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Abstract

The brain-age-gap estimate (brainAGE) quantifies the difference between chrono-

logical age and age predicted by applying machine-learning models to neuroimaging

data and is considered a biomarker of brain health. Understanding sex differences in

brainAGE is a significant step toward precision medicine. Global and local brainAGE

(G-brainAGE and L-brainAGE, respectively) were computed by applying machine

learning algorithms to brain structural magnetic resonance imaging data from 1113

healthy young adults (54.45% females; age range: 22–37 years) participating in the

Human Connectome Project. Sex differences were determined in G-brainAGE and

L-brainAGE. Random forest regression was used to determine sex-specific associa-

tions between G-brainAGE and non-imaging measures pertaining to sociodemo-

graphic characteristics and mental, physical, and cognitive functions. L-brainAGE

showed sex-specific differences; in females, compared to males, L-brainAGE was

higher in the cerebellum and brainstem and lower in the prefrontal cortex and

insula. Although sex differences in G-brainAGE were minimal, associations between

G-brainAGE and non-imaging measures differed between sexes with the exception

of poor sleep quality, which was common to both. While univariate relationships

were small, the most important predictor of higher G-brainAGE was self-

identification as non-white in males and systolic blood pressure in females. The

results demonstrate the value of applying sex-specific analyses and machine

learning methods to advance our understanding of sex-related differences in factors

that influence the rate of brain aging and provide a foundation for targeted

interventions.

K E YWORD S

aging, brainAGE, human connectome project, machine learning, sex differences, structural
MRI, young adults

Received: 21 January 2022 Revised: 1 June 2022 Accepted: 1 June 2022

DOI: 10.1002/hbm.25983

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Hum Brain Mapp. 2022;1–10. wileyonlinelibrary.com/journal/hbm 1

https://orcid.org/0000-0002-4915-2537
https://orcid.org/0000-0003-1908-5588
https://orcid.org/0000-0002-3210-6470
mailto:sophia.frangou@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/hbm
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhbm.25983&domain=pdf&date_stamp=2022-07-05


1 | INTRODUCTION

Neuroimaging studies have been instrumental in identifying sex differ-

ences in brain structure across the lifespan (Ge et al., 2021;

Jahanshad & Thompson, 2017; Kaczkurkin et al., 2019; Ruigrok

et al., 2014). Brain structure shows profound age-related changes

throughout the lifespan (Dima et al., 2022; Frangou et al., 2022;

Lebel & Beaulieu, 2011; Storsve et al., 2014; Tamnes et al., 2013;

Wierenga et al., 2022), which are also modified by sex. Females show

somewhat accelerated brain maturation during adolescence, suggest-

ing a link with pubertal onset (Ball et al., 2021; Brouwer et al., 2021).

In middle and late adulthood, sex differences in age-related brain

changes appear less pronounced (Bittner et al., 2021) but female

brains may retain more “youthful” transcriptomic and metabolic fea-

tures than male brains (Beheshti et al., 2021; Berchtold et al., 2008;

Goyal et al., 2017, 2019; Skene et al., 2017). In females, there are

fewer age-related changes in aerobic glycolysis (Goyal et al., 2017,

2019) and in the expression of genes related to energy production

and protein synthesis (Berchtold et al., 2008; Skene et al., 2017).

These transcriptomic and metabolic findings show regional differ-

ences, with females retaining more youthful features primarily in pre-

frontal areas (Beheshti et al., 2021; Goyal et al., 2017). Whether this

pattern is also reflected in macro-structural brain morphometry is cur-

rently unknown.

