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Abstract 
Introduction: Multiple sclerosis (MS) is a chronic neuroinflammatory 
and neurodegenerative disease. MS prevalence varies geographically 
and is notably high in Scotland. Disease trajectory varies significantly 
between individuals and the causes for this are largely unclear. 
Biomarkers predictive of disease course are urgently needed to allow 
improved stratification for current disease modifying therapies and 
future targeted treatments aimed at neuroprotection and 
remyelination. Magnetic resonance imaging (MRI) can detect disease 
activity and underlying damage non-invasively in vivo at the micro and 
macrostructural level. FutureMS is a prospective Scottish longitudinal 
multi-centre cohort study, which focuses on deeply phenotyping 
patients with recently diagnosed relapsing-remitting MS (RRMS). 
Neuroimaging is a central component of the study and provides two 
main primary endpoints for disease activity and neurodegeneration. 
This paper provides an overview of MRI data acquisition, management 
and processing in FutureMS. FutureMS is registered with the 
Integrated Research Application System (IRAS, UK) under reference 
number 169955. 
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Methods and analysis: MRI is performed at baseline (N=431) and 1-
year follow-up, in Dundee, Glasgow and Edinburgh (3T Siemens) and 
in Aberdeen (3T Philips), and managed and processed in Edinburgh. 
The core structural MRI protocol comprises T1-weighted, T2-weighted, 
FLAIR and proton density images. Primary imaging outcome 
measures are new/enlarging white matter lesions (WML) and 
reduction in brain volume over one year. Secondary imaging outcome 
measures comprise WML volume as an additional quantitative 
structural MRI measure, rim lesions on susceptibility-weighted 
imaging, and microstructural MRI measures, including diffusion 
tensor imaging and neurite orientation dispersion and density 
imaging metrics, relaxometry, magnetisation transfer (MT) ratio, MT 
saturation and derived g-ratio measures. 
Conclusions: FutureMS aims to reduce uncertainty around disease 
course and allow for targeted treatment in RRMS by exploring the role 
of conventional and advanced MRI measures as biomarkers of disease 
severity and progression in a large population of RRMS patients in 
Scotland.

Keywords 
Multiple sclerosis, magnetic resonance imaging, diffusion tensor 
imaging, magnetisation transfer imaging, g-ratio, susceptibility 
weighted imaging, protocol
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1. Introduction
Multiple sclerosis
Multiple sclerosis (MS) is a chronic debilitating disease of the  
central nervous system (CNS), for which a cure is not yet  
available. Pathology occurs in both white (WM) and grey matter  
(GM) in the brain and spinal cord and is characterised by  
inflammation-induced demyelination and neurodegeneration1,2. 
Worldwide there are over two million cases of MS3. Scotland 
has a notably high prevalence of the disease with 290 cases per  
100,000 population4–6. People with MS experience a wide range 
of symptoms, including mobility and vision problems, cognitive 
impairment and fatigue7; the severity of which varies markedly 
between individuals. In 85-90% of cases, MS starts with a relaps-
ing and remitting disease course (RRMS), which in later stages  
generally becomes progressive (secondary progressive MS;  
SPMS), and the remainder have a progressive course from onset 
(PPMS)8,9. The disease trajectory also varies significantly between 
individuals, the causes for which are largely unclear. Establishing 
early biomarkers predictive of disease course is highly important  
as it may allow appropriately targeted disease-modifying  
therapy (DMT).

FutureMS
FutureMS is a large (N=440) longitudinal multi-centre obser-
vational cohort study in Scotland aiming to develop predictive 
tools for disease progression and markers of disease severity in a 
deeply phenotyped early-stage RRMS cohort. A detailed cohort 
description is available in Kearns et al. 202110. Brain MR imag-
ing, focusing on both structural and microstructural techniques, 
is a core feature of FutureMS and is importantly being studied 
in the context of the whole disease with participants undergo-
ing extensive neurological, quality of life, cognitive, retinal 
imaging, blood biomarker and genomic assessments at each  
study visit. Magnetic resonance imaging (MRI)-based biomark-
ers in MS are of great value, as MRI can be used to study CNS 
damage in vivo and non-invasively, offering potential as a pre-
dictor of future disability. Particularly, within the framework of 
a well-powered longitudinal study, changes in individual tra-
jectory of MR measures that occur associated with treatment  
can be a powerful real-world marker of DMT efficacy.

Structural MRI in MS
Conventional MR imaging plays an essential role in faster MS 
diagnosis11 as well as MS research, particularly as DMT trial  
end-point12. Characteristic MS abnormalities seen on conven-
tional MRI include periventricular, callosal, juxtacortical and  
infratentorial WM hyperintense lesions (WML) on T2-weighted 
(T2W) images; the central vein sign within WML on T2 images13; 
hypointensities (‘black holes’) on T1-weighted (T1W) images;  
and brain atrophy. Cortical brain lesions are difficult to detect 
on 1.5T and 3T MRI11,12. WML accrual is used as indicator of  
interval disease activity; and T1W hypointensities and  
gadolinium-enhanced lesions are used as respectively indicators 
of irreversible damage and active inflammation11,12,14. Clinical  
measures of disease severity/progression only show some  
association with brain abnormalities on conventional MRI15,  
which is thought to be due to limitations in both clinical  
disability and imaging measures16,17. The number and location 

(i.e. infratentorial) of WML, can be predictive of conversion 
from clinically isolated syndrome to MS and accumulation of  
disability18,19. Similarly, enhancing WML and T1W ‘black 
holes’ have been associated with progression of disability20–22.  
In addition, although still an area of research, there is a grow-
ing body of evidence indicating that chronic active lesions (or 
rim/smouldering lesions) characterised by paramagnetic rims 
can be identified using susceptibility weighted imaging (SWI), 
and are associated with increased disability23. Spinal cord WML 
and atrophy are also commonly present, where damage confers  
a disproportionate risk of disability given the anatomical  
eloquence24.

