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Identification of influential probe types 
in epigenetic predictions of human traits: 
implications for microarray design
Robert F. Hillary1*, Daniel L. McCartney1, Allan F. McRae2, Archie Campbell1, Rosie M. Walker1,3, 
Caroline Hayward4, Steve Horvath5,6, David J. Porteous1, Kathryn L. Evans1 and Riccardo E. Marioni1 

Abstract 

Background: CpG methylation levels can help to explain inter-individual differences in phenotypic traits. Few studies 
have explored whether identifying probe subsets based on their biological and statistical properties can maximise 
predictions whilst minimising array content. Variance component analyses and penalised regression (epigenetic 
predictors) were used to test the influence of (i) the number of probes considered, (ii) mean probe variability and (iii) 
methylation QTL status on the variance captured in eighteen traits by blood DNA methylation. Training and test sam-
ples comprised ≤ 4450 and ≤ 2578 unrelated individuals from Generation Scotland, respectively.

Results: As the number of probes under consideration decreased, so too did the estimates from variance compo-
nents and prediction analyses. Methylation QTL status and mean probe variability did not influence variance com-
ponents. However, relative effect sizes were 15% larger for epigenetic predictors based on probes with known or 
reported methylation QTLs compared to probes without reported methylation QTLs. Relative effect sizes were 45% 
larger for predictors based on probes with mean Beta-values between 10 and 90% compared to those based on 
hypo- or hypermethylated probes (Beta-value ≤ 10% or ≥ 90%).

Conclusions: Arrays with fewer probes could reduce costs, leading to increased sample sizes for analyses. Our results 
show that reducing array content can restrict prediction metrics and careful attention must be given to the biological 
and distribution properties of CpG probes in array content selection.

Keywords: DNA methylation, Prediction, Methylation QTLs, Complex traits, Ageing
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Background
DNA methylation (DNAm) involves the addition of 
methyl groups to the fifth carbon of cytosine bases, 
typically in the context of cytosine-guanine dinucleo-
tides (CpG sites). There are approximately 28 million 
CpG sites across the human genome [1, 2], of which 
60–80% are methylated [3]. Illumina DNAm arrays are 

popular technologies for profiling genome-wide DNAm. 
The probe content on these arrays has been selected by 
experts to optimise the balance between gene coverage 
and array size. The Infinium HumanMethylation 450K 
and HumanMethylationEPIC (EPIC) arrays cover 99% of 
RefSeq genes and contain probes that interrogate 485,577 
and 863,904 CpG sites, respectively [4, 5].

There are two primary methods to quantify the amount 
of methylation at CpG sites interrogated by Infinium 
probes. First, the Beta-value (or B value) is a ratio of the 
methylated probe intensity to the overall measured inten-
sity (sum of methylated and unmethylated probe intensi-
ties) [6, 7]. The Beta-value ranges from 0 to 100% where 
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100% implies complete methylation across all copies of 
the site in a given sample. Second, M values reflect the 
log2 ratio of methylated probe intensities versus unmeth-
ylated probe intensities. Positive M values mean that the 
site is likely more methylated than unmethylated in a 
given sample, and a value close to zero indicates that the 
site is equally methylated and unmethylated. It has been 
found that approximately 0.5% of Illumina probes show 
significantly different estimates for methylation intensi-
ties when measured by other methods, such as Methyla-
tion Capture bisulfite sequencing [8]. Here, we focus on 
the Beta-value (derived from Illumina arrays) as it has a 
simpler biological interpretation and therefore allows us 
to intuitively categorise probes into hypo- and hyper-
methylated sites (mean Beta-value ≤ 10% or ≥ 90% across 
individuals), which may reflect invariant probes.

Illumina DNAm data are routinely utilised in health 
outcomes research. First, the arrays are employed in 
association studies to uncover individual genomic loci 
associated with disease states and other phenotypes [9]. 
Second, the total array content (450K or EPIC) can be 
used to estimate the contribution of DNAm to inter-indi-
vidual variability in human traits [10, 11]. Third, machine 
learning algorithms can be applied to DNAm data to 
identify weighted linear combinations of probes that pre-
dict numerous phenotypes, including chronological age, 
smoking status and body mass index [12–14].

Genetic, demographic and environmental factors 
contribute to inter-individual variability in CpG meth-
ylation [15]. Common genetic factors that correlate with 
CpG methylation are termed methylation quantitative 
trait loci (mQTLs) and explain on average 15% of the 
additive genetic variance of DNAm [16]. Variation in 
CpG methylation might also reflect technical artefacts, 
including heterogeneity in sample preparation and batch 
effects [17]. A large number of probes exhibit low levels 
of inter-individual variation in a given tissue, including 
blood [18–22]. Several methods have been proposed to 
remove sites that are non-variable in diverse tissue types. 
The methods include mixture modelling, principal com-
ponent analyses and empirically derived data reduction 
strategies [23–25]. In the context of locus discovery, 
these methods reduce the severity of multiple testing 
correction and might improve power to detect epigenetic 
associations with phenotypes. However, it is unclear if 
low-variability CpG probes affect the amount of pheno-
typic variance captured by DNAm. There is also a lack 
of studies that examine the influence of probe intensity 
characteristics on DNAm-based predictors.