Besides sex, numerous factors are known to influence the rate

of age-related brain changes. Those thought to accelerate brain

aging notably include smoking (Karama et al., 2015), alcohol use

(Topiwala et al., 2017), obesity (Gurholt et al., 2021), hypertension

(Gurholt et al., 2021), psychopathology (Wertz et al., 2021), poor

inter-personal function (Hatton et al., 2018) and lower socioeco-

nomic status (Chan et al., 2018). Conversely, the rate of brain aging

may be attenuated in individuals with higher cognitive function and

educational attainment (Elliott et al., 2019) and better physical fit-

ness (Steffener et al., 2016). Associations between accelerated brain

aging and indicators of age-dependent decline can be detected as

early as the 3rd and 4th decade of life, even in generally healthy

individuals (Belsky et al., 2015; Elliott et al., 2019). This evidence

underscores the importance of focusing on young adulthood while

testing for sex differences as attenuating factors in this age group

may contribute toward targeted interventions for preventing deteri-

oration in brain health later in life (Belsky et al., 2015; Elliott

et al., 2019).

Based on these considerations, the current study aims to advance

knowledge on sex differences in the neuroanatomical pattern and in

the predictors of brain aging in young adulthood. To achieve this, we

availed of machine learning methods to yield estimates of the biologi-

cal age of the brain (brain-age) based on neuroimaging features. The

gap between brain-age and chronological age, referred to here as the

brain-age-gap estimate (brainAGE), enables inferences about the

apparent acceleration or delay in age-related biological processes. We

used structural magnetic resonance imaging (MRI) data obtained from

young adults (age range 22–37 years) participating in the Human Con-

nectome Project (HCP; https://www.humanconnectome.org/) to

compute global (G-brainAGE) and local brainAGE (L-brainAGE). G-

brainAGE is a global index of age-related changes across the brain

(Cole et al., 2017; Cole & Franke, 2017; Franke et al., 2010) while L-

brainAGE informs about regional age-related brain changes (Popescu

et al., 2021). We hypothesized that sex differences in L-brainAGE

might follow the same pattern observed in transcriptomic and meta-

bolic data (Beheshti et al., 2021; Berchtold et al., 2008; Goyal

et al., 2017, 2019; Skene et al., 2017), with females having more

youthful brains, particularly in prefrontal regions. The HCP also

includes non-imaging variables pertaining to demographic characteris-

tics, cognition, mental health, interpersonal relationships, physical fit-

ness, and lifestyle characteristics that enable testing for sex

differences in factors that may accelerate or delay against age-related

brain changes.

2 | METHODS

2.1 | Participants

We used de-identified data from the S1200 public release of the

Human Connectome Project (HCP; https://www.humanconnectome.

org/study/hcp-young-adult/document/1200-subjects-data-release)

which comprises 1113 healthy young adults (606 females) with a

mean age of 28.80 years (range 22–37 years). Ethical approval for

this study was obtained by the HCP coordinating center.

2.2 | Neuroimaging

Whole-brain T1-weighted MRI scans were acquired in the HCP partic-

ipants on a Siemens Skyra 3T scanner (Erlanger, Germany) (details in

Supporting Information). Images were downloaded from the HCP

repository and processed locally.

2.2.1 | Local brainAGE computation

The process for generating local brainAGE (L-brainAGE) estimates fol-

lowed the procedures developed by Popescu et al. (2021), which are

described in the Supporting Information. Briefly, the T1-weighted

images of the HCP participants were normalized using affine followed

by nonlinear registration, corrected for bias field inhomogeneities, and

segmented into gray and white matter and cerebrospinal fluid compo-

nents. The Diffeomorphic Anatomic Registration Through Exponen-

tiated Lie algebra algorithm (DARTEL; Ashburner, 2007) was applied

to normalize the segmented scans into a standard MNI space (MNI-

152 space). The gray and white matter outputs were used as input to

a pre-trained, convolutional neural network (U-Net) to yield voxel-

wise estimates of L-brainAGE using parameters provided by Popescu

et al. (2021) (https://github.com/SebastianPopescu/U-NET-for-

LocalBrainAge-prediction). The model was trained and tested in a

sample of T1-weighted brain scans from 4155 healthy individuals aged
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18–90 years. Importantly, the HCP dataset was not used in the devel-

opment of the L-brainAGE model. Performance accuracy was ascer-

tained using the voxel-level Mean Absolute Error (MAE), which

quantifies the absolute difference between the neuroimaging-

predicted age and the chronological age. The MAE was not adjusted

for chronological age.

