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ORIGINAL ARTICLE

Logistic Regression–Based Model Is More Efficient Than
U-Net Model for Reliable Whole Brain Magnetic Resonance

Imaging Segmentation

Henry Dieckhaus, BS,* Rozanna Meijboom, PhD,† Serhat Okar, MD,‡ Tianxia Wu, PhD,§
Prasanna Parvathaneni, PhD,‡ Yair Mina, MD,¶k Siddharthan Chandran, PhD,† Adam D. Waldman, PhD,†

Daniel S. Reich, MD, PhD,‡ and Govind Nair, PhD*

Abstract: Objectives: Automated whole brain segmentation from
magnetic resonance images is of great interest for the development of
clinically relevant volumetric markers for various neurological diseases.
Although deep learning methods have demonstrated remarkable potential in
this area, they may perform poorly in nonoptimal conditions, such as limited
training data availability. Manual whole brain segmentation is an incredibly
tedious process, so minimizing the data set size required for training segmen-
tation algorithms may be of wide interest. The purpose of this study was to
compare the performance of the prototypical deep learning segmentation
architecture (U-Net) with a previously published atlas-free traditional
machine learning method, Classification using Derivative-based Features
(C-DEF) for whole brain segmentation, in the setting of limited training data.

Materials and Methods: C-DEF and U-Net models were evaluated after
training on manually curated data from 5, 10, and 15 participants in 2 research
cohorts: (1) people living with clinically diagnosed HIV infection and (2)
relapsing–remitting multiple sclerosis, each acquired at separate institutions,
and between 5 and 295 participants’ data using a large, publicly available,
and annotated data set of glioblastoma and lower grade glioma (brain tumor
segmentation). Statistics was performed on the Dice similarity coefficient using
repeated-measures analysis of variance and Dunnett–Hsu pairwise comparison.

Results: C-DEF produced better segmentation than U-Net in lesion
(29.2%–38.9%) and cerebrospinal fluid (5.3%–11.9%) classes when trained
with data from 15 or fewer participants. Unlike C-DEF, U-Net showed sig-
nificant improvement when increasing the size of the training data (24%–

30% higher than baseline). In the brain tumor segmentation data set, C-DEF
produced equivalent or better segmentations than U-Net for enhancing tumor
and peritumoral edema regions across all training data sizes explored.
However, U-Net was more effective than C-DEF for segmentation of

necrotic/non-enhancing tumor when trained on 10 or more participants, prob-
ably because of the inconsistent signal intensity of the tissue class.

Conclusions: These results demonstrate that classical machine learning
methods can produce more accurate brain segmentation than the far more
complex deep learning methods when only small or moderate amounts of training
data are available (n # 15). The magnitude of this advantage varies by tissue
and cohort, while U-Net may be preferable for deep gray matter and necrotic/
non-enhancing tumor segmentation, particularly with larger training data sets
(n $ 20). Given that segmentation models often need to be retrained for appli-
cation to novel imaging protocols or pathology, the bottleneck associated with
large-scale manual annotation could be avoided with classical machine learning
algorithms, such as C-DEF.

Key Words: brain segmentation, deep learning, machine learning, MRI

(Top Magn Reson Imaging 2022;31:31–39)

In recent years, imaging markers of atrophy and inflammation
derived from brain segmentation have been widely used to inform

disease status and progression in neurological disorders.1–3 These
volumetric markers, particularly regarding white matter lesions,4,5

are of great interest as potential end points for clinical trials.
Although labels manually drawn by an expert rater remain the gold
standard for segmentation accuracy, this is prohibitively tedious and
costly to do on a large scale. Whole brain segmentation is particu-
larly time-consuming because of the large number of detailed con-
tours that must be delineated across many individual slices.
Automation of brain segmentation can therefore help by delivering
fast and reproducible imaging markers.6

Among automated brain segmentation algorithms, supervised
learning methods have demonstrated strong capability to model the
signal intensity profiles and spatial context of brain tissues to
produce robust brain segmentations. Atlas-free methods offer ability
to segment the brain in a disease-independent manner using signal
intensity signatures of various tissue types from multiple contrasts
and derived image filters.7 Recently, deep learning has risen to the
forefront by demonstrating state-of-the-art results on a range of
medical image segmentation benchmarks, including the MICCAI
Brain Tumor Segmentation (BraTS) Challenge, Medical
Segmentation Decathlon, and others.8–11 The U-Net framework,
introduced in 2015 by Ronneberger et al,12 used a convolutional
neural network with skip connections to capture complex spatial
information at multiple scales. Since then, much research has
focused on improvement of this framework using various strategies
for multiscale feature aggregation9,13,14 and localization.15,16

Despite the proliferation of U-Net-style architectures, many of the
same challenges still persist regarding model development and
deployment. Model training requires specialized graphics processing
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unit (GPU) resources that are of little use in other aspects of clinical
informatics workflows. Owing to the high number of parameters (often
greater than a million) involved in training for large 3D or 4D (if
multicontrast) volumes, GPU memory limitations often dictate that
input size be reduced, with patch extraction being the most common
approach.17,18 With this in mind, the relative performance of these
highly complex deep learning algorithms as opposed to less resource-
intensive machine learning algorithms needs to be investigated.

