

Edinburgh Research Explorer

Strongly-Normalizing Higher-Order Relational Queries

Citation for published version:
Ricciotti, W & Cheney, J 2022, 'Strongly-Normalizing Higher-Order Relational Queries', Logical Methods in
Computer Science, vol. 18, no. 3, 23. https://doi.org/10.46298/lmcs-18(3:23)2022

Digital Object Identifier (DOI):
10.46298/lmcs-18(3:23)2022

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Logical Methods in Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Sep. 2022

https://doi.org/10.46298/lmcs-18(3:23)2022
https://doi.org/10.46298/lmcs-18(3:23)2022
https://www.research.ed.ac.uk/en/publications/16089102-c720-4b30-8445-e400d925982e

Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 23:1–23:41
https://lmcs.episciences.org/

Submitted Dec. 01, 2020
Published Aug. 17, 2022

STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES

WILMER RICCIOTTI AND JAMES CHENEY

Laboratory for Foundations of Computer Science, University of Edinburgh, United Kingdom and
The Alan Turing Institute, London, United Kingdom
e-mail address: research@wilmer-ricciotti.net, jcheney@inf.ed.ac.uk

Abstract. Language-integrated query is a powerful programming construct allowing
database queries and ordinary program code to interoperate seamlessly and safely. Language-
integrated query techniques rely on classical results about the nested relational calculus,
stating that its queries can be algorithmically translated to SQL, as long as their result
type is a flat relation. Cooper and others advocated higher-order nested relational calculi
as a basis for language-integrated queries in functional languages such as Links and F#.
However, the translation of higher-order relational queries to SQL relies on a rewrite system
for which no strong normalization proof has been published: a previous proof attempt does
not deal correctly with rewrite rules that duplicate subterms. This paper fills the gap in
the literature, explaining the difficulty with a previous proof attempt, and showing how to
extend the >>-lifting approach of Lindley and Stark to accommodate duplicating rewrites.
We also show how to extend the proof to a recently-introduced calculus for heterogeneous
queries mixing set and multiset semantics.

1. Introduction

The Nested Relational Calculus (NRC) [BNTW95] provides a principled foundation for
integrating database queries into programming languages. Wong’s conservativity theo-
rem [Won96] generalized the classic flat-flat theorem [PG92] to show that for any nesting
depth d, a query expression over flat input tables returning collections of depth at most d
can be expressed without constructing intermediate results of nesting depth greater than d.
In the special case d = 1, this implies the flat-flat theorem, namely that a nested relational
query mapping flat tables to flat tables can be expressed in a semantically equivalent way
using the flat relational calculus. In addition, Wong’s proof technique was constructive, and
gave an easily-implemented terminating rewriting algorithm for normalizing NRC queries
to flat relational queries, which can in turn be easily translated to idiomatic SQL queries.
The basic approach has been extended in a number of directions, including to allow for
(nonrecursive) higher-order functions in queries [Coo09b], and to allow for translating queries
that return nested results to a bounded number of flat relational queries [CLW14].

Normalization-based techniques are used in language-integrated query systems such as
Kleisli [Won00] and Links [CLWY07], and can improve both performance and reliability of

Key words and phrases: Strong normalization, >>-lifting, Nested relational calculus, Language-integrated
query.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:23)2022
© W. Ricciotti and J. Cheney
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-2361-8538
https://orcid.org/0000-0002-1307-9286
http://creativecommons.org/about/licenses

23:2 W. Ricciotti and J. Cheney Vol. 18:3

language-integrated query in F# [CLW13]. However, most work on normalization considers
homogeneous queries in which there is a single collection type (e.g. homogeneous sets or
multisets). Currently, language-integrated query systems such as C# and F# [MBB06]
support duplicate elimination via a Distinct() method, which is translated to SQL queries
in an ad hoc way, and comes with no guarantees regarding completeness or expressiveness
as far as we know, whereas Database-Supported Haskell (DSH) [UG15] supports duplicate
elimination but gives all operations list semantics and relies on more sophisticated SQL:1999
features to accomplish this. Fegaras and Maier [FM00] propose optimization rules for a
nested object-relational calculus with set and bag constructs but do not consider the problem
of conservativity with respect to flat queries.

Recently, we considered a heterogeneous calculus for mixed set and bag queries [RC19],
and conjectured that it too satisfies strong normalization and conservativity theorems.
However, in attempting to extend Cooper’s proof of normalization we discovered a subtle
problem, which makes the original proof incomplete.

Most techniques to prove the strong normalization property for higher-order languages
employ logical relations; among these, the Girard-Tait reducibility relation is particularly
influential: reducibility interprets types as certain sets of strongly normalizing terms en-
joying desirable closure properties with respect to reduction, called candidates of reducibil-
ity [GLT89]. The fundamental theorem then proves that every well-typed term is reducible,
hence also strongly normalizing. In its traditional form, reducibility has a limitation that
makes it difficult to apply it to certain calculi: the elimination form of every type is expected
to be a neutral term or, informally, an expression that, when placed in an arbitrary evaluation
context, does not interact with it by creating new redexes. However, some calculi possess
commuting conversions, i.e. reduction rules that apply to nested elimination forms: such rules
usually arise when the elimination form for a type (say, pairs) is constructed by means of an
auxiliary term of any arbitrary, unrelated type. In this case, we expect nested elimination
forms to commute; for example, we could have the following commuting conversion hoisting
the elimination of pairs out of case analysis on disjoint unions:

cases (let (a, b) = p in t) of inl(x)⇒ u; inr(y)⇒ v
 let (a, b) = p in cases t of inl(x)⇒ u; inr(y)⇒ v

where p has type A×B, t has type C+D, u, v have type U , and the bound variables a, b are
chosen fresh for u and v. Since in the presence of commuting conversions elimination forms
are not neutral, a straightforward adaptation of reducibility to such languages is precluded.

1.1. >>-lifting and NRC λ. Cooper’s NRC λ [Coo09a, Coo09b] extends the simply typed
lambda calculus with collection types whose elimination form is expressed by comprehensions⋃
{M |x← N}, where M and N have a collection type, and the bound variable x can appear

in M :

Γ ` N : {S} Γ, x : S `M : {T}
Γ `

⋃
{M |x← N} : {T}

(we use bold-style braces {·} to indicate collections as expressions or types of NRC λ). In the
rule above, we typecheck a comprehension destructuring collections of type {S} to produce
new collections in {T}, where T is an unrelated type: semantically, this corresponds to
the union of all the collections M [V /x], such that V is in N . According to the standard

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:3

approach, we should attempt to define the reducibility predicate for the collection type {S}
as:

Red{S} , {N : ∀x, T,∀M ∈ Red{T},
⋃

{M |x← N} ∈ Red{T}}
(we use roman-style braces {·} to express metalinguistic sets). Of course the definition above
is circular, since it uses reducibility over collections to express reducibility over collections;
however, this inconvenience could in principle be circumvented by means of impredicativity,
replacing Red{T} with a suitable, universally quantified candidate of reducibility (an approach
we used in [RC17] in the context of justification logic). Unfortunately, the arbitrary return
type of comprehensions is not the only problem: they are also involved in commuting
conversions, such as:⋃

{M |x←
⋃

{N |y ← P}}
⋃

{
⋃

{M |x← N}|y ← P} (y /∈ FV (M))

Because of this rule, comprehensions are not neutral terms, thus we cannot use the closure
properties of candidates of reducibility (in particular, CR3 [GLT89]) to prove that a collection
term is reducible. To address this problem, Lindley and Stark proposed a revised notion of
reducibility based on a technique they called >>-lifting [LS05]. >>-lifting, which derives
from Pitts’s related notion of >>-closure [Pit98], involves quantification over arbitrarily
nested, reducible elimination contexts (continuations); the technique is actually composed

of two steps: >-lifting, used to define the set Red>T of reducible continuations for collections

of type T in terms of RedT , and >>-lifting proper, defining Red{T} = Red>>T in terms of

Red>T . In our setting, if we use SN to denote the set of strongly normalizing terms, the two
operations can be defined as follows:

Red>T , {K : ∀M ∈ RedT ,K[{M}] ∈ SN}

Red>>T , {M : ∀K ∈ Red>T ,K[M] ∈ SN}
Notice that, in order to avoid a circularity between the definitions of reducible collection
continuations and reducible collections, the former are defined by lifting a reducible term M
of type T to a singleton collection.

In NRC λ, besides commuting conversions, we come across an additional problem
concerning the property of distributivity of comprehensions over unions, represented by the
following reduction rule:⋃

{M ∪N |x← P}
⋃

{M |x← P} ∪
⋃

{N |x← P}

One can immediately see that in
⋃
{M ∪N |x← �} the reduction above duplicates the hole,

producing a multi-hole context that is not a continuation in the Lindley-Stark sense.
Cooper, in his work, attempted to reconcile continuations with duplicating reductions.

While considering extensions to his language, we discovered that his proof of strong nor-
malization presents a nontrivial lacuna which we could only fix by relaxing the definition of
continuations to allow multiple holes. This problem affected both the proof of the original
result and our attempt to extend it, and has an avalanche effect on definitions and proofs,
yielding a more radical revision of the >>-lifting technique which is the subject of this
paper.

The contribution of this paper is to place previous work on higher-order program-
ming for language-integrated query on a solid foundation. As we will show, our approach
also extends to proving normalization for a higher-order heterogeneous collection calculus
NRC λ(Set ,Bag) [RC19] and we believe our proof technique can be extended further.

23:4 W. Ricciotti and J. Cheney Vol. 18:3

This article is a revised and expanded version of a conference paper [RC20]. Compared
with the conference paper, this article refines the notion of >>-lifting by omitting a harmless,
but unnecessary generalization, includes details of proofs that had to be left out, and expands
the discussion of related work. In addition, we fully comment on the extension of our result
to a language allowing to freely mix and compose set queries and bag queries, which was
only marginally discussed in the conference version. We also solved a subtle problem with
the treatment of variable capture in contexts by reformulating the statement of Lemma 3.19.

1.2. Summary. Section 2 reviews NRCλ and its rewrite system. Section 3 presents the
refined approach to reducibility needed to handle rewrite rules with branching continuations.
Section 4 presents the proof of strong normalization for NRCλ. Section 5 outlines the
extension to a higher-order calculus NRC λ(Set ,Bag) providing heterogeneous set and bag
queries. Sections 6 and 7 discuss related work and conclude.

2. Higher-order NRC

NRC λ, a nested relational calculus with non-recursive higher-order functions, is defined by
the following grammar:

types S, T ::= A | S → T | 〈
−−→
` : T 〉 | {T}

terms L,M,N ::= x | c(
−→
M) | 〈

−−−−→
` = M〉 | M.` | λx.M | (M N)

| ∅ | {M} | M ∪N |
⋃
{M |x← N}

| empty M | where M do N

where x, ` and c range over countably infinite and pairwise disjoint sets of variables, record
field labels, and constants.

Types include atomic types A,B, . . . (among which we have Booleans B), record types

with named fields 〈
−−→
` : T 〉, collections {T}; we define relation types as those in the form

{〈
−−→
` : A〉}, i.e. collections of records of atomic types. Terms include applied constants c(

−→
M),

records with named fields and record projections (〈` = M〉, M.`), various collection terms
(empty, singleton, union, and comprehension), the emptiness test empty, and one-sided
conditional expressions for collection types whereM do N ; we allow the type of records with
no fields: consisting of a single, empty record 〈〉. Notice that λx.M and

⋃
{M | x← N}

bind the variable x in M .
We will allow ourselves to use sequences of generators in comprehensions, which are

syntactic sugar for nested comprehensions, e.g.:⋃
{M |x← N, y ← R} ,

⋃
{
⋃

{M |y ← R}|x← N}

The typing rules, shown in Figure 1, are largely standard, and we only mention those
operators that are specific to our language: constants are typed according to a fixed signature
Σ, prescribing the types of the n arguments and of the returned expression to be atomic;
we assume that Σ assigns the type B to the constants true and false (representing the two
Boolean values), and the type (B,B)→ B to the constant ∧ (representing the logical ‘and‘)
and we will allow ourselves to write M ∧N instead of ∧(M,N). The operation empty takes
a collection and returns a Boolean indicating whether its argument is empty; where takes a
Boolean condition and a collection and returns the second argument if the Boolean is true,

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:5

x : T ∈ Γ
Γ ` x : T

Σ(c) =
−→
An → A′ (Γ `Mi : Ai)i=1,...,n

Γ ` c(
−→
Mn) : A′

(Γ `Mi : Ti)i=1,...,n

Γ ` 〈
−−−−−→
`n = Mn〉 : 〈

−−−−→
`n : Tn〉

Γ `M : 〈
−−−−→
`n : Tn〉 i ∈ {1, . . . , n}

Γ `M.`i : Ti

Γ, x : S `M : T

Γ ` λx.M : S → T
Γ `M : S → T Γ ` N : S

Γ ` (M N) : T

Γ ` ∅ : {T}
Γ `M : T

Γ ` {M} : {T}
Γ `M : {T} Γ ` N : {T}

Γ `M ∪N : {T}
Γ, x : T `M : {S} Γ ` N : {T}

Γ `
⋃
{M |x← N} : {S}

Γ `M : {T}
Γ ` empty M : B

Γ `M : B Γ ` N : {T}
Γ ` where M do N : {T}

Figure 1: Type system of NRC λ.

otherwise the empty set. (Conventional two-way conditionals, at any type, are omitted for
convenience but can be added without difficulty.)

Overall, our presentation of NRC λ is very similar to the language of queries used by
Cooper in [Coo09a]: two minor differences are that NRC λ does not have a specific construct
for input tables (these can be simulated as free variables with relation type) and uses
one-armed conditionals instead of an if-then-else construct. Additionally, Cooper provided a
type-and-effect system to track the use of primitive operations that may not be translated
to SQL; the issue of translating to SQL is not addressed directly in this paper (equivalently,
we may assume that all the primitive operations of NRC λ may be translated to SQL).

2.1. Reduction and normalization. NRC λ is equipped with a rewrite relation whose
purpose is to convert expressions of relation type into a sublanguage isomorphic to a fragment
of SQL, even when the original expression contains subterms whose type is not available in
SQL, such as nested collections. This rewrite relation is obtained from the basic contraction
 ̆ shown in Figure 2, by taking its congruence closure (Figure 3).

We will allow ourselves to say “induction on the derivation of reduction” to mean the
structural induction induced by the notion of congruence closure, followed by a case analysis
on the basic reduction rules used as its base case.

We now discuss the basic reduction rules in more detail. 0-ary constants are values of
atomic type and do not reduce. Applied constants (with positive arity) reduce when all
of their arguments are (0-ary) constants: the reduction rule relies on a fixed semantics J·K
which assigns to each constant c of signature Σ(c) =

−→
A′n → A a function mapping constants

c′1, . . . , c
′
n of type

−→
A′n to values of type A. The rules for collections and conditionals are mostly

standard. The reduction rule for the emptiness test is triggered when the argument M is
not of relation type (but, for instance, of nested collection type) and employs comprehension
to generate a (trivial) relation that is empty if and only if M is.