2.2.2 | Global brainAGE computation

Downloaded T1-weighted images for HCP participants were

processed using standard pipelines implemented in SPM12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/) and the computational

anatomy toolbox (CAT12; Gaser et al., 2022) (http://www.neuro.uni-

jena.de/cat/). The output was used as the input features in a linear

support vector regression with 10-fold cross-validation (Schölkopf &

Smola, 2002) implemented in the freely available machine-

learning software NeuroMiner (https://github.com/neurominer-git/

NeuroMiner-1), which has been widely used for age prediction from

neuroimaging data (Besteher et al., 2019; Koutsouleris et al., 2014;

Löwe et al., 2016) (details in Supporting Information). The age-

prediction models were conducted separately for male and female

HCP participants. The MAE was used to ascertain model accuracy and

was not adjusted for chronological age. G-brainAGE in each HCP par-

ticipant was computed by subtracting their chronological age from the

neuroimaging-predicted age. To account for residual associations with

age, G-brainAGE was corrected separately in males and females by

regressing out chronological age as per Le et al. (2018); unless other-

wise specified, the corrected G-brainAGE values were used in all sub-

sequent analyses.

For both L-brainAGE and G-brainAGE, positive values indicate

higher brain age relative to chronological age, while the opposite is

true for negative values.

2.3 | Non-imaging measures of health and
behavior

The HCP dataset provides comprehensive information about non-

imaging measures (NIMs) regarding the participants' physical and

mental health, cognitive characteristics, and lifestyle. We excluded

NIMs where >90% of the sample endorsed the same response, had

>10% missing values, or were highly colinear (r > .9) (Supporting Infor-

mation Table S1). Among the retained NIMs, we used age-adjusted

measures when available and imputed missing values using the “mice”
R package (Multivariate Imputation by Chained Equations; van Buu-

ren & Groothuis-Oudshoorn, 2011). Based on prior literature (Chan

et al., 2018; Elliott et al., 2019; Gurholt et al., 2021; Hatton

et al., 2018; Karama et al., 2015; Steffener et al., 2016; Topiwala

et al., 2017; Wertz et al., 2021), we distinguished between NIMs con-

sidered as factors that can potentially increase or decrease G-

brainAGE (i.e., predictors) and those NIMs that can be considered

functional correlates of G-brainAGE.

2.3.1 | Predictors of G-brainAGE

NIMs considered as predictors of G-brainAGE pertained to (1) sociode-

mographic characteristics (e.g., race, sex, education); (2) quality of

interpersonal relationships (e.g., loneliness, emotional support);

(3) mental health (e.g., personal and parental psychopathology);

(4) physical health (e.g., body mass index, blood pressure); (5) sub-

stance use (e.g., parental history and personal history of alcohol and

substance use); (6) female reproductive health (e.g., menstrual history

and birth control use). In total, we considered 28 NIMs as predictors

of interest for G-brainAGE for both sexes and an additional 4 NIMs

pertaining to reproductive health for females only. Of note, partici-

pants were asked to self-identify any of the 5 racial categories defined

by the 1997 Office of Management and Budget standards on race

and ethnicity (i.e., White; black or African American; American Indian

or Alaskan Native; Asian; Native Hawaiian or Other Pacific Islander).

These categories represent social definitions of race in the US and

should not be interpreted in biological, anthropological, or genetic

terms. Detailed definitions of these NIMs and the instruments used

for their assessment are provided in Supporting Information and Sup-

porting Information Table S2. Their distribution in the sample is

shown in Supporting Information Table S4.

2.3.2 | Functional indicators of brain aging

NIMs considered as functional indicators of brain aging pertained to

fluid and crystallized intelligence and physical fitness as captured by

submaximal endurance, gait speed, and hand grip strength (Supporting

Information Table S3). These variables were chosen based on the cur-

rent consensus that they are reliable and sensitive measures of

age-related frailty (Belsky et al., 2015; Kennedy et al., 2014). Their dis-

tribution in the sample is shown in Supporting Information Table S4.