Probes with high inter-individual variation in DNA 
methylation might be more informative for captur-
ing variance in human traits compared to those that are 
invariant (i.e. low inter-individual variation). Here, we 

tested the hypothesis that invariant probes do not influ-
ence the amount of variance in phenotypes captured by 
Illumina array content. We utilised blood DNAm data 
and eighteen phenotypes from 4450 unrelated volun-
teers in the population-based cohort Generation Scot-
land as our training sample [26, 27]. We compared the 
performance of five primary sets of probes. The first set 
of probes, or the reference set, included all probes com-
mon to the 450K and EPIC arrays (n = 393,654 probes). 
We focussed on probes common to both arrays rather 
than focussing on the EPIC array alone in order to 
ensure generalisability to other and older cohort stud-
ies, which employ the 450K array. In the second set, we 
excluded hypo- and hypermethylated probes (e.g. mean 
Beta-value ≤ 10% or ≥ 90% across individuals). We also 
removed probes with mQTLs reported in the largest 
genome-wide association study on blood CpG methyla-
tion to date [16]. We employed these exclusion criteria in 
an effort to retain variable probes whose variability might 
largely reflect environmental contributions (n = 115,746 
probes). The third, fourth and fifth sets included the 
50,000, 20,000 and 10,000 most variable probes (i.e. high-
est standard deviations) without known mQTLs (Fig. 1).

We used two methods to investigate how the number of 
probes considered in a probe set and how their distribu-
tion properties influenced the amount of phenotypic var-
iance captured by DNAm. First, we estimated the amount 
of phenotypic variation captured by DNAm in the train-
ing sample (reflecting within-sample trait variance). For 
this, we used OmicS-data-based complex trait analy-
sis (OSCA) software in which the correlation structure 
among all input probes is used to create an omic-data-
based relationship matrix (ORM). The ORM is then used 
to estimate variance components through the restricted 
maximum likelihood method (REML) [10]. In essence, 
these estimates represent an upper bound of trait vari-
ance captured by DNAm in a given sample. Second, we 
applied penalised regression models to build DNAm-
based predictors of all eighteen traits in the training 
sample. In DNAm prediction analyses, the substantially 
higher number of probes on arrays (features) when com-
pared to observations (individual phenotype values) can 
lead to overfitting. For example, a predictor may perform 
well in the training data set but not in an external, inde-
pendent data set. DNAm-based predictors derived from 
LASSO or elastic net penalised regression models often 
only consider small numbers of probes (derived from all 
input probes) to avoid such overfitting. The variances 
explained by these predictors are also smaller than those 
from REML, reflecting disparate methodologies and 
analysis objectives. In summary, REML utilises all input 
probes and estimates within-sample phenotypic variance 
and penalised regression considers a small subset of these 
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probes to estimate the amount of variance captured by 
DNAm in out-of-sample settings (Fig. 2).

We compared results from the five primary sets of 
probes to test our primary hypothesis, and these probe 
sets had decreasing numbers of probes and increasing 
mean variabilities. In further analyses, we also consid-
ered secondary subsets of probes with (i) an mQTL (with 

a mean Beta-value between 10 and 90%), (ii) hypo- or 
hypermethylated probes (with a mean Beta-value ≤ 10% 
or ≥ 90%) and (iii) genome-wide significant EWAS Cata-
log probes (at P < 3.6 ×  10–8). By comparing results from 
the primary and secondary probe sets, we were able to 
test the influence of (i) the number of probes  consid-
ered, (ii) mean probe variability and (iii) methylation 

Fig. 1 Overview of analysis strategy in the present study. We tested whether subsets of probes showed similar predictive capacities to total DNAm 
array content (1) (‘all available probes’, n = 393,654). We first identified subsets of interest. We restricted primary analyses to probes without known 
genetic influences (i.e. non-mQTL probes) and those with mean Beta-values (β) between 10 and 90% (2). These probes were termed ‘variable 
non-mQTL probes’ (n = 115,746). We then extracted the 50,000, 20,000 and 10,000 probes with the highest standard deviations from the pool of 
115,746 non-mQTL probes (3). In our primary analyses, we compared the predictive performances of these four probe subsets against that of the 
full set of probes used in our analyses (4). In further analyses, we tested the relative performances of subsets based on (i) probes without known 
mQTLs and with mean Beta-value between 10 and 90% (shown in green in (2), highlighted in (3)), (ii) probes with known mQTLs and with mean 
Beta-value between 10 and 90% (shown in red in (2)) and hypo- or hypermethylated probes (mean Beta-value ≤ 10% or ≥ 90%, also shown in red in 
(2)). DNAm, DNA methylation; mQTL, methylation quantitative trait locus; SD, standard deviation. Image created using Biorender.com
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QTL status on the variance captured in eighteen traits by 
blood DNA methylation. Further, we compared results 
from these probe sets against those from randomly sam-
pled sets of probes of equal size in order to determine 
whether observed estimates were significantly different 
from those expected by chance.

Results
Demographics and summary data for all phenotypes are 
shown in Additional file  1: Table  S1. The phenotypes 
were chronological age, seven biochemical traits (cre-
atinine, glucose, high-density lipoprotein cholesterol, 
potassium, sodium, total cholesterol and urea) and ten 
complex traits (body fat percentage, body mass index, 
diastolic blood pressure, forced expiratory volume in 
one second (FEV), forced vital capacity (FVC), heart rate 
(average beats/minute), self-reported alcohol consump-
tion, smoking pack years, systolic blood pressure and 
waist-to-hip ratio). The mean age in the training sample 

was 50.0  years (SD = 12.5), and the sample was 61.4% 
female. The test sample showed a similar mean age of 
51.4  years (SD = 13.2) with a slightly lower proportion 
of females (56.3%). Values for all other phenotypes were 
comparable between the training and test samples.