The normal forms of queries under these rewriting rules construct no intermediate nested
structures, and are straightforward to translate to syntactically isomorphic (up to notational

23:6 W. Ricciotti and J. Cheney Vol. 18:3

(λx.M) N ̆M [N/x] 〈. . . , ` = M, . . .〉.` ̆M c(c′1, . . . , c
′
n) ̆ JcK (c′1, . . . , c

′
n)⋃

{∅|x←M} ̆ ∅
⋃
{M |x← ∅} ̆ ∅

⋃
{M |x← {N}} ̆M [N/x]⋃

{M ∪N |x← R} ̆
⋃
{M |x← R} ∪

⋃
{N |x← R}⋃

{M |x← N ∪R} ̆
⋃
{M |x← N} ∪

⋃
{M |x← R}⋃

{M |y ←
⋃
{R|x← N}} ̆

⋃
{M |x← N, y ← R} (if x /∈ FV(M))⋃

{M |x← where N do R} ̆ where N do
⋃
{M |x← R}

where true do M ̆M where false do M ̆ ∅ where M do ∅ ̆ ∅
where M do (N ∪R) ̆ (where M do N) ∪ (where M do R)

where M do
⋃
{N |x← R} ̆

⋃
{where M do N |x← R} (if x /∈ FV(M))

where M do where N do R ̆ where (M ∧N) do R
empty M ̆ empty (

⋃
{〈〉|x←M}) (if M is not relation-typed)

Figure 2: Query normalization (basic contraction rules)

M ̆M ′

M M ′
M M ′

c(
−→
L ,M,

−→
N) c(

−→
L ,M ′,

−→
N)

M M ′

〈
−−−−→
`1 = L, ` = M,

−−−−→
`2 = N〉 〈

−−−−→
`1 = L, ` = M ′,

−−−−→
`2 = N〉

M M ′

M.` M ′.`

M M ′

λx.M λx.M ′
M M ′

M N M ′ N
M M ′

L M L M ′

M M ′

{M} {M ′}
M M ′

M ∪N M ′ ∪N
M M ′

L ∪M L ∪M ′

M M ′⋃
{M |x← N}

⋃
{M ′|x← N}

M M ′⋃
{L|x←M}

⋃
{L|x←M ′}

M M ′

empty M empty M ′

M M ′

where M do N where M ′ do N
M M ′

where L do M where L do M ′

Figure 3: Query normalization (congruence closure of ̆)

differences) and semantically equivalent SQL queries. For example, consider the following
NRC λ query which, given a table t, first wraps the id field of every tuple of t into a singleton,
yielding a collection of singletons (i.e. a nested collection), then converts it back to a flat
collection by performing the grand union of all of its elements:⋃

{y | y ←
⋃

{{{x.id}} | x← t}}

The normal form of this query does not create the unnecessary intermediate nested collection:⋃
{{x.id} | x← t}

Such a query is easily translated to SQL as:

SELECT x.id FROM t x

Cooper [Coo09b] and Lindley and Cheney [LC12] give a full account of the translation
from NRC λ normal forms to SQL. Cheney et al. [CLW13] showed how to improve the

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:7

performance and reliability of LINQ in F# using normalization and gave many examples
showing how higher-order queries support a convenient, compositional language-integrated
query programming style.

3. Reducibility with branching continuations

We introduce here the extension of >>-lifting we use to derive a proof of strong normalization
for NRC λ. The main contribution of this section is a refined definition of continuations with
branching structure and multiple holes, as opposed to the linear structure with a single hole
used by standard >>-lifting. In our definition, continuations (as well as the more general
notion of context) are particular forms of terms: in this way, the notion of term reduction
can be used for continuations as well, without need for auxiliary definitions.

3.1. Contexts and continuations. We start our discussion by introducing contexts, or
terms with multiple, labelled holes that can be instantiated by plugging other terms (including
other contexts) into them.

Definition 3.1 (context). Let us fix a countably infinite set P of indices: a context C is
a term that may contain distinguished free variables [p], also called holes, where p ∈ P.
Holes are never bound by any of the binders (we disallow terms of the form λ [p] .M or⋃
{M | [p]← N}).

Given a finite map from indices to terms [p1 7→M1, . . . , pn 7→Mn] (context instantiation),
the notation C[p1 7→M1, . . . , pn 7→Mn] (context application) denotes the term obtained by
simultaneously plugging M1, . . . ,Mn into the holes [p1], . . . , [pn]. Notice that the Mi are
allowed to contain holes.

We will use metavariables η, θ to denote context instantiations.

Definition 3.2 (support). Given a context C, its support supp(C) is defined as the set of
the indices p such that [p] occurs in C:

supp(C) , {p : [p] ∈ FV(C)}

(it suffices to use FV(C) as holes are never used as bound variables).
When a term does not contain any [p], we say that it is a pure term; when it is important

that a term be pure, we will refer to it by using overlined metavariables L,M,N,R, . . .
We introduce a notion of permutable multiple context instantiation.

Definition 3.3. A context instantiation η is permutable iff for all p ∈ dom(η) we have
FV(η(p)) ∩ dom(η) = ∅.

The word “permutable” is explained by the following properties:

Lemma 3.4. Let η be permutable, and p1, . . . , pk be an enumeration of all the elements of
dom(η) without repetitions, in any order. Then, for all contexts C, we have:

Cη = C[p1 7→ η(p1)] · · · [pk 7→ η(pk)]

Proof. By structural induction on C. The relevant case is when C = [pi], for some i ∈
{1, ..., k}. By definition, the left-hand side rewrites to η(pi); we can express the right-hand

side as [pi]
−−−−−−−−→
[pj 7→ η(pj)]j=1,...,i−1[pi 7→ η(pi)]

−−−−−−−−→
[pj 7→ η(pj)]j=i+1,...,k. Then we prove:

• [pi]
−−−−−−−−→
[pj 7→ η(pj)]j=1,...,i−1 = [pi], because for all j, pi 6= pj ;

23:8 W. Ricciotti and J. Cheney Vol. 18:3

• [pi][pi 7→ η(pi)] = η(pi) by definition;

• η(pi)
−−−−−−−−→
[pj 7→ η(pj)]j=i+1,...,k = η(pi) because, by the permutability hypothesis, for all j we

have that [pj] /∈ FV(η(pi)).

Then the right-hand side also rewrites to η(pi), proving the thesis.
All the other cases are trivial, applying induction hypotheses where needed.

Lemma 3.5. Let η be permutable and let us denote by η¬p the restriction of η to indices
other than p. Then for all p ∈ dom(η) we have:

Cη = C[p 7→ η(p)]η¬p = Cη¬p[p 7→ η(p)]

Proof. Immediate, by Lemma 3.4.

We can now define continuations as certain contexts that capture how one or more
collections can be used in a program.

Definition 3.6 (continuation). Continuations K are defined as the following subset of
contexts:

K,H ::= [p] | M | K ∪K |
⋃

{M |x← K} | where B do K

where for all indices p, [p] can occur at most once.

This definition differs from the traditional one in two ways: first, holes are decorated
with an index; secondly, and most importantly, the production K ∪K allows continuations
to branch and, as a consequence, to use more than one hole. Note that the grammar above
is ambiguous, in the sense that certain expressions like where B do N can be obtained
either from the production where B do K with K = N , or as pure terms by means of
the production M : we resolve this ambiguity by parsing these expressions as pure terms
whenever possible, and as continuations only when they are proper continuations.

An additional complication of NRC λ when compared to the computational metalanguage
for which >>-lifting was devised lies in the way conditional expressions can reduce when
placed in an arbitrary context: continuations in the grammar above are not liberal enough
to adapt to such reductions, therefore, like Cooper, we will need an additional definition of
auxiliary continuations allowing holes to appear in the body of a comprehension (in addition
to comprehension generators).

Definition 3.7 (auxiliary continuation). Auxiliary continuations are defined as the following
subset of contexts:

Q,O ::= [p] | M | Q ∪Q |
⋃

{Q|x← Q} | where B do Q

where for all indices p, [p] can occur at most once.

We can then see that regular continuations are a special case of auxiliary continuations;
however, an auxiliary continuation is allowed to branch not only with unions, but also with
comprehensions.1

We use the following definition of frames to represent certain continuations with a
distinguished shallow hole denoted by �.

1It is worth noting that Cooper’s original definition of auxiliary continuation does not use branching
comprehension (nor branching unions), but is linear just like the original definition of continuation. The
only difference between regular and auxiliary continuations in his work is that the latter allowed nesting not
just within comprehension generators, but also within comprehension bodies (in our notation, this would

correspond to two separate productions
⋃
{M |x← Q} and

⋃
{Q|x← N}).

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:9

Definition 3.8 (frame). Frames are defined by the following grammar:

F ::=
⋃

{Q|x← �} |
⋃

{�|x← Q} | where B do �

where � does not occur in Q, and for all indices p, [p] can occur in Q at most once.
The operation F p, lifting a frame to an auxiliary continuation with a distinguished hole

[p] is defined as:
F p := F [� 7→ [p]] (p /∈ supp(F))

The composition operation Q p©F is defined as:

Q p©F = Q[p 7→ F p]

We generally use frames in conjunction with continuations or auxiliary continua-
tions when we need to partially expose their leaves: for example, if we write K =
K0 p©

⋃
{M |x← �}, we know that instantiating K at index p with (for example) a singleton

term will create a redex: K[p 7→ {L}] K0[p 7→M
[
L
/
x
]
]. We say that such a reduction

is a reduction at the interface between the continuation and the instantiation (we will make
this notion formal in Lemma 3.25).

In certain proofs by induction that make use of continuations, we will need to use a
measure of continuations to show that the induction is well-founded. We introduce here two
measures |·|p and ‖·‖p denoting the nesting depth of a hole [p]: the two measures differ in
the treatment of nesting within the body of a comprehension.

Definition 3.9. The measures |Q|p and ‖Q‖p are defined as follows:

|[q]|p = ‖[q]‖p =

{
1 if p = q
0 else∣∣M ∣∣

p
=
∥∥M∥∥

p
= 0

|Q1 ∪Q2|p = max(|Q1|p , |Q2|p) ‖Q1 ∪Q2‖p = max(‖Q1‖p , ‖Q2‖p)
|where B Q|p = |Q|p + 1 ‖where B Q‖p = ‖Q‖p + 1

|
⋃
{Q1|x 7→ Q2}|p =

|Q1|p if p ∈ supp(Q1)

|Q2|p + 1 if p ∈ supp(Q2)

0 else

‖
⋃
{Q1|x 7→ Q2}‖p =

‖Q1‖p + 1 if p ∈ supp(Q1)

‖Q2‖p + 1 if p ∈ supp(Q2)

0 else

We will also use |Q| and ‖Q‖ to refer to the derived measures:

|Q| =
∑

p∈supp(Q)

|Q|p ‖Q‖ =
∑

p∈supp(Q)

‖Q‖p

The definitions of frames and measures are designed in such a way that the following
property holds.

Lemma 3.10. Let Q be an auxiliary continuation such that p ∈ supp(Q); then for all frames
F :

(1) ‖Q‖p < ‖Q p©F‖p and ‖Q‖ < ‖Q p©F‖
(2) if F is not of the form

⋃
{� | x← O}, then |Q|p < |Q p©F |p and |Q| < |Q p©F |

(3) if F =
⋃
{� | x← O}, then |Q|p = |Q p©F |p and |Q| = |Q p©F |.

23:10 W. Ricciotti and J. Cheney Vol. 18:3

Proof. By induction on the structure of Q. When examining the forms Q can assume, we
will have to consider subexpressions Q′ for which p may or may not be in supp(Q′): in the
first case, we can apply the induction hypothesis; otherwise, we prove ‖Q′‖p = ‖Q′ p©F‖ = 0

and |Q′|p = |Q′ p©F | = 0.

NRC λ reduction can be used immediately on contexts (including regular and auxiliary
continuations) since these are simply terms with distinguished free variables; we will also
abuse notation to allow ourselves to specify reduction on context instantiations: whenever
η(p) N and η′ = η¬p[p 7→ N], we can write η η′.

We will denote the set of strongly normalizing terms by SN . Strongly-normalizing
applied contexts satisfy the following property:

For strongly normalizing terms (and by extension for context instantiations containing
only strongly normalizing terms), we can introduce the concept of maximal reduction length.

Definition 3.11 (maximal reduction length). Let M ∈ SN : we define ν(M) as the
maximum length of all reduction sequences starting with M . We also define ν(η) as∑

p∈dom(η) ν(η(p)), whenever all the terms in the codomain of η are strongly normalizing.

Since each term can only have a finite number of contracta, it is easy to see that ν(M)
is defined for any strongly normalizing term M . Furthermore, ν(M) is strictly decreasing
under reduction.

Lemma 3.12. For all strongly normalizing terms M , if M M ′, then ν(M ′) < ν(M).

Proof. If ν(M ′) ≥ ν(M), by pre-composing M M ′ with a reduction chain of maximal
length starting at M ′ we obtain a new reduction chain starting at M with length strictly
greater than ν(M); this contradicts the definition of ν(M).

3.2. Renaming reduction. According to the Definitions 3.6 and 3.7, in order for a context
to be a continuation or an auxiliary continuation, it must on one hand agree with the
respective grammar, and on the other hand satisfy the condition that no hole occurs more
than once. We immediately see that, since holes can be duplicated under reduction, the sets
of plain and auxiliary continuations are not closed under reduction. For instance:

K =
⋃

{M ∪N | x← [p]}
⋃

{M | x← [p]} ∪
⋃

{N | x← [p]} = C

where K is a continuation, but C is not due to the two occurrences of [p]. For this reason,
we introduce a refined notion of renaming reduction which we can use to rename holes in
the results so that each of them occurs at most one time.

Definition 3.13. Given a term M with holes and a finite map σ : P → P , we write Mσ for
the term obtained from M by replacing each hole [p] such that σ(p) is defined with [σ(p)].

Even though finite renaming maps are partial functions, it is convenient to extend them
to total functions by taking σ(p) = p whenever p /∈ dom(σ); we will write id to denote the
empty renaming map, whose total extension is the identity function on P.

Definition 3.14 (renaming reduction). M σ-reduces to N (notation: M
σ
 N) iff M Nσ.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:11

Terms only admit a finite number of redexes and consequently, under regular reduction,
any given term has a finite number of possible contracta. However, under renaming reduction,
infinite contracta are possible: if M N , there may be infinite R, σ such that N = Rσ.
When a strongly normalizing term M admits infinite contracta, it does not necessarily have
a maximal reduction sequence (just like the maximum of an infinite set of finite numbers is
not necessarily defined). Fortunately, we can prove (Lemma 3.16) that to every renaming
reduction chain there corresponds a plain reduction chain of the same length, and vice-versa.