2.4 | Statistical approach

2.4.1 | Sex differences in G-brainAGE and
L-brainAGE

Sex differences were computed on a subset of unrelated individuals

(i.e., one randomly selected participant per family, n = 445). As G-

brainAGE was already corrected for age, chronological age was

entered as a covariate in the models for L-brainAGE. Statistical signifi-

cance was set at PFWE < .05 after family-wise error (FWE) correction.

2.4.2 | Selection of predictors of brain aging

To enhance interpretability and reduce the number of statistical tests

we focused on potential predictors (Supporting Information Table S2)

that had at least a nominal association with G-brainAGE in this sam-

ple. These same predictors were then tested for their association with
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L-brainAGE. Although some predictors may be associated with

L-brainAGE alone, we focused on those that seem to have a global

influence on brain aging as these are likely to be more meaningful for

prevention and intervention strategies. Accordingly, and separately

for each sex, we selected predictors that showed at least minimal uni-

variate associations with G-brainAGE (rho > 0.1 or R2 > .01 for contin-

uous and categorical variables, respectively).

2.4.3 | Predictor importance for G-brainAGE

The selected predictors were entered into sex-specific random forest

(RF) regression models to test their association with G-brainAGE

(Breiman, 2001). RF regression is an ensemble machine learning

method, which involves the construction of multiple decision trees

(i.e., forests) via bootstrap (bagging) and aggregates the predictions

from these multiple trees to reduce the variance and improve the

robustness and accuracy. For each bootstrapped sample, a portion of

the observations (out-of-bag; OOB) is withheld and not used in the

construction of the trees. RF allows for an importance measure to be

determined for each predictor by measuring the effect of predictor

permutation on the model's mean decrease in accuracy. RF with

10-fold cross-validation was implemented using the “randomForest”
package in R using 500 trees and a minimum terminal node sample

size of 5. Importance values were scaled to range from 0–100 and

then, for each predictor, averaged across folds. The directionality of

relationships between the predictors and G-brainAGE was determined

by examining beta values obtained by linear regression.

2.4.4 | Sex-specific predictors of L-brainAGE

The sex-specific predictors selected for the G-brainAGE analyses

were entered into sex-specific, voxel-wise multiple regression models

to examine their relationships with L-brainAGE, on the same subset

used to test for sex differences in L-brainAGE. For both models, chro-

nological age was entered as a covariate. Statistical significance was

set at PFWE < .05.

2.4.5 | Functional indicators of brain-aging

Associations between functional indicators of brain aging were deter-

mined for G-brainAGE only using Spearman's correlations. To account

for dependence between observations due to relatedness in the HCP

data, stratified bootstrapping was carried out with 100 iterations such

that each bootstrapped sample consisted of unrelated individuals

(i.e., one randomly selected participant per family, n = 445).

2.4.6 | Supplemental analyses for G-brainAGE

We used the procedures described above to identify predictors of G-

brainAGE in the entire sample (i.e., including both sexes).

3 | RESULTS

3.1 | Sex differences in G-brainAGE and L-
brainAGE

Model performance for G-brainAGE prediction was similar in females

and males; the MAE was 2.72 years for both sexes and the respective

R2 was 93% and 96%. There was no residual association between

chronological age and G-brainAGE corrected for age-bias for either

sex (Supporting Information Figure S1). The mean and standard devia-

tion (SD) of the uncorrected G-brainAGE was 0.03 (3.25) years for

females and �0.07 (3.31) years for males; the difference amounts to

approximately 1 calendar month and was not significant when age-

corrected G-brainAGE values were used.

However, compared to males, females had significantly lower L-

brainAGE in anterior brain regions, specifically in the ventral and dor-

sal medial prefrontal cortex, the ventrolateral prefrontal cortex, and

the insula, and significantly higher L-brainAGE in posterior regions

that included the cerebellum and brainstem (PFWE < .05; Figure 1).