Perhaps more importantly, deep learning models still frequently
rely on extensive training data sets and demonstrate inconsistent
generalizability across imaging protocols and pathologies. This is
significant because a model trained on hundreds of well-labeled
public data sets may still find itself to be of limited use while
segmenting naive images. Bias introduced by factors such as scanner
type and imaging parameters can be great enough to significantly
confound segmentation tasks.19 These factors can make transfer
learning or domain adaptation with few labeled examples challeng-
ing, particularly if the disease or scanner protocol of interest is rare
or novel, making previously learned features less relevant.
Therefore, real-world applications of automated segmentation often
rely on training models from scratch with manually curated labels
from each data set. Such manual annotation requires expert knowl-
edge and therefore places a substantial time demand on qualified
experts. Manual annotation is also prone to significant interoperator
and intraoperator variability requiring consensus readings,20 further
adding to the cost of curation. This can create a significant bottle-
neck for model development in many cases,21 so reducing the size of
training data set that is needed may be of wide interest. Therefore,
there is a need for algorithms that are robust to training on limited
data and a greater understanding of the behavior of supervised seg-
mentation methods under limited training conditions. Several pre-
vious studies have observed the effect of training data set size on the
performance of deep learning models for medical segmentation
tasks, including head-and-neck computed tomography22 and carotid
ultrasound.23 However, this line of inquiry remains underexplored in
the domain of whole brain segmentation. In addition, these studies
typically do not consider alternative segmentation methods such as
classical machine learning for comparison.

This study aims to address these gaps in knowledge by
comparison of a deep learning method (U-Net) and a classical
machine learning method (Classification using Derivative-based
Features [C-DEF]) for segmentation on several clinical data sets
under limited training conditions. Each model was evaluated in
parallel on 2 moderately sized cohorts (n = 20 for each cohort)
composed of patients diagnosed with human immunodeficiency
virus (HIV) infection and relapsing–remitting multiple sclerosis
(MS), respectively. Algorithms were assessed solely for tissue seg-
mentation performance within each cohort to assess the reliability of
each method. The amount of training data provided for training was
varied to assess the relationship between training data abundance
and segmentation performance. This comparison was then extended
to a publicly available segmentation benchmark, the MICCAI BraTS
2020 Training data set, modified to classify only the manually delin-
eated pathological tissue subtypes, to validate the observed trends
over a larger range of training data set sizes.

MATERIALS AND METHODS

Data Sets and Preprocessing
Multimodal brain magnetic resonance imaging scans were obtained

at 3T from study participants clinically diagnosed with relapsing–
remitting MS using the 2010 revised McDonald Criteria24 (MS cohort)
and people living with human immunodeficiency virus (HIV) infection

(HIV cohort). MS cohort participants were recruited as part of the
FutureMS study (https://future-ms.org). Study protocols were approved
by the institutional review board of the National Institute of Neurological
Disorders and Stroke (reference number NCT01875588) for the HIV
cohort and the National Health Service South East Scotland Research
Ethics Committee 02 (reference number 15/SS/0233) for the MS cohort,
and all participants provided written informed consent. Images used in
this analysis included MPRAGE (repetition time [TR]/echo time [TE]/
inversion time [TI] = 2500/2.26/1100 ms, 1-mm isotropic resolution),
3D FLAIR (TR/TE/TI = 5000/393/1800 ms, 1-mm isotropic resolution),
and proton density/T2 (2D fast spin echo, TR/TE = 3630/9.6 and 96 ms,
0.7 · 0.7 · 3 mm resolution) acquired on a Siemens Prisma 3T for the
MS cohort and MPRAGE (TR/TE/TI = 6.9/3.2/900 ms, 1-mm isotropic
resolution), FLAIR (TR/TE/TI = 4800/350/1650 ms, 1-mm isotropic
resolution), and proton density/T2 (2D turbo spin echo, TR/TE =
3418/15 and 100 ms, 0.9 · 0.9 · 3 mm resolution) acquired on the
Philips Achieva 3T (Philips Healthcare, Andover, MA) for the HIV
cohort. All magnetic resonance images were coregistered to the corre-
sponding MPRAGE image and were skull stripped, bias field corrected,
and normalized using AFNI tools,25 as described in the study by
Selvaganesan et al.7 Whole brain segmentations were obtained using
FreeSurfer26 on the MPRAGE and FLAIR images and then converted
into the following labels: cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM). These labels were then manually edited for
errors, and lesions were manually drawn by either a trained neurologist
(Y.M., S.O.) or a clinical neuroscientist (R.M.), each with more than 5
years of experience.