Lemma 3.15. If M N , then for all σ we have Mσ Nσ.

Proof. Routine induction on the derivation of M N .

Lemma 3.16.
For every finite plain reduction sequence, there is a corresponding renaming reduction
sequence of the same length (using the identity renaming id); and conversely, for every finite
renaming reduction sequence, there is a corresponding plain reduction sequence of the same
length involving renamed terms. More precisely:

(1) If M0 · · · Mn, then M0
id
 · · · id

 Mn

(2) If M0
σ1 · · · σn−1

 Mn−1
σn Mn, then M0 · · ·Mn−1σn−1 · · ·σ1 Mnσn · · ·σ1

Proof. The first part of the lemma is trivial. For the second part, proceed by induction on

the length of the reduction chain: in the inductive case, we have M0
σ1 · · · σn Mn

σn+1
 Mn+1

by hypothesis and M0 · · · Mnσn · · ·σ1 by induction hypothesis; to obtain the thesis,
we only need to prove that

Mnσn · · ·σ1 Mn+1σn+1σn · · ·σ1

In order for this to be true, by Lemma 3.15, it is sufficient to show that Mn Mn+1σn+1;

this is by definition equivalent to Mn
σn+1
 Mn+1, which we know by hypothesis.

Corollary 3.17. Suppose M ∈ SN : if M
σ
 M ′, then ν(M ′) is defined and ν(M ′) < ν(M).

Proof. By Lemma 3.16, for any plain reduction chain there exists a renaming reduction
chain of the same length, and vice-versa. Thus, since plain reduction lowers the length of
the maximal reduction chain (Lemma 3.12), the same holds for renaming reduction.

The results above prove that the set of strongly normalizing terms is the same under the
two notions of reduction, thus ν(M) can be used to refer to the maximal length of reduction
chains starting at M either with or without renaming.

Our goal is to describe the reduction of pure terms expressed in the form of applied
continuations. One first difficulty we need to overcome is that, as we noted, the sets of
continuations (both regular and auxiliary) are not closed under reduction: the duplication of
holes performed by reduction will produce contexts that are not continuations or auxiliary
continuations because they do not satisfy the condition of the linearity of holes. Thankfully,
renaming reduction allows us to restore the linearity of holes, as we show in the following
lemma.

Lemma 3.18.

(1) For all continuations K, if K C, there exist a continuation K ′ and a finite map σ

such that K
σ
 K ′ and K ′σ = C.

23:12 W. Ricciotti and J. Cheney Vol. 18:3

(2) For all auxiliary continuations Q, if Q C, there exist an auxiliary continuation Q′

and a finite map σ such that Q
σ
 Q′ and Q′σ = C.

Furthermore, the σ,K ′, Q′ in the statements above can be chosen so that dom(σ) is fresh
with respect to any given finite set of indices S.

Proof. Let S be a finite set of indices and C a contractum of the continuation we wish to
reduce. This contractum will not, in general, satisfy the linearity condition of holes that is
mandated by the definitions of plain and auxiliary continuations; however we can show that,
for any context with duplicated holes, there exists a structurally equal context with linear
holes.

Operationally, if C contains n holes, we generate n different indices that are fresh for S,
and replace the index of each hole in C with a different fresh index to obtain a new context
C ′: this induces a finite map σ : supp(C ′)→ supp(C) such that C ′σ = C. By the definition

of renaming reduction, we have K
σ
 C ′ (resp. Q

σ
 C ′). To prove that C ′ is a continuation

(resp. auxiliary continuation) we need to show that it satisfies the linearity condition and
that it meets the grammar in Definition 3.6 (resp. Definition 3.7). The first part holds by
construction; the proof that C ′ satisfies the required grammar is obtained by structural
induction on the derivation of the reduction, with a case analysis on the structure of K (or
on the structure of Q).

By construction of σ, we also have that dom(σ) ∩ S = ∅, as required by the Lemma
statement.

A further problem concerns variable capture: if we reduce C C ′, there is no guarantee
that Cη C ′η for a given context instantiation η. This happens for two reasons: the first
one is that reducing a context C may cause a hole to move within the scope of a new binder.
So, ⋃

{[p] | y ←
⋃
{N | x←M}}

⋃
{[p] | x←M,y ← N}

but⋃
{[p] | y ←

⋃
{N | x←M}}[p 7→ x] 6

⋃
{[p] | x←M,y ← N}[p 7→ x]

because the first term is equal to
⋃
{x | y ←

⋃
{N | x←M}} where the x in the head of

the outer comprehension is free, and the reduction is blocked until we rename the bound x
of the inner comprehension.

The second reason for which the reduction of a context may be disallowed if we apply it
to a context instantiation is that, due to variable capture, the reduction may involve the
context instantiation in a non-trivial way:

(λz. [p]) N [p]
but

((λz. [p]) N)[p 7→ z] 6 [p][p 7→ z]

because the left-hand term is equal to (λz. [p][p 7→ z]) N , and the right-hand one is z, and
the former does not reduce to the latter, but to [p][p 7→ z] [N/z] = N .

While we understand that the first of the two problems should be handled with a suitable
alpha-renaming of the redex, the other is more complicated. Fortunately, in most cases
we are not interested in the reduction of generic contexts, but only in that of auxiliary
continuations: due to their restricted term shape, auxiliary continuations only allow some
reductions, most of which do not present the problem above; the exception is when a

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:13

reduction is obtained by contracting a subterm using the comprehension-singleton rule:⋃
{Q0 | z ← {L}} Q0

[
L
/
z
]

By applying a context instantiation η to both sides, we obtain an incorrect contraction:⋃
{Q0 | z ← {L}}η =

⋃
{Q0η | z ← {L}} 6 Q0

[
L
/
z
]
η

where the left-hand term does not reduce to the right-hand one because in the latter the
codomain of η might contain free instances of z that have not been replaced by L. In the rest
of the paper, we will call reductions using the comprehension-singleton rule special reductions.
When Q Q′ by means of a special reduction, we know that in general Qη 6 Q′η (not
even after alpha-renaming), and we will have to handle such a case differently.

If however Q Q′ is not a special reduction, to mimic that reduction within Qη we may
start by renaming the bound variables of this term in such a way that no reduction is blocked:
we obtain a term in the form Oθ, where O is an auxiliary continuation alpha-equivalent2 to
Q, and θ is obtained from η by replacing some of its free variables with other free variables,
consistently with the renaming of Q to O, as shown by the following lemma (a more general
result applying to all reductions C C ′ and all context instantiations η, which however
gives weaker guarantees on the result of contracting Cη, will be provided as Lemma 3.29).

Lemma 3.19. For all auxiliary continuations Q and for all permutable context instantiations
η, there exist an auxiliary continuation O and a context instantiation θ such that:

(1) Q =α O and Qη =α Oθ
(2) θ = [p 7→ η(p) [−→yp/−→xp] | p ∈ dom(η)] for some −→xp,−→yp (i.e. θ is equal to η up to a renaming

of the free variables in its codomain)
(3) for all C ′ such that Q C ′ with a non-special reduction, there exists D′ =α C

′ such
that O D′ and we also have Oθ D′θ

Proof. We proceed by induction on the size of Q followed by a case analysis on its structure;
for each case, after considering all possible reductions starting in that particular shape of
Q (where we are allowed, by the hypothesis, to ignore special reductions), we perform a
renaming of Qη to Oθ that is guaranteed to allow us to prove the thesis. Particular care is
needed when context instantiations cross binders, as variable capture is allowed to happen:

• Case Q = [p]: no reduction of Q is possible, so we can choose O := Q, θ := η, and the
thesis holds trivially.
• Case Q = M : for all reductions M M ′, we have Mη = M and M ′η = M ′, because

context instantiation is ineffective on pure terms; so we can choose O := Q, θ := η, and
the thesis holds trivially.
• Case Q = Q1 ∪Q2. Since the holes in Q are linear and η is permutable, we can decompose
η = η1η2, such that Qη = Q1η1∪Q2η2; we apply the induction hypothesis twice on the two
subterms, to obtain O1, O2, θ1, θ2 such that for i = 1, 2, we have Oi =α Qi, Oiθi =α Qiηi,
θi is equal to ηi up to a renaming of the free variables in its codomain, and for all C ′i
such that Qi C ′i where the reduction is not special, there exists D′i =α C

′
i such that

2In our setting, contexts are defined as a particular case of terms, allowing special “hole” free variables
that are not used in binders; thus, we only have a single notion of alpha-equivalence for terms that we also
apply to contexts (just like our notion of reduction works on terms and contexts alike). This may look
surprising and perhaps suspicious, considering that in some formal treatments of contexts (e.g. [BdV01]) the
alpha-renaming of contexts is forbidden; however, our work does not need to provide a general treatment of
alpha-renaming in contexts: we only use it under special conditions that ensure its consistency.

23:14 W. Ricciotti and J. Cheney Vol. 18:3

Oi D′i and Oiθi D′iθi. Now, to prove the thesis, we fix O := O1 ∪O2 and θ := θ1θ2;
we easily show that O =α Q, Oθ =α Qη and that θ is equal to η up to a renaming of the
free variables in its codomain. To conclude the proof, we consider any given reduction
Q C ′, and we see by case analysis that either C ′ = Q′1 ∪ Q2 such that Q1 Q′1, or
C ′ = Q1 ∪Q′2 such that Q2 Q′2: in the first case, we know that there exists D′1 =α C

′
1

such that O1 D′1 and O1θ1 D′1: we fix D′ := D′1 ∪ C ′2 and easily prove D′ =α C
′,

D′θ =α C
′η, and Oθ D′θ.

• Case Q =
⋃
{Q1 | y ←

⋃
{Q2 | z ← Q3}}. Since the holes in Q are linear and η is

permutable, we can decompose η = η1η2η3, such that

Qη =
⋃

{Q1η1 | y ←
⋃

{Q2η2 | z ← Q3η3}};

Q can reduce either in the subcontinuations Q1, Q2, Q3 or, if z /∈ FV(Q1), by applying the
unnesting reduction; however, the last reduction might be blocked in Qη, if z ∈ FV(Q1η1).
For this reason, we start by choosing a non-hole variable z∗ /∈ FV(Q1η1) and renaming Q
as Q∗ :=

⋃
{Q1 | y ←

⋃
{Q∗2 | z∗ ← Q3}}, where we have defined Q∗2 := Q2 [z∗/z]. Clearly,

Q∗ =α Q and, if we fix η∗2 := [η2(p) [z∗/z] | p ∈ dom(η)] and η∗ := η1η
∗
2η3, we also have

Q∗η∗ =α Qη; furthermore, since z∗ is not a hole, we can see η∗ must still permutable. Now,
since Q∗η∗ =

⋃
{Q1η1 | y ←

⋃
{Q∗2η∗2 | z∗ ← Q3η3}}, we apply the induction hypothesis

three times on the subterms, to obtain:
– O1, θ1 such that O1 =α Q1, O1θ1 =α Q1η1, θ1 is equal to η1 up to a renaming of the

free variables in its codomain, and for all C ′1 such that Q1 C ′1 where the reduction is
not special, there exists D′1 =α C

′
1 such that O1 D′1 and O1θ1 D′1θ1

– O2, θ2 such that O2 =α Q
∗
2, O2θ2 =α Q

∗
2η
∗
2, θ1 is equal to η∗2 (and thus to η2) up to

a renaming of the free variables in its codomain, and for all C ′2 such that Q∗2 C ′2
where the reduction is not special, there exists D′2 =α C ′2 such that O2 D′2 and
O2θ2 D′2θ2

– O3, θ3 such that O3 =α Q3, O3θ3 =α Q3η3, θ3 is equal to η3 up to a renaming of the
free variables in its codomain, and for all C ′3 such that Q3 C ′3 where the reduction is
not special, there exists D′3 =α C

′
3 such that O3 D′3 and O3θ3 D′3θ3

Note that the first and third case are similar, but the second one has slightly different
properties to account for the renaming of z to z∗.

Now we fix O :=
⋃
{O1 | y ←

⋃
{O2 | z∗ ← O3}} and θ := θ1θ2θ3. We easily show that

O =α Q, Oθ =α Qη and that θ is equal to η up to a renaming of the free variables in its
codomain. To conclude the proof, we consider any given reduction Q C ′, and we see by
case analysis that either the reduction corresponds to a reduction in the subcontinuations
Qi (in which case we conclude by a reasoning on the subterms and induction hypotheses,
similarly to the union case above), or to one of the following:
– C ′ =

⋃
{Q1 | z ← Q3, y ← Q2}: in this case, we fix D′ :=

⋃
{Q1 | z∗ ← Q3, y ← Q∗2}

and we prove, as required, that D′ =α C
′, O D′, and Oθ D′θ.

– Q1 = ∅ and C ′ = ∅: we easily see that O1 = ∅, so we can fix D′ = ∅ and show the thesis.
– Q1 = Q11 ∪Q12 and

C ′ =
⋃

{Q11 | y ←
⋃

{Q2 | z ← Q3}} ∪
⋃

{Q12 | y ←
⋃

{Q2 | z ← Q3}} :

we prove that there exist O11, O12 such that Q11 =α O11, Q12 =α O12, and O1 =
O11 ∪O12, fix D′ =

⋃
{Q11 | y ←

⋃
{Q2 | z ← Q3}} ∪

⋃
{Q12 | y ←

⋃
{Q2 | z ← Q3}},

and prove the thesis.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:15

• Case Q =
⋃
{Q1 | y ← Q2} where Q2 is not a comprehension: this is similar to the case

above, but instead of comprehension unnesting we have to consider two possible reductions
– Q2 = where B do Q3 and C ′ = where B do

⋃
{Q1 | y ← Q3}

– Q2 = Q3 ∪Q4 and C ′ =
⋃
{Q1 | y ← Q3} ∪

⋃
{Q1 | y ← Q4}

However, these reductions do not require us to perform renamings and do not pose any
problems.
• Case Q = where B do Q1. Besides reductions in the subterms, we have to consider the

following cases:
– Q1 =

⋃
{Q2 | y ← Q3} and C ′ =

⋃
{where B do Q1 | z ← Q2} where z /∈ FV(B)

– B = true and C ′ = Q1

– B = false and C ′ = ∅
– Q1 = Q2 ∪Q3 and C ′ = (where B do Q2) ∪ (where B do Q3)
– Q1 = where B0 do Q2 and C ′ = where (B ∧B0) do Q2.
In all these cases, no renaming is required (besides those produced by applying the induction
hypothesis); in particular, the first reduction is always possible without renaming because
B is a pure term, so z /∈ FV(Bη) because Bη = B. Therefore, we prove the thesis using
the induction hypothesis and an exhaustive case analysis on the possible reduction as we
did above, without particular problems.