Local MAE values showed a ventral to dorsal and a posterior to the

anterior gradient of decreasing MAE (Supporting Information

Figure S2).

3.2 | Predictor importance for G-brainAGE in
females and males

Univariate associations with G-brainAGE, although small, identified

largely different NIMs for females and males (Supporting Information

Table S5) which were then entered into sex-specific RF models.

Accordingly, the RF model for females included 3 NIMs (i.e., systolic

blood pressure, poor sleep quality, and years of education; Figure 2a),

and the corresponding model for males included 5 NIMs (i.e., self-

identified race, poor sleep quality, childhood conduct problems, times

used illicit drugs, and emotional support; Figure 2b). Figure 2 presents

the importance of each predictor in the sex-specific models. Supple-

mental analyses including both sexes identified poor sleep quality,

being non-white, and times used illicit drugs as predictors of higher G-

brainAGE (Supporting Information Figure S3).

3.3 | Voxel-level associations between L-brainAGE
and brain aging predictors

Sex-specific, voxel-wise multiple regression models between L-

brainAGE and the same predictors used in the preceding analyses for

G-brainAGE did not identify significant associations in females at

PFWE < .05; however, at the uncorrected level, positive associations

were noted for systolic blood pressure (Supporting Information

Figure S4). In males, widespread and significant positive associations

at PFWE < .05 were found for participants self-identifying as Black

(Supporting Information Figure S5A), while associations with poor

sleep quality were mostly localized in the cerebellum (Supporting

Information Figure S5B).
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F IGURE 2 Predictors of G-brainAGE in females and males. Relative importance of predictors derived from random forest regression based on
mean decrease in prediction accuracy when removed from the model, scaled to range from 0–100 (values do not reflect percentage of variance
explained); predictors are displayed in descending order of importance; (a) in females, there was a positive relationship with GbrainAGE for
systolic blood pressure and poor sleep quality, and a negative relationship for education level; (b) in males, there was a positive relationship with
G-brainAGE for non-white self-identified racial categories, poor sleep quality, and times used illicit drugs, and a negative relationship for number
of childhood conduct problems and emotional support

F IGURE 1 Sex differences in L-brainAGE. T-value overlay of statistically significant sex differences in LbrainAGE (PFWE < .05 with
familywise error-correction). Red/yellow: Females > males; blue: Males > females. Images are displayed in neurological orientation with MNI
coordinates

SANFORD ET AL. 5



3.4 | Functional indicators of brain aging

In both sexes, there were minimal and non-significant associations

between G-brainAGE and endurance, gait speed, grip strength, com-

posite score for fluid intelligence, and composite score for crystallized

intelligence (Figure 3a–e and Supporting Information Table S6).

4 | DISCUSSION

The present study used machine learning methods to test for sex dif-

ferences in G-brainAGE and L-brainAGE and in the predictors of

higher G-brainAGE in young adults. While G-brainAGE showed negli-

gible sex differences, L-brainAGE estimates indicated a more “youth-
ful” appearing brain pattern in females compared to males in

prefrontal cortical regions, while the opposite was the case for cere-

bellar regions. Poor sleep quality emerged as an important predictor

of higher G-brainAGE in both men and women, while other predictors

were sex-specific. Notably, self-identifying as non-white was the most

important contributor to higher G-brainAGE in males, while higher

systolic blood pressure was the most important contributor to higher

G-brainAGE in females.

4.1 | Sex differences in regional but not global
aging patterns in young adults

G-brainAGE is a summary index of the global pattern of apparent

brain structural aging with positive and negative values being,

respectively, indicative of accelerated or delayed aging. In the current

sample, the mean G-brainAGE in both sexes was close to zero, sug-

gesting that their global aging pattern was congruent with their chro-

nological age. These findings are aligned with prior studies

demonstrating that sex differences in G-brainAGE that emerge during

adolescence appear to attenuate in early and middle adulthood

(Bittner et al., 2021; Brouwer et al., 2021). The application of U-Net, a

novel machine-learning algorithm applied to brain structural data,

enabled us to obtain regional estimates of brain aging, thus revealing

fine-grained sex differences. The L-brainAGE findings suggest that

female brains are more “youthful” than male brains in prefrontal corti-

cal regions, while male brains are more youthful in cerebellar regions.