The multi-institutional MICCAI BraTS 2020 Training data set
(BraTS cohort, https://www.med.upenn.edu/cbica/brats2020/data.
html) was used to check the applicability of our findings to a much
larger data set with widely accepted gold standard masks.11 This
data set contains preprocessed multimodal input data and expert-
drawn glioma region segmentations for 369 participants. The images
were individually z-score normalized before modeling. For these
experiments, the healthy tissue labels were omitted because it con-
tained a mixture of signal intensity profiles from WM, GM, and CSF
and therefore was not relevant to the techniques being tested herein.
The 3 remaining labels of the tumor regions were used for training
and testing: enhancing tumor (ET), peritumoral edema (PE), and
necrotic/non-enhancing tumor (NCR/NET).

Brain Segmentation Methods
Figure 1 shows the inference pipeline for our parallel evalu-

ation of C-DEF and U-Net. All models were trained from scratch
on each cohort. In the C-DEF pathway (blue shading), image fea-
tures were derived and used as inputs for a logistic regression
classifier following the previously published method.7 Gaussian
blur and Gaussian gradient filters with kernel sizes of 33, 53, 73,
93, 173, 333, and 653 were calculated for each contrast and con-
catenated with the unfiltered images.27 These features were z-score
normalized based on the mean and standard deviation of the entire
training data set and were then used to train a multinomial logistic
regression classifier with a maximum of 200 iterations and L2
regularization (C = 0.05) to prevent overfitting. For detailed meth-
ods, refer to the study by Selvaganesan et al.7 C-DEF models were
implemented on a computing cluster with 64· Intel Xeon central
processing units (CPUs) (Intel Corporation, Santa Clara, CA) with
256 GB RAM running CentOS 7.7.

In the U-Net pathway (green shading), a 3D U-Net model was
used to train and predict on 3D image patches, and then, the output
patches were concatenated to produce the final segmentation.
U-Net architecture was adapted from the original 3D U-Net
method28 with 32 filters in the first convolution layer, but with
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the use of padded convolution layers and randomly sampled input
patches for training.18 Key hyperparameters, including patch size,
batch size, learning rate, and number of epochs, were tuned by 5-
fold cross-validation grid search on the MS cohort (data not
shown), and the configuration with the highest average Dice sim-
ilarity coefficient (DSC) was chosen. Based on this, the Adam
optimizer with categorical cross-entropy loss and a learning rate
of 1 · 1023 was trained for a maximum of 50 epochs with a batch
size of 60, and early stopping was conditioned on validation loss to
prevent overfitting. For each participant, 1000 random nonzero
voxels were selected and patches of size 323 were extracted cen-
tered at each voxel. Data augmentation consisted of random patch-
wise reflections, rotations, and elastic deformations during train-
ing. The U-Net model was implemented in Keras with TensorFlow
backend on an NVIDIA v100-SXM2 GPU (NVIDIA, Santa Clara,
CA) with 32 GB VRAM and 8 Intel Xeon Gold 6410 CPUs (Intel
Corporation, Santa Clara, CA) with 64 GB RAM.

C-DEF Versus U-Net Comparison
The optimized C-DEF and U-Net methods were then applied

to the full MS and HIV cohorts. Models were evaluated by 5-fold
cross-validation using an 80/20 training/testing split for C-DEF
and U-Net, with 25% of the training data used for validation in the
latter case. For each cross-validation fold, the training (including
validation in the case of U-Net) data set was then subsampled to
include 5, 10, or 15 participants for model fitting to simulate
limited training data availability. This subsampling was randomly
generated but kept consistent between corresponding C-DEF and
U-Net runs (eg, C-DEF-5 and U-Net-5) to provide a fair
comparison. The same comparison was also applied to the
BraTS cohort with additional models trained with data from 20,
40, 80, 160, and 295 (maximum available) participants. Mean
computational cost statistics were calculated from 3-fold repeated
measurements.

Qualitative Evaluation
Output segmentations for the HIV and MS cohorts were first

visually inspected and then qualitatively scored by an experienced
neurologist (S.O.) or trained clinical neuroscientist (R.M.), respec-
tively, while blinded to the method and model used to generate each
segmentation. A 5-point rating scale was used ranging from 1 =
“very bad” to 5 = “very good” for each tissue class. Net score for
each segmentation was calculated as the mean of the ratings for all
tissue classes, with lesion segmentations weighted double because of
their importance as a potential marker for neurological disease
progression.