Processing techniques applied to conventional imaging allow 
for assessment of neurodegeneration through quantitative 
volumetric measures of whole-brain (GM and WM) atrophy.  
Whole-brain atrophy is present in early-stage RRMS18,19, 
progresses over time and affects multiple brain regions25. It is  
associated with and predictive of clinical disability16,18,26,27. 
Although GM atrophy appears to be more closely associated with 
clinical progression28,29 and seems to decrease more extensively  
over time compared with WM atrophy30–32. Overall their  
contribution to clinical disability remains largely unclear33, and 
atrophy must be considered a downstream and non-specific  
indicator of neurodegeneration. Nonetheless, measures of 
brain volume are the most established imaging marker of  
neurodegeneration in MS, and have been proposed as the only 
measure currently sufficiently validated and reliable for use as a 
study endpoint33.

Microstructural MRI in MS
Macrostructural imaging methods are widely used but provide 
indirect markers of the underlying pathophysiological features 
and leave a great deal of disease progression unaccounted for16.  
Quantitative MRI techniques that provide more specific mark-
ers of brain integrity on the microstructural level are becoming  
more established for studying demyelination and neurodegenera-
tion in MS and may better account for clinical consequences.

Magnetisation transfer (MT) imaging provides an indirect means 
of detecting protons bound to semi-solid macromolecules,  
e.g. myelin, that are not visible on conventional sequences, via the 
exchange of magnetisation with the directly detectable protons of 
free water molecules. The most widely used MT measure is the 
MT ratio (MTR), which is the fractional signal reduction caused 
by exchange of magnetisation between these free and bound  
protons34,35. The MTR is affected by demyelination and axonal 
integrity34,36,37 and thus reflects microstructural WM abnormali-
ties. Previous studies have shown associations between MTR 
and clinical disability in MS12,38–41, indicating it may have poten-
tial as a biomarker. MTR signal is, however, also affected by  
biophysical parameters (notably T1 relaxation time and B1  
inhomogeneities), compromising its specificity to tissue  
microstructure42. MT saturation (MTsat) imaging corrects for  
these parameters, and provides increased contrast between 
WM and GM, and may therefore provide a better biomarker of  
microstructural WM changes than MTR42,43. It has not been  
widely applied to MS, but associations with cognition and  
disability have been reported42,44.
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Quantitative multi-shell diffusion MRI (dMRI) provides addi-
tional markers of brain microstructure based on tissue water  
diffusion characteristics. Diffusion tensor imaging (DTI) models  
anisotropic water molecule displacement due to spatially ordered 
brain microarchitecture, which is particularly prominent within 
WM. A change in the WM microstructure will lead to a change  
of water molecule displacement45. DTI parameters, comprising  
fractional anisotropy (FA), mean diffusivity (MD), axial (λ

AX
) 

and radial (λ
RD

) diffusivity, are sensitive to changes in the  
microstructure that are relevant to MS pathology45. λ

RD
 is thought 

to be sensitive to demyelination46 whereas axonal loss is mostly 
reflected in changes in λ

AX
47. These metrics can be measured  

globally or regionally in tissue, but can also be combined with  
tractography methods48 to assess WM tract-specific microstruc-
tural damage. In addition, multi-shell dMRI allows for neurite  
orientation dispersion and density imaging (NODDI) analy-
sis, which enables more precise characterisation of WM  
microstructure, i.e. neurite (axon and dendrite) density, and  
dispersion of neurite orientation49. Previous pathological and  
MRI studies have shown that neurite density is affected in MS50,51.

Combining MTI and dMRI allows calculation of an MRI-derived 
aggregate g-ratio. The g-ratio is the ratio between the inner  
(i.e. axon) and outer (i.e. axon and myelin) diameter of the WM 
fibre and reflects myelin thickness relative to the axon radius52–54.  
Preliminary studies in small subject groups have observed  
g-ratio abnormalities in MS, suggestive of a thinner myelin 
sheath, in accordance with known pathological changes in this  
disease53,55,56.

Relaxometry maps based on transverse (T2) or longitudinal  
(T1) relaxation times are also used to study underlying  
tissue changes. Studies suggest that quantification of T1 and  
combined T1 and T2 measures can be correlated with myelin  
content in tissue57, and that quantitative T2 mapping of  
WML yields additional information related to clinical disability58.

MRI in FutureMS
FutureMS incorporates a comprehensive MRI protocol, includ-
ing visual and quantitative assessment of WML, GM and WM  
volumes, dMRI and MTI metrics, as well as g-ratio and relax-
ometry measures. These structural (conventional) imaging 
and quantitative microstructural metrics will be explored lon-
gitudinally with physical, cognitive and other quality of life  
features, blood biomarkers, genetics and retinal imaging, allow-
ing for studying and developing predictive tools of disease  
progression and markers of disease severity in RRMS.

Study aim
The aim of this paper is to provide a rationale and transparent  
overview of MRI acquisition and processing in FutureMS, 
including detailed descriptions of the MRI protocol, MRI data  
management and MRI processing pipelines.

2. Methods
2.1 Participants
FutureMS10 recruited patients with a recent diagnosis of RRMS  
(<6 months)11 from five neurology hubs in Scotland: Edinburgh, 

Glasgow, Dundee, Aberdeen and Inverness. Further inclusion 
criteria were aged 18 years or older and the capacity to provide  
informed consent. Exclusion criteria were intake of DMTs pre-
scribed prior to baseline assessment, participation in a clinical 
trial prior to baseline assessment and contraindications for MRI. 
Each participant received an MRI examination at baseline and  
1-year follow-up, as well as a full neurological assessment, cog-
nitive testing, and blood marker and genetic testing. Recruitment  
for FutureMS completed in March 2019, with a total of 440  
participants (N=431 for MRI) included for baseline assessment. 
Sample size was determined based on simulation models of 
required sample size for generation of clinically useful predictive  
tools59. Nine participants did not undergo MRI mainly due  
to fulfilling MRI exclusion criteria. One-year follow-up was  
completed with 392 (N=386 for MRI) participants having returned 
for a follow-up visit. See Table 1 for demographics. Further  
follow-up visits will take place at 5-years and 10-years after  
baseline.

