

Edinburgh Research Explorer

Unified Decomposition-Aggregation (UDA) Rules: Dynamic,
Schematic, Novel Axioms
Citation for published version:
Bundy, A & Nuamah, K 2022, Unified Decomposition-Aggregation (UDA) Rules: Dynamic, Schematic, Novel
Axioms. in K Buzzard & T Kutsia (eds), Intelligent Computer Mathematics: 15th International Conference,
CICM 2022, Tbilisi, Georgia, September 19–23, 2022, Proceedings. Lecture Notes in Computer Science,
vol. 13467, pp. 209-221, 15th Conference on Intelligent Computer Mathematics, Tbilisi, Georgia, 19/09/22.
https://doi.org/10.1007/978-3-031-16681-5_15

Digital Object Identifier (DOI):
10.1007/978-3-031-16681-5_15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Intelligent Computer Mathematics: 15th International Conference, CICM 2022, Tbilisi, Georgia, September
19–23, 2022, Proceedings

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.1007/978-3-031-16681-5_15
https://doi.org/10.1007/978-3-031-16681-5_15
https://www.research.ed.ac.uk/en/publications/fb9c7a2e-de30-42ed-a900-c7549c798344

Unified Decomposition-Aggregation (UDA)
Rules: Dynamic, Schematic, Novel Axioms

Alan Bundy and Kwabena Nuamah

School of Informatics, University of Edinburgh, UK
{A.Bundy,K.Nuamah}@ed.ac.uk

Abstract. We introduce Unified Decomposition-Aggregation (UDA) rules.
They are a family of axiom schemata that are instantiated at run-time to
add new axioms to a logical theory. These new axioms are implications,
whose preconditions will be constructed from an analysis of the goal to
be proved and the theory in which it is to be proved. We illustrate their
application to query answering using the FRANK system.

Keywords: UDA rules, query answering, hybrid reasoning

1 Introduction

Unified Decomposition-Aggregation (UDA) rules1 were invented as part of the
FRANK (Functional Reasoner for Acquiring New Knowledge) query answering
system [10, 5]. They have the potential for wider application. We define UDA
rules in Definition 3.https://www.overleaf.com/project/61f904969bf6e6fd899f9441

UDA rules decompose a goal into a set of subgoals. The answers returned by
the subgoals are then aggregated into an answer to the original goal using an
aggregation function. This decomposition process can recur. What distinguishes
a UDA rule from other implications is that it dynamically computes the number
and form of the subgoals. For instance, to answer the query "What will be the
population of the UK in 2030?" regression over past census data is used via a
temporal UDA rule. The subgoals might represent the sub-queries "What will be
the population of the UK in ti?", where each ti is a year for which the UK popu-
lation can be retrieved from prior census data sources. Regression is then applied
to these previous population numbers and the resulting function is extrapolated
to the year 2030. Another distinction is that the answers to queries are incre-
mentally both constructed and evaluated by aggregation functions during their
propagation from leaves to the root of the inference graph. A comparison be-
tween FRANK’s inference process and that of traditional automated reasoning
systems is given in [5].

The main novel contribution of this paper is to demonstrate that ax-
iomatic theories can be dynamically constructed by adding correct new
axioms to a theory on an as-needed basis.

1 Previously called decomposition rules.

There are many kinds of UDA rules: parent goals can be decomposed into
child sub-goals in many different ways and the corresponding child answers can
be aggregated in many different ways to return a value to their parent goal. There
is not a 1-1 correspondence between decompositions and aggregations, there are
many legitimate combinations depending on the original query, retrieved data
and user preferences, e.g., speed vs accuracy.

Instantiation of a schematic UDA rule may be incremental. For instance, the
choice of aggregation function may be delayed, e.g., the kind of regression to be
used may depend on the available data. This means that the precise form of a
UDA rule may not be known until inference is complete.

To illustrate the use of UDA rules, suppose the query is:

What will be the population in 2030 of the African country that will have
the largest GDP in 2025?.

First, a partition UDA rule can be used to formulate a query to predict the
2025 GDP of each African country and return the country with the largest one.
Temporal decomposition can be used to make this prediction for each country.
Then, temporal decomposition will be used again to predict the 2030 population
of the selected country.

Partition rules can also be used to estimate the total population of a con-
tinent by summing the populations of its individual countries. Or, the cost of
a compound object might be estimated by summing the costs of each of its
components.

