-38808-z
https://doi.org/10.1038/s41598-019-38808-z
http://www.ncbi.nlm.nih.gov/pubmed/30787335
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
https://doi.org/10.1001/jama.2020.2565
http://medrxiv.org/lookup/doi/10.1101/2020.04.14.20062463
https://doi.org/10.1101/2020.04.27.20082347
https://doi.org/10.7554/eLife.58699


Chen Y, Wang A, Yi B, Keqin D, Wang H, Wang J. 2020. The epidemiological characteristics of infection in close
contacts of COVID-19 in Ningbo City. Chin J Epidemiol 41:668–672. DOI: https://doi.org/10.3760/cma.j.
cn112338-20200304-00251

Davies NG, Klepac P, Liu Y, Prem K, Jit M, CMMID COVID-19 working group. 2020. Age-dependent effects in
the transmission and control of COVID-19 epidemics. medRxiv. DOI: https://doi.org/10.1101/2020.03.24.
20043018

Dean NE, Halloran ME, Yang Y, Longini IM. 2016. Transmissibility and pathogenicity of ebola virus: a systematic
review and Meta-analysis of household secondary attack rate and asymptomatic infection. Clinical Infectious
Diseases 62:1277–1286. DOI: https://doi.org/10.1093/cid/ciw114, PMID: 26932131

Diekmann O, Heesterbeek JAP, Roberts MG. 2010. The construction of next-generation matrices for
compartmental epidemic models. Journal of the Royal Society Interface 7:873–885. DOI: https://doi.org/10.
1098/rsif.2009.0386

Emery JC, Russell TW, Funk S. 2020. The contribution of asymptomatic SARS-CoV-2 infections to transmission - a
model-based analysis of the Diamond Princess outbreak. GitHub. 116b196. https://github.com/thimotei/
covid19_asymptomatic_trans

Esmail H, Dodd PJ, Houben R. 2018. Tuberculosis transmission during the subclinical period: could unrelated
cough play a part? The Lancet Respiratory Medicine 6:244–246. DOI: https://doi.org/10.1016/S2213-2600(18)
30105-X, PMID: 29595504

Fontanet A, Tondeur L, Madec Y, Grant R, Besombes C, Jolly N. 2020. Cluster of COVID-19 in northern France:
a retrospective closed cohort study. medRxiv. DOI: https://doi.org/10.1101/2020.04.18.20071134

Funk S. 2019. Sbfnk/RBi. 43e77da. https://github.com/sbfnk/RBi
Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J. 2020. Estimating the generation interval for COVID-
19 based on symptom onset data. medRxiv. DOI: https://doi.org/10.1101/2020.03.05.20031815

Gaythorpe KAM, Trotter CL, Lopman B, Steele M, Conlan AJK. 2018. Norovirus transmission dynamics: a
modelling review. Epidemiology and Infection 146:147–158. DOI: https://doi.org/10.1017/
S0950268817002692, PMID: 29268812

Golding N, Russell TW, Abbott S, Hellewell J, Pearson CAB, van Zandvoort K, Jarvis CI, Gibbs H, Liu Y, Eggo
RM, Edmunds JW, Kucharski A. 2020. Reconstructing the global dynamics of under-ascertained COVID-19
cases and infections. medRxiv. DOI: https://doi.org/10.1101/2020.07.07.20148460

Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, Saemundsdottir J,
Sigurdsson A, Sulem P, Agustsdottir AB, Eiriksdottir B, Fridriksdottir R, Gardarsdottir EE, Georgsson G,
Gretarsdottir OS, Gudmundsson KR, Gunnarsdottir TR, Gylfason A, Holm H, Jensson BO, et al. 2020. Spread of
SARS-CoV-2 in the icelandic population. New England Journal of Medicine 382:2302–2315. DOI: https://doi.
org/10.1056/NEJMoa2006100, PMID: 32289214

He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, Lau YC, Wong JY, Guan Y, Tan X, Mo X, Chen Y, Liao B, Chen W,
Hu F, Zhang Q, Zhong M, Wu Y, Zhao L, Zhang F, et al. 2020. Temporal dynamics in viral shedding and
transmissibility of COVID-19. Nature Medicine 26:672–675. DOI: https://doi.org/10.1038/s41591-020-0869-5,
PMID: 32296168