Quantitative Evaluation and Statistical Analysis
DSC scores were calculated according to the following

formula:

DSC ¼ 2 TP

2 TPþ FPþ FN

where TP, FP, and FN are the number of true positive, false
positive, and false negative voxels, respectively, when
segmentation results were compared with labels manually
drawn by an expert neurologist. Statistical analyses were
performed using SAS version 9.4 (SAS Institute Inc, Cary,
NC). Box–Cox data transformation was applied to the 2 data
sets with minimum observations ,0.1. The Shapiro–Wilk
test (sample size ,50) or the Kolmogorov–Smirnov test
was used to check the normality assumption. For each tissue
class, repeated-measures analysis of variance was conducted
to evaluate the effect of the scoring method on mean DSC.
Intraclass correlation coefficient (ICC) and 95% confidence
intervals (CIs) were calculated to examine the correlation and

FIGURE 1. Analysis workflow. C-DEF (shaded in blue) and U-Net (shaded in green) algorithms for brain segmentation. Preprocessing consisted of
coregistration, bias correction, and intensity normalization. C-DEF, Classification using Derivative-based Features.
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agreement of the different scoring methods (treated as raters).
The Bland–Altman agreement analysis was performed using
segmentation tissue volumes of model pairs to examine
potential biases between C-DEF and U-Net models trained
on the same data. The Bonferroni-corrected P-value ,0.05
was considered to be statistically significant.

Code and Data Availability
BraTS is a publicly available data set. Code and data for C-DEF

and prototypical U-Net models used herein will be made available
through GitHub on acceptance of manuscript. The MS and HIV data
in this project are confidential and obtained through a natural history
study but may be obtained with Material Transfer Agreements,
subject to NIH’s policy on data sharing.

RESULTS

Participant Cohorts
The Institutional Review Board approved the study protocols,

and all participants provided written informed consent. Images
acquired from participants diagnosed with relapsing–remitting MS
(MS cohort, n = 20, 13 women, age 36 6 8 years, time from
diagnosis 0.2 6 0.1 years, and Expanded Disability Status Scale
2.5 6 1.8) and people living with HIV (HIV cohort, n = 18, 10
women, age 56 6 4 years, time from diagnosis 20 6 8 years) were
used in this study (mean 6 standard deviation). Label masks were

derived from FreeSurfer segmentations,26 which were converted to
WM, GM, and CSF. These were carefully edited by 1 of 3 neurol-
ogists and/or clinical neuroscientists (R.M., Y.M., S.O.), who then
manually added the lesion class. In addition, a collection of multi-
modal magnetic resonance imaging scans of patients with glioblas-
toma (n = 293) and patients with lower-grade glioma (n = 76) with
manually drawn tumor segmentation masks were downloaded from
the MICCAI BraTS 2020 online portal and modified to exclude
normal brain regions11,29 (https://www.med.upenn.edu/cbica/
brats2020/data.html).

Whole Brain Segmentation
Qualitative examination of segmentation results from C-DEF

trained on data from 5, 10, and 15 MS cohort participants revealed
no obviously visible improvement (Fig. 2A, top row; mean ratings:
3.77, 3.79, and 3.79, respectively), whereas significant improve-
ments (yellow arrows) were seen, especially for lesion segmentation,
by increasing the training data supplied to U-Net (Fig. 2A, middle
row; mean ratings: 3.55, 3.90, and 3.93, respectively). U-Net-5 had
low lesion sensitivity, especially for small punctate lesions (red
arrows), and higher occurrence of false positives from artifactual
hyperintensities (not shown). These results were mostly replicated
in the HIV cohort (Fig. 2B), with the exception that U-Net-15 (4.12)
rated worse than U-Net-10 (4.58) because of errors in the brainstem.

The quantitative results found that, for both cohorts, DSC from
C-DEF segmentations was unchanged with additional training data,
but DSC from U-Net segmentation improved significantly with more
training data (P , 0.05, slice test applied to DSC from each tissue