A precursor to UDA rules can be found in the first author’s Mecho project
[3], which solved mechanics problems stated in English. Part of the solution
process consisted of instantiating the laws of Physics, such as F = m.a, where m
is the mass of an object, a its acceleration and F the sum of the forces acting on
it. Consider the task of instantiating F . This required Mecho to partition this
sum of forces into each of the individual forces, e.g., gravitational attraction,
tension in a string, friction from an inclined plane, etc. The partition UDA rule
would have been ideal for this task, but since we had not then invented such
rules, Mecho dealt with it in a more ad hoc way. The potential for additional
applications of UDA rules can be found in §7.

These examples illustrate the potentially wide applicability of UDA rules,
especially as automated reasoning broadens its remit beyond the traditional
axiomatic theories of pure mathematics and formal methods, to reason about
the wider environment.

2 Association Lists

FRANK uses UDA rules to construct an inference graph in which each decom-
position of a goal into subgoals represents an and branch in the graph. The
leaves of the graph are subgoals that can be instantiated by matching facts from
web-based knowledge sources. It uses a diverse and dynamically chosen set of
knowledge sources whose facts are represented in a diverse number of formalisms.

In order to combine these facts, they are translated into a common formalism:
association lists, abbreviated as alists2 [10]. Alists are defined in Definition 1.

Definition 1 (Alist) An alist is a set of pairs {⟨Ai, ai⟩|1 ≤ i ≤ n}, where each
Ai is an attribute and ai is its value. This will sometimes be written as
{⟨A1, a1⟩, . . . , ⟨An, an⟩} or abbreviated as A.

– One attribute must be Predicate. This allows an alist:

{⟨Predicate, P ⟩, ⟨A1, a1⟩, . . . , ⟨An, an⟩}

to be represented as the typed relation P (a1, . . . , an) where its type is P :
A1 × . . .×An 7→ Bool, i.e., the Ai attributes are interpreted as the types of
their values.

– Typical attributes are Subject, Object, Predicate, Time, etc, abbreviated as
s, o, p and t. Values can be names of entities, numbers, functions, etc.

– We will use the notation A(t) to indicate that A contains a distinguished
term t at some unspecified argument position, e.g., an attribute or its value.

– We also need to interpret Alists as functions from some of its values to others.
For this purpose we use Hilbert’s Epsilon Operator3, written: ϵx. A(x) where
the alist A contains the variable x. This is read as the value of x such that
A(x) is true. If there is more than one such value, an arbitrary choice is
made. If there is no such value then A(x) is false, so it cannot be the child
alist of a successful decomposition, and can, therefore, be ignored.

Further details about the semantics of alists are discussed in the second author’s
thesis [10].

3 Variables in Alists

Alists can represent goals by specifying a variable as the value for at least one
of its attributes. A goal will be satisfied during inference by instantiating its
variable to a concrete value. Instantiation occurs when a leaf alist is matched to
a fact in a knowledge base. The values of variable are then propagated through
the inference graph from the leaves to the root alist. At each stage the values of
the child alists are aggregated to give a value for the parent alist. Aggregation
is performed by the aggregation functions of the UDA rules used. Aggregation
functions range from the identity function, through various arithmetic functions
(e.g., Σ, max, min) to statistical operations, such as regression. FRANK’s range
of statistical methods has recently been significantly extended [8].

Definition 2 describes the different kinds of variables used in an alist as
defined in [10].
2 See https://en.wikipedia.org/wiki/Association_list (last accessed: 02-02-2022). Al-

ists are not lists but sets, but the ‘alist’ terminology has, unfortunately, become
standard.

3 https://en.wikipedia.org/wiki/Epsilon_calculus accessed on 02.02.2022

Definition 2 (Kinds of Variables)

Projection Variables: Those variables in a child alist whose values are to be
projected to its parent. They become operation arguments of the aggregation
function in the parent alist. They are prefixed with a ?, e.g., ?x denotes
a projection variable. In general, a child alist may have several projection
variables, so we use vector notation to denote them all, e.g., ?⃗x.

Auxiliary Variables: Those variables in a child alist whose values are used
locally, but which are not projected to its parents. They are prefixed with a
$, e.g., $x denotes an auxiliary variable. In general, an alist may have several
auxiliary variables, so we use vector notation to denote them all, e.g., $⃗x.

Operation Variables: Those variables that are used as arguments for an A’s
aggregation function h. An operation variable must be either a projection or
an auxiliary variable, so we omit any prefix. They must exist as an attribute
value in A.