Remark 3.20. It is important to understand that, unlike all other operations on terms,
context instantiation is not defined on the abstract syntax, independently of the particular
choice of names, but on the concrete syntax. In other words, all operations and proofs
that do not use context instantiation work on alpha-equivalence classes of terms; but when
context instantiation is used, say on a context C, we need to choose a representative of the
alpha-equivalence class of C.

Thanks to Lemma 3.19, whenever we need to reduce Q with a non-special reduction in a
term of the form Qη, we may assume without loss of generality that the representative of the
alpha-equivalence class of Qη is chosen so that if Q C ′, then Qη C ′η. Technically, we
prove that there exist O,D′, θ such that Q =α O, C ′ =α D

′, θ is equal to η up to renaming,
and Oθ D′θ, but after the context instantiation is completed, we return to consider
terms as equal up to alpha-equivalence. The result will be used in the proof of the following
Lemma 3.23, where we have clarified the technical parts.

Finally, given a non-special renaming reduction Q
σ
 Q′, we want to be able to express

the corresponding reduction on Qη: due to the renaming σ, it is not enough to change Q
to Q′, but we also need to construct some η′ containing precisely those mappings [q 7→M]
such that, if σ(q) = p, then p ∈ dom(η) and η(p) = M . This construction is expressed by
means of the following operation.

Definition 3.21. For all context instantiations η and renamings σ, we define ησ as the
context instantiation such that:

• if σ(p) ∈ dom(η) then ησ(p) = η(σ(p));
• in all other cases, ησ(p) = p.

The results above allow us to express what happens when a reduction duplicates the holes
in a continuation which is then combined with a context instantiation.

Lemma 3.22. For all contexts C, finite maps σ, and context instantiations η such that, for
all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, we have Cση = Cησσ.

23:16 W. Ricciotti and J. Cheney Vol. 18:3

Proof. By structural induction on C. The interesting case is when C = [p]. If σ(p) ∈ dom(η):

[p]ση = [σ(p)] η (Definition 3.13)

= η(σ(p)) (Definition 3.1)

= η(σ(p))σ (supp(η(p)) ∩ dom(σ) = ∅)
= [p] ησσ (Definition 3.21, with σ(p) ∈ dom(η))

If instead σ(p) /∈ dom(η):

[p]ση = [σ(p)] η (Definition 3.13)

= [σ(p)] (σ(p) /∈ dom(η))

= [p]σ (Definition 3.13)

= [p] ησσ (Definition 3.21, with σ(p) /∈ dom(η))

Lemma 3.23. For all auxiliary continuations Q, renamings σ, and permutable context
instantiations η such that, for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅, there exist an
auxiliary continuation O and a context instantiation θ such that:

(1) O =α Q and Oθ =α Qη
(2) θ = [p 7→ η(p) [−→yp/−→xp] | p ∈ dom(η)] for some −→xp,−→yp (i.e. θ is equal to η up to a renaming

of the free variables in its codomain)

(3) for all Q′ such that Q
σ
 Q′ with a non-special reduction, there exists O′ =α Q

′ such

that O
σ
 O′ and we also have Oθ O′θ

Proof. By Lemma 3.22, we obtain O and θ such that the alpha-equivalences and the

condition on θ hold. Furthermore, by the definition of
σ
 , we have O O′σ; then, again

by Lemma 3.19, we obtain Oθ O′σθ; by Lemma 3.22, we know O′ση = O′ησσ; then the

thesis Oθ
σ
 O′ησ follows immediately by the definition of

σ
 .

Remark 3.24. In [Coo09a], Cooper attempts to prove strong normalization for NRC λ

using a similar, but weaker result:

If K C, then for all terms M there exists K ′M such that C[M] = K ′M [M]
and K[M] K ′M [M].

Since he does not have branching continuations and renaming reductions, whenever a hole is
duplicated, e.g.

K =
⋃

{N1 ∪N2|x← �}
⋃

{N1|x← �} ∪
⋃

{N2|x← �} = C

he resorts to obtaining a continuation from C simply by filling one of the holes with the
term M :

K ′M =
⋃

{N1|x←M} ∪
⋃

{N2|x← �}

Hence, K ′M [M] = C[M]. Unfortunately, subsequent proofs rely on the fact that ν(K) must
decrease under reduction: since we have no control over ν(M), which could potentially be
much greater than ν(K), it may be that ν(K ′M) ≥ ν(K).

In our setting, by combining Lemmas 3.18 and 3.23, we can find a K ′ which is a proper
contractum of K. By Lemma 3.12, we get ν(K ′) < ν(K), as required by subsequent proofs.

More generally, the following lemma will help us in performing case analysis on the
reduction of an applied continuation.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:17

Lemma 3.25 (classification of reductions in applied continuations). Suppose Qη N ,
where η is permutable, and dom(η) ⊆ supp(Q); then one of the following holds:

(1) there exist an auxiliary continuation Q′ and a finite map σ such that N = Q′ησ, Q
σ
 Q′

and, for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅: we say that this is a reduction of the
continuation Q;

(2) there exist auxiliary continuations Q1, Q2, an index q ∈ supp(Q1), a variable x, and
a term L such that Q = (Q1 q©

⋃
{� | x← {L}})[q 7→ Q2], N = Q′η∗, and Q Q′,

where we define Q′ = Q1[q 7→ Q2

[
L
/
x
]
] and η∗(p) = η(p)

[
L
/
x
]

for all p ∈ supp(Q2),
otherwise η∗(p) = η(p): this is a special reduction of the continuation Q;

(3) there exists a permutable η′ such that N = Qη′ and η η′: in this case we say the
reduction is within η;

(4) there exist an auxiliary continuation Q0, an index p such that p ∈ supp(Q0) and
p ∈ dom(η), a frame F and a term M such that N = Q0[p 7→M]η¬p, Q = Q0 p©F , and
F p[p 7→ η(p)] M : in this case we say the reduction is at the interface.

Furthermore, if Q is a regular continuation K, then the Q′ in case 1 can be chosen to be a
regular continuation K ′, and case 2 cannot happen.

Proof. By induction on Q with a case analysis on the reduction rule applied. In case 1, to
satisfy the property relating η and σ, we use Lemma 3.18 to generate a σ such that the
indices of its domain are fresh with respect to the codomain of η. To see that this partition
of reductions is exhaustive, the most difficult part is to check that whenever we are in the
case of a reduction at the interface, there is a suitable F such that Q can be decomposed as
Q0 p©F ; while there are some reduction rules for which we cannot find a suitable F , the
structure of Q prevents these from happening at the interface between Q and η: for example,
in a reduction (Q0 p©(� L))[p 7→ λx.M] = Q0[p 7→ (λx.M) L] Q0[p 7→M [L/x]], (� L) is
not a valid frame: but we do not have to consider this case, because Q cannot be of the
form Q0 p©(� L), since the latter is not a valid auxiliary continuation.

For all context instantiations η, case 1 of the Lemma above generates a renaming σ
satisfying the hypotheses of Lemma 3.22 and Lemma 3.23. Additionally, the following result
states that ησ must be permutable.

Lemma 3.26. Suppose that for all p ∈ dom(η), supp(η(p)) ∩ dom(σ) = ∅. Then, ησ is
permutable.

Proof. We need to prove that, for all p ∈ dom(ησ), supp(ησ(p))∩dom(σ) = ∅. If p ∈ dom(ησ),
then σ(p) ∈ dom(η); then, by hypothesis, we prove supp(η(σ(p))) ∩ dom(σ) = ∅. Since
η(σ(p)) = ησ(p), this proves the thesis.

Lemma 3.27. For all contexts C, context instantiations η, and sets of hole indices S, there
exist a context D, a context instantiation θ, and a hole renaming σ such that:

• Dσ = C and Dθσ = Cη
• the holes in D are linear and ∀ [q] ∈ FV(D), q /∈ S
• dom(θ) ∪ dom(σ) ⊆ FV(D)
• θ is permutable

Proof sketch. If C has n hole occurrences, we generate n distinct indices p1, . . . , pn (which
we take to be fresh with respect to S and the free variables of the codomain of η) and replace
each hole occurrence within C with a different [pi]: this induces a context D and a renaming

23:18 W. Ricciotti and J. Cheney Vol. 18:3

σ such that Dσ = C. By Lemma 3.22 we prove Cη = Dση = Dησσ (we can apply this

lemma thanks to the careful choice of the pi). We take θ , ησ and the remaining properties
follow easily (the permutability of θ, again, descends from choosing sufficiently fresh indices
pi).

Lemma 3.28. Let C1, C2 be contexts and η1, η2 context instantiations. Then for all free vari-
ables x and sets of hole indices S, there exist a context D, a permutable context instantiation
θ, and a hole renaming σ such that:

• Dσ =α C1 [C2/x] and Dθσ =α (C1η1) [C2η2/x]
• The holes in D are linear and fresh with respect to S
• For all q ∈ dom(θ) ∪ dom(σ), [q] ∈ FV(D)
• θ is permutable

Proof. The proof is by induction on the size of C1, followed by a case analysis on its structure.
Here we consider the variable cases, lambda as a template for binder cases, and application
as a template for cases with multiple subterms.

• If C1 = x, we have x [C2/x] = C2 and (xη1) [C2η2/x] = C2η2. By Lemma 3.28, we find
D, θ, σ such that Dσ = C2, Dθσ = C2η2, the holes in D are linear and arbitrarily fresh,
for all q ∈ dom(θ) ∪ dom(σ), [q] ∈ FV(D), and θ is permutable; this proves the thesis.
• If C1 = [p] ∈ dom(η1), then [p] [C2/x] = [p] and [p] η1 [C2η2/x] = η1(p) [C2η2/x]; for all

sets of hole indices S, we choose p∗ /∈ S such that [p∗] /∈ FV(η1(p) [C2η2/x]); finally we
choose D = [p∗], θ = [p∗ 7→ η1(p) [C2η2/x]], and σ = [p∗ 7→ p] and prove the thesis.
• If C1 is a free variable y not covered by the previous cases, we choose D = y, θ = [] (the

empty instantiation), σ = [] (the empty renaming) to trivially prove the thesis.
• If C1 = λy.C0, let us choose a variable y∗ /∈ {x} ∪ FV(C2η2), such that y∗ is not a hole;

let us define the following abbreviations:

C∗0 , C0 [y∗/y] η∗1 , [p 7→ η1(p) [y∗/y] |p ∈ dom(η1)]

Since C∗0 is equal to C0 up to a renaming, it is smaller than C1 and by induction
hypothesis we get that there exist D0, θ0, σ0 such that D0σ0 =α C

∗
0 [C2/x] and D0θ0σ0 =α

C∗0η
∗
1 [C2η2/x], where the holes in D0 are linear and arbitrarily fresh, for all q ∈ dom(θ0)∪

dom(σ0) we have [q] ∈ FV(D0), and θ0 is permutable. Then we can choose D = λy∗.D0,
θ = θ0, σ = σ0 and show that:

Dσ = (λy∗.D0)σ0

= λy∗.D0σ0

=α λy∗.C∗0 [C2/x]
= (λy.C0) [C2/x]

Dθσ = (λy∗.D0)θ0σ0

= λy∗.D0θ0σ0

=α λy∗.C∗0η
∗
1 [C2η2/x]

= (λy.C0η1) [C2η2/x]
= (λy.C0)η1 [C2η2/x]

We can easily show that the other required properties of D, θ, σ are verified, thus proving
the thesis.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:19

• If C1 = (C11 C12), then

(C11 C12) [C2/x] = (C11 [C2/x]C12 [C2/x]) and

(C11 C12η1) [C2η2/x] = (C11η1 [C2η2/x]C12η1 [C2η2/x]);

by the induction hypothesis, we find D11, θ11, σ11 and D12, θ12, σ12 such that D11σ11 =α

C11 [C2/x], D11θ11σ11 =α C11η1 [C2η2/x]: we are allowed to choose these expressions in
such a way that the holes in the Di are fresh, so we ensure that the sets of holes of D11

and D12 are disjoint – this in turn ensures that θ11, θ12 and σ11, σ12 can be combined
together, since their domains are also disjoint. Then we choose D = (D11 D12), θ = θ11θ12,
σ = σ11σ12 and show that;

Dσ = (D11 D12)σ11σ12

= (D11σ11σ12 D12σ11σ12)
= (D11σ11 D12σ12)
=α (C11 [C2/x] C12 [C2/x])

Dθσ = (D11 D12)θ11θ12σ11σ12

= (D11θ11θ12σ11σ12 D12θ11θ12σ11σ12)
= (D11θ11σ11 D12θ12σ12)
=α (C11η1 [C2η2/x] C12η1 [C2η2/x])

Furthermore, the induction hypothesis provides enough information on the Di, θi, σi to
guarantee that the holes in D are linear and arbitrarily fresh, for all q ∈ dom(θ) ∪ dom(σ)
we have [q] ∈ FV(D), and θ is permutable, as required.

Lemma 3.29. Let C,C ′ be contexts such that C C ′; then, for all context instantiations
η, there exist a context D, context instantiation θ, and renaming σ such that Dσ =α C

′

(and consequently C
σ
 D) and Cη

σ
 Dθ.

Proof. By structural induction on the derivation of C C ′. The property we need to
prove essentially states that any reduction of C can still be performed after applying any
instantiation η; however, due to variable capture and the possibility that some redexes of C
may be blocked in Cη, the statement is complicated by explicit alpha-conversions and hole
renamings. We present here the two interesting cases of the proof:

• (λx.C1) C2 C1 [C2/x]: by Lemma 3.28 we obtain D, θ, σ such that Dσ =α C1 [C2/x] and
Dθσ =α (C1η) [C2η/x]; since ((λx.C1) C2)η = (λx.C1η) (C2η) (C1η) [C2η/x] =α Dθσ,

we have ((λx.C1) C2)η
σ
 Dθ.