Ventral cerebellar regions showed a higher degree of MAE in brain

age estimates than in prefrontal cortical regions, which may have a

bearing on the results (Supporting Information Figure S2). However,

the pattern identified here closely mirrors the regional gradient of aer-

obic glycolysis in the human brain, whereby resting glucose consump-

tion is about 10 times higher in prefrontal regions compared to the

cerebellum (Goyal et al., 2014; Vaishnavi et al., 2010). This regional

pattern parallels sex differences in the expression of genes involved in

neuronal integrity, protein synthesis, and energy production

(Berchtold et al., 2008; Goyal et al., 2014, 2019; Skene et al., 2017).

Expression of these genes is higher in females than in males across

adulthood (Berchtold et al., 2008; Skene et al., 2017) and has been

associated with more youthful metabolic aging patterns in females

than in males (Goyal et al., 2019). Our results, therefore, suggest the

possibility that the sex differences in the regional rate of age-related

brain structural changes may reflect transcriptomic and metabolic

mechanisms that could be examined further in future studies.

F IGURE 3 Scatter plots of the association of G-brainAGE and functional indicators. Results are shown for (a) endurance, (b) gait speed,
(c) grip strength, (d) fluid cognition composite score, and (e) crystalized cognition composite score; green = males; purple = females. None of
these associations were statistically significant
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4.2 | Functional association of G-brainAGE

We found no association between G-brainAGE with cognitive ability

or measures of physical fitness, which is perhaps not unexpected

since there was little evidence of accelerated global brain aging in the

current sample. Moreover, it is possible that these measures do not

strongly correlate with brain structure in healthy young adults but

may emerge as stronger indicators of brain health in older adults.

4.3 | Lower sleep quality as a predictor of higher
G-brainAGE in females and males

Sleep is essential in maintaining homeostasis via multiple cellular,

immune, and metabolic pathways (Zielinski et al., 2016). Within the

brain, sleep exerts powerful effects on molecular, cellular, and net-

work mechanisms of plasticity (Abel et al., 2013). Even minor decre-

ments in sleep quality disrupt circadian rhythms, impair the clearance

of misfolded proteins, and induce molecular and cellular changes con-

ducive to neuroinflammation and oxidative stress (reviewed by Bishir

et al., 2020). The current findings reinforce this prior literature in dem-

onstrating an association between poor sleep quality and higher G-

brainAGE. Although a similar proportion of female (32.84%) and male

(30.57%) participants reported sleep problems (Supporting Informa-

tion Table S4), poor sleep quality appeared to play a more important

role for G-brainAGE and L-brainAGE in males. Compared to females,

males have less slow-wave sleep, which shows steeper age-related

decline beginning in early adulthood (Yetton et al., 2018). Prior studies

suggested an association between this age-related reduction in sleep

quality with greater cortical thinning (Goldstone et al., 2018), which is

captured by the G-brainAGE measure here. Additionally, the L-

brainAGE analyses highlight the importance of cerebellar age-related

reduction in males. These findings resonate with those of Zhou and

colleagues (Zhou et al., 2017) who reported an association between

increased brain aging in terms of cortico-cerebellar connectivity and

poor sleep. However, we acknowledge that this explanation is only

speculative since sleep architecture was not captured in the present

study.