Projection variables are instantiated to values that are aggregated from child
alists and projected to their parents or by matching against facts in a knowledge
base. The value projected to the root of the inference graph becomes the answer
to the original query.

For instance, consider the question from §1:

What will be the population in 2030 of the African country that will have
the largest GDP in 2025?.

The inference graph that FRANK generates to answer this query will consist
of several nodes labelled by alists. Two such alists are (1) and (2). Alist (1)
represents the sub-query where FRANK predicts the GDP ?g of Ghana in 2025.
This alist is one of many generated for the different countries in Africa in order
to find the one with the largest predicted GDP in 2025. Alist (2) represents the
sub-query where FRANK predicts the population ?p of country $c in 2030.

{⟨p, gdp⟩, ⟨s,Ghana⟩, ⟨o, ?g⟩, ⟨t, 2025⟩} (1)
{⟨p, population⟩, ⟨s, $c⟩, ⟨o, ?p⟩, ⟨t, 2030⟩} (2)

where p is the predicate, s the subject, o the object and t the time. $c is an
auxiliary variable that will be instantiated to the country with the largest GDP.
?g and ?p are projection variables whose values will be propagated to their
parents. In the case of ?g it will then become an auxiliary variable to the max
function, to determine the country with the largest GDP. In the case of ?p it
will be the population of country $c. Note that, in one of the children of (2), $c
will have been a projection variable ?c, to be propagated to alist (2).

Each alist has an aggregation function attribute h with a value hτ , say. This
function hτ is applied to the projection variables of the child alists to instantiate
the projection variable of the parent. This aggregation function is associated with
the UDA rule on the and branch connecting the parent alist to its children. The

aggregation operation requires each alist to be regarded as a function from the
projection variables of the children to the projection variable of the parent. As
described in §2, we use the Hilbert Epsilon operation ϵ to convert alists from
relations to functions for this purpose.

4 UDA rules

UDA rules are implications applied by backwards reasoning to a parent alist to
create a set of child alists, i.e., the logical implication is from children to parent.
The size of this set and the anatomy of its members is described by: the type τ
of the rule, the parent alist that it is applied to and the environment in which it
is applied. τ is incrementally defined during the inference process. For instance,
when a choice is made to use a partition rule, τ will be instantiated to part(υ),
where part refers to the partition rule and υ is a variable that will eventually be
instantiated to specify the type of aggregation. When this function is chosen to
be the summation of the values of the child values, the rule type, part(υ), will be
further instantiated to part(Σ). In general, τ will be different for each UDA rule
application. For instance, the children of a partition UDA rule will depend on
the available partitions of the parent, e.g., by partOf relations. The children of a
temporal UDA rule will depend on the available values of the parent’s predicate
for earlier values of its time attribute, e.g., by before relations. The general form
of a UDA rule is given in Definition 3. Their correctness is defined in §4.3 and
their application is illustrated in §5.

Definition 3 (UDA rule) A UDA rule is an implication of the form:

Decompose(A(x⃗), τ) = [Aj(⃗?xj)|1 ≤ j ≤ m]

=⇒ A(h⃗τ (ϵ ⃗?x1. A1(⃗?x1), . . . , ϵ ⃗?xm. Am(⃗?xm)))

where:

– Decompose is a function that takes the parent alist A(x⃗) and the type of
decomposition τ and returns a list of m child alists [Aj(⃗?xj)|1 ≤ j ≤ m].

– The various alists differ only in the attribute values singled out as their
arguments, e.g., x⃗ in A(x⃗). To suppress clutter, their attributes and other
values are not indicated, but are identical in each alist.

– h⃗τ is the aggregation function that takes the values ϵ ⃗?xj . Aj(⃗?xj) assigned
to the projection variables ⃗?xj of the child alists Aj(⃗?xj) and calculates an
aggregated value:

h⃗τ (ϵ ⃗?x1. A1(⃗?x1), . . . , ϵ ⃗?xm. Am(⃗?xm))

to be projected back to the parent alist A(x⃗) as the value(s) of the variable(s)
x⃗. Note that the ⃗?xj are projection variables as their values will be projected
back to their parent alist A(x⃗). The x⃗ may or may not be projection variables.

– h⃗τ is selected during inference as an operation to aggregate the values re-
turned by the new child alists. Note that the choice of aggregation function
might depend on the values to be aggregated, the query intent, context and
the decomposition. For instance, the choice of an aggregation function for
prediction during temporal decomposition will depend on, say, the number
of data points available and their underlying statistical distribution. So, the
choice may be left as a variable to be instantiated only after the UDA rule
has been applied.

– [Aj |1 ≤ j ≤ m] is a form of list composition, that we have invented, which
is analogous to set comprehension. Lists are used, rather than sets, because
argument order may matter4 for the aggregation function h⃗τ .

– Vector notation is used for the variables x⃗j and x⃗, and for the aggregation
function h⃗τ because more than one variable and/or function may be involved
in a rule.

– Note that the logical implication of UDA rules is from right to left: the val-
ues of the projection variables of the child alists determine the values of the
operands of the parent alist. But FRANK builds the inference graph by apply-
ing the UDA rules left to right, i.e., from the goal alist to the leaf node alists.
The projection variables of the leaf alist are then instantiated by matching
them against facts in the knowledge sources.

The above UDA rule can be represented graphically as shown in Figure 1.

𝒜1(? Ԧ𝑥1) 𝒜𝑚(? Ԧ𝑥𝑚). . .

Decompose(𝒜 ?x , τ) h𝜏 c1, … , cm
where c𝑖= 𝜖? Ԧ𝑥𝑖 . 𝒜𝑖(? Ԧ𝑥𝑖)

i ∈ [1, … ,𝑚]

𝒜[Τℎ𝜏 ℎ]

𝒜(? Ԧ𝑥)

𝜖? Ԧ𝑥1. 𝒜1(? Ԧ𝑥1) 𝜖? Ԧ𝑥𝑚. 𝒜𝑚(? Ԧ𝑥𝑚)

Fig. 1. A graphical representation of a UDA rule. It shows a single step of inference
in FRANK and is applied recursively to construct inference graphs. Solid red arrows
show the direction of decomposition while the dashed green ones show the direction
of aggregation during upward propagation of projection variable instantiations from
children to their parent.

4 Although not for any of the examples in this paper.

Another novel feature of UDA rules is that they define two kinds of inference:
firstly, the replacement of parent goals with child sub-goals via decomposition
and secondly, the propagation of answers from leaves to root via aggregation.
Unlike most automated reasoning, where variables are just instantiated to com-
pound terms, aggregation evaluates these compound terms to return values, e.g.,
numbers, countries.

4.1 The New Axiom

We can describe the new axiom being added by a UDA rule using the alternative
first-order logic (FOL) notation introduced in §2. Let P be the value of the
compulsory Predicate attribute of A(x⃗) and Pj its value in Aj(⃗?xj) for 1 ≤ j ≤
m. Then the new axiom is:

P1(⃗?x1) ∧ . . . ∧ Pm(⃗?xm) =⇒ P (h⃗τ (⃗?x1, . . . , ⃗?xm)) (3)

For the sake of readability, we have omitted any additional arguments of P and
the Pj .

If the UDA rule was used to add this axiom directly into the logical theory,
then any FOL theorem prover, e.g., resolution [1], could be used to derive the
required answer to the query.

4.2 Representing Uncertainty

FRANK applies both arithmetic and statistical aggregation functions, e.g., sum-
mation and regression. Statistical aggregation introduces uncertainty into the
reasoning, so we cannot, in general, demand logical correctness of the axioms
that UDA rules introduce into a theory. There is also noise in the knowledge
sources. So, the validity of FRANK’s inference is statistical as well as logical. It,
therefore, returns an error interval with its conclusions [12, 10].

Noise in the answer is assumed to be a Gaussian5. For quantitative queries,
FRANK uses the mean as the answer and the coefficient of variation (cov), which
is the standard deviation normalised by the mean, as the measure of uncertainty.
The cov can be interpreted as an error interval around the answer. To calculate
the answer’s cov, each A and each Aj is given an additional cov attribute/value
pair and an uncertainty propagation function, similar to h⃗τ , is used to propagate
the uncertainties of the child alists Ajs to the uncertainty of their parent A.

4.3 The Correctness of the UDA rules

We can associate a correctness property with each UDA rule. In the case of
rules that use a statistical aggregation function, the correctness property is also
statistical. The proofs of these correctness properties would be conducted in a
theory of sets, and the definition of the corresponding aggregation functions.
Their automation is currently future work.
5 Or similar, depending on the statistical methods used.