•
⋃
{C1 | x←

⋃
{C2 | y ← C3}}

⋃
{C1 | y ← C3, x← C2}, where y /∈ FV(C1): let us

choose a variable y∗ /∈ FV(C1η) and define C∗2 , C2 [y∗/y] and η∗ = [p 7→ η(p) [y∗/y] |p ∈
dom(η)]: then we can alpha-rename the contractum as⋃

{C1 | y ← C3, x← C2} =α

⋃
{C1 | y∗ ← C3, x← C∗2}

By repeated applications of Lemma 3.27, we obtain contexts C ′1, C
′
2, C

′
3, context instanti-

ations η′1, η
′
2, η
′
3, and renamings σ1, σ2, σ3, such that

⋃
{C ′1 | y ← C ′3, x← C ′2} has linear,

arbitrarily fresh holes, for i = 1, 2, 3 we have dom(η′i) ∪ dom(σi) ⊆ FV(C ′i) and η′i is
permutable, and such that:

C ′1σ1 = C1 C ′2σ1 = C∗2 C ′3σ3 = C3

C ′1η
′
1σ1 = C1η C ′2η

′
2σ2 = C∗2η

∗ C ′3η
′
3σ3 = C3η

23:20 W. Ricciotti and J. Cheney Vol. 18:3

Then we take D ,
⋃
{C ′1 | y∗ ← C ′3, x← C ′2}, θ = η′1η

′
2η
′
3 and σ = σ1σ2σ3. We prove:

Dσ =
⋃
{C ′1σ1 | y∗ ← C ′3σ3, x← C ′2σ2}

=
⋃
{C1 | y∗ ← C3, x← C∗2}

=α
⋃
{C1 | y ← C3, x← C2}

Dθσ =
⋃
{C ′1η′1σ1 | y∗ ← C ′3η

′
3σ3, x← C ′2η

′
2σ2}

=
⋃
{C1η | y∗ ← C3η, x← C∗2η

∗}
By the last equality, we have

⋃
{C1 | y∗ ← C3, x← C∗2} Dθσ, which by definition is⋃

{C1 | y∗ ← C3, x← C∗2}
σ
 Dθ.

The following result, like many others in the rest of this section, proceeds by well-founded
induction; we will use the following notation to represent well-founded relations:

• < stands for the standard less-than relation on N, which is well-founded;
• l is the lexicographic extension of < to k-tuples in Nk (for a given k), also well-founded;
• ≺ will be used to provide a decreasing metric that depends on the specific proof: such

metrics are defined as subsets of l and are thus well-founded.

Lemma 3.30. Let C be a context and η a context instantiation such that Cη ∈ SN . Then
we have:

(1) C ∈ SN
(2) ν(C) ≤ ν(Cη)
(3) for all p ∈ dom(η), if [p] ∈ FV(C), then η(p) ∈ SN .

Proof. Property 3 follows immediately by induction on ν(Cη) by noticing that, since [p] ∈
FV(C) implies that η(p) appears as a subexpression of Cη, and since reduction is defined by
congruence closure, every reduction of η(p) can be mimicked by a corresponding reduction
within Cη.

To prove the first two properties, we proceed by well-founded induction on (C, η) using
the metric:

(C1, η1) ≺ (C2, η2) ⇐⇒ ∃σ : C2η2
σ
 C1η1

We consider all the possible contractions C C ′. By Lemma 3.29, we find D,σ, θ such

that Cη
σ
 Dθ and Dσ =α C

′; consequently, C
σ
 D. By induction hypothesis we obtain

D ∈ SN and ν(D) ≤ ν(Dθ) < ν(Cη); we easily prove Dσ =α C
′ ∈ SN and ν(C ′) = ν(D).

Furthermore, since ν(C) = 1 + maxC′:C C′ ν(C ′) and for all such C ′ we have proved
ν(C ′) < ν(Cη), we get ν(C) ≤ ν(Cη).

A similar property about the composition of continuations and frames follows immedi-
ately.

Corollary 3.31. If Q p©F ∈ SN , then Q ∈ SN and ν(Q) ≤ ν(Q p©F).

Proof. By definition, Q p©F = Q[p 7→ F p]: then we use Lemma 3.30, with η = [p 7→ F p].

Lemma 3.32. Let Q be an auxiliary continuation, and let η, θ be context instantiations s.t.
their union is permutable. If Qη ∈ SN and Qθ ∈ SN , then Qηθ ∈ SN .

Proof. We assume that dom(η) ∪ dom(θ) ⊆ supp(Q) (otherwise, we can find strictly smaller
permutable η′, θ′ such that Qηθ = Qη′θ′, and their domains are subsets of supp(Q)). We
show Qη ∈ SN and Qθ ∈ SN imply Q ∈ SN , η ∈ SN and θ ∈ SN ; thus we can then prove
the theorem by well-founded induction on (Q, η, θ) using the following metric:

(Q1, η1, θ1) ≺ (Q2, η2, θ2) ⇐⇒ (ν(Q1), ‖Q1‖ , ν(η1) + ν(θ1)) l (ν(Q2), ‖Q2‖ , ν(η2) + ν(θ2))

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:21

We show that all of the possible contracta of Qηθ are s.n. by case analysis on the contraction:

• Q′ησθσ, where Q
σ
 Q′: it is easy to see that ν(ησ) and ν(θσ) are defined because ν(η) and

ν(θ) are; then the thesis follows from the induction hypothesis, knowing that ν(Q′) < ν(Q)
(Lemma 3.12).
• Q′η∗θ∗ where Q′ = Q1[q 7→ Q2

[
L
/
x
]
], for some Q1, Q2, x, q ∈ supp(Q1), η∗, θ∗ such

that Q = (Q1 q©
⋃
{� | x← {L}})[q 7→ Q2] and η∗(p) = η(p)

[
L
/
x
]
, θ∗(p) = θ(p)

[
L
/
x
]

for all p ∈ supp(Q2), otherwise η∗(p) = η(p) and θ∗(p) = θ(p); since Q Q′, we
know ν(Q′) < ν(Q); furthermore, since Qη Q′η∗ and Qη ∈ SN , it is easy to see
that Q′η∗ ∈ SN and ν(η∗) is defined; similarly, Q′θ∗ ∈ SN and ν(θ∗) is defined; then
Q′η∗θ∗ ∈ SN by induction hypothesis.
• Qη′θ, where η η′: the thesis follows by induction hypothesis, knowing ν(η′) < ν(η)

(Lemma 3.12).
• Q0[p 7→ N]η0θ where Q = Q0 p©F , η = [p 7→M]η0, and F p[p 7→M] N by means of a

reduction at the interface. By Lemma 3.31 we know ν(Q0) ≤ ν(Q); by Lemma 3.10 we
prove ‖Q0‖ < ‖Q‖. We take η′ = [p 7→ N]η0: since Qη reduces to Q0η

′ and both terms are
strongly normalizing, we have that ν(η′) is defined. Then we observe (Q0, η

′, θ) ≺ (Q, η, θ)
and obtain the thesis by induction hypothesis. A symmetric case with p ∈ dom(θ) is
proved similarly.

Corollary 3.33. Q[p 7→M]σ ∈ SN iff for all q s.t. σ(q) = p, we have Q[q 7→M] ∈ SN .

Proof. By the definition of [p 7→M]σ, using Lemma 3.32 to decompose the resulting context
instantiation.

3.3. Candidates of reducibility. We here define the notion of candidates of reducibility :
sets of strongly normalizing terms enjoying certain closure properties that can be used to
overapproximate the sets of terms of a certain type. Our version of candidates for NRC λ is
a straightforward adaptation of the standard definition given by Girard and like that one
is based on a notion of neutral terms, i.e. those terms that, when placed in an arbitrary
context, do not create additional redexes.

Definition 3.34 (neutral term). A term M is neutral if it belongs to the following grammar:

W ::= x | c(
−→
Mn) | M.` | (M N) | empty M

where n ≥ 1.
The set of neutral terms is denoted by NT .

Let us introduce the following notation for Girard’s CRx properties of sets [GLT89]:

• CR1(C) , C ⊆ SN
• CR2(C) , ∀M ∈ C,∀M ′.M M ′ =⇒M ′ ∈ C
• CR3(C) , ∀M ∈ NT .(∀M ′.M M ′ =⇒M ′ ∈ C) =⇒M ∈ C
The set CR of the candidates of reducibility is then defined as the collection of those sets of
terms which satisfy all the CRx properties. Some standard results include the non-emptiness
of candidates (in particular, all free variables are in every candidate) and that SN ∈ CR.

23:22 W. Ricciotti and J. Cheney Vol. 18:3

3.4. Reducibility sets. In this section we introduce reducibility sets, which are sets of
terms that we will use to provide an interpretation of the types of NRC λ; we will then
prove that reducibility sets are candidates of reducibility, hence they only contain strongly
normalizing terms. The following notation will be useful as a shorthand for certain operations
on sets of terms that are used to define reducibility sets:

• C → D , {M : ∀N ∈ C, (M N) ∈ D}
• 〈
−−−−→
`k : Ck〉 , {M : ∀i = 1, . . . , k,M.`i ∈ Ci}

• C>p , {K : ∀M ∈ C.K[p 7→ {M}] ∈ SN}
• C>> , {M : ∀p, ∀K ∈ C>p ,K[p 7→M] ∈ SN}
The sets C>p and C>> are called the >-lifting and >>-lifting of C. These definitions refine the
ones used in the literature by using indices: >-lifting is defined with respect to a given index
p, while the definition of >>-lifting uses any index (in the standard definitions, continuations
only contain a single hole, and no indices are mentioned).

Definition 3.35 (reducibility). For all types T , the set RedT of reducible terms of type T
is defined by recursion on T by means of the rules:

RedA , SN RedS→T , RedS → RedT

Red〈
−−−→
`k:Tk〉

, 〈
−−−−−−→
`k : RedTk〉 Red{T} , Red>>T

Let us use metavariables S,S ′, . . . to denote finite sets of indices: we provide a refined
notion of >-lifting C>S depending on a set of indices rather than a single index, defined by
pointwise intersection. This notation is useful to track a >-lifted candidate under renaming
reduction.

Definition 3.36. C>S ,
⋂
p∈S C>p .

Definition 3.37. Let C and S be sets of terms and indices respectively, and σ a finite
renaming: then we define (C>S)σ := C>σ−1(S), where σ−1(S) = {q : σ(q) ∈ S}

We now proceed with the proof that all the sets RedT are candidates of reducibility: we
will only focus on collections since for the other types the result is standard. The proofs of
CR1 and CR2 do not differ much from the standard >>-lifting technique.

Lemma 3.38. Suppose CR1(C): then for all indices p, q, [p] ∈ C>q .

Proof. To prove the lemma, it is sufficient to show that for all M ∈ C we have [p][q 7→
{M}] ∈ SN . This term is equal to either {M} (if p = q) or to [p] (otherwise); both terms
are s.n. (in the case of {M}, this is because CR1 holds for C, thus M ∈ SN).

Lemma 3.39 (CR1 for continuations). For all p and all non-empty C, C>p ⊆ SN .

Proof. We assume K ∈ C>p and M ∈ C: by definition, we know that K[p 7→ {M}] ∈ SN ;
then we have K ∈ SN by Lemma 3.30.

Lemma 3.40 (CR1 for collections). If CR1(C), then CR1(C>>).

Proof. We need to prove that if M ∈ C>>, then M ∈ SN . By the definition of C>>, we know
that for all p, K[p 7→M] ∈ SN whenever K ∈ C>p . Now assume any p, and by Lemma 3.38
choose K = [p]: then K[p 7→M] = M ∈ SN , which proves the thesis.

Lemma 3.41 (CR2 for collections). If M ∈ C>> and M M ′, then M ′ ∈ C>>.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:23

Proof. Let p be an index, and take K ∈ C>p : we need to prove K[p 7→ M ′] ∈ SN . By the

definition of M ∈ C>>, we have K[p 7→M] ∈ SN ; if p /∈ supp(K), K[p 7→M ′] = K[p 7→M]
and the thesis trivially holds; otherwise the instantiation is effective and we have K[p 7→
M] K[p 7→M ′], and this last term, being a contractum of a strongly normalizing term, is
strongly normalizing as well. This proves the thesis.

In order to prove CR2 for all types (and particularly for collections), we do not need to
establish an analogous property on continuations; however such a property is still useful for
subsequent results (particularly CR3). Its statement must, of course, consider that reduction
may duplicate (or indeed delete) holes, and thus employs renaming reduction. We can show
that whenever we need to prove a statement about n-ary permutable instantiations of n-ary
continuations, we can simply consider each hole separately, as stated in the following lemma.

Lemma 3.42. K ∈ (C>S)σ if, and only if, for all q ∈ σ−1(S), we have K ∈ C>q .

In particular, K ∈ (C>p)σ if, and only if, for all q s.t. σ(q) = p, we have K ∈ C>q .

Proof. By definition of (·)σ and (·)>:

K ∈ (C>S)σ ⇐⇒ K ∈ C>σ−1(S) ⇐⇒ K ∈
⋂

q∈σ−1(S)

C>q ⇐⇒ ∀q ∈ σ−1(S),K ∈ C>q

Lemma 3.43 (CR2 for continuations). If K ∈ C>S and K
σ
 K ′, then K ′ ∈ (C>S)σ.

Proof. By Lemma 3.42 and the definition of (·)>, it suffices to prove that K ′[q 7→ {M}] ∈ SN
for all q such that σ(q) ∈ S and M ∈ C. Then we know K[σ(q) 7→ {M}] ∈ SN , and
consequently K ′[σ(q) 7→ {M}]σ ∈ SN as well, since the latter is a contractum of the former;
finally, by Corollary 3.33, K ′[q 7→ {M}] ∈ SN , as we needed.

This is everything we need to prove CR3.

Lemma 3.44 (CR3 for collections). Let C ∈ CR, and M a neutral term such that for all
reductions M M ′ we have M ′ ∈ C>>. Then M ∈ C>>.

Proof. By definition, we need to prove K[p 7→M] ∈ SN whenever K ∈ C>p for some index
p. By Lemma 3.39, knowing that C, being a candidate, is non-empty, we have K ∈ SN . We
can thus proceed by well-founded induction on ν(K) to prove the strengthened statement:
for all indices q, if K ∈ C>q , then K[q 7→ M] ∈ SN . Equivalently, we prove that all the
contracta of K[q 7→M] are s.n. by cases on the possible contracta:

• K ′[q 7→M]σ (where K
σ
 K ′): to prove this term is s.n., by Corollary 3.33, we need to

show K ′[q′ 7→M] ∈ SN whenever σ(q′) = q; by Lemmas 3.43 and 3.42, we know K ′ ∈ C>q′ ,
and naturally ν(K ′) < ν(K) (Lemma 3.12), thus the thesis follows by the IH.
• K[p 7→M ′] (where M M ′): this is s.n. because M ′ ∈ C>> by hypothesis.
• Since M is neutral, there are no reductions at the interface.

Theorem 3.45. For all types T , RedT ∈ CR.

Proof. Standard by induction on T . For T = {T ′}, we use Lemmas 3.40, 3.41, and 3.44.

23:24 W. Ricciotti and J. Cheney Vol. 18:3

4. Strong normalization

We have proved that the reducibility sets of all types are candidates of reducibility. We are
now going to prove that every well-typed term is in the reducibility set corresponding to
its type: strong normalization will then follow as a corollary, by using the CR1 property of
candidates of reducibility.

The proof that well-typed terms are reducible is by structural induction on the derivation
of the typing judgment. We will proceed by first proving lemmas that show the typing rules
preserve reducibility, concluding at the end with the fundamental theorem. Once again,
we will focus our attention on the results corresponding to collection types, as the rest are
standard.

Reducibility of singletons is trivial by definition, while that of empty collections is proved
in the same style as [Coo09a], with the obvious adaptations.