Jiang AB, Lieu R, Quenby S. 2020. Significantly longer Covid-19 incubation times for the elderly from a case
study of 136 patients throughout China. medRxiv. DOI: https://doi.org/10.1101/2020.04.14.20065896

Kimball A, Hatfield KM, Arons M, James A, Taylor J, Spicer K, Bardossy AC, Oakley LP, Tanwar S, Chisty Z, Bell
JM, Methner M, Harney J, Jacobs JR, Carlson CM, McLaughlin HP, Stone N, Clark S, Brostrom-Smith C, Page
LC, et al. 2020. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a Long-Term care
skilled nursing facility - King county, Washington, march 2020. MMWR. Morbidity and Mortality Weekly Report
69:377–381. DOI: https://doi.org/10.15585/mmwr.mm6913e1, PMID: 32240128

Lavezzo E, Franchin E, Ciavarella C, Cuomo-Dannenburg G, Barzon L, Del Vecchio C. 2020. Suppression of
COVID-19 outbreak in the municipality of vo, Italy. Epidemiology. https://www.medrxiv.org/content/10.1101/
2020.04.17.20053157v1 [Accessed April 19, 2020].

Leung NHL, Chu DKW, Shiu EYC, Chan K-H, McDevitt JJ, Hau BJP, Yen H-L, Li Y, Ip DKM, Peiris JSM, Seto W-H,
Leung GM, Milton DK, Cowling BJ. 2020. Respiratory virus shedding in exhaled breath and efficacy of face
masks. Nature Medicine 26:676–680. DOI: https://doi.org/10.1038/s41591-020-0843-2

Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, Shaman J. 2020. Substantial undocumented infection facilitates
the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 368:489–493. DOI: https://doi.org/10.
1126/science.abb3221

Liu Y, Funk S, Flasche S, Centre for Mathematical Modelling of Infectious Diseases nCoV Working Group. 2020a.
The contribution of pre-symptomatic infection to the transmission dynamics of COVID-2019. Wellcome Open
Research 5:58. DOI: https://doi.org/10.12688/wellcomeopenres.15788.1, PMID: 32685697

Liu T, Hu J, Kang M, Lin L, Zhong H, Xiao J. 2020b. Transmission dynamics of 2019 novel coronavirus (2019-
nCoV). bioRxiv. DOI: https://doi.org/10.1101/2020.01.25.919787

Mizumoto K, Kagaya K, Zarebski A, Chowell G. 2020. Estimating the asymptomatic proportion of coronavirus
disease 2019 (COVID-19) cases on board the diamond princess cruise ship, Yokohama, Japan, 2020.
Eurosurveillance 25:180. DOI: https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180

Murray LM. 2013. Bayesian State-Space modelling on High-Performance hardware using LibBi. arXiv. https://
arxiv.org/abs/1306.3277.

NIID. 2020. Field briefing: diamond princess COVID-19 cases. https://www.niid.go.jp/niid/en/2019-ncov-e/9417-
covid-dp-fe-02.html [Accessed March 12, 2020].

Emery et al. eLife 2020;9:e58699. DOI: https://doi.org/10.7554/eLife.58699 13 of 48

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.3760/cma.j.cn112338-20200304-00251
https://doi.org/10.3760/cma.j.cn112338-20200304-00251
https://doi.org/10.1101/2020.03.24.20043018
https://doi.org/10.1101/2020.03.24.20043018
https://doi.org/10.1093/cid/ciw114
http://www.ncbi.nlm.nih.gov/pubmed/26932131
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1098/rsif.2009.0386
https://github.com/thimotei/covid19_asymptomatic_trans
https://github.com/thimotei/covid19_asymptomatic_trans
https://doi.org/10.1016/S2213-2600(18)30105-X
https://doi.org/10.1016/S2213-2600(18)30105-X
http://www.ncbi.nlm.nih.gov/pubmed/29595504
https://doi.org/10.1101/2020.04.18.20071134
https://github.com/sbfnk/RBi
https://doi.org/10.1101/2020.03.05.20031815
https://doi.org/10.1017/S0950268817002692
https://doi.org/10.1017/S0950268817002692
http://www.ncbi.nlm.nih.gov/pubmed/29268812
https://doi.org/10.1101/2020.07.07.20148460
https://doi.org/10.1056/NEJMoa2006100
https://doi.org/10.1056/NEJMoa2006100
http://www.ncbi.nlm.nih.gov/pubmed/32289214
https://doi.org/10.1038/s41591-020-0869-5
http://www.ncbi.nlm.nih.gov/pubmed/32296168
https://doi.org/10.1101/2020.04.14.20065896
https://doi.org/10.15585/mmwr.mm6913e1
http://www.ncbi.nlm.nih.gov/pubmed/32240128
https://www.medrxiv.org/content/10.1101/2020.04.17.20053157v1
https://www.medrxiv.org/content/10.1101/2020.04.17.20053157v1
https://doi.org/10.1038/s41591-020-0843-2
https://doi.org/10.1126/science.abb3221
https://doi.org/10.1126/science.abb3221
https://doi.org/10.12688/wellcomeopenres.15788.1
http://www.ncbi.nlm.nih.gov/pubmed/32685697
https://doi.org/10.1101/2020.01.25.919787
https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
https://arxiv.org/abs/1306.3277
https://arxiv.org/abs/1306.3277
https://www.niid.go.jp/niid/en/2019-ncov-e/9417-covid-dp-fe-02.html
https://www.niid.go.jp/niid/en/2019-ncov-e/9417-covid-dp-fe-02.html
https://doi.org/10.7554/eLife.58699