Phenotypic variance captured by DNAm decreases 
with the number of probes considered
We compared variance component estimates from ‘all 
available probes’  (nprobe = 393,654) and four subsets of 
probes with decreasing sizes and increasing mean vari-
abilities (see Methods, Fig.  1). The subsets contained 
probes with mean Beta-values between 10 and 90% and 
without underlying mQTLs as reported by the GoDMC 
mQTL consortium (i.e. were non-mQTL probes) [16]. 
The first of these four subsets contained 115,746 probes, 
which represented all probes without reported mQTLs 
and  with mean Beta-values between 10 and 90% (i.e. 

Fig. 2 Distinction between two primary analysis methods in the present study. We employed both variance components and penalised regression 
models in order to examine the amount of phenotypic variance captured by each respective probe set (n = 18 in total, see Methods). Variance 
component estimates were obtained using the restricted maximum likelihood method in OSCA. Here, we were able to estimate the amount of 
phenotypic variance captured by all probes in a given probe set in the training sample (n ≤ 4450). We also employed penalised regression to build 
linear DNAm-based predictors of traits using probes in a given probe set in the training sample. We then applied the predictors to the test sample 
(n ≤ 2578) in order to estimate how much variance in a given trait the predictor could explain over basic covariates (such as age and sex). This 
coefficient reflected the incremental  R2 estimate and pertained to an out-of-sample setting as the predictor was applied to a sample outside of 
that in which it was derived. LASSO, least absolute shrinkage and selection operator; OSCA, OmicS data-based complex trait analysis. Image created 
using Biorender.com 
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‘variable non-mQTL probes’). The remaining three probe 
subsets harboured the 50,000, 20,000 and 10,000 most 
variable of the non-mQTL probes, showing the highest 
standard deviations in the training sample (n = 4450).

The proportion of phenotypic variance captured by ‘all 
available probes’  (nprobe = 393,654) ranged from 23.7% 
(standard error (se) = 6.0%) for blood potassium levels 
to 79.6% (se = 2.1%) for smoking pack years (Additional 
file 1: Table S2). The average proportion of variance cap-
tured across seventeen biochemical and complex traits 
was 54.0%. Mean estimates were 44.1% and 61.0% for 
biochemical and complex traits, respectively (Additional 
file 2: Fig. S1).

The four remaining probe sets containing 115,746, 
50,000, 20,000 and 10,000 probes, on average, captured 

47.9%, 40.6%, 30.4% and 21.9% of phenotypic variance 
across seventeen traits, excluding chronological age 
(Additional file 1: Table S2). Generally, the estimates were 
not significantly different from sub-sampled probe sets of 
equal size, which were sampled from ‘all available probes’ 
(Additional file  1: Table  S3). An exception to this was 
smoking pack years (P < 0.05). Figure  3 shows the four 
traits with the highest proportion of phenotypic variance 
captured by probe values.

Performance of DNAm‑based predictors decreases 
with the number of probes considered
DNAm-based predictors based on ‘all available probes’ 
 (nprobe = 393,654) captured between 0.74% (forced vital 
capacity) and 46.0% (smoking pack years) of trait variance 

Fig. 3 Variance captured in complex traits by all available probes and four subsets of decreasing size. Restricted maximum likelihood was used to 
estimate variance components in the training sample (n ≤ 4450, OSCA software). The four traits (out of seventeen biochemical and complex traits) 
with the highest proportion of variance captured by DNAm are shown. Five different sets of probes were compared. ‘All available probes’ denotes 
probes that were common to the Illumina EPIC and 450K arrays and passed quality control procedures in the training sample within Generation 
Scotland (n = 393,654 probes). The ‘variable non-mQTL probes’ set consisted of probes without reported non-genetic influences and mean 
Beta-values between 10 and 90%. The remaining three probe subsets contained the 50,000, 20,000 and 10,000 most variable non-mQTL probes 
(ranked by their standard deviations). The five sets of probes therefore had decreasing numbers of probes but increasing mean variabilities. Vertical 
bars show 95% confidence intervals. DNAm, DNA methylation; mQTL, methylation quantitative trait locus; OSCA, OmicS data-based complex trait 
analysis
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in the test sample (Additional file  1: Table  S4). DNAm-
based predictors developed from ‘all available probes’ on 
average captured 9.1% of trait variance (Additional file 2: 
Fig. S2).

DNAm-based predictors developed from the four sub-
sets of non-mQTL probes (in order of decreasing size) 
captured 6.7%, 6.6%, 5.6% and 5.0% of phenotypic varia-
tion. The four traits with the highest incremental  R2 esti-
mates are shown in Fig. 4.

The performances of the four subsets of non-mQTL 
probes were weaker for biochemical measures than 
complex traits. For biochemical measures, relative effect 
sizes were 19.1–38.7% of the magnitude of estimates 
from ‘all available probes’. The corresponding estimates 
were 47.5–74.2% for complex traits (Additional file  1: 
Table S4). Incremental  R2 estimates were comparable to 
maximal  R2 estimates from the literature achieved with 

similar, linear DNAm-based predictors. These analyses 
are distinct from the earlier variance component analy-
ses and reflect the performance of DNAm-based pre-
dictors in samples external to those in which they were 
developed (Additional file  1: Table  S5). Incremental  R2 
estimates from the four probe subsets were also not sig-
nificantly different from sub-sampled sets of equal size 
(Additional file 1: Table S6).