Lemma 4.1 (reducibility for singletons). For all C, if M ∈ C, then {M} ∈ C>>.

Proof. Trivial by definition of >-lifting and >>-lifting.

Lemma 4.2. If K ∈ SN is a continuation, then for all indices p we have K[p 7→ ∅] ∈ SN .

Corollary 4.3 (reducibility for ∅). For all C, ∅ ∈ C>>.

As for unions, we will prove a more general statement on auxiliary continuations.

Lemma 4.4.
For all auxiliary continuations Q,O1, O2 with pairwise disjoint supports, if Q[p 7→ O1] ∈ SN
and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

The proof of the lemma above follows the same style as [Coo09a]; however since our
definition of auxiliary continuations is more general, the theorem statement mentions O1, O2

rather than pure terms: the hypothesis on the supports of the continuations being disjoint
is required by this generalization.

Corollary 4.5 (reducibility for unions). If M ∈ C>> and N ∈ C>>, then M ∪N ∈ C>>.

In some of the following proofs, a result that mirrors Lemma 4.4 will also be useful.

Lemma 4.6. If Q[p 7→ M ∪ N] ∈ SN , then Q[p 7→ M] ∈ SN and Q[p 7→ N] ∈ SN ;
furthermore, we have:

ν(Q[p 7→M]) ≤ ν(Q[p 7→M ∪N])

ν(Q[p 7→ N]) ≤ ν(Q[p 7→M ∪N])

Proof. We assume p ∈ supp(Q) (otherwise, Q[p 7→ M] = Q[p 7→ N] = Q[p 7→ M ∪ N],
and the thesis holds trivially), then we show that any contraction in Q[p 7→ M] has a
corresponding non-empty reduction sequence in Q[p 7→ M ∪ N], and the two reductions
preserve the term form, therefore no reduction sequence of Q[p 7→ M] is longer than the
maximal one in Q[p 7→M ∪N]. The same reasoning applies to Q[p 7→ N].

Like in proofs based on standard >>-lifting, the most challenging cases are those dealing
with commuting conversions – in our case, comprehensions and conditionals.

Lemma 4.7. Let K, L, N be such that K[p 7→ N
[
L
/
x
]
] ∈ SN and L ∈ SN . Then

K[p 7→
⋃
{N |x← {L}}] ∈ SN .

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:25

Proof. In this proof, we assume the names of bound variables are chosen so as to avoid
duplicates, and are distinct from the free variables. We proceed by well-founded induction
on (K, p,N,L) using the following metric:

(K1, p1, N1, L1) ≺ (K2, p2, N2, L2)
⇐⇒ (ν(K1[p1 7→ N1

[
L1

/
x
]
]) + ν(L1), ‖K1‖p1 , size(N1))

l(ν(K2[p2 7→ N2

[
L2

/
x
]
]) + ν(L2), ‖K2‖p2 , size(N2))

Now we show that every contractum must be a strongly normalizing:

• K[p 7→ N
[
L
/
x
]
]: this term is s.n. by hypothesis.

• K ′[p 7→
⋃
{N |x← {L}}]σ, where K

σ
 K ′. Lemma 3.12 allows us to prove ν(K ′[p 7→

N
[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) (since the former is a contractum of the latter), which

implies ν(K ′[q 7→ N
[
L
/
x
]
]) ≤ ν(K ′[p 7→ N

[
L
/
x
]
]σ) < ν(K[p 7→ N

[
L
/
x
]
]) for all q

s.t. σ(q) = p by means of Lemma 3.30 (because [q 7→ N
[
L
/
x
]
] is a subinstantiation of

[p 7→ N
[
L
/
x
]
]σ); then we can apply the IH to obtain, for all q s.t. σ(q) = p, K ′[q 7→⋃

{N |x← {L}}] ∈ SN ; by Corollary 3.33, this implies the thesis.
• K[p 7→ ∅] (when N = ∅): this is equal to K[p 7→ ∅

[
L
/
x
]
], which is s.n. by hypothesis.

• K[p 7→
⋃
{N1|x← {L}}∪

⋃
{N2|x← {L}}] (when N = N1∪N2); by IH (since size(Ni) <

size(N1 ∪N2), and all other metrics do not increase) we prove K[p 7→
⋃
{Ni|x← {L}}] ∈

SN (for i = 1, 2), and consequently obtain the thesis by Lemma 4.4.
• K0[p 7→

⋃
{
⋃
{M |y ← N}|x← {L}}], where K = K0 p©

⋃
{M |y ← �}; since we know,

by the hypothesis on the choice of bound variables, that x /∈ FV(M), we note that
K0[p 7→

⋃
{M |y ← N}

[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, by Lemma 3.10 we know

‖K0‖p < ‖K‖p; then we can apply the IH to obtain the thesis.

• K0[p 7→
⋃
{where B do N |x← {L}}] (when K = K0 p© where B do �): since we know,

from the hypothesis on the choice of bound variables, that x /∈ FV(B), we note that
K0[p 7→ (where B do N)

[
L
/
x
]
] = K[p 7→ N

[
L
/
x
]
]; furthermore, by Lemma 3.10 we

know ‖K0‖p < ‖K‖p; then we can apply the IH to obtain the thesis.
• reductions within N or L follow from the IH by reducing the induction metric.

Lemma 4.8 (reducibility for comprehensions). Assume CR1(C), CR1(D), M ∈ C>> and
for all L ∈ C, N

[
L
/
x
]
∈ D>>. Then

⋃
{N |x←M} ∈ D>>.

Proof. We assume p, K ∈ D>p and prove K[p 7→
⋃
{N |x←M}] ∈ SN . We start by showing

that K ′ = K p©
⋃
{N |x← �} ∈ C>p , or equivalently that for all L ∈ C, K ′[p 7→ {L}] =

K[p 7→
⋃
{N |x← {L}}] ∈ SN : since CR1(C), we know L ∈ SN , and since N

[
L
/
x
]
∈ D>>,

K[p 7→ N
[
L
/
x
]
] ∈ SN ; then we can apply Lemma 4.7 to obtain K ′[p 7→ {L}] ∈ SN

and consequently K ′ ∈ C>p . But then, since M ∈ C>>, we have K ′[p 7→ M] = K[p 7→⋃
{N |x←M}] ∈ SN , which is what we needed to prove.

Reducibility for conditionals is proved in a similar manner. However, to make the
induction work under all the conversions commuting with where, we cannot prove the strong
normalization statement within regular continuations K, but we need to generalize it to
auxiliary continuations. A minor complication with the merging of nested where is handled
by a separate lemma. Additionally, due to the more complicated structure of auxiliary
continuations, we will need to ensure that the free variables of the Boolean guard of the
where expression do not get captured: the assumption uses an auxiliary operation BV
denoting the set of variables bound over holes:

23:26 W. Ricciotti and J. Cheney Vol. 18:3

Definition 4.9. The operation BV(Q) is defined as follows:

BV([p]) = BV(M) = ∅
BV(Q1 ∪Q2) = BV(Q1) ∪ BV(Q2)

BV(where B do Q) = BV(Q)

BV(
⋃

{Q1 | x← Q2}) =

{
{x} ∪ BV(Q1) ∪ BV(Q2) if supp(Q1) 6= ∅
BV(Q1) ∪ BV(Q2) otherwise

Lemma 4.10. Suppose Q[p 7→ where B do M] ∈ SN . Then for all B′ ∈ SN such that
BV(Q) and FV(B′) are disjoint, Q[p 7→ where B ∧B′ do M] ∈ SN .

Lemma 4.11. Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , BV(Q)∩FV(B) = ∅ and
supp(Q) ∩ supp(O) = ∅. Then Q[p 7→ where B do O] ∈ SN .

Proof. In this proof, we assume the names of bound variables are chosen so as to avoid
duplicates, and distinct from the free variables. It is important to notice that this is the
main proof in which auxiliary continuations, as opposed to regular continuations, are needed
to obtain a usable induction hypothesis when the argument of where happens to be a
comprehension. We proceed by well-founded induction on (Q,B,O, p) using the following
metric:

(Q1, B1, O1, p1) ≺ (Q2, B2, O2, p2) ⇐⇒
(ν(Q1[p1 7→ O1]), |Q1|p1 , size(O1), ν(B1))

l(ν(Q2[p2 7→ O2]), |Q2|p2 , size(O2), ν(B2))

We will consider all possible contracta and show that each of them must be a strongly
normalizing term; we will apply the induction hypothesis to new auxiliary continuations
obtained by placing pieces of O into Q or vice-versa: the hypothesis on the supports of
Q and O being disjoint is used to make sure that the new continuations do not contain
duplicate holes and are thus well-formed. By cases on the possible contracta:

• Q1[q 7→ Q2

[
L
/
x
]
][p 7→ (where B do O)

[
L
/
x
]
], where Q = (Q1 q©

⋃
{� | x← {L}})[q 7→

Q2], q ∈ supp(Q1), and p ∈ supp(Q2); by the freshness condition we know x /∈ FV(B),
thus (where B do O)

[
L
/
x
]

= where B do (O
[
L
/
x
]
); we take Q′ = Q1[q 7→ Q2

[
L
/
x
]
] and

O′ = O
[
L
/
x
]
, and note that ν(Q′[p 7→ O′]) < ν(Q[p 7→ O]), because the former term is a

contractum of the latter: then we can apply the IH to prove Q′[p 7→ where B do O′] ∈ SN ,
as needed.
• Q′[p 7→ where B do O]σ, where Q

σ
 Q′. We know ν(Q′[p 7→ O]σ) < ν(Q[p 7→ O]) by

Lemma 3.12 since the latter is a contractum of the former. By Corollary 3.33, for all q
s.t. σ(q) = p we have ν(Q′[q 7→ O]) ≤ ν(Q′[p 7→ O]σ); we can thus apply the IH to obtain
Q[q 7→ where B do O] ∈ SN whenever σ(q) = p. By Corollary 3.33, this implies the
thesis.
• Q1[p 7→ where B do

⋃
{Q2|x← O}], where Q = Q1 p©

⋃
{Q2|x← �}; we take

O′ =
⋃
{Q2|x← O}, and we note that Q[p 7→ O] = Q1[p 7→ O′] and, by Lemma 3.10,

|Q1|p < |Q|p; we can thus apply the IH to prove Q1[p 7→ where B do O′] ∈ SN , as needed.

• Q0[p 7→ where (B0 ∧B) do O], where Q = Q0 p©(where B0 do �); we know by hypothesis
that Q0[p 7→ where B0 do O] ∈ SN and B ∈ SN ; then the thesis follows by Lemma 4.10.
• Q[p 7→ ∅], where O = ∅: this term is strongly normalizing by hypothesis.
• Q[p 7→ (where B do O1) ∪ (where B do O2)], where O = O1 ∪O2; for i = 1, 2, we prove
Q[p 7→ Oi] ∈ SN and ν(Q[p 7→ Oi]) ≤ ν(Q[p 7→ O]) by Lemma 4.6, and we also note

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:27

size(Oi) < size(O); then we can apply the IH to prove Q[p 7→ where B do Oi] ∈ SN ,
which implies the thesis by Lemma 4.4.
• Q[p 7→

⋃
{where B do O1|x← O2}], where O =

⋃
{O1|x← O2}; we take

Q′ = Q p©
⋃

{� | x← O2}

and we have that Q′[p 7→ where B do O1] is equal to Q[p 7→
⋃
{where B do O1|x← O2}];

we thus note ν(Q′[p 7→ O1]) = ν(Q[p 7→ O]), |Q′|p = |Q|p (Lemma 3.10), and size(O1) <

size(O), thus we can apply the IH to prove Q′[p 7→ where B do O1] ∈ SN , as needed.
We remark that in this subcase it is essential that the IH be generalized to auxiliary
continuations, because even if we assume that Q is a regular continuation K and O2 is a
pure term L, K p©

⋃
{� | x← L} is not a regular continuation.

• Q[p 7→ where (B ∧B0) do O0], where O = where B0 do O0; we know by hypothesis that
Q[p 7→ where B0 do O0] ∈ SN and B ∈ SN ; then the thesis follows by Lemma 4.10.
• Reductions within B or O make the induction metric smaller, thus follow immediately

from the IH.

Lemma 4.12. For all regular continuations K, BV(K) = ∅.
Proof. This follows immediately by noticing that in regular continuations K (unlike auxiliary
continuations Q) holes never appear in the head of a comprehension.

Corollary 4.13 (reducibility for conditionals).
If B ∈ SN and N ∈ Red{T}, then where B do N ∈ Red{T}.

Proof. We need to prove that for all K ∈ Red>T we have K[where B do N] ∈ SN . By
Lemma 4.12, we prove BV(K) = ∅; then we apply Lemma 4.11 with Q = K to obtain the
thesis.

Finally, reducibility for the emptiness test is proved in the same style as [Coo09a].

Lemma 4.14. For all M and T such that Γ ` M : {T} and M ∈ Red>>T , we have
empty(M) ∈ SN .

4.1. Main theorem. Before stating and proving the main theorem, we introduce some
auxiliary notation.

Definition 4.15.

(1) A substitution ρ satisfies Γ (notation: ρ � Γ) iff, for all x ∈ dom(Γ), ρ(x) ∈ RedΓ(x).
(2) A substitution ρ satisfies M with type T (notation: ρ �M : T) iff Mρ ∈ RedT .

As usual, the main result is obtained as a corollary of a stronger theorem generalized to
substitutions into open terms, by using the identity substitution idΓ.

Lemma 4.16. For all Γ, we have idΓ � Γ.

Theorem 4.17. If Γ `M : T , then for all ρ such that ρ � Γ, we have ρ �M : T

Proof. By induction on the derivation of Γ ` M : T . When M is a singleton, an empty
collection, a union, a conditional, or an emptiness test, we use Lemmas 4.1 and 4.14, and
Corollaries 4.3, 4.5, and 4.13. For comprehensions such that Γ `

⋃
{M1|x←M2} : {T},

we know by IH that ρ � M2 : {S} and for all ρ′ � Γ, x : S we have ρ′ � M1 : {T}: we
prove that for all L ∈ RedS , ρ [L/x] � Γ, x : S, hence ρ [L/x] � M1 : {T}; then we obtain
ρ �

⋃
{M1|x←M2} : {T} by Lemma 4.8. Non-collection cases are standard.

23:28 W. Ricciotti and J. Cheney Vol. 18:3

Γ ` f : HT I
Γ `M : T

Γ ` HMI : HT I
Γ `M : HT I Γ ` N : HT I

Γ `M]N : HT I
Γ, x : T `M : HSI Γ ` N : HT I

Γ `
⊎

HM |x← NI : HSI
Γ `M : B Γ ` N : HT I
Γ ` wherebag M do N : HT I

Γ `M : HT I
Γ ` δM : {T}

Γ `M : {T}
Γ ` ιM : HT I

Figure 4: Additional typing rules for NRC λ(Set ,Bag).