FIGURE 2. Qualitative assessment of segmentation at various training data set sizes. Output of segmentation performed with varied numbers of
training data (5, 10, and 15) using C-DEF and U-Net algorithms shown on a representative slice from a participant in (A) (male participant, 34
years) the MS cohort and (B) (female participant, 56 years) the HIV cohort. The bottom row shows preprocessed input scans and the manually
drawn mask for reference. Red arrows indicate segmentation errors, while yellow arrows indicate areas of improved segmentation with more
training data. C-DEF, Classification using Derivative-based Features; HIV, human immunodeficiency virus; MS, multiple sclerosis.
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class; Fig. 3A). In the MS cohort, DSC from the U-Net segmentation
improved, on average, by 30% in the lesion class (P, 0.001), 8% in
the CSF class (P , 0.01), 2% in the GM class (P , 0.001), and 1%
in WM class (P , 0.001) when using training data from 15 partic-
ipants compared with the data from 5 participants. U-Net segmen-
tation in the HIV cohort showed similar DSC increases with a 24%
improvement in the lesion class (P, 0.001) and 2% improvement in
the CSF class (P, 0.01). It should be noted that the DSC from WM
and GM segmentation was not significantly changed in the HIV
cohort. Consistent with qualitative examination, the quantitative
results from U-Net-5 segmentation had worse DSC across all tissues

than C-DEF-5 for both cohorts, except for WM in the MS cohort.
Meanwhile, U-Net-15 segmentation had similar lesion, GM, and
CSF DSC as C-DEF-15 segmentation in the MS cohort and similar
lesion and WM DSC in the HIV cohort.

ICC between C-DEF models trained with data from 5, 10, and 15
participants were .0.92 and .0.96 in all tissue classes in the MS
cohort and the HIV cohort, respectively. Between U-Net models, it
varied from 0.72 (CI: 0.52–0.87) in the WM class to less than 0.1 (CI:
20.15 to 0.39) in the lesion class in the MS cohort and from 0.60 (CI:
0.35–0.81) in the CSF class to less than 0.4 (CI: 0.07–0.65) in the
lesion class in the HIV cohort. Furthermore, the Bland–Altman

FIGURE 3. Comparison of U-Net and C-DEF segmentation. (A) DSC of the output of the C-DEF and U-Net models with manually annotated mask,
when trained with varied numbers of training data (5, 10, and 15). Asterisks indicate statistically significant differences (*P , 0.05, **P , 0.005).
Note that DSC (y axis) for white and gray matter is scaled 0.7–1.0 for better visualization. (B) Bland–Altman analysis of tissue volumes of C-DEF
and U-Net trained on data from 5 participants from the MS (top) and HIV (bottom) cohort. Bias (black line) and 95% CI (red dotted line) are
indicated. C-DEF, Classification using Derivative-based Features; CI, confidence interval; DSC, Dice similarity coefficient; HIV, human immuno-
deficiency virus; MS, multiple sclerosis.
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analysis (Fig. 3B) found that U-Net-5 consistently gave much smaller
lesion volumes compared with C-DEF-5 segmentation in both cohorts
(MS cohort mean bias: 0.69, CI:20.49 to 1.87; HIV cohort mean bias:
0.40, CI:20.64 to 1.45). The same comparison with models trained on
15 data points (not shown) found a 67%–70% reduction in lesion
volume bias (MS: 0.20, CI: 20.35 to 0.75; HIV: 0.13, CI: 20.47 to
0.73) compared with the 5 participant models. In the MS cohort, C-
DEF-5 produced smaller CSF volumes compared with U-Net-5 for
most participants, with a few exceptions. Visual inspection of the 4
U-Net segmentations that deviated from this trend (not shown) re-
vealed abnormally low sulcal CSF sensitivity. For each tissue class,
the MS cohort had a greater range of relative volume differences,
which is consistent with qualitative observations of greater similarity
between C-DEF and U-Net segmentations in the HIV cohort. In addi-
tion, the Bland–Altman analysis of C-DEF compared with the manu-
ally edited masks (not shown) confirmed that MS cohort CSF volumes
for C-DEF were consistently lower than those present in the manual
labels, regardless of the amount of training data used.

Difference map calculations of MS cohort segmentations
revealed that C-DEF was better able to detect fine details of the
cerebellar GM/WM folds, whereas U-Net typically failed to do so
(Fig. 4A). C-DEF also produced more plausible cortical GM bound-
aries than U-Net in many cases (Fig. 4B). Qualitative inspection of
the FreeSurfer-derived manually edited training labels found that
these 2 areas were particularly prone to labeling noise and subtle
errors, which were more readily replicated by U-Net than by C-DEF.
Finally, C-DEF more often misclassified parts of subcortical GM
structures, including the globus pallidus and thalamus, as WM,
whereas U-Net generally labeled them correctly (Fig. 4C).