Nishiura H, Kobayashi T, Miyama T, Suzuki A, Jung S, Hayashi K. 2020. Estimation of the asymptomatic ratio of
novel coronavirus infections (COVID-19) [Internet]. Epidemiology. http://medrxiv.org/lookup/doi/10.1101/2020.
02.03.20020248 [Accessed March 17, 2020].

Nishiura H. 2020. Backcalculating the incidence of infection with COVID-19 on the diamond princess. Journal of
Clinical Medicine 9:657. DOI: https://doi.org/10.3390/jcm9030657

Patterson B, Wood R. 2019. Is cough really necessary for TB transmission? Tuberculosis 117:31–35. DOI: https://
doi.org/10.1016/j.tube.2019.05.003, PMID: 31378265

R Development Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria, R
Foundation for Statistical Computing. http://www.R-project.org/
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Appendix 1

Extended methods
Data

Data for confirmed symptomatic cases were extracted from Nishiura, 2020. Appendix 1—table 1

shows n = 199 confirmed symptomatic cases by date of symptom onset for passengers and crew

separately. Symptom onset dates were unavailable for a further n = 115 confirmed symptomatic

cases. These were accounted for in the model structure (see Appendix 1—figure 1) by assuming

they were distributed over time proportional to those cases with a reported date of symptom onset.

The data itself were not augmented.

Appendix 1—table 1. Confirmed symptomatic cases (n = 199) by date of symptom onset for

passengers and crew separately, extracted from Nishiura, 2020.

A further n = 115 confirmed symptomatic cases without symptom onset dates are not included in the

table.

Date of symptom onset

Confirmed symptomatic cases

Passengers Crew Total

20-Jan 2 0 2

21-Jan 0 0 0

22-Jan 0 0 0

23-Jan 1 0 1

24-Jan 0 0 0

25-Jan 0 0 0

26-Jan 0 0 0

27-Jan 0 0 0

28-Jan 0 0 0

29-Jan 1 0 1

30-Jan 1 0 1

31-Jan 0 0 0

01-Feb 4 0 4

02-Feb 4 0 4

03-Feb 4 0 4

04-Feb 6 0 6

05-Feb 12 0 12

06-Feb 15 2 17

07-Feb 29 2 31

08-Feb 17 2 19

09-Feb 19 5 24

10-Feb 7 3 10

11-Feb 11 8 19

12-Feb 5 7 12

13-Feb 9 8 17

14-Feb 2 5 7

15-Feb 1 3 4

16-Feb 0 3 3

17-Feb 0 1 1

Continued on next page
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Appendix 1—table 1 continued

Date of symptom onset

Confirmed symptomatic cases

Passengers Crew Total

18-Feb 0 0 0

19-Feb 0 0 0

20-Feb 0 0 0

Total 150 49 199

Data for confirmed pre/asymptomatic cases and symptom-agnostic testing were extracted from

Mizumoto et al., 2020. Appendix 1—table 2 shows n = 2749 symptom-agnostic tests and n = 320

confirmed pre/asymptomatic cases by date of test for passengers and crew combined, since stratifi-

cation by passenger/crew was unavailable. The number of symptom-agnostic tests was inferred from

the total number of tests each day, minus the number of positive results in individuals reporting

symptoms in Mizumoto et al., 2020. Test dates were not available for n = 35 confirmed pre/asymp-

tomatic cases between 5th-14th Feb. These were distributed proportional to the total number of

tests (symptom-based and symptom-agnostic) on those days. An alternative scenario where all

n = 35 confirmed pre/asymptomatic cases are allocated to the last possible day (13th Feb) is

explored in sensitivity analyses.