Corollary 4.18. If Γ `M : T , then M ∈ SN .

5. Heterogeneous Collections

SQL allows a user to write queries that will evaluate to relations that are bags of tuples by
means of constructs including SELECT statements and UNION ALL operations; additionally,
it also allows constructs like SELECT DISTINCT and UNION to produce sets of tuples (more
precisely, bags without duplicates); both kinds of constructs can be freely mixed in the same
query. In contrast, the language NRC λ we have discussed in the previous sections can only
deal with one kind of collection (either sets or bags).

In a short paper [RC19], we introduced a generalization of NRC called NRC (Set ,Bag)
that makes up for this shortcoming by allowing both set-valued and bag-valued collections
(with distinct types denoted by {T} and HT I), along with mappings from bags to sets
(deduplication δ) and from sets to bags (promotion ι). We conjectured that this language
also satisfies a normalization property, allowing its normal forms to be translated to SQL.
Here, we prove that NRC (Set ,Bag) is, indeed, strongly normalizing, even when extended to
a richer language NRC λ(Set ,Bag) with higher-order (nonrecursive) functions. Its syntax is
a straightforward extension of NRC λ:

types S, T ::= . . . | HT I
terms L,M,N ::= . . . | f | HMI | M]N |

⊎
HM |x← NI

| wherebag M do N | δM | ιM
We use HT I to denote the type of bags containing elements of type T ; similarly, the

notations f, HMI, M] N ,
⊎

HM |x← NI denote empty and singleton bags, bag disjoint
union and bag comprehension; the language also includes conditionals on bags. The notations
ιM and δN stand, respectively, for the bag containing exactly one copy of each element
of the set M , and for the set containing the elements of the bag N , forgetting about their
multiplicity. We do not need to provide a primitive emptiness test for bags, since it can be
defined anyway as emptybag M := empty δM .

The type system for NRC λ(Set ,Bag) is obtained from the one for NRC λ by adding the
unsurprising rules of Figure 4: these largely replicate, at the bag level, the corresponding
set-based rules; additionally, the rules for δ and ι describe how these operators turn bag-typed
terms into set-typed ones, and vice-versa. Similarly, the rewrite system for NRC λ(Set ,Bag)
is also an extension of the one for NRC λ, with additional reduction rules for the new operators
involving bags that mimic the corresponding set-based operations; there are simplification
rules involving δ that state that the deduplication of empty or singleton bags yields empty
or singleton sets, and that deduplication commutes with bag union and comprehension,

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:29

⊎
Hf|x←MI f

⊎
HM |x← fI f

⊎
HM |x← HNII M [N/x]⊎

HM]N |x← RI
⊎

HM |x← RI]
⊎

HN |x← RI⊎
HM |x← N]RI

⊎
HM |x← NI]

⊎
HM |x← RI⊎

HM |y ←
⊎

HR|x← NII
⊎

HM |x← N, y ← RI (if x /∈ FV(M))⊎
HM |x← wherebag N do RI

⊎
Hwherebag N do M |x← RI (if x /∈ FV(M))

wherebag true do M M wherebag false do M f wherebag M do f f
wherebag M do (N]R) (wherebag M do N)] (wherebag M do R)

wherebag M do
⊎

HN |x← RI
⊎

Hwherebag M do N |x← RI
wherebag M do wherebag N do R wherebag (M ∧N) do R

δf ∅ δHMI {M} δ(M]N) δM ∪ δN διM M
δ
⊎

HM |x← NI
⋃
{δM |x← δN} δ(wherebag M do N) where M do δN

ι∅ f ι{M} HMI ι(where M do N) wherebag M do ιN

Figure 5: Additional rewrite rules for NRC λ(Set ,Bag).

Γ `M : {T}
Γ ` δM : {T}

Γ `M : {T}
Γ ` ιM : {T}

δ∅ ∅ δ{M} {M} δ(M ∪N) δM ∪ δN διM M
δ
⋃
{M |x← N}

⋃
{δM |x← δN} δ(where M do N) where M do δN

ι∅ ∅ ι{M} {M} ι(where M do N) where M do ιN

Figure 6: Additional typing and rewrite rules for NRC λδι.

turning them into their set counterparts. The promotion of empty or singleton sets can be
simplified away in a symmetric way; however, promotion does not commute with union and
comprehension (this avoids contractions like ι({x} ∪ {x}) 6 ι{x}] ι{x}, which would be
unsound in the intended model, where ∪ is idempotent, but] is not). These reduction rules
are described in Figure 5.

An obvious characteristic of NRC λ(Set ,Bag), compared to NRC λ, is the duplication
of syntax caused by the presence of two separate types of collections. A direct proof of
strong normalization of this calculus would require us to consider many more cases than
we have seen in NRC λ. A more efficient approach is to show that the strong normalization
property of NRC λ(Set ,Bag) descends, as a corollary, from the strong normalization of a
slightly tweaked version of NRC λ, comprising a single type of collections, but also retaining
the δ and ι operators of NRC λ(Set ,Bag). This is the formalism NRC λδι described in the
next subsection.

5.1. The simplified language NRC λδι. The simplified language NRC λδι is obtained from
NRC λ by adding the two operators δ, ι, and nothing else:

L,M,N ::= . . . | δM | ιM
NRC λδι does not add any type compared to NRC λ: in particular, if M has type {T}, then
δM and ιM have type {T} as well. The rewrite system extends NRC λ with straightforward
adaptations of the NRC λ(Set ,Bag) rules involving δ and ι. All of the additional typing and
rewrite rules are shown in Figure 6.

23:30 W. Ricciotti and J. Cheney Vol. 18:3

bAc = A bS → T c = bSc → bT c
⌊
〈
−−→
` : T 〉

⌋
= 〈
−−−−→
` : bT c〉 b{T}c = bHT Ic = {bT c}

bx1 : T1, . . . , xn : Tnc = x1 : bT1c , . . . , xn : bTnc

bxc = x
⌊
c(
−→
M)
⌋

= c(
−−→
bMc)⌊

〈
−−−−→
` = M〉

⌋
= 〈
−−−−−→
` = bMc〉 bM.`c = bMc .`

bλx.Mc = λx. bMc b(M N)c = (bMc bNc)
b∅c = bfc = ∅ b{M}c = bHMIc = {bMc}

bM ∪Nc = bM]Nc = bMc ∪ bMc bempty Mc = empty bMc⌊⋃
{M | x← N}

⌋
=
⌊⊎

HM | x← NI
⌋

=
⋃

{bMc | x← bNc}

bwhere M do Nc = bwherebag M do Nc = where bMc do bNc

Figure 7: Forgetful translation of NRC λ(Set ,Bag) into NRC λδι.

NRC λ(Set ,Bag) types and terms can be translated to NRC λδι by means of a forgetful
operation b·c, described in Figure 7. A straightforward induction is sufficient to prove that
this translation preserves typability and reduction.

Theorem 5.1. If Γ `M : T in NRC λ(Set ,Bag), then bΓc ` bMc : bT c in NRC λδι.

Theorem 5.2. For all terms M of NRC λ(Set ,Bag), if M M ′, we have bMc bM ′c in
NRC λδι. Consequently, if bMc ∈ SN in NRC λδι, then M ∈ SN in NRC λ(Set ,Bag).

Thanks to the two results above, strong normalization for NRC λ(Set ,Bag) is an imme-
diate consequence of strong normalization for NRC λδι.

5.2. Reducibility for NRC λδι. We are now going to present an extension of the strong
normalization proof for NRC λ, allowing us to derive the same result for NRC λδι (and,
consequently, for NRC λ(Set ,Bag)). Concretely, this extension involves adding some extra
cases to some definitions and proofs; in a single case, we need to strengthen the statement
of a lemma, whose proof remains otherwise close to its NRC λ version.

For NRC λδι continuations and frames, we will allow extra cases including δ and ι, as
follows:

K,H ::= . . . | δK | ιK
Q,O ::= . . . | δQ | ιQ
F ::= . . . | δ� | ι�

We also extend the measures |Q|p and ‖Q‖p to account for the new cases.

Definition 5.3 (extends 3.9). The measures |Q|p and ‖Q‖p of NRC λ are extended to
NRC λδι by means of the following additional cases:

|δQ|p = |ιQ|p = |Q|p + 1 ‖δQ‖p = ‖ιQ‖p = ‖Q‖p + 1

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:31

Renaming reduction in NRC λδι is defined in the same way as its NRC λ counterpart.

We notice that terms in the form δM , when plugged into a context, never create new
redexes: we thus extend the definition of neutral terms.

Definition 5.4 (extends 3.34). The grammar of the neutral terms of NRC λ is extended to
NRC λδι by means of the following additional production:

W ::= . . . | δM

Since the type sublanguage of NRC λδι is the same as in NRC λ, we can superficially reuse
the definition of reducibility sets: however, it is intended that the terms and continuations
appearing in these definitions are those of NRC λδι rather than NRC λ. Similarly, the various
technical lemmas involving contexts, continuations and instantiations use a uniform proof
style that works seamlessly in NRC λδι; however, it is worth mentioning that Lemma 3.10
holds because the definitions of the measures |·|, ‖·‖, and that of frames are aligned in
NRC λδι just like in NRC λ; and that the proof of Lemma 3.25 must accommodate the
additional frames of NRC λδι in the reduction at the interface. The proofs showing that
all the reducibility sets are candidates (Lemmas 3.40 (CR1), 3.41 (CR2), and 3.44 (CR3)),
use NRC λδι terms and continuations, but do not need to change structurally (Lemmas 3.40
and 3.41 do not need to inspect the shape of continuations and terms, while in Lemma 3.44
we do not need to consider any of the additional cases for an NRC λδι continuation K,
because K is applied to a neutral term, therefore there are no redexes at the interface
regardless of the shape of K).

However, we do need to prove that the additional typing rules of NRC λδι (i.e. the
introduction rules for δ and ι) preserve reducibility. This is expressed by the following
results:

Lemma 5.5. For all indices p and candidates C ∈ CR, if K ∈ C>p , then K p©(δ�) ∈ C>p .

Proof. By unfolding the definitions, we prove that for all p, if K ∈ C>p and M ∈ C, then
K[p 7→ δ{M}] ∈ SN . We proceed by well-founded induction on (K,M) using the following
metric:

(K1,M1) ≺ (K2,M2) ⇐⇒ (ν(K1), ν(M1)) l (ν(K2), ν(M2))

Equivalently, we prove that all the contracta of K[p 7→ δ{M}] are s.n.:

• K ′[p 7→ δ{M}]σ (where K
σ
 K ′): to prove this term is s.n., by Corollary 3.33 we need

to show that K ′[p′ 7→ δ{M}] ∈ SN for all p′ s.t. σ(p′) = p; by Lemmas 3.43 and 3.42, we
know K ′ ∈ (C>p′)σ, and naturally ν(K ′) < ν(K) (Lemma 3.12), so the thesis follows by the
IH.
• K[p 7→ δ{M ′}] (where M M ′): by IH, with unchanged K, M ′ ∈ C (Lemma 3.43), and
ν(M ′) < ν(M) (Lemma 3.12).
• K[p 7→ {M}]: this is trivial by hypothesis.

Corollary 5.6 (reducibility for δ). For all C ∈ CR, if M ∈ C>>, then δM ∈ C>>.

Proof. We need to prove that for all indices p, for all K ∈ C>p , we have K[p 7→ δM] ∈ SN . By

Lemma 5.5, we prove K p©(δ�) ∈ C>p ; since M ∈ C>>, we have (K p©(δ�))[p 7→M] ∈ SN ,
which is equivalent to the thesis.

Lemma 5.7. For all indices p and candidates C ∈ CR, if K ∈ C>p , then K p©(ι�) ∈ C>p .

23:32 W. Ricciotti and J. Cheney Vol. 18:3

Proof. By unfolding the definitions, we prove that for all p, if K ∈ C>p and M ∈ C, then
K[p 7→ ι{M}] ∈ SN . The proof follows the same steps as that of Lemma 5.5, but we have
to consider an additional contractum for K = K0 p©(δ�):

K[p 7→ ι{M}] = K0[p 7→ δι{M}] K0[p 7→ {M}]

Since K ∈ C>p and M ∈ C, we prove K[p 7→ {M}] = K0[p 7→ δ{M}] ∈ SN . Thus,
K0[p 7→ {M}] ∈ SN as well, being a contractum of that term. This proves the thesis.

Corollary 5.8 (reducibility for ι). If M ∈ C>>, then ιM ∈ C>>.

Proof. We need to prove that for all indices p, for all K ∈ C>p , we have K[p 7→ ιM] ∈ SN . By

Lemma 5.7, we prove K p©(ι�) ∈ C>p ; since M ∈ C>>, we have (K p©(ι�))[p 7→M] ∈ SN ,
which is equivalent to the thesis.

Finally we need to reconsider the reducibility properties of unions, comprehensions, and
conditionals (Lemmas 4.4, 4.7, and 4.11), to add the extra cases in the updated definition
of continuations. In the case of comprehensions, we need to reformulate the statement in
a slightly strengthened way to ensure that the induction hypothesis remains applicable.
The proofs concerning singletons (Lemma 4.1) and empty sets (Corollary 4.3) do not need
intervention.

Lemma 5.9 (extends 4.4).
For all auxiliary continuations Q,O1, O2 with pairwise disjoint supports, if Q[p 7→ O1] ∈ SN
and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

Proof. For Q = Q0 p©(δ�), Q[p 7→ O1∪o2] has an additional contractum Q0[p 7→ δO1∪δO2].
We prove that ν(Q0) ≤ ν(Q) and ‖Q0‖p < ‖Q‖p: then we can use the IH to prove the
thesis.

We introduce the notation δnM as syntactic sugar for the δ operator applied n times
to the term M (in particular: δ0M = M). We use it to state and prove the following
strengthened version of the reducibility lemma for comprehensions.

Lemma 5.10 (extends 4.7). Let K, L, N be such that K[p 7→ N
[
L
/
x
]
] ∈ SN and L ∈ SN .

Then for all n, K[p 7→
⋃
{N |x← δn{L}}] ∈ SN .

Proof. Due to the updated statement of this result, we need a stronger metric on
(K, p,N,L, n):

(K1, p1, N1, L1, n1) ≺ (K2, p2, N2, L2, n2)
⇐⇒ (ν(K1[p1 7→ N1

[
L1

/
x
]
]) + ν(L1), ‖K1‖p1 , size(N1), n1)

l(ν(K2[p2 7→ N2

[
L2

/
x
]
]) + ν(L2), ‖K2‖p2 , size(N2), n2)

The cases considered in the proof of 4.7 can be mapped to this extended result in a
straightforward manner (however, a reduction to K[p 7→ N

[
L
/
x
]
] is possible only if n = 0).