Tumor Segmentation of Glioma Data Set
To validate and extrapolate these findings, we downloaded a

large publicly available data set and modified it to simulate tissue

segmentation using signal intensity profiles. Table 1 summarizes
the performance of C-DEF and U-Net models on the modified
BraTS cohort. C-DEF outperformed U-Net by mean DSC on the
ET and PE classes when trained on the data from 5 participants (P
, 0.001, Dunnett–Hsu test), while the NCT/NET DSC was not
significantly different between C-DEF-5 and U-Net-5. Although
no difference in mean DSC for any class was seen between C-
DEF-5 and C-DEF-10, it did increase significantly for all classes
between U-Net-5 and U-Net-10. When trained on much more data
(.20 participants), C-DEF mean DSC did eventually increase sig-
nificantly, with an average improvement of 12% (ET), 7.6% (PE),
and 190% (NCR/NET) from minimum to maximum amount of
training data. Over the same range, U-Net scores increased: 43%
(ET), 62% (PE), and 200% (NCR/NET). C-DEF was better or
statistically equivalent to U-Net by DSC for PE and ET tissue
classes for every training regime tested, except for PE with 160
training data. However, U-Net did demonstrate a significant advan-
tage on the NCR/NET tissue class for all except 5 and 15 training
data models. Although C-DEF models collectively produced ICCs
of 0.81 (0.78–0.83) and 0.89 (0.88–0.91) for ET and PE DSC,
indicating highly similar segmentation results, it had a far lower
ICC of 0.62 (0.58–0.66) for NCR/NET DSC, indicating only mild
consistency in segmentation results for C-DEF models trained on
different amounts of data.

Computational Cost Comparison
Benchmark computational cost data for C-DEF and U-Net

models were gathered during comparison on the MS cohort. When
trained on the minimum 5 participants in the same CPU environ-
ment, U-Net (8400 6 76 min) was more than 2 orders of magnitude
slower than C-DEF (38.8 6 0.7 min) for overall training time per
training participant. When deployed optimally on a v100 GPU,
U-Net training time (33 6 2 min) was comparable with C-DEF

FIGURE 4. Effect of errors in training labels. Zoomed-in details of segmentation outputs from a representative MS cohort participant (male
participant, 30 years) using C-DEF-15, U-Net-15, and their difference maps compared with the manually annotated mask (blue: mismatched
segmentation by C-DEF-15; red: mismatched segmentation by U-Net-15; green: mismatched segmentation by both C-DEF-15 and U-Net-15) for
(A) cerebellum, (B) cortical GM boundary, and (C) subcortical GM structures. Red arrows indicate segmentation errors, while yellow arrows
indicate correctly labeled segmentation. C-DEF, Classification using Derivative-based Features; GM, gray matter; MS, multiple sclerosis.
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deployed on CPU, and inference was nearly 3 times faster (0.20 6
0.01 min/participant compared with 0.55 6 0.02 min/participant for
C-DEF). It should be noted that C-DEF is currently only imple-
mented on CPU. Overall training time of both U-Net and C-DEF
increased approximately linearly with the number of training partic-
ipants in both the MS and HIV cohorts.

DISCUSSION
A logistic regression model using derived image textures

(C-DEF) for brain segmentation performed equivalent or better by
several key metrics than a prevalent deep learning algorithm (U-Net)
when trained on manually edited masks from a small to moderate
number of participants (n # 15). In particular, C-DEF produced
good lesion and CSF segmentations even when trained on the min-
imum 5 training participants, whereas U-Net did not. The perfor-
mance of U-Net models for whole brain segmentation improved
significantly with increasing amounts of training data; however, no
significant improvements were seen in C-DEF models with increas-
ing size of training data. U-Net produced better segmentation of
certain structures, such as the thalamus and globus pallidus, with
more subtle tissue intensity signatures. However, C-DEF was more
robust to minor annotation errors in the training data, leading to
better segmentation of certain structures, such as cerebellar folds
and cortical GM boundaries. Moreover, deep learning algorithms,
such as U-Net, require more compute resources than a classical
machine learning method, such as C-DEF, to perform model training
in a reasonable amount of time. Taken together, we have demon-
strated that a classical machine learning algorithm, such as C-DEF,
can produce equivalent or better whole brain segmentation based on
signal intensity profiles than a much more resource-intensive deep
learning algorithm, such as U-Net, in the case of limited training
data. Furthermore, the accuracy of C-DEF segmentation is high even
with limited (n = 5) training data and comparable with the accuracy
of U-Net trained with larger (n = 15) training data, making it a less
labor-intensive and more cost-effective option.