All patients were given a patient information sheet, had the  
study explained to them and gave written informed consent before 
study entry. The study received ethical approval on 27-01-2016 
from the South East Scotland Research Ethics Committee 02 
under reference 15/SS/0233 and is being conducted in accord-
ance with the Declaration of Helsinki and ICH guidelines on good  
clinical practice. All imaging data and additional clinical data  
were anonymised with unique study identifiers.

2.2 MRI acquisition protocol
All FutureMS participants received an MRI examination  
consisting of structural (conventional) MRI sequences.  
Additionally, a selection of participants underwent sub-study 
protocols including SWI (N=0 at baseline, N=44 at 1-year  
follow-up), and the microstructural imaging techniques multi-
shell dMRI and MTI (for both: N=78 at baseline and N=67  
at 1-year follow-up). 

2.2.1 Core study sequences: structural MRI. Structural MRI 
was acquired at four sites (Table 2, Table 3). The Glasgow and  
Dundee study sites used a Siemens Prisma 3T system and  
Aberdeen used a Philips Achieva 3T system. Edinburgh employed 
two different systems for the study. Participants included 
in the study from the start in May 2016 up to and including  
October 2017 were imaged on a Siemens Verio 3T system (upgraded 
to Skyra Fit in July 2018; Site 1) and received their follow-up  
MRI on the same system. Participants included in the study as 
of November 2017 until the end of recruitment in March 2019  

Table 1. Baseline demographics for MRI study participants.

N Gender (F/M) Mean age 
in years 
(SD)

Mean EDSS 
(SD)

RRMS 431 321/110 38 (10.3) 2.5 (1.3)
MRI=magnetic resonance imaging, F=female, M=male, SD=standard 
deviation, EDSS=expanded disability status scale, RRMS=relapsing-
remitting multiple sclerosis
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Table 2. Equipment manufacturers across the sites participating in Future MS.

Site Edinburgh (Site 1) Edinburgh (Site 2) Glasgow Dundee Aberdeen

Manufacturer Siemens Siemens Siemens Siemens Phillips

Model Verio/Skyra Prisma Prisma Prisma Achieva

Head coil 12 ch 32 ch 20 ch 20 ch 32 ch

Participants scanned at 
baseline 98 88 161 46 36

Started scanning May 2016 November 2017 November 2016 December 2016 March 2017

were imaged on a Siemens Prisma 3T system (Site 2) and 
received their follow-up MRI on this system. Inverness study site  
participants were imaged at one of the other four sites.

In November 2017, the conventional MRI protocol was  
updated to increase between-site comparability and to facilitate 
improved image analysis. All participants who had been imaged 
before the update underwent protocol A (Table 3A), includ-
ing their follow-up MRI. All patients scanned after the update 
were imaged with protocol B (Table 3B) at all visits. Protocol A  
(Table 3A) included an axial T2W, volumetric 3D T1W and  
two fluid attenuated inversion recovery- (FLAIR) weighted 
sequences: a 2D version with 3mm thick slices and no slice 
gap and a 3D version with 1 x 1 x 1 mm isotropic resolution. In  
accordance with the STRIVE guidelines60, FLAIR was used to 
visualise WML. By definition, the imaging parameters of the 
FLAIR sequence were selected to supress fluid signals (specifically  
cerebrospinal fluid (CSF)) allowing other (pathological) fluids and 
tissues to become conspicuous. Protocol B (Table 3B) included  
3D T1W, dual echo and 2D and 3D FLAIR sequences. A dual 
echo sequence provided T2W and proton density (PD) images,  
which allowed for T2 mapping for inflammation assessment61 and 
for more accurate extraction of the intracranial volume (ICV).  
Additionally, for protocol B, parameters of all sequences 
were matched as closely as possible across sites to obtain  
maximum comparability. An overview of structural images is  
provided in Figure 1.

2.2.2 Sub-study sequences: SWI, dMRI and MTI. The sub-study  
sequences were imaged at a selection of study sites. The 
SWI sequence (Table 4) was acquired in Edinburgh (Site 2),  
Glasgow and Dundee, and implemented to investigate chronic 
inflammation in WML, as reflected by rim lesions. The sequence 
was set up as described in Sati et al. (2017)62. The SWI sub-study 
was added at 1-year follow-up visits only. Multi-shell dMRI63  
and MTI (Table 4; Figure 1) were acquired in Edinburgh (Site 2) 
and implemented to study myelin damage at a microstructural  
level. Optimised water diffusion-encoding magnetic field  
gradient vectors were generated as described in Caruyer et al. 
(2013)63. The sub-study sequences were combined with protocol B 
into a single examination.

2.3 Data storage
All data were anonymised before they were transferred to 
the imaging research team. The recommendations of the  

Brain Imaging Data Structure (BIDS; v1.0.1)64 were followed  
for data storage.

2.4 Quality control
All raw imaging data were visually inspected for gross errors  
(e.g. ghosting and movement artefacts)65 and data that were  
identified as inadequate were excluded from further processing.

2.5 Imaging outcomes
2.5.1 Qualitative assessment: WML progression. WML  
progression was established as a binary outcome of the presence 
of new/enlarging lesions at 1-year follow-up, based primarily  
on the FLAIR volume sequence.

2.5.2 Qualitative assessment: rim lesions on SWI. Presence 
of rim lesions was established for participants with SWI images  
acquired at 1-year follow-up. Rim lesions (Figure 2) were defined 
as hyperintense lesions on FLAIR which also have a hyperintense 
core surrounded by a hypointense rim on SWI.