We also need to consider the following two additional contracta:

• K0[p 7→
⋃
{δN | x← δn+1{L}}], where K = K0 p©(δ�): we prove

ν(K0[p 7→ (δN)
[
L
/
x
]
]) = ν(K[p 7→ N

[
L
/
x
]
]) and ‖K0‖p < ‖K‖p

then the term is s.n. by IH.
• K[p 7→

⋃
{N | x← δn−1{L}}], where n > 0: since n− 1 < n and all of the other values

involved in the metric are invariant, we can immediately apply the IH to obtain the
thesis.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:33

Lemma 5.11 (extends 4.11). Let Q, B, O such that Q[p 7→ O] ∈ SN , B ∈ SN , BV(Q) ∩
FV (B) = ∅, and supp(Q) ∩ supp(O) = ∅. Then Q[p 7→ where B do O] ∈ SN .

Proof. We need to consider the following additional contracta of Q[p 7→ where B do P]:

• Q0[p 7→ where B do δO], where Q = Q0 p©(δ�): we show that ν(Q0[p 7→ δO]) = ν(Q[p 7→
O]) and |Q0|p < |Q|p; then we can apply the IH to prove the term is s.n.

• Q0[p 7→ where B do ιO], where Q = Q0 p©(ι�): this is similar to the case above.

Having proved that all the typing rules preserve reducibility, we obtain that all well-typed
terms of NRC λδι are strongly normalizing and, as a corollary, the same property holds for
NRC λ(Set ,Bag).

Theorem 5.12. If Γ `M : T in NRC λδι, then M ∈ SN in NRC λδι.

Corollary 5.13. If Γ `M : T in NRC λ(Set ,Bag), then M ∈ SN in NRC λ(Set ,Bag).

6. Related Work

This paper builds on a long line of research on normalization of comprehension queries, a
model of query languages popularized over 25 years ago by Buneman et al. [BNTW95] and
inspired by Trinder and Wadler’s work on comprehensions [TW89, Wad92]. Wong [Won96]
proved conservativity via a strongly normalizing rewrite system, which was used in
Kleisli [Won00], a functional query system, in which flat query expressions were normalized
to SQL. Libkin and Wong [LW94, LW97] investigated conservativity in the presence of
aggregates, internal generic functions, and bag operations, and demonstrated that bag oper-
ations can be expressed using nested comprehensions. However, their normalization results
studied bag queries by translating to relational queries with aggregation, and did not consider
higher-order queries, so they do not imply the normalization results for NRCλ(Set,Bag)
given here.

Cooper [Coo09b] first investigated query normalization (and hence conservativity) in
the presence of higher-order functions. He gave a rewrite system showing how to normalize
homogeneous (that is, pure set or pure bag) queries to eliminate intermediate occurrences
of nesting or of function types. However, although Cooper claimed a proof (based on
>>-lifting [LS05]) and provided proof details in his PhD thesis [Coo09a], there unfortunately
turned out to be a nontrivial lacuna in that proof, and this paper therefore (in our opinion)
contains the first complete proof of normalization for higher-order queries, even for the
homogeneous case.

Admittedly, our approach is sometimes difficult to work with: the difficulty lies with the
notion of (variable capturing) context, along with rewrite rules involving substitutions and
renaming of bound variables, as we noted in Section 3; for this reason, it would be interesting
to consider alternatives. The complexity of computing with contexts has been the object of
research in higher-order rewriting and higher-order abstract syntax techniques ([vv06, PE88]).
Another approach that could be more easily adapted to our scenario is to extend the language
to allow hole variables to be decorated with explicit substitutions ([ACCL91]). In Section 3
we have shown that if an unapplied context reduces in a certain way, the same reduction
does not have to be allowed when the context is applied to an instantiation. The simplest

23:34 W. Ricciotti and J. Cheney Vol. 18:3

example we have shown of this phenomenon is:

(λz. [p]) N [p]
but

((λz. [p]) N)[p 7→ z] 6 [p][p 7→ z]

The reason for this discrepancy lies in the fact that while beta reduction yields a substitution
replacing z with N , once this substitution meets the hole [p], it is completely lost. If
we replaced the meta-operation of substitution with new syntax L〈x := M〉 denoting a
(suspended) explicit substitution that will eventually replace with M all the free occurrences
of x within L, we could write:

(λz. [p]) N [p]〈z := N〉
and

((λz. [p]) N)[p 7→ z] [p]〈z := N〉[p 7→ z] = z〈z := N〉
where the final term correctly reduces to N . Holes with explicit substitutions have been
studied in the context of dependently-typed lambda calculi, where they are more often known
as metavariables, with applications to proof assistants ([Muñ01]). We could study strong
normalization in such an extended calculus, however explicit substitutions are known to
require a careful treatment of reduction for them to simultaneously preserve confluence and
strong normalization (see [Mel95] for a counterexample); more recent explicit substitution
calculi (e.g. [DG01, KL05]) often employ ideas from linear logic to ensure strong normalization
is preserved.

Another approach, introduced by Bognar and De Vrijer, employs a context calculus
([BdV01]), i.e. an extension of the lambda calculus with additional operators to express
context-building and instantiation, along with interfaces describing the evolution of contexts
under reduction (“communication”). Under this approach, the context (λz. [p]) N would be
expressed as

δ [p] .(λz. [p]〈z〉) N
where the operator δ [p] .− (unrelated to the deduplication operator of Section 5) builds
a context by abstracting over a hole variable [p], and the syntax [p]〈z〉 expresses the fact
that once [p] is instantiated with a term, this term will communicate with the context by
means of the (captured) variable z. The term z to be plugged into the context would be
represented as

Λz.z

where the abstraction Λz.− is provided to express the fact that this term can communicate
with the context over the variable z. To apply this term to the context, we use the syntax
−d−e:

(δ [p] .(λz. [p]〈z〉) N)dΛz.ze
Here as well, we are allowed to beta reduce the context both in the unapplied and in the
applied form:

δ [p] .(λz. [p]〈z〉) N δ [p] . [p]〈N〉
and

(δ [p] .(λz. [p]〈z〉) N)dΛz.ze (δ [p] . [p]〈N〉)dΛz.ze
where the final term can be further reduced to (Λz.z)〈N〉, and finally to N , as expected. Like
explicit substitutions, the context calculus allows contexts to be reduced independently of an
applied instantiation, potentially simplifying technical results such as those of Lemma 3.19

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:35

and 3.29. Both techniques require fairly important extension to the language, type system
and rewrite system, and will be considered in future work.

Since the fundamental work of Wong and others on the Kleisli system, language-
integrated query has gradually made its way into other systems, most notably Microsoft’s
.NET framework languages C# and F# [MBB06], and the Web programming language
Links [CLWY07]. Cheney et al. [CLW13] formally investigated the F# approach to language-
integrated query and showed that normalization results due to Wong and Cooper could be
adapted to improve it further; however, their work considered only homogeneous collections.
In subsequent work, Cheney et al. [CLW14] showed how use normalization to perform query
shredding for multiset queries, in which a query returning a type with n nested collections
can be implemented by combining the results of n flat queries; this has been implemented in
Links [CLWY07].

Higher-order relational queries have also been studied by Benedikt et al. [BPV15], where
the focus was mostly on complexity of the evaluation and containment problems. Their
calculus focuses on higher-order expressions composing operations over flat relational algebra
operators only, where the base types are records listing the fields of the relations. Thus,
modulo notational differences, their calculus is a sublanguage of NRC . In their setting,
normalization up to β-reduction follows as a special case of normalization for typed lambda-
calculus; in our setting the same approach would not work because collection and record
types can be combined arbitrarily in NRC and normalization involves rules that nontrivially
rearrange comprehensions and other collection operations.

Several recent efforts to formalize and reason about the semantics of SQL are com-
plementary to our work. Guagliardo and Libkin [GL17] presented a semantics for SQL’s
actual behaviour in the presence of set and multiset operators (including bag intersection
and difference) as well as incomplete information (nulls), and related the expressiveness of
this fragment of SQL with that of an algebra over bags with nulls. Chu et al. [CWCS17]
presented a formalized semantics for reasoning about SQL (including set and bag semantics
as well as aggregation/grouping, but excluding nulls) using nested relational queries in
Coq, while Benzaken and Contejean [BC19] presented a semantics including all of these
SQL features (set, multiset, aggregation/grouping, nulls), and formalized the semantics in
Coq. Kiselyov et al. [KK17] has proposed language-integrated query techniques that handle
sorting operations (SQL’s ORDER BY).

However, the above work on semantics has not considered query normalization, and to
the best of our knowledge normalization results for query languages with more than one
collection type were previously unknown even in the first-order case. We are interested in
extending our results for mixed set and bag semantics to handle nulls, grouping/aggregation,
and sorting, thus extending higher-order language integrated query to cover all of the most
widely-used SQL features. Normalization of higher-order queries in the presence of all of
these features simultaneously remains an open problem, which we plan to consider next.
In addition, fully formalizing such normalization proofs also appears to be a nontrivial
challenge.

7. Conclusions

Integrating database queries into programming languages has many benefits, such as type
safety and avoidance of common SQL injection attacks, but also imposes limitations that
prevent programmers from constructing queries dynamically as they could by concatenating

23:36 W. Ricciotti and J. Cheney Vol. 18:3

SQL strings unsafely. Previous work has demonstrated that many useful dynamic queries
can be constructed safely using higher-order functions inside language-integrated queries;
provided such functions are not recursive, it was believed, query expressions can be normalized.
Moreover, while it is common in practice for language-integrated query systems to provide
support for SQL features such as mixed set and bag operators, it is not well understood in
theory how to normalize these queries in the presence of higher-order functions. Previous work
on higher-order query normalization has considered only homogeneous (that is, pure set or
pure bag) queries, and in the process of attempting to generalize this work to a heterogeneous
setting, we discovered a nontrivial gap in the previous proof of strong normalization. We
therefore prove strong normalization for both homogeneous and heterogeneous queries for
the first time.

As next steps, we intend to extend the Links implementation of language-integrated
query with heterogeneous queries and normalization, and to investigate (higher-order) query
normalization and conservativity for the remaining common SQL features, such as nulls,
grouping/aggregation, and ordering.

Acknowledgments

This work was supported by ERC Consolidator Grant Skye (grant number ERC-682315)
and by an ISCF Metrology Fellowship grant provided by the UK government’s Department
for Business, Energy and Industrial Strategy (BEIS).

This research has been supported by the National Cyber Security Centre (NCSC) project:
Mechanising the metatheory of SQL with nulls.

We are grateful to Philip Wadler, Sam Lindley, and the anonymous reviewers for their
comments and suggestions.

References

[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. J. Functional Pro-
gramming, 1(4):375–416, Oct 1991. doi:10.1017/S0956796800000186.

[BC19] Véronique Benzaken and Evelyne Contejean. A Coq mechanised formal semantics for realistic
SQL queries: formally reconciling SQL and bag relational algebra. In CPP 2019, pages 249–261,
2019. doi:10.1145/3293880.3294107.

[BdV01] Mirna Bognar and Roel C. de Vrijer. A calculus of lambda calculus contexts. Journal of Automated
Reasoning, 27:29–59, 2001.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of programming
with complex objects and collection types. Theor. Comput. Sci., 149(1), 1995. doi:10.1016/
0304-3975(95)00024-Q.

[BPV15] Michael Benedikt, Gabriele Puppis, and Huy Vu. The complexity of higher-order queries. Inf.
Comput., 244:172–202, 2015. doi:10.1016/j.ic.2015.07.003.

[CLW13] James Cheney, Sam Lindley, and Philip Wadler. A practical theory of language-integrated query.
In ICFP, 2013. doi:10.1145/2500365.2500586.

[CLW14] James Cheney, Sam Lindley, and Philip Wadler. Query shredding: efficient relational evaluation of
queries over nested multisets. In SIGMOD, pages 1027–1038. ACM, 2014. doi:10.1145/2588555.
2612186.

[CLWY07] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: web programming without
tiers. In FMCO, 2007. doi:10.1007/978-3-540-74792-5_12.

[Coo09a] Ezra Cooper. Programming language features for web application development. PhD thesis,
University of Edinburgh, 2009.

[Coo09b] Ezra Cooper. The script-writer’s dream: How to write great SQL in your own language, and be
sure it will succeed. In DBPL, 2009. doi:10.1007/978-3-642-03793-1_3.

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1145/3293880.3294107
https://doi.org/10.1016/0304-3975(95)00024-Q
https://doi.org/10.1016/0304-3975(95)00024-Q
https://doi.org/10.1016/j.ic.2015.07.003
https://doi.org/10.1145/2500365.2500586
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.1145/2588555.2612186
https://doi.org/10.1007/978-3-540-74792-5_12
https://doi.org/10.1007/978-3-642-03793-1_3

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:37

[CWCS17] Shumo Chu, Konstantin Weitz, Alvin Cheung, and Dan Suciu. HoTTSQL: Proving query rewrites
with univalent SQL semantics. In PLDI, pages 510–524. ACM, 2017. doi:10.1145/3062341.
3062348.

[DG01] René David and Bruno Guillaume. A λ-calculus with explicit weakening and explicit sub-
stitution. Mathematical Structures in Computer Science, 11(1):169–206, 2001. doi:10.1017/
S0960129500003224.

[FM00] Leonidas Fegaras and David Maier. Optimizing object queries using an effective calculus. ACM
Trans. Database Syst., 25(4):457–516, 2000.

[GL17] Paolo Guagliardo and Leonid Libkin. A formal semantics of SQL queries, its validation, and
applications. PVLDB, 2017. doi:10.14778/3151113.3151116.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge University Press,
1989.

[KK17] Oleg Kiselyov and Tatsuya Katsushima. Sound and efficient language-integrated query - maintain-
ing the ORDER. In APLAS 2017, pages 364–383, 2017. doi:10.1007/978-3-319-71237-6_18.

[KL05] Delia Kesner and Stéphane Lengrand. Extending the explicit substitution paradigm. In Jürgen
Giesl, editor, Term Rewriting and Applications, pages 407–422, Berlin, Heidelberg, 2005. Springer
Berlin Heidelberg.

[LC12] Sam Lindley and James Cheney. Row-based effect types for database integration. In TLDI, 2012.
doi:10.1145/2103786.2103798.

[LS05] Sam Lindley and Ian Stark. Reducibility and >>-lifting for computation types. In TLCA, 2005.
doi:10.1007/11417170_20.

[LW94] Leonid Libkin and Limsoon Wong. Conservativity of nested relational calculi with internal generic
functions. Inf. Process. Lett., 49(6):273–280, 1994. doi:10.1016/0020-0190(94)90099-X.

[LW97] Leonid Libkin and Limsoon Wong. Query languages for bags and aggregate functions. J. Comput.
Syst. Sci., 55(2), 1997. doi:10.1006/jcss.1997.1523.

[MBB06] Erik Meijer, Brian Beckman, and Gavin M. