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BIRATIONAL SELF-MAPS OF THREEFOLDS OF
(UN)-BOUNDED GENUS OR GONALITY

JÉRÉMY BLANC, IVAN CHELTSOV, ALEXANDER DUNCAN,
AND YURI PROKHOROV

Abstract. We study the complexity of birational self-maps of a projective
threefold X by looking at the birational type of surfaces contracted. These
surfaces are birational to the product of the projective line with a smooth
projective curve. We prove that the genus of the curves occuring is unbounded
if and only if X is birational to a conic bundle or a fibration into cubic surfaces.
Similarly, we prove that the gonality of the curves is unbounded if and only if
X is birational to a conic bundle.
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1. Introduction

Let X be a smooth projective complex algebraic variety. One way of studying
the complexity of the geometry of elements of the group Bir(X) of birational self-
maps of X consists of studying the complexity of the irreducible hypersurfaces
contracted by elements of Bir(X) (remember that an irreducible hypersurface H
is contracted by ϕ ∈ Bir(X) if ϕ(H) has codimension ≥ 2 in X). If X is a curve,
then Bir(X) = Aut(X), so there is nothing to be said. If X is a surface, every
irreducible curve contracted by an element of Bir(X) is rational. The case of
threefolds is then the first interesting to study in this context.
If dim(X) = 3, then every irreducible surface contracted by a birational trans-

formation ϕ ∈ Bir(X) is birational to P1×C for some smooth projective curve C.
There are then two natural integers that one can associate to C in this case,
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namely its genus g(C) and its gonality gon(C) (the minimal degree of a domi-
nant morphism C P1). We then define the genus g(ϕ) (respectively the gonality
gon(ϕ)) of ϕ to be the maximum of the genera g(C) (respectively of the gonal-
ities gon(C)) of the smooth projective curves C such that a hypersurface of X
contracted by ϕ is birational to P1 × C.
This notion of genus of elements of Bir(X) was already defined in [Fru73]

with another definition, which is in fact equivalent to the definition above by
[Lam14, Proposition 3]. Moreover, for each g, the set of elements of Bir(X) of
genus ≤ g form a subgroup, so we get a natural filtration on Bir(X), studied in
[Fru73, Lam14]. This naturally raises the question of finding the threefolds X for
which this filtration is infinite, namely the threefolds X for which the genus of
Bir(X) is unbounded (see [Lam14, Question 11]). Analogously, we get a filtration
given by the gonality. Of course, the gonality is bounded if the genus is bounded,
the unboundedness of the gonality is stronger than the unboundedness of the
genus.
Note that the boundedness of the genus (respectively of the gonality) of ele-

ments of Bir(X) is a birational invariant. Our main result (Theorem 1.1) describes
the threefolds having this property.
Recall that a variety Y is a conic bundle (respectively a del Pezzo fibration of

degree d) if Y admits a morphism Y S such that the generic fibre is a conic
(respectively a del Pezzo surface of degree d) over the field of rational functions
of S. If the conic has a rational point (or equivalently the conic bundle has a
rational section), then it is isomorphic to P1 and in this case we say that the conic
bundle is trivial.

1.1. Theorem. Let X be a smooth projective complex algebraic threefold.

(i) If X is birational to a conic bundle, the gonality and the genus of the
elements Bir(X) are both unbounded.

(ii) If X is birational to a del Pezzo fibration of degree 3, the genus of the
elements of Bir(X) is unbounded.

(iii) If X is not birational to a conic bundle, the gonality of the elements of
Bir(X) is bounded.

(iv) If X is not birational to a conic bundle and to a del Pezzo fibration of
degree 3, then both the genus and the gonality of elements of Bir(X) are
bounded.

We can generalise the above notions to higher dimensions. If X is a smooth
projective variety of dimension d ≥ 3, every irreducible hypersurface contracted
by an element of Bir(X) is birational to P1 × S for some variety S of dimension
d − 2. When d ≥ 4, dim(S) ≥ 2 and there are then many ways to study the
complexity of this variety. One possibility is the covering gonality cov.gon(S) of
S, namely the smallest integer c such that through a general point of S there is an
irreducible curve Γ ⊆ S birational to a smooth curve of gonality ≤ c. As before,
we say that the covering gonality of Bir(X) is bounded if the covering gonality
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of the irreducible varieties S such that a hypersurface contracted by an element
Bir(X) is birational to S×P1 is bounded. Since the covering gonality of a smooth
curve is its gonality, this notion is the same as the gonality defined above, in the
case of threefolds. As in dimension 3, this is again a birational invariant.
In Corollary 4.4, we prove that if X is a solid Fano variety (see [AO18, Defi-

nition 1.4]), then the covering gonality of elements of Bir(X) are bounded by a
constant that depends only on dim(X). In particular, the covering gonality of bi-
rational selfmaps of birationally rigid Fano varieties of dimension n (see [Che05],
[Puk13] or [CS16, Definition 3.1.1]) are bounded by a constant that depends only
on n.
In Proposition 2.4, we prove that if π : X B is a trivial conic bundle of any

dimension ≥ 3, then the covering gonality of the elements of

Bir(X/B) = {ϕ ∈ Bir(X) | π ◦ ϕ = π} ⊆ Bir(X)

is unbounded. This raises the following two questions:

1.2. Question. Let B be a projective variety of dimension ≥ 3 and let X B
be a non-trivial conic bundle. Is the covering gonality of elements of Bir(X/B)
unbounded?

1.3. Question. Let X be a projective variety of dimension ≥ 4 that is not bira-
tional to a conic bundle. Is the covering gonality of elements of Bir(X) bounded?

A rough idea of the proof of Theorem 1.1 is as follows. Since the boundedness
of the genus and gonality is a birational invariant, we can run the MMP and
replace X with a birational model (with terminal singularities) such that either
KX is nef or X has a Mori fibre space structure X/B. In the former case any
birational self-map is a pseudo-automorphism [Han87, Lemma 3.4] and so the
genus and gonality are bounded in this case. If X/B is a Mori fibre space, then
any birational map X 99K X is a composition of Sarkisov links (see Sect. 3). If a
link involves a Mori fibre space Xi/Bi which is (generically) a conic bundle, then
we apply an explicit construction of Sect. 2 to get unboundedness (and thus obtain
Theorem 1.1(i)). If a link involves Mori fibre spaces Xi/Bi and Xi+1/Bi+1, then
we use the boundedness result for Fano threefolds [KMMT00] (see also [Bir16]).
This result is also used to prove the assertions 1.1(iii)-(iv) (see Lemma 4.5). The
unboundeness of the genus for del Pezzo fibrations of degree 3 (Theorem 1.1(ii))
is obtained by finding 2-sections of large genus and applying Bertini involutions
associated to these curves, see Section 5 for the detailed construction.

1.4. Acknowledgements. This research was supported through the programme
“Research in Pairs” by the Mathematisches Forschungsinstitut Oberwolfach in
2018. Jérémy Blanc acknowledges support by the Swiss National Science Foun-
dation Grant “Birational transformations of threefolds” 200020 178807. Ivan
Cheltsov and Yuri Prokhorov were partially supported by the Royal Society
grant No. IES\R1\180205, and the Russian Academic Excellence Project 5-100.
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for interesting discussions during the preparation of this text. We also thank the
anonymous referee for providing thoughtful comments that resulted in changes
to the revised version of the paper.