2.5.3 Quantitative assessment: macrostructural outcomes.  
Tissue volumes for total brain, regional and global cerebral and 
global cerebellar normal-appearing WM (NAWM), regional and 
global cerebral and global cerebellar cortical GM, subcortical  
GM (amygdala, thalamus, hippocampus, ventral diencephalon 
and basal ganglia), brainstem and WML were calculated in native  
space for baseline and follow-up (Table 5). Tissue volume  
change over one year was derived for each tissue type separately by 
subtracting baseline from follow-up volumes.

2.5.4 Quantitative assessment: microstructural outcomes. For  
dMRI, the mean for FA, MD, λ

AX
 and λ

RD,
 and intracellular  

volume fraction (ICVF), isotropic volume fraction (ISOVF) and  
orientation dispersion index (ODI) was determined for the 
white matter skeleton (PSMD, PSAD, PSRD PSFA, PSICVF,  
PSISOVF and PSODI; see below). Additionally, weighted 
means for these measures were determined within sixteen tracts  
of interest identified using quantitative tractography; and their 
mean, median, interquartile range (IQR) and standard deviation 
(SD) were determined within the above brain tissue compart-
ments (total brain, WML, cerebral and cerebellar cortical NAWM,  
cerebral and cerebellar cortical GM and subcortical GM) at  
baseline and follow-up (Table 5). Similarly, mean, median, 
IQR, SD and coefficient of variation (CV) for MTR, MTsat,  
g-ratio, quantitative T1 and T2 were established within the same 
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Table 3. Future MS conventional MRI parameters for protocol A and B.

A. PROTOCOL A

Sequence T1-weighted T2-weighted 2D FLAIR 3D FLAIR

EDI1 GLA DUN ABN EDI1 GLA DUN ABN EDI1 GLA DUN ABN EDI1 GLA DUN ABN

Mode 3D 3D 3D 3D 2D 2D 2D 3D 2D 2D 2D 2D 3D 3D 3D 3D

FOV (mm) 256 256 256 240 220 220 220 256 250 250 250 250 256 256 x 
248

256 x 
248 256

Orientation Sag Sag Sag Sag Ax Ax Ax Sag Ax Ax Ax Ax Sag Sag Sag Sag

TR (ms) 2530 2500 2500 3000 6000 6160 6160 2500 9500 9500 9500 11000 5000 5000 5000 8000

TE (ms) 3.37 2.26 2.26 3.9 96 96 96 310 124 124 124 125 715 393 393 347

TI (ms) 1100 1100 1100 1048 - - - - 2400 2400 2400 2800 1800 1800 1800 2400

Flip angle (deg) 7 7 7 8 150 150 150 - 150 150 150 120 - - - -

Gap (mm) - - - - 1.2 1.2 1.2 - 0 0 0 1 - - - -

Matrix (mm) 256 × 
256

256 × 
256

256 × 
256

240 
× 

240
320 × 
320

320 
× 

314
314 × 
314

256 
× 

256
256 × 
256

256 
× 

256

256 
× 

256
252 × 
226

256 × 
256

256 × 
248

256 × 
248

256 
× 

256

Voxel size 
(mm)

1 × 1 
× 1

1 × 1 
× 1

1 × 1 
× 1

1 × 1 
× 1

0.7 × 
0.7 
× 4

0.7 × 
0.7 
× 4

0.7 × 
0.7 
× 4

1 × 1 
× 1

1 × 1 
× 3

1 × 1 
× 3

1 × 1 
× 3

1 × 1.1 
× 3

1 × 1 
× 1

1 × 1 
× 1.3

1 × 1 
× 1.3

1 × 1 
× 2

Slices 
reconstructed 176 176 176 160 33 33 33 176 60 60 60 29 176 176 176 176

Acq. Time (m:
ss) 6:03 5:59 5:59 5:38 1:26 1:03 1:03 3:42 7:38 7:38 7:38 5:08 7:22 5:32 5:32 8:32

B. PROTOCOL B

Sequence T1-weighted (MPRAGE) T2-weighted dual echo 
(FSE) 2D FLAIR (PROPELLER) 3D FLAIR (SPACE)

Mode 3D 2D 2D 3D

FOV (mm) 256 250 250 256

Orientation Sagittal Axial Axial Sagittal

TR (ms) 2500 3630 9500 5000

TE (ms) 2.26 9.6, 96 120 393

TI (ms) 1100 - 2400 1800

Flip angle (deg) 7 150 150 -

Gap (mm) - 0 0 -

Matrix (mm) 256 x 256 384 x 384 256 x 256 256 x 256

Voxel size 
(mm) 1 x 1 x1 0.7 x 0.7 x 3 1 x 1 x 3 1 x 1 x 1

Slices 176 60 60 176

Acceleration 
factor (in-
plane × slice)

2 × 1 3 × 1 2 × 1 2 × 1

Acq. Time (m:
ss) 5:59 4:01 4:47 6:52

MRI=magnetic resonance imaging, FLAIR = fluid attenuated inversion recovery; EDI1 = Edinburgh site 1; GLA = Glasgow; DUN = Dundee; ABN = Aberdeen; 
FOV = field of view; TR = repetition time; TE = echo time; TI = inversion time; deg = degree; acq. = acquisition; Sag = sagittal; Ax = axial
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Figure 1. Examples of FutureMS MR images for structural MRI and microstructural MRI (diffusion MRI, MTI and g-
ratio). diffusion MRI, MT and G-ratio images are colour-coded according to the colour spectrum shown above the respective 
images. In the WM tract image, red is for right-left, blue for dorsal-ventral, and green for anterior-posterior tracts. Abbreviations:  
T1W=T1-weighted, T2W=T2-weighted, PD=proton density, FA=fractional anisotropy, MD=mean diffusivity, ODI=orientation dispersion 
index, ICVF=intracellular volume fraction, WM=white matter, MTI=magnetisation transfer imaging, MTR=magnetisation transfer ratio, 
MTSat=magnetisation transfer saturation, MRI=magnetic resonance imaging.
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Table 4. FutureMS MRI sub-study parameters.