Appendix 1—table 2. Confirmed pre/asymptomatic cases (n = 320) and symptom-agnostic tests

(n = 2749) by date of test for passengers and crew combined, extracted from Mizumoto et al.,

2020.
+Test dates were not available for n = 35 confirmed pre/asymptomatic cases between 5th-14th Feb.

These were distributed proportional to the total number of tests (symptom-based and symptom-

agnostic) on those days.

Date of test Number of symptom agnostic tests Number of confirmed pre/asymptomatic cases

20-Jan 0 0

21-Jan 0 0

22-Jan 0 0

23-Jan 0 0

24-Jan 0 0

25-Jan 0 0

26-Jan 0 0

27-Jan 0 0

28-Jan 0 0

29-Jan 0 0

30-Jan 0 0

31-Jan 0 0

01-Feb 0 0

02-Feb 0 0

03-Feb 0 0

04-Feb 0 0

05-Feb+ 23 2

06-Feb+ 64 3

07-Feb+ 138 8

08-Feb+ 3 0

09-Feb+ 54 3

Continued on next page
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Appendix 1—table 2 continued

Date of test Number of symptom agnostic tests Number of confirmed pre/asymptomatic cases

10-Feb+ 43 5

11-Feb+ 0 0

12-Feb+ 17 3

13-Feb+ 188 11

14-Feb+ 0 0

15-Feb 188 38

16-Feb 257 38

17-Feb 475 70

18-Feb 658 65

19-Feb 596 68

20-Feb 45 6

Total 2749 320

Model

The model described in the main article is shown in detail in Appendix 1—figure 1, where passen-

gers (i ¼ p) and crew (i ¼ c) are modelled separately and the annotated parameters are described in

Table 2 in the main article.

Appendix 1—figure 1. Model diagram for the outbreak onboard the Diamond Princess cruise ship

described in the main paper. The annotated transition parameters are defined in Table 2 in the main

article and detailed further, below. The model is stratified by i = passengers or crew. The

asymptomatic, presymptomatic and symptomatic states are all assumed to be infectious and

individuals would test positive during symptom-based or symptom-agnostic testing. Individuals that

recover are also assumed to test positive for an average of 1 week after they are no longer

infectious.

The force of infection is given by

l ið Þ tð Þ ¼
X

j¼p;c

b ijð Þ tð Þ
�aI

jð Þ
a þ �pI

jð Þ
p þ I

jð Þ
sk þ I jð Þ

su

� �

N jð Þ

where the time dependent contact parameters are described by sigmoid functions

b ijð Þ tð Þ ¼ �bc ijð Þ
1�

b1

1þ e�b2 t�t
ijð Þð Þ

� �
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And t
ppð Þ ¼ t

pcð Þ ¼ t
cpð Þ (i.e. contact between passengers/passengers and passengers/crew is

reduced at the same time, which can differ from contact between crew/crew).

The transition from exposed to presymptomatic or asymptomatic is modelled as an erlang distri-

bution using two compartments (i.e. a shape parameter k ¼ 2), each with a mean duration of 1=2v.

The rate of symptom agnostic testing and removal of individuals not reporting symptoms is given

by the total number of symptom agnostic tests administered per day divided by the total number of

individuals not presenting symptoms being tested on that day

f tð Þ ¼
Ntests

SþEþ Ia þ IpþT þC
� �

Where Ntests is taken from the data in Appendix 1—table 2 and variables without indices repre-

sent the totals among passengers and crew (e.g. S¼ SðpÞþ SðcÞ)

To reflect heightened symptom awareness following quarantine, the transition rate from symp-

tomatic infection to recovered on the ship is constant before quarantine and zero afterwards, whilst

the rate of removal of individuals reporting symptoms is zero before quarantine and a constant

afterwards

gs tð Þ ¼ gs; � tð Þ ¼ 0 for t<5thFeb
gs tð Þ ¼ 0; � tð Þ ¼ � for t� 5thFeb

All other model transitions are exponentially distributed.