2. The case of conic bundles

Every conic bundle is square birational equivalent to a conic bundle that can
be seen as a conic in a (Zariski locally trivial) P2-bundle. Using a rational section
of the P2-bundle, one can do the following construction:

2.1. Construction. Let π : Q B be a conic bundle over an irreducible normal
variety B and let Qη be its generic fibre. Then Qη is a conic over the function field
C(B). The anicanonical linear system |−KQη

| defines an embedding Qη →֒ P2
C(B).

Fix a C(B)-point sη ∈ P2
C(B) \ Qη. The projection pr : Qη P1

C(B) from sη is a
double cover. Let ιη : Qη Qη be the corresponding Galois involution. It induces
a fibrewise birational involution ι : Q 99K Q.
Suppose now that our conic bundle π : Q B is embedded into a P2-bundle

π̂ : P B and suppose that we are given a section s : B P whose image is not
contained in Q. This section defines a point sη ∈ P2

C(B) \Qη and therefore defines
an involution ι : Q 99K Q as above.

2.2. Lemma. [BL15, Lemma 15] If, in the above notation, Γ ⊆ B is an irre-
ducible hypersurface that is not contained in the discriminant locus of π and such
that s(Γ) ⊆ Q, the hypersurface V = π−1(Γ) of Q is contracted by ι onto the
codimension 2 subset s(Γ).

2.3. Corollary. Let π : Q B be a conic bundle over an irreducible normal va-
riety B, given by the restriction of a P2-bundle π̂ : P B. Let Γ ⊆ B be an
irreducible hypersurface such that the restriction of π gives a trivial conic bundle
V = π−1(Γ) Γ. Then, there exists an involution

ι ∈ Bir(Q/B) = {ϕ ∈ Bir(Q) | πϕ = π}

that contracts the hypersurface V onto the image of a rational section of Γ 99K V .

Proof. Since the restriction of π gives a trivial conic bundle V = π−1(Γ) Γ,
there is a rational section sΓ : Γ 99K V ⊆ Q ⊆ P . We then extend this section to
a rational section s : B 99K P whose image is not contained in Q. This can be
done locally, on an open subset where P B is a trivial P2-bundle. Lemma 2.2
provides an involution ι ∈ Bir(Q/B) that contracts V onto the image of sΓ. �

We can now give the proof of Theorem 1.1(i) (and of the small generalisation
to higher dimensions mentioned in the introduction):

2.4. Proposition. Let B be a projective variety of dimension ≥ 2, let π : Q B
be a conic bundle and let us assume that either π is trivial (admits a rational
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section) or that dim(B) = 2. Then, the covering gonality (and the genus if
dim(Q) = 3) of elements of Bir(Q/B) is unbounded.

Proof. We can assume that π is the restriction of a P2-bundle π̂ : P B.
Let Γ ⊆ B be an irreducible hypersurface which is not contained in the dis-

criminant locus of π. Then the restriction of π gives a conic bundle πΓ : V =
π−1(Γ) Γ. If π is a trivial conic bundle, then so is πΓ. If dim(B) = 2, then Γ is
a curve, and π is again a trivial conic bundle by Tsen’s Theorem [Kol96, Corol-
lary 6.6.2 p. 232]. In both cases, we can apply Corollary 2.3 to find an element
of Bir(Q/B) that contracts the hypersurface V ⊆ Q, birational to P1 × Γ.
This can be done for any irreducible hypersurface of B not contained in the

discriminant locus. Thus, the covering gonality of elements of Bir(Q/B) are
unbounded (to see this, simply embed B in a projective space and take a general
hypersurface of large degree). The same argument applies to the genus when
dim(Q) = 3. �

We recall the following classical result:

2.5. Lemma. Let B be a projective curve. A del Pezzo fibration X/B of degree
≥ 4 is birational to a conic bundle X ′/B′.

Proof. The generic fibre of X/B is a del Pezzo surface F of degree d ≥ 4 over
the function field C(B). Applying MMP over B, we can assume that the generic
fibre satisfies rkPic(F ) = 1 or has a structure of conic bundle. In the latter case,
the proof is over, so we assume that rkPic(F ) = 1. It is sufficient to show that
F birationally has a conic bundle structure F C, where C is a curve defined
over C(B); this is for instance the case if F is rational. As B is a curve, the field
C(B) has the C1 property, so F has a rational C(B)-point x ∈ F (see [Kol96,
Theorem IV.6.8, page 233]).
If d = 9, the existence of x implies that F is isomorphic to P2. If d = 8, the

fact that rkPic(F ) = 1 implies that F is isomorphic to a smooth quadric in P3,
and the projection from x gives a birational map to P2. We cannot have d = 7,
as the unique (−1)-curve of F

C(B) would be defined over C(B), contradicting the

assumption rkPic(F ) = 1.
It remains to study the cases where d ∈ {4, 5, 6}. Since rkPic(F ) = 1, the

C(B)-rational point x ∈ F does not lie on a (−1)-curve. Therefore, by blowing-
up x ∈ F we obtain a del Pezzo surface Y over C(B) of degree d − 1 with
rkPic(Y ) = 2. Thus on Y there exists a Mori contraction Y Y ′ which is
different from Y F . The type of Y F can be computed explicitely (see
[Isk96, Theorem 2.6]): If d = 5 (resp. d = 6), then Y Y ′ is a birational
contraction to P2

C(B), (resp. to a quadric in P3
C(B) having a rational point), so F

is again rational. If d = 4, then Y ′ ≃ P1
C(B) and Y Y ′ is a conic bundle. This

proves our lemma. �
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3. Reminders on the Sarkisov program

3.1. Definition. A variety X with a surjective morphism η : X B is a Mori
fibre space if the following conditions hold:

(i) η has connected fibres, B is normal, dimX > dimB ≥ 0 and the relative
Picard rank ρ(X/B) = ρ(X)− ρ(B) is equal to 1;

(ii) X is Q-factorial with at most terminal singularities;
(iii) The anticanonical divisor −KX is η-ample.

The Mori fibre space is denoted by X/B.
An isomorphism of fibre spaces X/B ≃ X ′/B′ is an isomorphism ϕ : X X ′

that sits in a commutative diagram

X

��

ϕ
// X ′

��

B
ψ

// B′

where ψ : B ≃ B′ is an isomorphism.

3.2. Remark. In the case that we study, namely when dim(X) = 3, we obtain
three possible cases for a Mori fibre space X/B:

(i) If dim(B) = 0, then X is a Fano variety of Picard rank 1;
(ii) If dim(B) = 1, then X is a del Pezzo fibration over the curve B;
(iii) If dim(B) = 2, then X is a conic bundle over the surface B.

3.3. Definition. A Sarkisov link χ : X1 X2 between two Mori fibre spaces
X1/B1 and X2/B2 is a birational map which fits into one of the following com-
mutative diagrams.

Y1 X2

X1 B2

B1 = Z

div fib
χ

fib

Y1 Y2

X1 X2

B1 = Z = B2

div div

χ

fib fib

I II

X1 Y2

B1 X2

Z = B2

χ
fib div

fib

X1 X2

B1 B2

Z

χ

fib fib

III IV

6



Here the dotted arrows are pseudo-isomorphisms (isomorphisms outside of codi-
mension ≥ 2 subsets) given by a sequence of log-flips, the plain arrows are surjec-
tive morphisms of relative Picard rank 1, with fibres not equivalent via χ in the
cases of types II and IV, the arrows written “div” are divisorial contractions, the
arrows written “fib” are Mori fiber spaces, and the variety Z is normal with at
worst Kawamata log terminal singularities. We say that the base of the Sarkisov
link is the variety Z (which is dominated by, but not necessarily equal to, the
bases B1 and B2 of the two Mori fibre spaces), and that the above diagram is the
Sarkisov diagram associated to χ.