Subsets of probes capture similar amounts of variation 
in chronological age as total array content
Using REML, ‘all available probes’ captured 100% of vari-
ability in chronological age  (nprobe = 393,654). Subsets 
that contained 115,746, 50,000 and 20,000 probes also 
captured 100% of the variance. The subset containing the 

Fig. 4 DNAm-based prediction of complex traits using all available probes and four subsets of decreasing size. LASSO regression was used to build 
blood DNAm-based predictors of seventeen biochemical and complex traits (n ≤ 4450 training sample and n ≤ 2578 test sample). The four traits 
with the highest proportion of variance captured by DNAm predictors in the test sample are displayed (incremental  R2 estimates above null model, 
see main text). The first set of probes included those that passed quality control in the training sample, were common to both the EPIC and 450K 
arrays and included both probes with known methylation QTLs (mQTLs) and probes without known mQTLs reported in the GoDMC consortium. 
The next four sets of probes included non-mQTL probes only and had decreasing numbers of probes but increasing mean variabilities. DNAm, DNA 
methylation; HDL, high-density lipoprotein; LASSO, least absolute shrinkage and selection operator; mQTL, methylation quantitative trait locus
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10,000 most variable non-mQTL probes captured only 
92.1% (se = 0.9%, Additional file 1: Table S7).

An epigenetic age predictor based on ‘all available 
probes’ explained 91.7% of the variance in chronological 
age in the test sample (n = 2578). The  R2 estimates from 
four subsets (in order of decreasing size) were 87.4%, 
87.7%, 85.7% and 83.9%, respectively (Additional file  1: 
Table  S8). The estimates were not significantly different 
from those in randomly sampled subsets with an equiva-
lent number of loci.

Highly variable probes are enriched for intergenic 
and upstream features
We tested whether the most variable set of probes, i.e. 
the 10,000 most variable non-mQTL probes, were over 
or under-represented for certain genomic features. We 
compared genomic annotations from this subset to anno-
tations from 1000 sub-sampled sets of 10,000 probes, 
which were drawn from all available non-mQTL probes 
(n = 115,746, see Methods). Highly variable probes were 
enriched in intergenic sites, 5’UTR regions and sites lying 
200–1,500 bases upstream from a transcription start site 
(range of fold enrichment (FE) = [1.1, 1.2], FDR-adjusted 
P = 0.001). They were also significantly under-repre-
sented within 3’UTR regions and gene bodies (FE = 0.8, 
P = 0.001; Additional file 1: Table S9).

Methylation QTL status and mean probe variabilities 
do not influence variance component estimates
We performed further secondary analyses to determine 
the relative predictive capacities of four classes of probes. 
The first three classes were: (i) probes without a known 
mQTL and mean Beta-value between 10 and 90% (con-
sidered in primary analyses), (ii) probes with a known 
mQTL and mean Beta-value between 10 and 90% and 
(iii) probes with mean Beta-value ≤ 10% or ≥ 90%, that 
is, hypo- or hypermethylated probes (containing both 
mQTL and non-mQTL probes). The latter two classes 
are shown as the excluded probes in Fig. 1. We also con-
sidered a fourth class, which was EWAS Catalog probes 
(n = 38,853, see Methods). The EWAS Catalog probes 
contained all three of the other classes: > 65% were sites 

with an mQTL and < 5% were hypo- or hypermethylated 
(Additional file 1: Table S10).

Across all classes, variance estimates decreased with 
the number of probes under consideration (Table 1). All 
probe classes, when matched for the number of probes, 
showed comparable variance component estimates 
(Table 1; Additional file 1: Tables S11–S13). An exception 
to this involved subsets that included 115,746 probes. 
Probes with mean Beta-values between 10 and 90% on 
average captured 10% more trait variance than hypo- 
or hypermethylated probes (mean Beta-value ≤ 10% 
or ≥ 90%) at this threshold. The probe classes captured 
similar amounts of variance in age (Additional file  1: 
Table S14).

Probes with methylation QTLs and intermediate 
Beta‑values are important for out‑of‑sample trait 
predictions
Epigenetic predictors based on EWAS Catalog probes 
(n = 38,853) captured as much variance as those based 
on ‘all available probes’  (nprobe = 393,654). The 20,000 
and 10,000 most variable EWAS Catalog probes showed 
estimates that were 91.5% and 85.3% of the magnitude of 
those from all ‘available probes’ (Additional file 1: Tables 
S15–S17).

Epigenetic predictors based on probes with an mQTL 
(n = 133,758), and the 115,746 most variable of these 
probes, also captured as much phenotypic variance as 
predictors based on ‘all available probes’ (Additional 
file 1: Table S15). Exceptions included predictors for cre-
atinine and systolic blood pressure (60–70% of estimates 
from ‘all available probes’).

The relative effect sizes (i.e. relative incremental  R2 
estimates) were on average 15% larger for probes with 
mQTLs versus those  without GoDMC mQTLs. Rela-
tive effect sizes were also approximately 45% greater for 
probes with mean Beta-values between 10 and 90% when 
compared to hypo- or hypermethylated probes with 
mean Beta-values ≤ 10% or ≥ 90% (Table  2, Additional 
file 1: Tables S15–S17).

The performances of age predictors were comparable 
for all classes except hypo- and hypermethylated probes, 

Table 1 Influences of the number of probes, mean variability and methylation QTL status on variance component estimates

Metric shown is the average % of variance captured in seventeen biochemical and complex traits. mQTL, methylation QTL

Probe classification Starting  nprobe 115,746 50,000 20,000 10,000

Probes without reported mQTL 115,746 47.9% 40.6% 30.4% 21.9%

Probes with reported mQTL 144,150 48.0% 38.7% 26.1% 16.5%

Hypo- and hypermethylated probes 133,758 38.7% 37.9% 27.7% 18.4%

EWAS Catalog probes 38,853 – – 32.9% 24.4%
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which showed  R2 estimates that were 5–10% lower than 
other probe classes (Additional file 1: Table S18).