The Non-Statistical Case We consider, first, the non-statistical case. Con-
sider the partition rule for decomposing a compound object into a partition of
sub-objects and then summing the values that they return. We name this rule
part(Σ). The definition of Decompose for the part(Σ) rule and its corresponding
correctness property are given in Definition 4.

Definition 4 (Partition Correctness Property) Consider the following def-
inition of Decompose.

Decompose(A(O, x), part(Σ)) = [Aj(Oj , xj) | partOf(Oj , O)]

where partOf(Oj , O) means that Oj is an immediate part of compound object
O, i.e., there is no Oj such that it is a part of a part. We assume that the
call to partOf returns all such parts, so the Ojs form a partition. We have
distinguished two attribute values in A(O, x) and the Aj(Oj , xj): the objects O
and their properties x. Otherwise, the alists A and the Aj are identical.

Note that we have dropped the vector notation as, in this rule, the x and xj

are singleton variables.
The part(Σ) rule correctness property is now:

x = Σ([xj | Aj(Oj , xj) ∧ partOf(Oj , O)]) =⇒ A(O, x) (4)

where the xj are formed into a list to which Σ is applied and the result x gives
a value that makes A(O, x) true.

Sometimes the partition rule is used not to sum the child scores, but to find a
maximum, minimum or apply another arithmetic operation. Different correctness
properties are needed for these cases, such as:

x = max([xj | Aj(Oj , xj) ∧ partOf(Oj , O)]) =⇒ A(O, x)

x = min([xj | Aj(Oj , xj) ∧ partOf(Oj , O)]) =⇒ A(O, x)

The Statistical Case We now consider the statistical case, illustrated by the
regression aggregation function, regress, used by the temporal rule, which we
name the temp(reg) rule 6. Definition 5 defines Decompose for the temp(reg)
rule and its corresponding correctness property.

Definition 5 (Temporal Correctness Property)

Decompose(A(T, y), temp(reg)) = [Aj(Tj , yj) | before(Tj , T)]

where before(Tj , T) means that time Tj occurs before time T . We have distin-
guished two attribute values in the alists: the times T and the alists’ property’s
values y at the corresponding times. We use y instead of x, as, traditionally,
6 Note that the temporal rule can also use non-statistical aggregation functions, e.g.,
temp(max) could be used to find the maximum value of a property among a set of
times

the x-axis would be time and the y-axis is the value of the property over time.
Otherwise, the alists A and the Aj are identical.

ρ : ⟨f, st⟩ = regress([yj | Aj(Tj , yj) ∧ before(Tj , T)])

=⇒ ∃y. y − sd(T) ≤ F (T) ≤ y + sd(T) ∧ A(T, y)

regress returns the pair of the function f that it creates together with the
first standard deviation function sd. f(T) and sd(T) extrapolate the functions f
and sd to the time T . y is the value that makes A(T, y) true. The correctness
property asserts that f(T) lies within the error interval, i.e., within one standard
deviation of y. ρ is the probability that f(T) lies within this interval, which can
be calculated using the 68-95-99.7 rule7, which gives the value 0.6827. ⟨Tj , yj⟩
are the points used in the regression.

FRANK’s inference graph is constructed by applying correct UDA rules,
but there are many branching points, so search is controlled by heuristics. For
instance, FRANK prefers to consult knowledge sources containing facts with low
uncertainty and to use decompositions that result in a representative list of child
alists and that respect user preferences [13].

5 Worked Example

To illustrate the use of these UDA rules in FRANK, consider the following query.

What will be the population of Africa in 2030?

This can be represented as the following alist:

{⟨p, population⟩, ⟨s,Africa⟩, ⟨o, ?x⟩, ⟨t, 2030⟩} (5)

where the 4 attributes p, s, o, t mean predicate, subject, object and time, respec-
tively and ?x is a projection variable.

To answer this query FRANK can use two UDA rules: part(Σ) and temp(reg).
part(Σ) is used to partition Africa into its constituent countries and temp(reg)
is used to estimate the 2030 populations for each country, which are then summed
using the Σ aggregation function of part(Σ).

FRANK’s GUI interface for this query is given in Figure 2. FRANK’s search
strategy is to apply correct UDA rules respecting the heuristics outlined in §4.3.
One possible inference path proceeds as follows.

1. FRANK tries to match alist (5) to various knowledge sources, but finds no
match because Africa’s population for 2030 is not yet known.