The notion of Sarkisov links is important, because of the following result.

3.4. Theorem. Every birational map between Mori fibre spaces decomposes into
a composition of Sarkisov links and isomorphisms of Mori fibre spaces.

In dimension 2, this is essentially due to Castelunovo [Cas01], although not
stated directly in these terms. The case of dimension 3 was done for the first
time in [Cor95, Theorem 3.7]. The proof in any dimension is available in [HM13,
Theorem 1.1].

3.5. Remark. In fact, it follows from the definition that there are strong con-
straints on the sequence of anti-flips, flops and flips (that is, about the sign of the
intersection of the exceptional curves against the canonical divisor). Precisely, as
explained in [BLZ19, Remark 3.10], the top (dotted) row of a Sarkisov diagram
has the following form:

Ym . . . Y0 Y ′

0 . . . Y ′

n

Ȳ

Z

where Y0 Y ′

0 is a flop over Z (or an isomorphism),m,n ≥ 0, and each Yi Yi+1,
Y ′

i Y ′

i+1 is a flip over Z (or an isomorphism). Indeed, one can decompose the
pseudo-isomorphism into a sequence of log-flips and for Y = Yi or Y = Y ′

i , a
general contracted curve C of the fibration Y/Z satisfies KY · C < 0, hence at
least one of the two extremal rays of the cone NE(Y/Z) is strictly negative against
KY . In particular, both Y0/Z and Y ′

0/Z are relatively weak Fano (or Fano if the
flop is an isomorphism) over Z.
If Y0 Y ′

0 is an isomorphism, we choose Ȳ to be isomorphic to both; if Y0 Y ′

0

is a flop and not an isomorphism, the map is naturally associated to a variety
Ȳ , that is a Fano with terminal (but not Q-factorial) singularities such that
rkCl(Ȳ /Z) = 2. It is called the central model in [CS11]. Two contractions
Y0 Ȳ and Y ′

0 Ȳ are small Q-factorialisations of Ȳ . Hence the whole diagram
is uniquely determined by Ȳ /Z.
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3.6. Remark. In the sequel, we will mostly work with varieties of dimension 3
not birational to conic bundles, as the case of conic bundles have already been
treated in Section 2. The Mori fibre spaces will be then either Fano of rank 1
or del Pezzo fibrations of degree ≤ 3 (see Lemma 2.5). As a Fano is rationally
connected, a del Pezzo fibration over a base not equal to P1 is not birational to a
Fano variety. All the Sarkisov links that we can have between Mori fibre spaces
not birational to conic bundles are then as follows:

Y1 X2

X1 P1

point

div fib
χ

fib

Y1 Y2

X1 X2

point or curve

div div

χ

fib fib

I II

X1 Y2

P1 X2

point

χ
fib div

fib

X1 X2

P1 P1

point

χ

fib fib

III IV

3.7. Lemma. Let us consider a Sarkisov link of type II between three-dimensional
Mori fibre spaces X1/B and X2/B over a base B of dimension 1.

Y1 Y2

X1 X2

B

div div

χ

fib fib

Denoting by Ei ⊂ Yi the exceptional divisor of Yi/Xi and by ei ⊂ Xi its image,
one of the following case holds:

(i) χ induces an isomorphism between the generic fibres of X1/B and X2/B,
and ei is contained in a fibre of Xi/B for i = 1, 2.

(ii) χ induces a birational map between the generic fibres of X1/B and X2/B
which is not an isomorphism and ei is a curve of Xi such that ei/B is a
finite morphism of degree ri ∈ {1, . . . , 8}, for i = 1, 2.

Moreover, in case (ii), if one of the degree di of the del Pezzo fibration Xi/B is
≤ 3, then d1 = d2 and r1 = r2, and (di, ri) ∈ {(3, 2), (3, 1), (2, 1)}, and the generic
fibres of X1/B and X2/B are isomorphic. In particular, ei is birational to B if
di = 2.
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Proof. The image ei is a curve or a point, so is either (a) contained in a fibre of
Xi/B, or (b) maps surjectively to B via a finite morphism of degree di ≥ 1. Case
(a) happens if and only if the generic fibres of Xi/B and Yi/B are isomorphic. As
the generic fibres of Xi/B are del Pezzo surfaces of rank 1, for i = 1, 2, case (a)
happens for i = 1 if and only if it happens for i = 2. This provides the dichotomy
(i)-(ii) above.
In case (ii), we look at the birational map between the generic fibres Xi/B

which are del Pezzo surfaces of degree 1. The classification of such maps, given
in [Isk96, Theorem 2.6], implies that ri ≤ 8 for i = 1, 2 and that if di ≤ 3 then
d1 = d2, r1 = r2, and (di, ri) ∈ {(3, 2), (3, 1), (2, 1)}, and the generic fibres of
X1/B and X2/B are isomorphic. �

In Case (ii) in Lemma 3.7, the case of del Pezzo fibrations of degree 3 is the
most interesting one, as the degree ≤ 2 only gives curves ei of bounded genus,
and the case of degree ≥ 4 is covered by Lemma 2.5.

3.8. Remark. Let X/B be a Mori fibre space such that dim(B) ∈ {0, 1}. It may
happen that no Sarkisov link starts from X . If dim(B) = 0, this means (almost
by definition) that X is a birationally super-rigid Fano threefold. Many examples
of such Fano threefolds can be found in [CP17]. Similarly, if dim(B) = 1 and no
Sarkisov link starts from X , then X/B is a del Pezzo fibration of degree 1 that
is birationally rigid over B (see [Cor00, Definition 1.3]). Vice versa, if X/B is
a del Pezzo fibration of degree 1 that is birationally rigid over B, then the only
Sarkisov links that can start from X are described in Case (i) of Lemma 3.7. For
some (birationally rigid over the base) del Pezzo fibrations such links do not exist
(see [Kry18]). However, in general they may exist and are not well understood
(see [Par01, Par03]).

4. Bounding the gonality and genus of curves

We first state a consequence of the boundedness of weak-Fano terminal vari-
eties. The next lemma applies to Sarkisov links involving a Fano threefold of
rank 1 (when one of the Bi has dimension 0) and to Sarkisov links of type IV
between del Pezzo fibrations (when dim(B1) = dim(B2) = 1 and dim(Z) = 0).

4.1. Lemma. There are integers g0, c0 ≥ 1 such that, for each Sarkisov link
χ : X1 X2 between two Mori fibre spacesX1/B1 and X2/B2 such that dim(X1) =
dim(X2) = 3 over a base Z of dimension 0, the following hold:

(i) Each divisorial contraction involved in the Sarkisov diagram of χ con-
tracts a divisor birational to P1 × Γ where gon(Γ) ≤ c0 and g(Γ) ≤ g0.

(ii) For each i ∈ {1, 2} such that dim(Bi) = 1, each fibre of Xi/Bi is bira-
tional to P1 × Γ with gon(Γ) ≤ c0 and g(Γ) ≤ g0.

Proof. As in Remark 3.5, we consider the variety Y0 which is pseudo-isomorphic
to the top varieties in the Sarkisov diagram and which is a weak-Fano variety of
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rank 2, since the base Z of the Sarkisov link is of dimension 0. In particular, we
see that Y0 is FTt (see Definition A.1), so that all top varieties in the Sarkisov
diagram are also FTt by Corollary A.5. Hence, the assertion ((i)) follows from
Corollary A.13, and the assertion ((ii)) follows from Corollary A.15. �

The following result is a direct consequence of Lemma 4.1.

4.2. Corollary. There are integers g0, c0 ≥ 1 such that for each Mori fibre space
X/B where dim(X) = 3, dim(B) = 0, not birational to a conic bundle or a del
Pezzo fibration, the genus and the gonality of elements of Bir(X) are bounded by
g0 and c0 respectively.

Proof. Every element of Bir(X) decomposes into a product of Sarkisov links and
isomorphisms of Mori fibre spaces (Theorem 3.4). The base of each of these
Sarkisov links has dimension 0, as X is not birational to a conic bundle or a
del Pezzo fibration. Hence the genus and the gonality of each Sarkisov link are
bounded by g0 and c0 respectively by Lemma 4.1(i). This provides the result. �

In fact, Corollary 4.2 can be easily extended to higher dimension, and concerns
then the solid Fano varieties, defined as below (see [AO18, Definition 1.4]):

4.3. Definition. A Fano variety X being a Mori fibre space over a point is said
to be (birationally) solid if it is not birational to any Mori fibre space over a
positive dimensional base.

4.4. Corollary. For every integer n ≥ 3, there is an integer cn ≥ 1 (that only
depends on n) such that for each solid Fano variety X of dimension n, the covering
gonality of elements of Bir(X) are bounded by cn.

Proof. The proof is similar as the one of Lemma 4.1 and Corollary 4.2: As X is a
solid Fano, every element of Bir(X) decomposes into a finite number of Sarkisov
links between Mori fibre spaces over a base of dimension 0. As in Remark 3.5,
we consider the variety Y0 which is pseudo-isomorphic to the top varieties in the
Sarkisov diagram and which is a weak-Fano variety of rank 2, since the base Z of
the Sarkisov link is of dimension 0. The result then follows from Corollary A.13.

�

We can now extend Corollary 4.2 to a more general situation:

4.5. Lemma. There are integers g0, c0 ≥ 1 such that the following holds:
Suppose X/B is a Mori fibre space with dim(X) = 3 and there exists a Sarkisov

link over a base of dimension 0 involving X/B. Then, for every element ϕ ∈
Bir(X) having a decomposition into Sarkisov links that involves no conic bundles,
the gonality of ϕ is bounded by c0. Moreover, if we can choose a decomposition of
ϕ such that no del Pezzo fibration of degree ≥ 3 arises, the genus of ϕ is bounded
by g0.
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Proof. We choose integers g0 and c0 from Lemma 4.1, and assume that c0 ≥ 8.
If dim(B) = 0, then X is a Fano variety, and thus rationally connected [Zha06].

If dim(B) ≥ 1, then dim(B) = 1 as X is not birational to a conic bundle. By
assumption, X/B is involved in a Sarkisov link over a base of dimension 0. The
variety X is then birational to a Fano variety (the variety Ȳ of Remark 3.5), so
is again rationally connected. Moreover, Lemma 4.1(ii) implies that each fibre of
X/B is birational to C × P1 for some curve of genus and gonality bounded by g0
and c0.
We take an element ϕ ∈ Bir(X) that we decompose, using Theorem 3.4), as

ϕ = θr ◦ χr ◦ · · · ◦ θ1 ◦ χ1 ◦ θ0,

where each χi is a Sarkisov link between X ′

i−1/B
′

i−1 and Xi/Bi, each θi is an
isomorphism of Mori fibre spaces

Xi X ′

i

Bi B′

i

θi

≃

where X0/B0 = X ′

r/B
′

r = X/B. By assumption, we may choose one such decom-
position such that none of the Xi/Bi (or X

′

i/B
′

i) is a conic bundle, which means
that dim(Bi) ∈ {0, 1} for each i ∈ {0, . . . , r}.
By Remark 3.6 and Lemma 3.7, we obtain three different types of Sarkisov

links χi:
a) Sarkisov links χi with a base of dimension 0.
b) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing no isomorphism

between the generic fibres of X ′

i−1/Bi−1 and Xi/Bi.
c) Sarkisov links χi of type II over a curve Bi−1 = Bi inducing an isomorphism

between the generic fibres of X ′

i−1/Bi−1 and Xi/Bi.
The genus and the gonality of the Sarkisov link in case a) are bounded by g0

and c0 respectively (Lemma 4.1(i)).
In Case b)−c), the Sarkisov link is between two del Pezzo fibrations X ′

i−1/B
′

i−1

and Xi/Bi over a curve B′

i−1 = Bi. As Xi−1 and Xi are rationally connected
(because they are birational to X), we obtain B′

i−1 = Bi ≃ P1.
Case b) corresponds to Case (ii) of Lemma 3.7). The two divisorial contractions

contract divisors onto curves ofX ′

i−1/B
′

i−1 and Xi/Bi of gonality at most 8, which
are moreover rational (and thus of genus bounded by g0) if the degree of the del
Pezzo fibrations is ≤ 2 (Lemma 3.7).
The remaining case is Case c) (Case (i) of Lemma 3.7). In this case, the

surfaces Fi−1 ⊆ X ′

i−1 and Fi ⊆ Xi contracted by χi and χ
−1
i correspond to fibres

of the del Pezzo fibrations X ′

i−1/B
′

i−1 and Xi/Bi. If the fibre is general, it is
rational and we are done, but it could be that it is birational to P1 ×C for some
non-rational curve C, a priori of large genus / gonality even if we do not know if
such a situation is really possible (see Question 4.6). To overcome this issue, we
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denote by 1 ≤ j ≤ i ≤ k ≤ r the smallest integer j ∈ {1, . . . , i} and the biggest
integer k ∈ {i, . . . , r} such that χj , . . . , χk are links of type II, and obtain that

ν = θk ◦ χk ◦ θk−1 ◦ χk−1 ◦ · · · ◦ χj+1 ◦ θj ◦ χj ◦ θj

is a birational map between del Pezzo fibrations Xj−1/Bi and X
′

k/B
′

k which fits
in a commutative diagram

Xj−1 X ′

k

Bi B′

k ≃ P1.

ν

≃

Every surface contracted by ν is either a fibre, or birational to a surface contracted
by a Sarkisov link in χj, . . . , χk of type b). We now prove that the fibres contracted
by ν are birational to C × P1 for some curve C of genus and gonality bounded
by g0 and c0 respectively. If j = 1, this is because X0/B0 = X/B and we already
observed at the beginning that each fibre of X/B had this property. If j > 1,
then the Sarkisov link χj−1 is not of type II, so is over a base of dimension 0, i.e.
is in Case a). Hence, each fibre of Xj−1/Bj−1 is birational to C × P1 for some
curve C of genus ≤ g0 and gonality ≤ c0 (Lemma 4.1(ii)).
Hence, even if χi can a priori be of arbitrary large genus or gonality, the gonality

of ν is bounded by c0, and the genus is bounded by g0 if no del Pezzo fibration
of degree 3 appears in the decomposition.
As ϕ decomposes into links of type a) and maps having the same form as ν

(compositions of Sarkisov links of type II), the gonality of ν is bounded by c0,
and the genus is bounded by g0 if no del Pezzo fibration of degree 3 appears in
the decomposition. �

The following question is naturally raised by the proof of Lemma 4.5.

4.6. Question. Is there an integer g ≥ 1 such that for each Mori fibre space
X B which is a del Pezzo fibration, each fibre is birational to C × P1 for some
curve C of genus (respectively gonality) ≤ g?

In the case of birational maps between del Pezzo fibrations, we do not have an
absolute bound (which would follow from a positive answer to Question 4.6), but
we can easily obtain the following result on birational maps involving links over
a base of dimension 1. This is for instance the case for all elements of Bir(X) if
X/B is a Mori fibre space not birational to a conic bundle with X not rationally
connected.

4.7. Lemma. Let X/B be a Mori fibre space such that dim(X) = 3 and dim(B) = 1
(a del Pezzo fibration over a curve). There are integers c, g ≥ 0 (depending on
X/B) such that the following holds:
For each birational map ϕ ∈ Bir(X) that decomposes into Sarkisov links of type

II, each over a base of dimension 1, the gonality of ϕ is bounded by c. Moreover,
12



the genus of ϕ is bounded by g if no del Pezzo fibration of degree ≥ 3 occurs in
the decomposition.

Proof. As each Sarkisov link occuring in the decomposition of ϕ is of type II, the
base of the Sarkisov link is isomorphic to B, and so are all bases of the Mori fibre
spaces involved.
The map ϕ is a square birational map, i.e. sends a general fibre of X/B onto

a general fibre. There are finitely many fibres of X/B that are not rational, so
we only need to bound the gonality and the genus of the curves C such that
C × P1 is birational to a surface contracted by ϕ that is not a fibre. Such a
surface is contracted by a Sarkisov link χ between del Pezzo fibrations Xi−1/Bi−1

and Xi/Bi, which is not an isomorphism between the generic fibres. We proceed
as in the proof of Lemma 4.5: The two divisorial contractions contract divisors
onto multisections of Xi−1/Bi−1 and Xi/Bi. As the variety Y0 in the middle (see
Remark 3.5) is a weak del Pezzo fibration over the base, we can only blow-up
curves with gonality at most 8. Moreover, the curves are rational if Xi−1/Bi−1

and Xi/Bi are del Pezzo fibrations of degree ≤ 2. This achieves the result. �

We can now apply Lemma 4.5 and obtain the following result, which gives the
proof of parts (iii) and (iv) of Theorem 1.1. Note that here the bound depends
on X and is not an absolute bound as in Lemma 4.5. This is of course needed,
as one can consider the blow-up of any threefold along a curve of arbitrary large
genus.

4.8. Proposition. Let X be a projective threefold not birational to a conic bundle.
Then, then the following hold:

(i) The gonality of the elements of Bir(X) is bounded.
(ii) If X is not birational to a del Pezzo fibration of degree 3, the genus of

the elements of Bir(X) is also bounded.

Proof. Using the minimal model program (MMP), we see that X is birational
to a Q-factorial variety X ′ with at worst terminal singularities, which is either a
Mori fibre space X ′/B′ or where KX′ is nef. We may replace X with X ′, as this
does not change the boundedness (but can a priori change the bound).
IfKX is nef, then the genus and the gonality of elements of Bir(X) are bounded,

as no element of Bir(X) contracts any hypersurface.
We can then assume that X/B is a Mori fibre space. We have dim(B) ∈ {0, 1}

as X is not birational to a conic bundle. If no Sarkisov link starts from X , the
result is trivially true, since in this case Theorem 3.4 gives

Bir(X) = Aut(X).

Note that such threefolds do exists (see Remark 3.8). To complete the proof, we
may assume that Bir(X) 6= Aut(X), so that, in particular, there is a Sarkisov
link that starts from X . If X/B is involved in a Sarkisov link over a base of
dimension 0, the result follows from Lemma 4.5. So we may assume that the base
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of every Sarkisov link between Mori fibre spaces birational to X has dimension
1. Then dim(B) = 1 and every Sarkisov link involved in any decomposition
of any element ϕ ∈ Bir(X) is of type II between two del Pezzo fibrations. In
particular, the del Pezzo fibration X/B is birationally rigid over B (see [Cor00,
Definition 1.3] and Remark 3.8). Now the result follows from Lemma 4.7. �

5. Del Pezzo fibrations of degree 3

We recall the following result, proven in [Cor96] (see also [Kol97] for generali-
sations):

5.1. Proposition ([Cor96, Theorem 1.10]). Let B be a smooth curve and let
X B be a del Pezzo fibration of degree 3 (cubic surface fibration). Then, there
exists a birational map

X

  
❅❅

❅❅
❅❅

❅❅

ϕ
//❴❴❴❴❴❴❴ X ′

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

B

such that X ′/B is another del Pezzo fibration of degree 3 having the following
properties:

(i) X ′ is a projective threefold with terminal singularities of index 1;
(ii) every fibre of X ′/B is reduced and irreducible, and is a Gorenstein del

Pezzo surface;
(iii) the anti-canonical system −KX′ is relatively very ample and defines an

embedding in a P3-bundle over B.

We will also need the following lemma:

5.2. Lemma. Let 0 ∈ V ⊂ C4 be an isolated cDV singularity and let C ⊂ V be
a smooth curve that contains 0. Let σ : V̂ V be the blowup of C. Then V̂ is
normal.

Proof. Let t be a local parameter on C. Take analytic coordinates x1, . . . , x4 in
C4 so that x1 = t. Then C is the x1-axis, given by x2 = x3 = x4 = 0. As V
contains C, it is given by the equation

φ = x2φ2 + x3φ3 + x4φ4 = 0,

where the functions φi = φi(x1, . . . , x4) vanish at the origin. The origin being a
cDV singularity, at least one of φi’s contains a linear term and at least one of
the φi’s contains a term xk1 for some k > 0 (because V is smooth at a general
point of C). By changing coordinates x2, x3, x4 linearly, we may assume that φ4

contains a non-zero linear term ℓ(x1, x4). Note that the fibre σ−1(0) ⊂ V̂ is a

plane P2 and V̂ is a hypersurface in a nonsingular fourfold. By Serre’s criterion
14



it is sufficient to show that V̂ is smooth at some point of σ−1(0). Consider the
affine chart U4 := {x

′

4 6= 0}. Then σ−1(U4) is given by

{x′2φ
′

2 + x′3φ
′

3 + φ′

4 = 0} ⊂ C4
x′1,...,x

′

4
,

where φ′

i = φi(x
′

1, x
′

2x
′

4, x
′

3x
′

4, x
′

4). The fibre σ−1(0) ∩ U4 in this chart is given by
x′1 = x′4 = 0. Then

mult0(x
′

2φ
′

2) ≥ 2, mult0(x
′

3φ
′

3) ≥ 2,

and the linear part ℓ(x1, x4) of φ′

4 is nontrivial. Therefore, V̂ is smooth at the
origin of σ−1(U4). �

5.3. Proposition. Let B be a smooth curve and let X B be a del Pezzo fibra-
tion of degree 3. Then, the genus of elements of Bir(X/B) is unbounded (even if
the gonality can be bounded).

Proof. We can assume that B is projective, and apply Proposition 5.1 to reduce
to the case where X,B satisfy the conditions (i)-(iii) of this proposition.
We then take a curve C ⊂ X which is a section of X/B (this exists as the

field C(B) has the C1 property, by [Kol96, Theorem IV.6.8, page 233]). We can
moreover assume that a general point of C is not contained in any of the 27 lines
of the corresponding fibre ([Kol96, Theorem IV.6.10, page 234]). We view X as
a closed hypersurface of a P3-bundle P B (Condition (iii) of Proposition 5.1).

We consider the blow-up η̂ : P̂ P of P along C, denote by X̂ ⊂ P̂ the strict
transform of X , and denote by η : X̂ X the restriction of η̂, that is the blow-
up of C. As X̂ is a hypersurface of P̂ , the canonical class KX̂ is a well-defined

Cartier divisor. By Lemma 5.2, X̂ is normal. Consider, for some large positive
integer n, the divisor

D = −KX̂ + nF̂ ,

where F̂ is a general fibre of X̂ B.
We first observe that D is base-point-free (for n big enough). To see this,

we view X as a closed hypersurface of a P3-bundle P B (Condition (iii) of

Proposition 5.1), and then view X̂ as a closed hypersurface of the blow-up P̂
of P along C. By the adjunction formula, the divisor D is the restriction of a
divisor DP on P̂ which is equal, on each fibre of P̂ B, to a strict transform of
a hyperplane of P3 through the point blown-up. Taking n big enough, we obtain
that DP is without base-points, and this implies that D is base-point free.
Take two general elements D1, D2 of the linear system of D and consider the

curve Q̂ = D1∩D2. Observe that Q̂ intersects a general fibre F̂ of X̂ B at two
points. Indeed, for i = 1, 2, the intersection of Di with a general fibre F̂ is the
strict transform of a hyperplane section of the cubic surface F , fibre of X B,
passing through the point C ∩ F blown-up by η. The two hyperplane sections
intersect F into 3 points, so 2 outside of C ∩ F .
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We can then associate to Q = η(Q̂) the birational involution ϕ ∈ Bir(X/B)
which performs a Bertini involution on a general fibre F of X/B, associated to
the two points Q ∩ F : the fibre F is a smooth cubic surface in P3 and the blow-
up of the two points Q ∩ F is a del Pezzo surface of degree 1 on which there is
the unique Bertini involution associated to the double covering (see for instance
[Isk96, Page 613]). Hence, the involution ϕ lifts to a birational involution of the
blow-up Y X of Q, which is an isomorphism on a general fibre. There is then
a surface birational to Q × P1 contracted by ϕ, which corresponds to the union
of two curves contracted onto the two points in each fibre.
It remains to see that Q̂ is smooth and irreducible, and that the genus g(Q̂) is

strictly increasing as n grows. This will give the result, as Q is then birational to
Q̂. Since the linear system |D| is base point free and ample, it is not composed

with a pencil. Since X̂ is normal, it is smooth in codimension one so Q̂ = D1∩D2

is a smooth and irreducible curve, contained in the smooth locus of X̂ . To see
this, we apply Bertini’s theorem twice for the smoothness and use the fact that
the support of an ample divisor is connected.
By adjunction formula we get, for i = 1, 2,

KD1
= (KX̂ +D1)|D1

= n · (F̂ |D1
),

KQ = (KD1
+Q)|D1

= (nF̂ |D1
+D2|D1

)|Q,

which gives

deg(−KQ) = (nF̂ +D2) ·D1 ·D2

= (nF̂ +D) ·D2

= (−KX̂ + 2nF̂ ) · (−KX̂ + nF̂ )2

= 4nF̂ · (KX̂)
2 − (KX̂)

3

= 4n− (KX̂)
3

This shows that the genus of the curve Q, birational to Q̂, strictly increases as n
grows. �

The proof of Theorem 1.1 is now finished:

Proof of Theorem 1.1. Part (i) is given by Proposition 2.4.
Part (ii) is given by Proposition 5.3.
Parts (iii) and (iv) are respectively parts (i) and (ii) of Proposition 4.8. �

Appendix A. FT varieties

In this appendix, we present some results from [PS09], [BCHM10], and [Bir16],
with some mild changes of notation and presentation. We simply recall them.
The notation FTt is a variation of the usual notation for “Fano type,” where we
add a t to indicate a terminality condition.
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A.1. Definition (cf. [PS09, § 2]). Let X be a normal projective variety. We say
that X is FTt (Fano type) if there exists a Q-divisor ∆ =

∑
bi∆i, with bi > 0

for each i, such that the following conditions are satisfied

(i) the pair (X,∆) is terminal,
(ii) KX +∆ ≡ 0,
(iii) the components ∆i generate the group Cl(X)⊗Q,
(iv) each component ∆i is a movable divisor (i.e. the linear system |∆i| asso-

ciated to ∆i is without fixed components).

A.2. Lemma.

(i) A variety X is FTt if and only if there exists an effective Q-divisor Θ
such that the pair (X,Θ) is terminal, −(KX + Θ) is ample, and the
components of Θ are movable divisors that generate Cl(X)⊗Q.

(ii) A Q-factorial variety X is FTt if and only if there exists an effective
Q-divisor Θ such that the pair (X,Θ) is terminal and −(KX + Θ) is
ample.

Proof. (i) Let X be an FTt variety and let A be an ample divisor. By our
assumption A.1(iii) we have A ≡

∑
ci∆i for some ci ∈ Q. Take Θ := ∆−ǫ

∑
ci∆i

for 0 < ǫ ≪ 1. Conversely, assume that there exists Θ as in (i). For n ≫ 0
the linear system | − n(KX + Θ)| is base point free. Take a general member
A ∈ | − n(KX +Θ)| and put ∆ = Θ+ 1

n
A.

(ii) If X is FTt, the existence of Θ follows from (i). Conversely, let Θ be a
boundary such that the pair (X,Θ) is terminal and −(KX+Θ) is ample. As X is
Q-factorial, we may take very ample divisors A1, . . . , Am generating Cl(X)⊗Q.
Then we can apply (i) to the boundary Θ′ = Θ+ ǫ

∑
Ai for 0 < ǫ≪ 1. �

A.3. Corollary. If X is an FTt variety, then the numerical and Q-linear equiv-
alences of Q-Cartier divisors on X coincide.

Proof. By Lemma A.2(i), there exists an effective Q-divisor Θ such that the pair
(X,Θ) is terminal and −(KX + Θ) is ample. This implies that (X,Θ) is a log
Fano variety, so Q-linear equivalences of Q-Cartier divisors on X coincide [IP99,
Proposition 2.1.2]. �

A.4. Lemma. Let ϕ : X X ′ be a small birational contraction. Then X is FTt

if and only if X ′ is.

Proof. For all Q-divisors ∆ on X and ∆′ on X ′ such that ∆′ = ϕ∗(∆), the
conditions (ii)-(iii)-(iv) of A.1 are fullfilled for ∆ if and only if they are fullfilled
for ∆′. If KX+∆ and KX′+∆′ are numerically trivial Q-Cartier divisors, [KM98,
Lemma 3.38] implies that (X,∆) is terminal if and only if (X ′,∆′) is terminal.
Assume that X is FTt . Let ∆ be as in Definition A.1 and let ∆′ := ϕ(∆).

By Corollary A.3, the divisor KX′ +∆′ is Q-Cartier. As (X,∆) is terminal, so is
(X ′,∆′).
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Conversely, assume that X ′ is FTt and ϕ is small. As above, we have KX+∆ =
ϕ∗(KX′ +∆′), where (X ′,∆′) is terminal. Thus (X,∆) is terminal as well. �

A.5. Corollary. The FTt property is preserved under flips.

A.6. Lemma. Let X be a Q-factorial FTt variety X and let ϕ : X X̄ be a
divisorial extremal contraction. Then X̄ is FTt .