Sequence
MT on/MT off/T1W 

Multi-echo spoiled gradient 
echo

dMRI SWI

Mode 3D 2D 3D

FOV (mm) 224 (SI) x 241 (AP) 256 250 x 218.75

Directions - 151 -

b-value (no. of directions) 
(s/mm2) - 0rev (3), 0 (14), 200 (3), 500 (6), 1000 

(64), 2000 (64) -

Orientation Sagittal Axial Sagittal

TR (ms) 30/30/15 4300 64

TE (ms) 1.54, 4.55, 8.49 74 35

Flip angle (deg) 5/5/18 - 10

Gap (mm) 0 0 0

Matrix (mm) 160 x 172 128 x 128 384 x 336

Voxel size (mm) 1.4 x 1.4 x 1.4 2 x 2 x 2 0.65 x 0.65 x 
0.65

Slices 128 74 288

Acceleration factor (in-plane 
× slice) 2 × 1 2 × 2 -

Acq. Time (m:ss) 6:14/6:14/3:08 11:12 7:08
MRI = magnetic resonance imaging; FOV = field of view; TR = repetition time; TE = echo time; deg = degree; acq. = acquisition; rev = reverse phase-
encode direction; MT = magnetization transfer; T1W = T1-weighted; dMRI = diffusion MRI; SWI = susceptibility weighted imaging

Figure 2. A paramagnetic hypointense rim lesion in 
relapsing-remitting multiple sclerosis identifying chronic  
inflammation, as visible on susceptibility weighted  
imaging.

WM tracts and brain tissue compartments (only NAWM and  
WML for the g-ratio) at baseline and follow-up (Table 5).

2.6 Image processing
All DICOM images were converted to NIfTI-1 using dcm2niix 
v1.0, except for dMRI data, which were converted using the  
TractoR v3.3.0 package (RRID:SCR_002602)66.

2.6.1 Qualitative assessment: WML progression. Visual rating  
outcomes of WML progression were determined by a neuro-
radiologist (DM). All standard structural sequences for base-
line and follow up imaging were reviewed using the Carestream  
v12.2.6.3000020 image viewing software, with a binary out-
come of the presence of new/enlarging lesions at follow up based  
primarily on the FLAIR volume sequence. A random sample 
of 10% of studies were reviewed to assess intra- and inter-rater  
reproducibility, by the same observer following a delay of  
at least four weeks, and separately by a second neuroradiologist 
(ADW).

2.6.2 Qualitative assessment: rim lesions on SWI. Visual  
rating of rim lesions was performed on SWI. Follow-up 2D 
FLAIR images were registered to SWI with a rigid body reg-
istration (degrees of freedom (DOF) = 6) using FSL FLIRT  
(FSL v6.0.1, RRID:SCR_002823)67,68. WML were identified 
on registered 2D FLAIR and assessed in all three anatomical 
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planes on corresponding SWI images using ITK-SNAP v3.8.0  
(RRID:SCR_002010)69. Rim lesions were defined as lesions 
that are hyperintense on FLAIR, and are characterised by a  
hyperintense core partially or completely surrounded by a  
hypointense rim on SWI. Possible rim lesions were identi-
fied by a trained observer (KCNKK) and reviewed by a senior  
neuroradiologist (ADW). SWI images were also independently 
assessed for rim lesions by a second neuroradiologist (DM).  
Final rim lesion count for each subject was determined by  
consensus of all three raters. WML deemed too small to be 
reliably assessed for the presence of a rim were excluded. 
WML located near a high density of veins or considerable  
juxtacortical signal heterogeneity cannot be reliably evaluated and 
were therefore not considered for inclusion.

2.6.3 Structural image processing: registration and brain  
extraction. At each time-point, T2W, PD and 2D FLAIR 
images were linearly registered to the T1W image with a rigid 
body transformation (6 DOF) using FSL FLIRT (FSL v6.0.1,  
RRID:SCR_002823)67,68. Brain extraction was performed 
on baseline scans only using FSL BET2 (FSL v6.0.1,  

RRID:SCR_002823)70 with different settings for each acquisi-
tion protocol. Protocol A used T1W and T2W for brain extraction  
while protocol B used the PD volume. The resulting baseline 
ICV masks were visually checked and manually edited where 
required using ITK-SNAP v3.8.0 (RRID:SCR_002010)69. 
The baseline edited ICV mask was then registered to the  
follow-up image space.

2.6.4 Structural image processing: WML segmentation. WML 
segmentation was performed on the baseline FLAIR image 
using an adjusted method from Zhan et al. (2014)71. FLAIR  
hyperintense tissue voxels were identified by thresholding the 
raw brain image intensities to values higher than 1.69 times the 
standard deviation above the mean. This number was tested and  
optimized for the current study. A lesion distribution  
probabilistic template generated from a sample of 277  
individuals with different degrees of WML, as per Chen et 
al. (2015)72, was then applied to the thresholded image for  
excluding any hyperintense areas unlikely to reflect pathology  
(e.g. those produced by CSF flow artefacts around the third  
ventricle, in the WM tracts running perpendicular to the  

Table 5. Overview of imaging variables and regions of interest.