Discussion
The amount of phenotypic variance captured by DNAm 
decreased in all traits as the number of probes under 
consideration decreased. Further, variance component 
estimates were similar for subsets with and without 
reported genetic influences and subsets with and with-
out hypo- and hypermethylated probes. The estimates 
were also comparable to sub-sampled subsets of equal 
size. Therefore, the number of probes considered is an 
important determinant of the amount of within-sample 
trait variance that can be captured by DNAm. Meth-
ylation QTL status and mean probe variabilities did 
not appear to impact variance component estimates. 
By contrast, epigenetic predictors based on probe sub-
sets with mQTLs generally outperformed those that 
contained probes without GoDMC mQTLs. Similarly, 
probes that had mean Beta-values between 10 and 90% 
outperformed subsets that contained hypo- and hyper-
methylated probes in out-of-sample trait predictions. 
Therefore, methylation QTL status and mean Beta-values 
are important factors in the performance of epigenetic 
trait predictions. As with variance component analyses, 
decreasing the number of probes considered resulted in 
poorer performing epigenetic predictors.

Highly variable probes were enriched for intergenic 
sites, which is consistent with the existing literature [21, 
28, 29]. However, the most variable probes that fall out-
side of CpG islands can be poorly captured by arrays [30]. 
The list of the most variable probes might show variation 
between epigenomic data sets given differences in nor-
malisation methods and systematic differences in cohort 
profiles. We also did not correct for additional covariates, 
such as cell-type heterogeneity, which could lead to dif-
ferences in estimates for probe variabilities. However, 
OSCA, or OmicS-data-based complex trait analysis, can 
account for unmeasured confounders and correlation 
structures between distal probes induced by confounders 
[10]. This is possible owing to the creation of an ORM, 
which describes the correlation structure between all 
input CpGs in a given data set. The ORM is then used 

to estimate the joint effects of all probes on the pheno-
type providing an estimate of the proportion of pheno-
typic variance captured by DNAm through restricted 
maximum likelihood. We selected standard deviations 
to measure variability in probe methylation levels. How-
ever, some probes may show non-normal distributions of 
Beta-values or multimodal distributions (such as probes 
with mQTLs). This complicates the general application 
of one measure of variability across all probes. Neverthe-
less, our results showed comprehensively that decreasing 
the number of available sites reduced variance estimates 
regardless of mQTL status or mean Beta-value.

As part of our primary and secondary analyses, we 
separated Illumina probes into those that have a genome-
wide significant mQTL reported in the GoDMC mQTL 
database and those that do not have an mQTL reported 
in this list [16]. The GoDMC resource represents the 
largest, blood mQTL data set for Illumina probes. How-
ever, it must be acknowledged that it does not represent 
an exhaustive list of all possible mQTLs, whether acting 
in cis or in trans. Most probes are likely to have a genetic 
variance component but effect sizes for mQTLs vary sub-
stantially with most probes explaining less than 5–10% of 
inter-individual variation in DNAm [16, 31]. Future work 
is needed to filter probes by the proportion of variance 
explained by mQTLs in order to identify those probes 
with highly influential mQTLs. The impact of probes 
with strong genetic influences on epigenetic predictions 
should be examined and in cohorts of different ethnici-
ties and clinical populations, which was not possible in 
the present study. Importantly, our strategy of stratifying 
probes by mQTL status replicates that of existing studies 
that examine the technical and distribution properties of 
Illumina probes. For instance, Sugden et al. also stratified 
probes into those with known mQTLs and those without 
mQTLs [31] and showed that probes indexed by mQTLs 
are more reliably measured than their non-mQTL coun-
terparts [32]. The superior performance of epigenetic 
predictors from mQTL subsets compared to non-mQTL 
subsets in our study could reflect the higher measure-
ment reliability of mQTL probes, and the exclusion of 
loci with strong biological signals in the predictors based 
on non-mQTL probes. As our data and findings were 

Table 2 Influences of the number of probes, mean variability and methylation QTL status on DNAm-based predictions

Metric shown is the average % of variance captured in seventeen biochemical and complex traits by DNAm-based predictors. mQTL, methylation QTL

Probe classification Starting  nprobe 115,746 50,000 20,000 10,000

Probes without known mQTL 115,746 6.7% 6.6% 5.6% 5.0%

Probes with known mQTL 144,150 9.0% 8.1% 6.2% 4.8%

Hypo- and hypermethylated probes 133,758 4.2% 4.0% 3.3% 2.8%

EWAS Catalog probes 38,853 – – 8.7% 8.0%
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derived from whole blood, methodological insights into 
the role of Illumina probe types on variance analyses 
should only be used to guide future studies with whole 
blood samples.