Proof. Let ∆ =
∑
bi∆i be as in Definition A.1. By Lemma A.2(i), there exists

an effective Q-divisor Θ such that −(KX +Θ) is ample. We may then replace ∆
with Θ + 1

n
A, where A ∈ | − n(KX +Θ)| for sufficiently big and divisible n, and

assume that ∆1 is ample.
We write ∆̄ := ϕ(∆) =

∑
bi∆̄i where ∆̄i := ϕ∗(∆i). Let Ā be an ample divisor

on X̄ . We can write ϕ∗Ā ≡
∑
βi∆i for some βi ∈ Q. As bi > 0 for each i, we

can choose λ, ǫ > 0 small enough such that bi > λβi, and b1 > λβ1 + ǫ. Let

∆λ,ǫ := ∆− λ
∑

βi∆i − ǫ∆1, ∆̄λ,ǫ := ϕ∗∆λ,ǫ.

Thus, ∆λ,ǫ and ∆̄λ,ǫ are effective and

−(KX +∆λ,ǫ) ≡ λϕ∗Ā + ǫ∆1

so −(KX +∆λ,ǫ) is ϕ-ample. For λ≪ 1 the pair (X,∆λ,ǫ) is terminal. Since the
ray contracted by ϕ is (KX +∆λ,ǫ)-negative, and no components of the boundary
∆λ,ǫ are contracted by ϕ since they are movable by assumption, the log pair
(X̄, ∆̄λ,ǫ) is terminal as well [KM98, Corollary 3.43]. Furthermore, for ǫ≪ λ the
divisor

−(KX̄ + ∆̄λ,ǫ) ≡ λĀ+ ǫ∆̄1

is ample. Thus X̄ is FTt by Lemma A.2(ii). �

Note that, by the cone theorem, for an FTt variety X the Mori cone NE(X)
is polyhedral. In particular, the number of extremal rays on X is finite. We
moreover have the following stronger conditions on X :

A.7. Corollary (cf. [PS09, Corollary 2.7],[BCHM10, Corollary 1.3.2]). A Q-
factorial FTt variety is a Mori dream space. In particular, on such a variety
one can run the D-MMP with respect to any divisor D.

Proof. Let X be a Q-factorial FTt variety. By Lemma A.2(i), there exists an
effective Q-divisor Θ such that the pair (X,Θ) is terminal and −(KX + Θ) is
ample. This implies that X is a Mori dream space [BCHM10, Corollary 1.3.2].
Let ∆ =

∑
bi∆i be as in Definition A.1. For each divisor D, we can write D ≡∑

di∆i (by A.1(iii)). Thus for 0 < ǫ≪ 1 there is a divisor ∆D := ∆− ǫ
∑
di∆i

such that (X,∆D) is terminal and −(KX+∆D) ≡ D. We can thus run aD-MMP,
as this is is the same as the (KX +∆D)-MMP. �

A.8. Corollary. Let X be an FTt variety. Then there exists a birational map
ψ : X 99K X ′ such that ψ is an isomorphism in codimension one and such that
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X ′ has only Q-factorial terminal singularities and −KX′ is nef and big (X ′ is
weak Fano).

Proof. According to Lemma A.4, we may replace X with its small Q-factorializa-
tion. Run the −KX -MMP. Since −KX ≡ ∆, where ∆ is effective, on each step
the exceptional locus is contained in the proper transform of ∆. By A.1(iv) none
of components of ∆ are contracted. Hence all the steps of the MMP are flips.
We end up with a variety X ′, which is FTt by Corollary A.5, with nef anticanon-
ical divisor. By Lemma A.2(i), there exists an effective Q-divisor Θ such that
−(KX′ +Θ) is ample. This implies that −KX′ is big. �

A.9. Lemma. Let X 99K X ′ be a birational map that is an isomorphism in
codimension 1. If X is FTt , then so is X ′.

Proof. Let ∆ be as in Definition A.1. Let X
p
←−− X̃

q
−−→ X ′ be a common log

resolution. Write
KX̃ + ∆̃ = p∗(KX +∆) + E.

where ∆̃ is the proper transform of ∆ and E is an effective divisor whose support
coincides with the exceptional locus.
Since KX̃ + ∆̃ is numerically equivalent to E over X and E > 0, we may run

the (KX̃ + ∆̃)-MMP over X ′ and contract all the components of E. We end up

with a terminal pair (X̂, ∆̂) having a small contraction to X ′, where ∆̂ is the

proper transform of ∆. Moreover, KX̂ + ∆̂ ≡ 0. Hence X̂ is of FTt type. The
variety X ′ is FTt by Lemma A.6. �

From Lemma A.2 and [Bir16, Theorem 1.1] we have the following.

A.10.Corollary. Let n ≥ 2 be an integer. The FTt varieties of dimension n form
a bounded family. This means that there exists a flat morphism h : X S over a
scheme S of finite type such that each FTt variety of dimension n is isomorphic
to a fiber of h.

Proof. For each FTt variety X of dimension n, there exists an effective Q-divisor
Θ on X , such that the pair (X,Θ) is terminal (Lemma A.2) and −(KX + Θ)
is ample. Hence, we may apply [Bir16, Theorem 1.1] to the pairs (X,Θ) with
ǫ = 1. �

In the sequel, when we say that a set of varieties is bounded, we always mean,
as above, that there is a flat family over a scheme of finite type such that every
variety in the set is isomorphic to a fiber.

A.11. Remark. Let {Xα} be a set of Q-factorial FTt varieties of dimension n and
let h : X S be a flat family as in A.10. We identify the varieties Xα with fibers
of h and may assume that the set {h(Xα)} is dense in S. Then by [Kaw99] the
total space X has only canonical singularities. In particular, X is Q-Gorenstein.
This implies that (−KXα

)n is bounded. More precisely, the numbers (−KXα
)n

form a finite set that depends only on n.
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A.12. Proposition. Let {Xα} be a set of Q-factorial FTt varieties of dimension
n and let fα,i : Xα Yα,i be a collection of divisorial Mori contractions. For each
i, we denote by Eα,i the exceptional divisor of fα,i. Then the set {Eα,i} is bounded.

Proof. Let h : X S be a flat family given by Corollary A.10 and Remark A.11 so
that Xα is the fiber over sα ∈ S. Then for some ample divisor L on S the divisor
−KX + h∗L is big on X. Let A be an ample divisor on X. By Kodaira’s lemma
there exists an integer m (that depends only on n) such that −mKX +mh∗L−A

is effective, i.e. −mKX + mh∗L ∼ A + D, where D is effective. According to
[Kaw91] the exceptional divisor Eα,i is covered by a family of curves {Cλ

α,i}, such

that Cλ
α,i·Eαi

< 0 inXα and such that each f(Cλ
α,i) is a point and−KXα

·Cλ
α,i ≤ 2n.

If D · Cλ
α,i < 0 for some α and i, then Eα,i is contained in D. Hence, the degree

of Eα,i, with respect to the ample divisor A, can be bounded as follows

Eα,i · (A|Xα
)n−1 ≤ D ·Xα · A

n−1 = (−mKX +mh∗L− A) ·Xα ·A
n−1.

Thus for such α and i the set {Eα,i} is bounded. From now on we may assume
that D · Cλ

α,i ≥ 0 and so A · Cλ
α,i ≤ 2nm. Hence {Cλ

α,i} is bounded, i.e. the set

of all curves Cλ
α,i is contained in a finite union of irreducible components Hα,i

of the relative Hilbert scheme of X/S. We may consider only one of them and
put H := Hα,i. Let U H be the universal family and let Ψ: U X be the
corresponding morphism. Denote the composition by Φ = h ◦ Ψ: U S. By
construction any divisor Eα,i coincides with the image under Ψ of a component
of the fiber Φ−1(sα). The Ψ-images of the components of the fibers of Φ lie in
a finite number of components of the relative Hilbert scheme of X over S. This
means that {Eα,i} is bounded. �

Proposition A.12 implies that the birational invariants of Eα,i are bounded. In
particular, we have the following.