MRI metrics Regions of interest

Structural MRI Microstructural MRI Structural MRI Microstructural MRI

dMRI
MTR, MTsat, 

quantitative T1 
& T2

G-ratio Tissue masksa WM tractsb

Qualitative 
Visual WML 
ratings 
 
Visual rim lesion 
ratings

DTI 
Meana, weighted meanb, 
mediana, SDa, IQRa for: 
   (i)  Mean diffusivity 
(MD)ab 
   (ii)  Fractional anisotropy 
(FA)ab 
   (iii)  Radial diffusivity 
(RD)ab 
   (iv)  Axial diffusivity 
(AD)ab

Medianab 
 
Meanab 
 
IQRab 
 
SDab 
 
CVab

Mediana*b 
 
Meana*b 
 
IQRa*b 
 
SDa*b 
 
CVa*b

Whole-brain 
 
Cerebral NAWM 
(regional & global) 
 
Cerebellar NAWM 
 
Cerebral cortical 
GM (regional and 
global) 
 
Cerebellar GM 
 
Amygdala 
 
Basal Ganglia 
 
Thalamus 
 
Hippocampus 
 
Ventral 
diencephalon 
 
Brainstem 
 
WML

Corpus callosum genu 
 
Corpus callosum 
splenium 
 
Arcuate fasciculus 
 
Anterior thalamic 
radiation 
 
Dorsal cingulum 
 
Ventral cingulum 
 
Corticospinal tract 
 
Inferior longitudinal 
fasciculus 
 
Uncinate fasciculus

Quantitative 
Brain tissue 
volumea 
 
WML volumea

NODDI 
Meana, weighted meanb, 
mediana, SDa, IQRa for: 
   (i)  Intracellular volume 
fraction (ICVF)ab 
   (ii)  Isotropic volume 
fraction (ISOVF)ab 
   (iii)  Orientation 
dispersion index (ODI)ab

Peak width of skeletonized 
diffusion 
PSMD, PSAD, PSRD, PSFA, 
PSICVF, 
PSISOVF, PSODI

MTR = magnetisation transfer ratio, MTsat = magnetisation transfer saturation, MRI = magnetic resonance imaging, dMRI = diffusion magnetic 
resonance imaging, DTI = diffusion tensor imaging, NODDI = neurite and orientation dispersion and density imaging, PS = peak width of skeletonized, 
IQR = interquartile range, SD = standard deviation, CV =coefficient of variation, NAWM = normal-appearing white matter, GM = grey matter, WML = 
white matter lesion
aMetrics calculated for tissue masks; bMetrics calculated for WM tracts, *NAWM and WML only
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acquisition plane, near some sulci, and temporal poles). Further  
refinement of the resulting image was achieved by applying a 
Gaussian smoothing, followed by thresholding the image again 
to remove voxels with an intensity value z-score < 0.95 (z-scores  
were calculated in the raw FLAIR image) and by thresholding 
the then remaining voxel intensity values with threshold < 0.1.  
The resulting WML mask was binarised, checked and edited 
where necessary using ITK-SNAP v3.8.0 (RRID:SCR_002010)69.  
For follow-up, the edited baseline WML masks were registered 
to follow-up space and re-edited to include any follow-up lesion 
changes.

2.6.5 Structural image processing: Tissue segmentation. Tissue  
segmentation and brain parcellation was performed using  
FreeSurfer v6.0 (RRID:SCR_001847). For each wave separately 
(cross-sectional), tissue segmentation was performed on the  
T1W and T2W images, using the default parameters (including 
the Desikan-Kiliany atlas73) and the edited ICV as brain mask. 
The edited ICV masks were converted to FreeSurfer space and  
file format using mri_convert. All FreeSurfer tissue segmenta-
tions were visually assessed using an in-house snapshot software 
script. For incorrect segmentations, the appropriate files were  
corrected using FreeView2.0 after which FreeSurfer was rerun 
using the corrected files. Segmentations that remained incorrect 
after manual editing were discarded. For longitudinal analysis,  
FreeSurfer’s longitudinal processing stream74 was applied to 
the cross-sectional data of all waves. The longitudinal process-
ing stream reduces random variation to increase sensitivity for 
correct detection of changes over time. The above described  
cross-sectional data were combined to form an unbiased and 
subject-specific template with common information of the time  
points. This template was then used as a base for tissue  
segmentation for each time point separately (longitudinal). Visual 
checks and corrections of longitudinal output were performed 
as described above. Cross-sectional and longitudinal FreeSurfer  
tissue segmentations were converted to NIfTI format and 
native space using respectively Freesurfer’s mri_label2vol and  
mri_convert. FreeSurfer output was corrected for WML load  
where appropriate, using fslmaths (FSL v6.0.1, RRID:SCR_
002823), resulting in tissue masks as described in section 
2.5.3. Tissue volumes, as well as WML and ICV volumes, were  
then extracted using fslstats (FSL v6.0.1, RRID:SCR_002823).

2.6.6 dMRI processing: DTI and NODDI. FSL v6.0.1 tools 
(RRID:SCR_002823), including FSL topup and eddy75, were 
used to extract the brain, remove bulk motion and geometric/eddy  
current induced distortions by registering all subsequent  
volumes to the first T2W echo-planar (EP) volume67, estimate 
the water diffusion tensor and calculate parametric maps of 
MD, λ

AX
 and λ

RD
, and FA from its eigenvalues using DTIFIT76. 

NODDI parameters (ICVF, ISOVF and ODI) were determined 
from the registered dMRI data using the NODDI Matlab toolbox  
(RRID:SCR_006826; MatlabR2018b).

2.6.7 dMRI processing: PSMD. Automatic calculation of peak 
width of skeletonized water diffusion parameters followed  
the procedure described by Baykara et al. (2016)77 using their  

freely-available PSMD script. Briefly, the dMRI data were proc-
essed using the standard Tract-based Spatial Statistics (TBSS)78 
pipeline available in FSL (v6.0.1, RRID:SCR_002823), with  
histogram analysis performed on the resulting white matter 
MD, λ

AX
, λ

RD
, FA, ICVF, ISOVF and ODI skeletons. First, all  

participants’ FA volumes were linearly and non-linearly regis-
tered to the standard space FMRIB 1 mm FA template. Second, 
a WM skeleton was created from the mean of all registered FA  
volumes. This was achieved by searching for maximum FA values  
in directions perpendicular to the local tract direction in the mean 
FA volume. An FA threshold of 0.2 was applied to the mean 
FA skeleton to exclude predominantly non-WM voxels. Third, 
MD, λ

AX
, λ

RD
, ICVF, ISOVF and ODI volumes were projected  

onto the mean FA skeleton and further thresholded at an FA  
value of 0.3 to reduce CSF partial volume contamination  
using the skeleton mask provided by 77. Finally, PSMD,  
PSAD, PSRD, PSFA, PSICVF, PSISOVF and PSODI were 
calculated as the difference between the 95th and 5th percen-
tiles of the voxel-based values within each subject’s DTI and  
NODDI skeletons.