High  R2 estimates from subsets based on EWAS Cat-
alog probes likely reflect contributions from all probe 
classes (i.e. probes with and without an mQTL and 
hypo- or hypermethylated sites) and that many of the 
traits considered in this study feature in the EWAS Cata-
log. Furthermore, traits with strong epigenetic correlates 
were the most robust to changes in probe classifica-
tion or the number of probes considered. For instance, 
REML suggested that 20,000 probes were sufficient to 
capture 100% of inter-individual variation in chronologi-
cal age. However, only 90% of the variance in age could 
be explained by subsets containing 10,000 probes. Pre-
viously, it has been shown that 100% of the variance in 
chronological age is captured by DNAm in Generation 
Scotland and the Systems Genomic of Parkinson’s Dis-
ease consortium [33]. Further, permutation testing sug-
gested that these results did not reflect overestimation. 
The REML estimates are broadly analogous to chip-based 
heritability estimates in genetic analyses, reflecting how 
much variance in a trait can be explained by the omics 
measure in a given sample. By contrast, the aim of the 
penalised regression analyses was to generate linear com-
binations of probes that are informative for predicting 
age or other traits, which we applied to a separate but 
similar sample. Our incremental  R2 estimates (~ 90%) 
are in line with, albeit lower than, those from existing 
epigenetic age indices, which employ additional steps to 
ensure highly accurate age predictors [14, 33, 34]. Here, 
our aim was to assess the influence of the number of 
probes and probe distribution properties on epigenetic 
predictions of age and seventeen lifestyle and biochemi-
cal traits. With respect to age, we show that (i) small sub-
sets of probes can capture age-related changes in DNAm, 
(ii) DNAm-based age predictors are not strongly affected 
by mQTL status and (iii) probes that are hypo- or hyper-
methylated are less informative for predicting age than 
probes with Beta-values between 10 and 90%.

Conclusions
Restricting DNAm array probes to the most variable sites 
could improve power in association studies whilst mini-
mising array content. We show that this approach ham-
pers variance component analyses and that phenotypes 
with strong epigenetic correlates are the most robust to 
changes in the number of available probes. Further, loci 
with an mQTL and with intermediate DNAm levels are 
central to epigenetic predictions of clinically relevant 
phenotypes. Our results provide methodological con-
siderations towards the goal of selecting reduced array 

content from existing methylation microarrays, which 
can afford more cost-effective methylomic analyses in 
large-scale population biobanks. However, substituting 
or removing probes results in alterations to chip design 
and possibly the background physiochemical properties 
of the array. Therefore, it is not appropriate to assess the 
transferability of the present findings to other, related 
platforms. Nevertheless, our data demonstrate that strat-
egies aiming to minimise arrays using fewer probes must 
carefully select CpG or probe content in order to maxim-
ise epigenetic predictions of human traits.

Methods
Study cohort
Details of Generation Scotland (GS) have been described 
previously [26, 27]. GS is a family-based, genetic epide-
miology cohort that consists of 24,084 volunteers. There 
were 5573 families with a median size of 3 members 
(interquartile range = 2–5 members, excluding 1400 sin-
gletons). Genome-wide DNAm was profiled using blood 
samples from GS baseline (2006–2011). DNAm was pro-
cessed in two separate sets of 5200 (2016) and 4585 sam-
ples (2019) [35].

Preparation of DNA methylation data
DNAm was measured using the Infinium MethylationE-
PIC BeadChip at the Wellcome Clinical Research Facility, 
Western General Hospital, Edinburgh. Methylation typ-
ing in the first set (n = 5200) and the second set (n = 4585) 
was performed using 31 batches each. Full details on the 
processing of DNAm data are available in Additional 
file 3. Poor-performing and sex chromosome probes were 
excluded, leaving 760,943 and 758,332 probes in the first 
and second sets, respectively. Participants with unreliable 
self-report questionnaire data (self-reported ’yes’ for all 
diseases in the questionnaire), saliva samples and possi-
ble XXY genotypes were excluded, leaving 5087 and 4450 
samples in the first and second set, respectively. In the 
first set, there were 2578 unrelated individuals (common 
SNP GRM-based relatedness < 0.05). In the second set, 
all 4450 individuals were unrelated to one another. Indi-
viduals in the first set were also unrelated to those in the 
second set. The second set (profiled in 2019) was chosen 
for OSCA models and as the training sample in DNAm-
based prediction analyses given its larger sample size 
(n = 4450). Unrelated individuals from the first set (pro-
filed in 2016) formed the test sample in DNAm-based 
prediction analyses (n = 2578). Linear regression models 
were used to correct probe Beta-values for age, sex and 
batch effects separately within the training (n = 4450) and 
test samples (n = 2578).
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Identification of variable probes in blood
There were 758,332 sites in the training sample (n = 4450) 
following quality control. First, we restricted sites to 
those that are common to the 450K and EPIC arrays 
to allow for generalisability to other epigenetic stud-
ies (n = 398,624 probes). We excluded loci that were 
predicted to cross-hybridise and those with polymor-
phisms at the target site, which can alter probe binding 
 (nprobe = 4970 excluded, 393,654 remaining) [36, 37]. 
These 393,654 probes represented the reference set in 
our analyses, which we defined as ‘all available probes’.

We then defined a set of criteria to identify variable 
probes within blood tissue, specifically. First, we removed 
sites that are hypo- or hypermethylated in the sam-
ple (i.e. mean Beta-value ≤ 10% or ≥ 90%, respectively, 
 nprobe = 144,150 excluded). Hypo- and hypermethyl-
ated sites had a mean SD of 0.01 (range = [0.002, 0.13]). 
Probes with mean Beta-values between 10 and 90% 
 (nprobe = 249,504) had a mean SD of 0.03 (range = [0.008, 
0.33]). Second, we excluded 133,758 probes that over-
lapped with known blood-based mQTLs (GoDMC [16], 
P value < 5 ×  10–8). There were 115,746 remaining sites, 
which represented the ‘variable non-mQTL probes’ sub-
set. We then extracted the 50,000, 20,000 and 10,000 non-
mQTL probes with the highest SDs (mean SD = 0.04, 
0.05, 0.06, respectively, Additional file 1: Table S10).