Minimizing the amount of manual label annotation required to
obtain a reasonable model is an important goal often overlooked
during model development. This step can have a large impact on the
time needed to implement a segmentation pipeline for a given

application30 because it is extremely tedious and requires expert
knowledge of neuroanatomy and/or neuroradiology. This is partic-
ularly true for a task such as whole brain segmentation, as opposed
to targeted quantification of a single structure, such as glioma seg-
mentation. Given that the efficacy of any supervised learning model
is highly dependent on the quality of the training data, the threshold
for acceptable annotations is generally quite high. It may therefore
be advantageous to be able to obtain robust segmentations from only
a few very carefully edited training data, rather than relying on a
much larger pool of training data that may be more susceptible to
large annotation errors because of its size. C-DEF achieves semantic
segmentation by modeling individual voxels (along with their
derived features), which means that a single annotated subject could
be considered a source of millions of individual training data points.
Meanwhile, U-Net dictates training on large image patches, which
reduces the number of discrete training examples that can be ob-
tained from each subject, even after data augmentation. Therefore, it
is intuitive that C-DEF may be far less susceptible to overfitting and
other penalties of insufficient training data.

The advantages of C-DEF were more pronounced when
training was performed on a smaller number of training data.
C-DEF produced reasonably good segmentations after training on
data from only 5 participants, while U-Net segmentations were
significantly degraded when trained with very few data points. The
latter are evidenced not only by raw DSC scores (Fig. 3A) but also
by the subpar CSF volumes produced in a single fold of U-Net-5
(Fig. 3B, top rightmost plot), which are sufficiently aberrant as to
indicate model instability. C-DEF was also more effective in seg-
mentation of certain structures, such as cerebellar folds and sulcal
GM boundaries, particularly in the MS cohort (Figs. 4A, B). These
regions were observed to be susceptible to labeling errors, which
may indicate that C-DEF effectively lowers the quality threshold for
training annotations by avoiding overfitting, provided that texture-
enriched tissue intensity signatures are reasonably well-resolved.
Indeed, we refrained from using the term gold standard masks for
manually annotated masks because of the presence of such errors.
This capability presents a trade-off because C-DEF was largely inef-
fective for segmentation of certain regions where tissue intensity
signatures were not well-resolved, such as the thalamus and globus
pallidus. As a result, U-Net demonstrated slightly better overall WM

TABLE 1. Performance of C-DEF and U-Net Models on BraTS Cohort Using Limited Training Data

Model

Mean DSC (95% CI)

ET PE NCR/NET
C-DEF-5 0.74 (0.72–0.76) 0.81 (0.80–0.83) 0.15 (0.13–0.18)
U-Net-5 0.58 (0.56–0.60) 0.55 (0.52–0.57) 0.17 (0.15–0.20)
C-DEF-10 0.72 (0.70–0.74) 0.83 (0.81–0.84) 0.17 (0.15–0.20)
U-Net-10 0.70 (0.68–0.72) 0.83 (0.82–0.85) 0.28 (0.25–0.31)
C-DEF-15 0.76 (0.74–0.77) 0.85 (0.83–0.86) 0.24 (0.22–0.27)
U-Net-15 0.73 (0.71–0.75) 0.82 (0.81–0.84) 0.27 (0.24–0.30)
C-DEF-20 0.76 (0.74–0.78) 0.84 (0.82–0.85) 0.21 (0.19–0.24)
U-Net-20 0.77 (0.75–0.79) 0.80 (0.79–0.82) 0.28 (0.25–0.31)
C-DEF-40 0.80 (0.78–0.81) 0.85 (0.84–0.87) 0.28 (0.25–0.31)
U-Net-40 0.78 (0.77–0.80) 0.85 (0.84–0.87) 0.34 (0.31–0.38)
C-DEF-80 0.81 (0.80–0.83) 0.86 (0.85–0.88) 0.32 (0.29–0.36)
U-Net-80 0.81 (0.80–0.83) 0.88 (0.86–0.89) 0.48 (0.44–0.52)
C-DEF-160 0.83 (0.82–0.85) 0.87 (0.86–0.89) 0.39 (0.36–0.43)
U-Net-160 0.82 (0.81–0.84) 0.89 (0.88–0.91) 0.51 (0.47–0.55)
C-DEF-All* 0.83 (0.81–0.84) 0.88 (0.86–0.89) 0.43 (0.39–0.46)
U-Net-All* 0.83 (0.81–0.84) 0.89 (0.88–0.91) 0.51 (0.47–0.55)

*Trained on data from 295 participants per fold.
BraTS indicates brain tumor segmentation; C-DEF, Classification using Derivative-based Features; CI, confidence interval; DSC, Dice similarity coefficient;

ET, enhancing tumor; NCR/NET, necrotic/non-enhancing tumor; PE, peritumoral edema.
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and GM DSC for some training regimes, but only on the MS cohort.
Our training annotations were derived from FreeSurfer subcortical
segmentation, which uses an atlas of annotated examples as priors.26

This mitigates the issue of overlapping tissue intensity signatures by
using a combination of local and global factors and their correlations
to determine the most likely label for a given voxel. U-Net was
given no such priors, but it was able to identify subcortical GM
structures more reliably than C-DEF using only patch-wise spatial
features. This difference could be due to a number of factors but is
likely related to the fact that the number and complexity of features
captured by U-Net far surpass the small (,50) number of localized
image textures incorporated into a single-layer logistic regression
model by C-DEF. It may also indicate that deep GM structures
are not linearly distributed and therefore not easily separable by
the linear decision boundaries defined by C-DEF, as opposed to
the more complex boundaries available to a deep network, such as
U-Net.