2.6.8 dMRI processing: Tractography. Quantitative tractography  
employs probabilistic neighbourhood tractography (PNT) 
as implemented in TractoR v3.3.0 (RRID:SCR_002602,66), 
with the underlying connectivity data generated using FSL’s  
BedpostX/ProbTrackX tools run with a two-fiber model per  
voxel, 5000 probabilistic streamlines to reconstruct each tract 
with a fixed separation distance of 0.5 mm between successive  
points. In total, 16 tracts of interest (Table 5) representing a wide 
range of projection, commissural and association fibers were  
identified in each subject using tract shape modeling in a  
7 × 7 × 7 voxel neighbourhood. This allowed tract-specific mean 
values of DTI and NODDI biomarkers, weighted by connection 
probability, to be determined for each tract in every subject.

2.6.9 MTI processing. Echoes for MTsat (On/Off/T1) volumes 
were summed together to increase signal-to-noise ratio (SNR) 
and the resulting MTsat-On and MTsat-T1 volumes were linearly 
registered to the MTsat-Off image with a rigid body transform (6 
DOF). MTsat parametric maps were derived according to Helms43  
(https://doi.org/10.7488/ds/2965) and non-brain voxels were 
removed from the MTsat-Off image. MTR maps were also  
calculated from the MTsat-On and MTsat-Off images.  
This was followed by registration of the 3D T1W MPRAGE 
and tissue segmentations to the MTsat maps. Registration was  
done using the concatenated and inverted transformation  
matrix of a) linear registration of the MTsat-Off volume to the 
MTsat-T1 volume (7 DOF) and b) linear registration of the  
MTsat-T1 volume to the 3D T1W MPRAGE (12 DOF).  
Registered tissue segmentations were thresholded at 0.5,  
binarised and eroded by a sphere kernel of 1.4mm (with the  
exception of WML masks). The co-registered MTsat map and 
tissue segmentations were imported into MATLAB (v2018b,  
RRID:SCR_001622) using spm_vol and spm_read_vols (SPM12, 
RRID:SCR_007037)). MTsat and MTR values within each  
tissue segmentation were then derived from respectively the  
masked MTsat and MTR map, thresholded at a range of 0 to 1 
(MatlabR2018b, RRID:SCR_001622).
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2.6.5 G-ratio. G-ratio calculation was performed by combin-
ing MTsat and dMRI measures. The MTsat map was registered  
to the first dMRI volume with the FSL FLIRT epi_reg script 
(FSL v6.0.1), with registration to the bias-corrected 3D 
T1W MPRAGE as an intermediary step. The Myelin Volume  
Fraction (MVF) is calculated as: MVF MTsat k= ∗ , where k  
was a constant derived by assuming a g-ratio of 0.7 in the sple-
nium of the corpus callosum for two young, healthy control  
subjects, scanned twice79. NODDI and MTsat processing steps 
followed the patient pipeline, without a WML mask. The  
splenium mask was extracted from FreeSurfer segmentation 
of the T1-weighted MPRAGE structural image, registered to  
diffusion space.

The calibration factor was calculated as:

                       
2

1 1
= (1 ( ))

1
(1 ( 1)(1 ) )

0.7
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∗ −
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 is MTsat and v
ic
 and ν

iso
 are the NODDI-derived  

intracellular volume fraction (i.e. neurite density index) and  
isotropic water diffusion. The mean k value across the splenium 
for each individual subject and each time-point was calculated  
and averaged across subjects and sessions.

The Axonal Volume Fraction (AVF) was calculated as: 

                            (1 )(1 )( )iso icAVF MVF v v= − −

The aggregate g-ratio parametric maps were calculated  
voxel-by-voxel as53:

                             1

(1 / )
gRatio

MVF AVF
=

+

NAWM and WML segmentations were registered to the b0  
diffusion volume with the transformation matrix from 
the FSL FLIRT epi_reg 3D T1W MPRAGE (FSL v6.0.1,  
RRID:SCR_002823) registration step, thresholded at 0.5 and  
binarised. G-ratio values within NAWM and WML segmentations 
were calculated.

2.6.6. Relaxometry. Quantitative T1 maps were approximated 
from MT-off and MT-T1 images, using the same equations in  
Helms43 (https://doi.org/10.7488/ds/2965). Processing steps  
followed the methodology for MTI. Quantitative T2 maps were  
generated using the two echo times from the dual echo sequence 
comprising T2W and PD, in protocol B (Table 3) using:

                   1 2
2

(log( _ 2 ) log( _ ))

TE TET
S T w S PD

−=
−

T2 maps were then linearly registered to the T1W image  
with a rigid body transformation (degrees of freedom = 6) and 
masked with tissue segmentations to derive tissue-specific  
quantitative T2 values.

2.7 Funding
FutureMS was funded by a grant from the Scottish Funding  
Council to Precision Medicine Scotland Innovation Centre  

(PMS-IC) and by Biogen Idec Ltd Insurance (R44346). The SWI 
sub-study was separately funded by Biogen Idec Ltd Insurance.