The model is initialised with a single symptomatic passenger with a known onset date on 20th

Jan, with all other individuals susceptible

I
pð Þ

sk 0ð Þ ¼ 1; S pð Þ ¼N pð Þ� 1; S cð Þ ¼N cð Þ

Model calibration

The model was calibrated in a Bayesian framework to fit to the two sets of empirical observations

from the ship (Appendix 1—tables 1–2). We used a Poisson likelihood for the incident symptomatic

cases with a known onset date for crew and passengers separately. We used a Binomial likelihood

for the number of confirmed pre- and asymptomatic infections for passengers and crew combined,

using the number of tests administered per day and the prevalence of presymptomatic, asymptom-

atic and post-infection test-positive individuals. The complete likelihood is given by

L¼
Y

K

k¼1

Poisson Z
cð Þ
k jmean¼ z

cð Þ
k

� �

 !

Y

K

k¼1

Poisson Z
pð Þ

k jmean¼ z
pð Þ
k

� �

 !

Y

K

k¼1

Binom YkjN
tests
k ; mean¼ yk

� �

 !

where Z
ðiÞ
k is the observed incidence of symptomatic cases with a known date of onset on day k for

passengers p or crew c; z
ðiÞ
k is the model predicted incidence, Yk is the observed prevalence of pre-

symptomatic, asymptomatic and post-infection test-positive individuals (passengers and crew com-

bined) amongst Ntests
k symptom-agnostic tests, and yk is the model predicted prevalence

y tð Þ ¼
Ia þ Ip þT

SþEþ Ia þ IpþT þC

We used uniform priors for the parameters to be estimated (see Table 2 in the main article).

Model outputs

The basic reproduction number as a function of time R0ðtÞ was calculated by first constructing the

next generation matrix (NGM) at each time point using the relevant Jacobian matrices

(Diekmann et al., 2010). The basic reproduction number is then given by the absolute value of the

dominant eigenvalue of the NGM.

The net reproduction number for a presymptomatic infection (i.e. the typical number of second-

ary infections caused by a single presymptomatic individual throughout both their presymptomatic
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and symptomatic periods) at the beginning of the outbreak is given by the respective entry in the

NGM evaluated at t ¼ 0.

The instantaneous proportion of transmission from either symptomatic, presymptomatic or

asymptomatic individuals was calculated by dividing the number of infections generated by the

respective infected state in the previous timestep by the total number of new infections in the previ-

ous timestep. The overall proportion of transmission from asymptomatic individuals was given by

the cumulative number of infections caused by asymptomatics divided by the cumulative number of

total infections, evaluated at the end of the outbreak.
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Appendix 2

Sensitivity analyses results
1. Presymptomatic infection only

Assumes the proportion of infections that are asymptomatic and their relative infectiousness are

zero (� ¼ 0 and �a ¼ 0). The latent period 1=v is estimated with a uniform prior between 1 and 21

days.

Appendix 2—figure 1. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 2. Parameter correlation plot containing parameter values from 10,000 samples

of the joint posterior distribution found during MCMC model calibration. See Table 2 in the main

article for parameter definitions and descriptions.

Appendix 2—figure 3. Parameter trace plot showing all 1.5 million samples from the MCMC model

calibration sequentially. See Table 2 in the main article for parameter definitions and descriptions.

2. Relative passenger-crew contact rate: X = 0.02

Assumes the contact rate between passengers and crew is 1/50th of contacts between passengers

and passengers cðpcÞ=cðppÞ ¼ 0:02
� �

.
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Appendix 2—figure 4. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 5. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 6. Parameter correlation plot containing parameter values from 10,000 samples

of the joint posterior distribution found during MCMC model calibration. See Table 2 in the main

article for parameter definitions and descriptions.

Appendix 2—figure 7. Parameter trace plot showing all 1.5 million samples from the MCMC model

calibration sequentially. See Table 2 in the main article for parameter definitions and descriptions.

3. Relative passenger-crew contact rate: X = 0.5

Assumes the contact rates between passengers and crew is half that of between passengers and

passengers cðpcÞ=cðppÞ ¼ 0:5
� �

.
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Appendix 2—figure 8. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 9. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 10. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 11. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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4. Biased symptom-agnostic testing: test-negative individuals more likely to
be tested

Assumes individuals that would test negative during symptom-agnostic testing are 50% more likely

to be tested compared to the primary analysis, where testing is random.