Preparation of phenotypic data
Eighteen traits were considered in our analyses. Full 
details on phenotype preparation are detailed in Addi-
tional file  3. The seventeen biochemical and complex 
traits (excluding chronological age) were trimmed for 
outliers (i.e. values that were ± 4 SDs away from the 
mean). Fifteen phenotypes (excluding FEV and FVC) 
were regressed on age, age-squared and sex. FEV and 
FVC were regressed on age, age-squared, sex and height 
(in cm). Correlation structures for raw (i.e. unadjusted) 
and residualised phenotypes are shown in Additional 
file 2: Fig. S3 and S4, respectively. For age models, DNAm 
and chronological age (in years) were unadjusted. Resid-
ualised phenotypes were entered as dependent variables 
in OSCA or penalised regression models.

Variance component analyses
OSCA software was used to estimate the proportion 
of phenotypic variance in eighteen traits captured by 
DNAm in the training sample (n ≤ 4450) [10]. In this 
method, an omic-data-based relationship matrix (ORM) 
describes the co-variance matrix between standardised 
probe values across all individuals in a given data set. 
Here, the ORM was derived from age-, sex- and batch-
adjusted Illumina probe data and is fitted as a random 
effect component in mixed linear models. Phenotypes 

were pre-corrected for covariates as described in the pre-
vious section. Restricted maximum likelihood (REML) 
was applied to estimate the variance components, i.e. the 
amount of phenotypic variance captured by all DNAm 
probes used to build an ORM. We developed 18 ORMs 
in total reflecting all probe sets described: (i) one for ‘all 
available probes’, (ii) four for the ‘variable non-mQTL 
probe’ sets, (iii) five for ‘variable mQTL probe’ sets, (iv) 
five for hypo- and hypermethylated probe sets and (v) 
three for EWAS Catalog probes. The probe sets are out-
lined in full in Additional file 1: Table S10.

The variance component estimates are analogous, but 
not equivalent, to SNP-based heritability estimates [38, 
39]. However, SNP-based heritability estimates have an 
inference of association through causality. The epigenetic 
variance component estimates could reflect both cause 
and consequence with respect to the phenotype and 
are not readily extended to other samples with different 
background characteristics. REML estimates served as 
important within-sample variance estimates in the pre-
sent study, allowing us to assess the impact of the num-
ber of probes used to build an ORM, and their properties, 
on the amount of phenotypic variance captured by probe 
values. We then applied penalised regression models to 
build linear DNAm-based predictors of the phenotypes 
in the training sample. We carried out these analyses in 
order to assess the relative predictive performances of 
the probe sets when applied to a separate test sample 
(n < 2578), described below.

LASSO regression and prediction analyses
Least absolute shrinkage and selector operator (LASSO) 
regression was used to build DNAm-based predictors 
of eighteen phenotypes. The R package biglasso [40] was 
implemented and the training sample included ≤ 4450 
participants. The mixing parameter (alpha) was set to 
1 and tenfold cross-validation was applied. The model 
with the lambda value that corresponded to the mini-
mum mean cross-validated error was selected. Epigenetic 
scores for traits were derived by applying coefficients 
from this model to corresponding probes in the test 
sample (n = 2578). This method takes into account the 
correlation structure between probes, but only selects a 
weighted additive combination of probes that are inform-
ative for predicting a given trait. Therefore, epigenetic 
predictors or methylation risk scores are broadly analo-
gous to polygenic risk scores, which often show  R2 esti-
mates that fall far below SNP-based heritability estimates 
[41]. Here, our goal was to compare the relative predic-
tive performances of probe sets in an out-of-sample 
context, distinct from the earlier approach of estimating 
variance components within the training sample alone.
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Linear regression models were used to test for associa-
tions between DNAm-based predictors (i.e. epigenetic 
scores) for the eighteen traits and their corresponding 
phenotypic values in the test sample. The incremental 
r-squared  (R2) was calculated by subtracting the  R2 of the 
full model from that of the null model (shown below). For 
the FEV and FVC predictors, height was included as an 
additional covariate in both models. For the age predic-
tors, the  R2 value pertained to that of the epigenetic score 
without further covariates.

Sub‑sampling analyses
We tested whether variance components and incremen-
tal  R2 estimates from probe sets were significantly differ-
ent from those expected by chance. For OSCA estimates, 
we generated 1,000 sub-samples of 115,746, 50,000, 
20,000 and 10,000 probes (to match the primary subsets 
of non-mQTL probes tested in our analyses). The sub-
sampled sets were sampled from ‘all available probes’ 
 (nprobe = 393,654). We also generated 100 sub-samples of 
115,746, 50,000, 20,000 and 10,000 probes, and not 1,000 
sub-samples, for LASSO regression in order to lessen the 
computational burden.

We tested whether highly variable probes were sig-
nificantly over-represented or under-represented for 
genomic and epigenomic annotations. Annotations 
were derived from the IlluminaHumanMethylationEPI-
Canno.ilm10b4.hg19 package in R [42]. Annotations for 
the most variable primary subset (i.e. 10,000 non-mQTL 
probes) were compared against 1,000 sub-samples of 
non-mQTL CpGs with an equal number of probes. Here, 
probes were sub-sampled from the ‘variable non-mQTL 
probes’ set  (nprobe = 115,746) and not from ‘all available 
probes’  (nprobe = 393,654) as the latter contains probes 
with and without mQTLs, which show different genetic 
architectures [16].

Comparisons of methylation QTL status and mean 
Beta‑values
In addition to non-mQTL subsets (with mean Beta-val-
ues between 10 and 90%), we tested two further classes 
of probes. First, we considered probes with a reported 
mQTL from GoDMC (P < 5 ×  10–8) that had mean Beta-
values between 10 and 90%  (nprobe = 133,758) [16]. Sec-
ond, we considered all hypo- or hypermethylated probes 
(Beta-value ≤ 10% or ≥ 90%,  nprobe = 144,150). We tested 
the performances of the 115,746, 50,000, 20,000 and 

Null model : Phenotype ∼ chronological age + sex

Full model :Phenotype ∼ chronological age + sex

+ epigenetic score

10,000 most variable probes from each of these three 
classes.