2. It then makes an unsuccessful attempt to apply temp(reg) to alist (5), which
fails due to the lack of census records for the whole of Africa.

7 https://en.wikipedia.org/wiki/68-95-99.7_rule accessed on 12.5.22

3. Instead, it makes a successful attempt to apply part(Σ) to alist (5) which
creates the following 54 child alists:

{⟨p, population⟩, ⟨s,Algeria⟩, ⟨o, ?x1⟩, ⟨t, 2030⟩}
. . . {⟨p, population⟩, ⟨s, Zimbabwe⟩, ⟨o, ?x54⟩, ⟨t, 2030⟩}

4. FRANK tries to match each of these alists to various knowledge sources, but
finds no matches because population data for 2030 is not yet known.

5. It then makes successful attempts to apply temp(reg) to each of these 54
child alists. The regress aggregation function returns a population growth
function and a standard deviation. Both are extrapolated to 2030 and the
resulting 2030 population estimates and their standard deviations are prop-
agated back to their shared parent alist.

6. part(Σ)’s aggregation function, Σ, is used to sum the 54 population esti-
mates. Their standard deviations are turned into covs so that they can be
combined both together and with a cov for the regression. The resulting cov
is also propagated to the parent alist to provide the uncertainty estimate for
the population estimate.

7. Both the population and uncertainty estimates are returned to the user.

6 Related Work

We have not found anything in the literature directly related to UDA rules.
For instance, although axioms of the form (3) are commonly used in automated
reasoning [1], they are usually provided manually by human experts, rather than
automatically generated to meet the needs of the current (sub)goal.

There are also logics in which uncertainty measures are associated with ax-
ioms [7, 9], but these measures are usually probabilities or similar. We found
probabilities to be unsuitable as an uncertainty measure for quantitative an-
swers. The probability that a particular number is the true answer to a query is
usually 0. For instance, the precise annual population of a country is inherently
uncertain, given the long period and whether tourists, illegal immigrants, babies
being born, people in a vegetative state, people in hiding, etc should be or can be
counted. The range given by an error interval is a much better uncertainty mea-
sure. Probabilities are, however, an appropriate measure for qualitative answers,
e.g., multi-hop information retrieval [6]. We are exploring their use in FRANK,
including situations where a query requires mixing probabilities with error inter-
vals, e.g., consider the example in §1, where the covs on each African country’s
GDP must be propagated into the probability that a particular country has the
largest GDP.

The way in which UDA rules dynamically construct the inference search
space, e.g., by determining the branching rate of a rule, is reminiscent of proof
planning [2], whereby meta-level rules are used to pre-plan the shape of a proof8.
8 We are grateful to an anonymous reviewer for pointing out this analogy and sug-

gesting that we discuss it here.

The main difference is that proof planning uses a two-level inference process:
meta-level and object-level rules, whereas UDA rules are dynamically constructed
object-level rules.

An alternative to an alist representation might be one based on functions.
For instance, the part(Σ) rule might be represented as:

F (y) = Σ({Fj(yj)|partOf(y, yj) ∧ 1 ≤ j ≤ m})

where, using the functional interpretation of alists, F is associated with A, Fj

with Aj , y is the compound object and the yj are its parts. The projection vari-
ables are now the outputs of the F and Fj functions. This functional represen-
tation might be used, for instance, in a functional programming implementation
of FRANK.

7 Future Work

We plan to develop some theories in which the UDA rule correctness properties
can be proved, initially manually, but ultimately automatically by FRANK. We
also plan to develop our correctness properties for particular UDA rules into a
general theory of UDA rule correctness.

We are considering the use of a choice-style UDA rule for meta-level infer-
ence, i.e., to automate FRANK’s engineering decisions, such as which knowledge
sources and reasoning methods to use to solve the current query. This will assist
us in our vision of whole-system explanations of AI systems [4, 11]. By repre-
senting these choices in a declarative form, FRANK’s explanation system will
be able to describe not only the object-level inference it uses to answer a query,
but also the meta-level inference it used to construct the object-level inference
process from knowledge sources and reasoning methods.

We are experimenting with a probabilistic uncertainty measure for qualita-
tive queries. These uncertainty measures need to be interleaved during inference
as a quantitative value propagated from a child alist may be converted into a
quantitative value propagated by its parent and vice versa, e.g., covs on each
African country’s GDP may be propagated into the probability that a particular
country has the largest GDP.