Appendix 2—figure 12. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 13. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 14. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 15. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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5. Biased symptom-agnostic testing: test-positive individuals more likely to
be tested

Assumes individuals that would test positive during symptom-agnostic testing are 50% more likely

to be tested compared to the primary analysis, where testing is random.

Appendix 2—figure 16. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 17. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.

Emery et al. eLife 2020;9:e58699. DOI: https://doi.org/10.7554/eLife.58699 32 of 48

Research article Epidemiology and Global Health Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.58699


Appendix 2—figure 18. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 19. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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6. Age dependent proportion asymptomatic

Assumes separate asymptomatic proportions for crew �ðcÞ
� �

and passengers �ðpÞ
� �

to reflect their

different age demographics (median ages of 36 and 69 respectively), compared to a single asymp-

tomatic proportion in the primary analysis. The ratio �ðpÞ= �ðcÞ was fixed at 0.48 using the results for

asymptomatic proportion by age from a model fitted to epidemic data in six countries by

Davies et al., 2020.

Appendix 2—figure 20. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 21. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. The left hand peak is for passengers, whilst the right hand

peak is for crew. (B) Prior (blue) and posterior (red) probability distribution for the relative

infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic infections and

symptomatic cases detected (dark red) and not detected (light red) during the outbreak. Error bars

indicate 95% posterior intervals. (D) Posterior probability distribution for proportion of transmission

that is from asymptomatic individuals. Dashed and dotted lines show median and interquartile range

respectively.
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Appendix 2—figure 22. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 23. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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7. Duration of latent period: 8.8 days

Assumes the average duration for the latent period is 1=v ¼ 8:8 days (Jiang et al., 2020), compared

to 4.3 in the primary analysis.

Appendix 2—figure 24. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 25. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 26. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 27. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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8. Duration of asymptomatic infection: 2.5 days

Assumes the average duration of asymptomatic infection is 1=ga ¼ 2:5 days, compared to 5 days in

the primary analysis.

Appendix 2—figure 28. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 29. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 30. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 31. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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9. Duration of asymptomatic infection: 10 days

Assumes the average duration of asymptomatic infection is 1=ga ¼ 10 days, compared to 5 days in

the primary analysis.

Appendix 2—figure 32. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 33. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 34. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 35. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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10. Alternative distribution of n = 35 confirmed pre/asymptomatic cases

Assumes that n = 35 confirmed pre/asymptomatic cases without a test are apportioned to the last

possible day (13th Feb), compared to proportional to the total number of tests administered over

6th-13th Feb in the primary analysis.

Appendix 2—figure 36. Data from the Diamond Princess and model calibration. Figure shows data

from the Diamond Princess (points (A–D) and bars (F)) and results from model calibration. Red

lines = median, shading = 95% posterior plus observational interval (A–C) and 95% posterior interval

only (D–E). Two vertical lines show the date of the first confirmed diagnosis (left) and the start of

quarantine measures (right). (A–B) show confirmed symptomatic cases among crew (A) and

passengers (B) with a reported date of onset; (C) shows confirmed pre- or asymptomatic individuals

by test date; (D) shows the prevalence of pre/asymptomatic individuals by test date. Points and

error bars show point estimates and 95% confidence intervals; (E) shows the basic reproduction

number over time for the ship as a whole, reflecting the drop in contact rates (F) shows the number

of tests administered irrespective of symptoms, by test date.
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Appendix 2—figure 37. Proportion of infections that are asymptomatic and their contribution to

transmission. (A) Prior (blue) and posterior (red) probability distribution for the proportion

progressing to asymptomatic infections. (B) Prior (blue) and posterior (red) probability distribution

for the relative infectiousness of asymptomatic infections. (C) Number of pre- and asymptomatic

infections and symptomatic cases detected (dark red) and not detected (light red) during the

outbreak. Error bars indicate 95% posterior intervals. (D) Posterior probability distribution for

proportion of transmission that is from asymptomatic individuals. Dashed and dotted lines show

median and interquartile range respectively.
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Appendix 2—figure 38. Parameter correlation plot containing parameter values from 10,000 sam-

ples of the joint posterior distribution found during MCMC model calibration. See Table 2 in the

main article for parameter definitions and descriptions.

Appendix 2—figure 39. Parameter trace plot showing all 1.5 million samples from the MCMC

model calibration sequentially. See Table 2 in the main article for parameter definitions and

descriptions.
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