4.4 | Sex-specific predictors of G-BrainAGE

Numerically fewer predictors showed an association with G-brainAGE

in females compared to males, with higher systolic blood pressure

having the largest contribution to G-brainAGE and L-brainAGE in

females but not in males. This observation accords with findings in a

large longitudinal population-based sample (n = 7485; age range 20–

76 years) where genetic risk factors and hypertension in early adult-

hood were the only predictors of late-life decline in females (Anstey

et al., 2021). This relative paucity of potentially modifiable predictors

of brain aging in females in early adulthood could potentially contrib-

ute to their higher rates of dementia (Niu et al., 2017). We did not find

significant associations between G-brainAGE and variables reflecting

reproductive activity in the young females in this sample. Estrogens

are considered neuroprotective (Gould et al., 1990; McCarthy, 2008)

and may contribute to decelerate brain aging in older females (Maki &

Resnick, 2001). In the present study, sex hormone levels were not

available, thus precluding direct assessment of their association with

G-brainAGE. Nevertheless, it is possible that hormonal effects on

brain morphology are less important in early adulthood but may be

preconditions for maintaining a more youthful brain and/or might

delay brain aging processes much later in life. Longitudinal studies tak-

ing a lifespan perspective would be required to address these issues.

Educational level made a minor contribution to G-brainAGE in

females but had no significant association with G-brainAGE in males.

Although earlier research had suggested that educational attainment

slows the rate of brain aging (Steffener et al., 2016), this finding is

consistent with the more recent evidence available that suggests that

educational attainment has minimal, if any, influence on brain aging

(Nyberg et al., 2021).

In males, self-reported racial categories emerged as the most

important contributor to G-brainAGE and L-brainAGE; identifying as

non-white was associated with higher G-brainAGE. Although this

finding should be interpreted with caution given the uneven distribu-

tion of racial categories in this dataset (76% self-reported White), this

is consistent with prior studies which have suggested that there is a

greater burden of age-related disorders in middle-aged and older non-

white individuals, particularly those of African ancestry (Amariglio

et al., 2020; Gottesman et al., 2015). Biomarker-based indices of bio-

logical aging also show a similar racial pattern (Levine &

Crimmins, 2014). The advantage of the current study is that the sex-

specific analyses undertaken highlight the importance of this variable

for males, which is especially noteworthy given that the distribution

of self-reported racial categories was similar between males and

females (Supporting Information Table S4). The reasons for racial dif-

ferences in aging remain poorly specified but are commonly attributed

to the greater social and economic adversity experienced by non-

white groups (Williams & Sternthal, 2010).

4.5 | Limitations

In addition to issues raised in previous sections, several strengths and

limitations are worth further discussion. The study is cross-sectional

and as such it does not address either causality or the longitudinal

evolution of the reported findings. Participant sex was based on self-

report and was not genetically determined; we consider the frequency

of discrepancies between genetic versus reported sex to be too low

to significantly influence the reported results. Sex, as defined here,

incorporates societal and lifestyle differences between females and

males. The list of environmental exposures considered was substantial

but not exhaustive. The HCP dataset does not include information on

physical activity, which is considered protective based on its associa-

tion with better cognitive performance in older adults (Colcombe &

Kramer, 2003; Hughes & Ganguli, 2009), preserved gray matter

(Colcombe et al., 2003), brain metabolic activity (Engeroff
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et al., 2019), and with lower brainAGE (Bittner et al., 2021). The ana-

lytical approach is a particular strength of this study as it combined

two different machine learning methods to identify the regional age-

related patterns of brain structure and the predictors of global age-

related brain structure.

While it is compelling that predictors of G-brainAGE differed

between males and females, it is important to keep in mind that uni-

variate relationships between these predictors and G-brainAGE were

small (mean rho values of .10–.13 and R2 values of .015–.032, as

reported in Supporting Information Table S5).

5 | CONCLUSIONS

The results presented here demonstrate the value of applying sex-

specific analyses and machine learning methods to assess factors that

influence the rate of age-related brain structural changes and their

regional pattern. These findings might be useful in improving our

understanding of sex-related differences in aging and in identifying

modifiable factors that influence the rate of age-related biological pro-

cesses. Further investigations in longitudinal cohorts are needed to

determine how sex and gender might affect the trajectory of human

brain aging.
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