We also repeated REML and LASSO regression using 
EWAS Catalog probes [43]. EWAS Catalog probes con-
tained sites with an mQTL, sites without an mQTL and 
hypo- and hypermethylated sites. We restricted EWAS 
Catalog probes to those with P < 3.6 ×  10–8 [44] and 
those reported in studies with sample sizes > 1000. We 
also excluded studies related to chronological age due to 
the very large number of sites implicated and  alsothose 
in which Generation Scotland contributed to analyses. 
There were 100 studies that passed inclusion criteria 
with 47,093 unique probes. Of these, 38,853 probes over-
lapped with ‘all available probes’ used in our analyses 
 (nprobe = 393,654). To allow for comparison to other sub-
sets, the 20,000 and 10,000 most variable EWAS Catalog 
probes  (nprobe = 38,853) were extracted.
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org/ 10. 1186/ s13148- 022- 01320-9.
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Table S4. DNAm-based prediction analyses—primary probe sets (non-
mQTL probes). Table S5. R2 estimates from linear DNAm-based predictors 
in the literature. Table S6. DNAm-based prediction analyses—permuted 
sets. Table S7. REML for chronological age. Table S8. DNAm-based pre-
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in highly variable sites. Table S10. Description of probe sets compared in 
variance component and prediction analyses. Table S11. REML—mQTL 
probes vs. non-mQTL probes. Table S12. REML—EWAS Catalog probes vs. 
non-mQTL probes. Table S13. REML—hypo- and hypermethylated probes 
vs. non-mQTL probes. Table S14. REML for chronological age—sensitiv-
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non-mQTL probes. Table S16. DNAm-based prediction—EWAS Catalog 
probes vs. non-mQTL probes. Table S17. DNAm-based prediction—hypo- 
and hypermethylated probes vs. non-mQTL probes. Table S18. DNAm-
based prediction of chronological age—sensitivity analyses.

Additional file 2: Figure S1. Phenotypic variance captured by five nested 
sets of probes with decreasing numbers of probes and increasing mean 
variabilities. Restricted maximum likelihood analyses were performed 
using blood DNAm and phenotypic data from 4450 volunteers in the 
training sample of Generation Scotland. Seventeen biochemical and com-
plex traits are shown. The seventeen traits are arranged into six groups 
(A–F). Vertical bars indicate 95% confidence intervals. Alc, self-reported 
alcohol consumption; bmi, body mass index; cholest, total cholesterol; 
dBP, diastolic blood pressure; DNAm, DNA methylation; fat, body fat 
percentage; FEV, forced expiratory volume in one second; FVC, forced 
vital capacity; HDL, high-density lipoprotein cholesterol; HR, heart rate; 
mQTL, methylation quantitative trait locus; PckYrs, smoking pack years; 
sBP, systolic blood pressure; whr, waist-to-hip ratio. Figure S2. Incremental 
R2 estimates for DNAm-based predictors of seventeen traits using five 
nested sets of probes with decreasing numbers of probes and increas-
ing mean variabilities. LASSO regression was used to build DNAm-based 
predictors of seventeen traits using data from 4450 volunteers in the 
training sample within Generation Scotland. An unrelated sample of 2578 
individuals in Generation Scotland served as the test set. The seventeen 
traits are arranged into six groups of three traits (A–F). Alc, self-reported 
alcohol consumption; bmi, body mass index; cholest, total cholesterol; 
dBP, diastolic blood pressure; DNAm, DNA methylation; fat, body fat 
percentage; FEV, forced expiratory volume in one second; FVC, forced 
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vital capacity; HDL, high-density lipoprotein cholesterol; HR, heart rate; 
LASSO, least absolute shrinkage and selection operator; mQTL, methyla-
tion quantitative trait locus; PckYrs, smoking pack years; sBP, systolic blood 
pressure; whr, waist-to-hip ratio. Figure S3. Correlation structure between 
raw (i.e. unadjusted) phenotypes in the training and test samples within 
Generation Scotland. The training (A) and test samples (B) had 4450 and 
2578 unrelated individuals, respectively. Alc, self-reported alcohol con-
sumption; bmi, body mass index; cholest, total cholesterol; dBP, diastolic 
blood pressure; fat, body fat percentage; FEV, forced expiratory volume 
in one second; FVC, forced vital capacity; HDL, high-density lipoprotein 
cholesterol; HR, heart rate; PckYrs, smoking pack years; sBP, systolic blood 
pressure; whr, waist-to-hip ratio. Figure S4. Correlation structure between 
residualised phenotypes in the training and test samples within Genera-
tion Scotland. The training (A) and the test samples (B) had 4450 and 2578 
unrelated individuals, respectively. Phenotypes were adjusted for chrono-
logical age and sex (and height for FEV and FVC). Age was not adjusted 
but is included for completeness of comparisons. Alc, self-reported 
alcohol consumption; bmi, body mass index; cholest, total cholesterol; 
dBP, diastolic blood pressure; fat, body fat percentage; FEV, forced expira-
tory volume in one second; FVC, forced vital capacity; HDL, high-density 
lipoprotein cholesterol; HR, heart rate; PckYrs, smoking pack years; sBP, 
systolic blood pressure; whr, waist-to-hip ratio.

Additional file 3. Supplementary methods.
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