2.8 Study organization
FutureMS is a study hosted by PMS-IC and coordinated by the 
Anne Rowling Regenerative Neurology Clinic, University of  
Edinburgh. FutureMS participants were recruited and clini-
cally assessed (including cognitive testing and neurological 
assessment) by trained medical personnel at the Anne Rowling  
Regenerative Neurology Clinic, University of Edinburgh;  
Glasgow Clinical Research Facility, Queen Elizabeth University  
Hospital; Aberdeen Clinical Research facility, Foresterhill  
Site, University of Aberdeen; Clinical Research Centre in  
Dundee, Ninewells Hospital; Raigmore Hospital in Inverness. 
MRI was performed at the Queen’s Medical Research Institute  
(QMRI) and the Royal Infirmary Edinburgh (RIE), University  
of Edinburgh; Clinical Research Facility Imaging Centre in  
Glasgow, Queen Elizabeth University Hospital; Aberdeen  
Biomedical Imaging Centre, Foresterhill Site, University of  
Aberdeen; Clinical Research Imaging Facility in Dundee, Ninewells 
Hospital. For participants recruited in Inverness, the MRI was  
performed at the site (Glasgow, Edinburgh, Dundee, and  
Aberdeen) most convenient for the participant. OCT imaging was  
performed at the Anne Rowling Regenerative Neurology Clinic, 
University of Edinburgh and Glasgow Clinical Research Facil-
ity, Queen Elizabeth University Hospital. FutureMS MRI data  
management and processing was performed at Edinburgh  
Imaging, Centre for Clinical Brain Sciences, University of  
Edinburgh. Genetic work streams were led by the University of 
California, San Francisco (UCSF), United States, and consisted  
of RNA sequencing and genotyping work performed at  
Edinburgh Genomics, University of Edinburgh and RNA analysis 
performed at UCSF, United States. Both MRI and genetic work 
streams were performed in close collaboration with the Anne  
Rowling Regenerative Neurology Clinic, University of Edinburgh.

2.9 Access to the data
The final dataset is available to all members of the FutureMS  
study team. Additionally, data may be made available to  
researchers not part of FutureMS, upon reasonable request to the 
corresponding author.

2.10 Patient and public involvement
Principles of research transparency with study participants and 
shared research priority setting has been incorporated into the  
study design. Participants regularly receive written research  
updates and are invited to join a voluntary network (Rowling 
Care) where they are kept up to date with research. They are also  
invited to in person research update presentations, which 
are planned to recommence in the near future having been  
delayed due to coronavirus disease 2019 (COVID-19) restrictions. 
Additionally, a sub-group of study participants meets regularly  
with the FutureMS research team and has been involved in  
setting study priorities and design.

2.11 Dissemination of results
Study results will be made available through scientific  
publications and will be presented at international meetings  
of the scientific community. In addition, study participants will 
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be kept informed through research updates, as described in  
section 2.10.

2.12 Study status
FutureMS data acquisition and processing for baseline and  
1-year follow-up has been completed. As per January 2022,  
multiple research papers using data from these time points have 
been published80–82, made available as preprint10,83,84 or are in  
preparation. Furthermore, data acquisition for 5-year follow-up is 
currently ongoing, with 10-year follow-up to start in 2026.

3. Summary
MRI allows the effects of MS on the brain to be probed  
non-invasively, provides potential specific biomarkers of  
underlying pathophysiology, and forms a core component of the 
overall FutureMS study. The current paper provides a detailed 
description of the FutureMS MRI protocol.

We have developed and implemented a comprehensive  
FutureMS MRI pathway that allows detailed capture of brain  
abnormalities in MS at both a microstructural and  
macrostructural level. This has involved development and test-
ing of optimized and harmonized core protocols across MRI  
systems at multiple centres, resilient data transfer and QA  
procedures, and the largely automated data processing  
methods required for the high volume of imaging data  
generated from a large clinical cohort. Structured databases have 
been adapted and managed for large scale complex imaging  
datasets, which include both primary images and secondary  
processed data. Sub-studies have included additional ‘advanced’ 
MRI techniques; specifically, dMRI and MT targeted at  
reporting microstructural changes as quantitative biomark-
ers of demyelination and axonal degeneration characteristic 
in MS, and SWI as an indicator of chronic inflammation. We 
have applied widely-used and validated methods for processing  
conventional and advanced MRI data and adapted methodology  
from previous work for specific analyses, as required. These  
have allowed us to calculate conventional structural metrics such 
as WML volume and whole-brain and regional tissue atrophy, 
and generate masks corresponding to NAWM, GM and WML  
for calculation of microstructural measures within defined  
tissue types. Quantitative water diffusion and MT data allow  
advanced metrics such as NAWM and tract-specific myelin  
structure, myelin thickness and neurite density to be derived.

A possible limitation of the MRI component of FutureMS  
is the multicenter data acquisition and possible resulting variance 

in images between sites. However, multicenter MRI acquisition  
was required to access the MS population across Scotland and 
achieve adequate sample size and statistical power. A second 
limitation is the dual protocol implementation. Recruitment to  
FutureMS had started before there was an opportunity to develop 
and implement harmonised and optimised imaging proto-
cols. These harmonised protocols are, however, important for  
a multicenter study to minimize variance in imaging measures 
across sites. To this end, the imaging protocol was updated after 
recruitment had already started, resulting in earlier participants  
having slightly different MRI examinations from those  
subsequently entering the study. Importantly, a pragmatic approach 
was therefore adopted to maximise imaging data consistency 
in which all participants received their baseline and follow-up  
imaging at the same site and on the same MRI system, using 
the same MRI protocol. Thirdly, MRI in Future MS is limited  
to brain, and will therefore not capture potentially important  
information on the role of spinal cord damage in disease sever-
ity and progression. However, possible inclusion of spinal cord  
imaging in a subset of participants at future follow-up visits  
is currently under consideration.

In conclusion, by integrating multimodal MRI, clinical, 
fluid biomarker and genetic data from a large population of  
RRMS patients in Scotland, FutureMS aims to develop  
predictive tools that will reduce uncertainty around disease  
progression and facilitate improved MS treatments.

Data availability
No data are associated with this article.
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