8 Conclusion

We have introduced the concept of UDA rules. They are implication schemata
that are instantiated during the inference process to create new axioms to be
added to a logical theory and then used in a proof. These new axioms depend
on: the type τ of the rule, the parent alist that it is applied to, the original
goal and the theory in which it is applied. They are useful whenever the number
of preconditions of the new axiom depends on these factors, e.g., the number of
components of a compound object, the number of available values of a time vary-
ing attribute, the forces acting on an object, the number of applicable reasoning
methods and the number of relevant knowledge sources.

UDA rules have been implemented in the FRANK query answering system.
We have proposed correctness properties for the different kinds of UDA rules.
Some of FRANK’s UDA rules have statistical aggregation functions, such as
regression. The correctness properties for these rules give only a probability that
FRANK’s answers lie within the first standard deviation of the true answer.
The knowledge bases from which FRANK draws its facts are also potentially
noisy. Given these two sources of uncertainty, FRANK returns both an estimated
answer and an error interval.

Acknowledgements

Thanks to Nicholas Ferguson, Thomas Fletcher, Xue Li, Ruqui Zhu and five
anonymous reviewers for feedback on an earlier draft. This research has been
supported by Huawei grant CIENG4721/LSC.

References

1. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, Volume 1, vol. I, chap. 2,
pp. 19–199. Elsevier (2001)

2. Bundy, A.: A Science of Reasoning, pp. 178–198. MIT Press (1991)
3. Bundy, A., Byrd, L., Luger, G., Mellish, C., Milne, R., Palmer, M.: Solving mechan-

ics problems using meta-level inference. In: Buchanan, B.G. (ed.) Proceedings of
IJCAI-79. pp. 1017–1027. International Joint Conference on Artificial Intelligence
(1979)

4. Bundy, A., Nuamah, K.: Combining deductive and statistical explanations in the
FRANK query answering system. In: Gong, Z., Li, X., Oguducu, S.G. (eds.) Pro-
ceedings of the 12th IEEE International Conference on Big Knowledge (ICBK).
IEEE, Auckland, New Zealand (December 2021)

5. Bundy, A., Nuamah, K., Lucas, C.: Automated reasoning in the age of the
internet. In: 13th International Conference on Artificial Intelligence and Sym-
bolic Computation. vol. LNAI 11110, pp. 3–18. Springer, Cham (8 2018).
https://doi.org/10.1007/978-3-319-99957-9_1, invited Talk

6. Das, R., Godbole, A., Kavarthapu, D., Gong, Z., Singhal, A., Yu, M., Guo, X., Gao,
T., Zamani, H., Zaheer, M., et al.: Multi-step entity-centric information retrieval
for multi-hop question answering. In: Proceedings of the 2nd Workshop on Machine
Reading for Question Answering. pp. 113–118 (2019)

7. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon,
I., Janssens, G., De Raedt, L.: Inference and learning in probabilistic logic pro-
grams using weighted boolean formulas. Theory and Practice of Logic Program-
ming 15(3), 358–401 (2015)

8. Fletcher, T., Bundy, A., Nuamah, K.: Statistics automation in a query-answering
system, submitted

9. Nilsson, N.J.: Probabilistic logic. Artificial intelligence 28(1), 71–87 (1986)
10. Nuamah, K.: Functional inferences over heterogeneous data (2018), unpublished

Ph.D. Dissertation, University of Edinburgh
11. Nuamah, K.: Deep algorithmic question answering: Towards a compositionally hy-

brid AI for algorithmic reasoning. In: Workshop on Knowledge Representation for
Hybrid and Compositional AI (2021)

12. Nuamah, K., Bundy, A.: Calculating error bars on inferences from web data. In:
SAI Intelligent Systems Conference (IntelliSys). pp. 618–640. Springer, Cham (11
2018). https://doi.org/10.1007/978-3-030-01057-7_48

13. Nuamah, K., Bundy, A., Jia, Y.: A context mechanism for an inference-based
question answering system. In: AAAI2021 Workshop on CSKGs, Feb. vol. 8 (2021)

F
ig.2.

T
he

w
eb

brow
ser-based

user
interface

for
F
R

A
N

K
.
O

n
the

left
side

is
show

n
the

user’s
question,

the
generated

alist
query,

the
interm

ediate
answ

er,
error

intervals
on

the
answ

er
and

the
know

ledge
sources

used.
O

n
the

right
is

show
n

the
corresponding

inference
graph.