A.13. Corollary. Let us take the notation of Proposition A.12. There is an
integer m, depending only on n, such that each Eα,i is birationally equivalent
to P1 × Γα,i where the covering gonality of Γα,i satisfies cov.gon(Γα,i) ≤ m. If
moreover n = 3, the set {g(Γα,i)} of genera of the curves Γα,i is a bounded set of
integers.

Proof. As explained in the introduction (see also [Kaw91]), every divisor Eαi
is

birational to P1 × Γα,i for some variety Γα,i of dimension n − 2. By Proposi-
tion A.12, the set {Eα,i} is bounded. There is some integer d such that each Eα,i
is isomorphic to a closed subvariety of a projective space of degree ≤ d. A general
hypersurface H of Eα,i is of degree ≤ d and admits a dominant rational map to
Γα,i. This gives d ≥ cov.gon(H) ≥ cov.gon(Γα,i). If moreover n = 3, then the
curve H is of bounded degree and thus of bounded genus, which gives the result
since g(H) ≥ g(Γα,i). �
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A.14. Proposition. Let {Xα} be a set of Q-factorial FTt varieties of dimen-
sion n. Let fα,i : Xα Yα,i be a set of Mori fiber spaces and let Fα,i,β be a set
of schematic fibers over smooth points β ∈ Yα,i. Suppose that dim(Fα,i,β) =
dim(Xα)− dim(Yα,i) for all α, i, β. Then the set {Fα,i,β} is bounded.

Proof. Let h : X S be a flat family given by Corollary A.10 and Remark A.11.
Let A be an ample divisor on X. As in the proof of Proposition A.12, we may take
an ample divisor L on S such that −KX+h∗L is big on X and an integer m (that
depends only on n) such that −mKX+mh∗L−A is effective, i.e. −mKX+mh∗L ∼
A+D, where D is effective. Denoting by Hα and Dα the restriction of A and D

to Xα, we obtain −mKX ∼ Hα +Dα where Dα is effective.
Note that fα,i is flat in a neighborhood of Fα,i,β. Let F

gen
α,i be a general fiber of

fα,i and let rα,i = dim(F gen
α,i ) = dim(Fα,i,β). By the adjunction formula F gen

α,i is a
Fano variety with terminal singularities. By [Bir16] (see Remark A.11) there is a
constant C = C(n) such that

(−KFα,i,β
)rα,i = (−KF

gen

α,i
)rα,i ≤ C.

Since fα,i : Xα Yα,i is a Mori fiber space, the restriction of divisors −KXα
, Hα,

Dα to F gen
α,i are proportional and nef. Hence the intersection numbers

H i
α ·D

rα,i−i
α · Fα,i,β = H i

α ·D
rα,i−i
α · F gen

α,i

are non-negative. Thus we have

C ≥ (−KFα,i,β
)rα,i = (−mαKXα

)rα,i · Fα,i,β = (Hα +Dα)
rα,i · Fα,i,β ≥ Hrα,i

α · Fα,i,β.

This shows that the degrees of Fα,i,β are bounded with respect to A. �

Note that all the fibers Fα,i,β are uniruled by [Kaw91] and [Kol96, Corol-
lary 1.5.1]. Similar to Corollary A.13 in dimension 3 we have the following.

A.15. Corollary. If, in the notation of Proposition A.14, n = 3 and dim(Yα,i) =
1, then every fiber Fα,i,β is birationally equivalent to the product of P1 and a curve
Γα,i of bounded genus.

Proof. The base is smooth since it is normal and one-dimensional. Thus, Propo-
sition A.14 proves that the set {Fα,i,β} of all fibers is bounded. We then observe,
as in Corollary A.13, that this bounds the arithmetic genus of hyperplane sections
of the Fα,i,β, and thus of the Γα,i. �
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[BLZ19] Jérémy Blanc, Stéphane Lamy, and Susanna Zimmermann. Quotients of higher
dimensional cremona groups. Acta Mathematica (to appear), 2019.

[Cas01] Guido Castelnuovo. Le transformazioni generatrici del gruppo cremoniano nel pi-
ano. Torino Atti, (36):861–874, 1901.

[Che05] A. Cheltsov. Birationally rigid fano varieties. Russian Mathematical Surveys,
60:875–965, 2005.

[Cor95] Alessio Corti. Factoring birational maps of threefolds after Sarkisov. J. Algebraic
Geom., 4(2):223–254, 1995.

[Cor96] Alessio Corti. Del Pezzo surfaces over Dedekind schemes. Ann. of Math. (2),
144(3):641–683, 1996.

[Cor00] Alessio Corti. Singularities of linear systems and 3-fold birational geometry. In
Explicit birational geometry of 3-folds, volume 281 of London Math. Soc. Lecture
Note Ser., pages 259–312. Cambridge Univ. Press, Cambridge, 2000.

[CP17] Ivan Cheltsov and Jihun Park. Birationally rigid Fano threefold hypersurfaces.
Mem. Amer. Math. Soc., 246(1167):v+117, 2017.

[CS11] Sung Rak Choi and Vyacheslav. V. Shokurov. Geography of log models: theory
and applications. Cent. European J. Math., 9(3):489–534, 2011.

[CS16] Ivan Cheltsov and Constantin Shramov. Cremona groups and the icosahedron. Boca
Raton, FL: CRC Press, 2016.

[Fru73] Michael A. Frumkin. A filtration in the three-dimensional Cremona group. Mat.
Sb. (N.S.), 90(132):196–213, 325, 1973.

[Han87] Masaki Hanamura. On the birational automorphism groups of algebraic varieties.
Compositio Math., 63(1):123–142, 1987.

[HM13] Christopher D. Hacon and James McKernan. The Sarkisov program. J. Algebraic
Geom., 22(2):389–405, 2013.

[IP99] V. A. Iskovskikh and Yu. Prokhorov. Fano varieties. Algebraic geometry V, vol-
ume 47 of Encyclopaedia Math. Sci. Springer, Berlin, 1999.

[Isk96] Vasily A. Iskovskikh. Factorization of birational mappings of rational surfaces from
the point of view of Mori theory. Uspekhi Mat. Nauk, 51(4(310)):3–72, 1996.

[Kaw91] Yujiro Kawamata. On the length of an extremal rational curve. Invent. Math.,
105(3):609–611, 1991.

[Kaw99] Yujiro Kawamata. Deformations of canonical singularities. J. Amer. Math. Soc.,
12(1):85–92, 1999.

[KM98] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume
134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge,
1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the
1998 Japanese original.

[KMMT00] János Kollár, Yoichi Miyaoka, Shigefumi Mori, and Hiromichi Takagi. Boundedness
of canonical Q-Fano 3-folds. Proc. Japan Acad. Ser. A Math. Sci., 76(5):73–77,
2000.

[Kol96] János Kollár. Rational curves on algebraic varieties, volume 32 of Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Math-
ematics. Springer-Verlag, Berlin, 1996.

[Kol97] János Kollár. Polynomials with integral coefficients, equivalent to a given polyno-
mial. Electron. Res. Announc. Amer. Math. Soc., 3:17–27, 1997.

[Kry18] Igor Krylov. Rationally connected non-Fano type varieties. Eur. J. Math., 4(1):335–
355, 2018.

22
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