To further explore the dependence of each algorithm on
training data size, the MICCAI BraTS 2020 Training data set was
used as a supplementary comparison. This data set was chosen based
on its large, expert-curated set of gold standard labels and its
widespread acceptance as a public benchmark in the medical image
segmentation community. Unfortunately, whole brain segmentation
labels are not provided for this data set, so the “healthy tissue” label
encompasses regions of WM, GM, and CSF, leading to an indeter-
minate tissue intensity signature. To adapt the tumor segmentation
task to be more comparable with whole brain segmentation, we
chose to omit the healthy tissue label from training and quantify
segmentation of the 3 tumor regions (ET, NCR/NET, and PE)
directly rather than using the nested anatomical labels (ET, tumor
core, whole tumor) of the official BraTS challenge. When evaluated
on the ET and PE regions, C-DEF was better or equivalent to U-Net,
regardless of the number of participants used for training (up to
295). However, we observed that both C-DEF and U-Net struggled
with segmentation of NCR/NET regions, with U-Net producing
significantly better results in this region with moderate (n = 10)
and large (n $ 20) training data sizes. The ET and NCR/NET labels
were both modest minority classes, representing 19.8% and 22.2%
of the data compared with 58.0% belonging to the PE class. The
NCR/NET label also had significant overlap with the PE class for
tissue intensity signatures (data not shown), which may have been
exacerbated by the significant variation in intensity profiles in this
multi-institutional data set. These factors may have been at least in
part responsible for the larger relative increase in NCR/NET DSC
with more training.

Magnetic resonance images, especially at high fields, are prone
to bias fields from radiofrequency excitation and receive profiles,
which can confound segmentation using only local voxel intensi-
ties.20,31 In addition, spatial context plays a critical role in tissue
segmentation.7,20 To address these issues, derived image textures
offer a viable alternative to atlas-based strategies. Exhaustive opti-
mization by searching all potential texture sets remains an intracta-
bly large task, which is one limitation of the C-DEF approach. U-Net
offers one solution to this problem by effectively optimizing its own
filters albeit at great computational expense. The effects of changing
the number of U-Net filters and spatial factors, such as patch size
and overall architecture depth, are complicated, and exhaustive
exploration of this space is beyond the scope of this work. Prior
work has found evidence that deeper networks are not always better,
depending on the complexity of the modeled data set.14 For the
comparison herein, we tried to match the maximum receptive field
in the U-Net architecture (which depends on the size of the filters
and depth of the architecture) to the maximum filter kernel used in
the C-DEF model.

The scope of this inquiry was limited to comparison of 1
representative deep learning method and 1 classical machine
learning algorithm as “off-the-shelf” tools for whole brain segmen-
tation. As such, we chose not to perform exhaustive hyperpara-
meter optimization for either method. It is likely that such
optimization could provide performance gains for the chosen data
sets, but this remains difficult to predict a priori. Moreover, it is yet
unclear whether or when U-Net may definitively exceed overall
C-DEF performance given additional training data or whether a
different network architecture is required. Studies in recent years
have produced numerous derivations of U-Net intended to boost
the performance in a variety of segmentation tasks.32–34 However,
these methods remain largely developed and validated on large
data sets, making it difficult to evaluate whether proposed modifi-
cations will enhance performance in a limited training context.
Moreover, it is important to first establish the baseline performance
characteristics of the U-Net model used herein in this context
before investigation of more complicated approaches derived from
this framework. For these reasons, we chose a 3D patch-based U-
Net as our representative deep learning method. In the future, we
plan to expand this line of inquiry by benchmarking some of these
recent modifications to probe the impact of model architecture
changes on training data dependence. Of particular interest for
future examination is the recently proposed nnU-Net, which has
shown impressive results on a wide range of medical image seg-
mentation tasks.8

CONCLUSION
This study demonstrates that there is an important niche for

classical machine learning methods such as C-DEF to fill by
providing robust models trained on only a few labeled examples.
Avenues for future study include improvement of C-DEF segmen-
tation of subcortical GM and comparison of recent U-Net-style
methods in a larger whole brain segmentation data set.
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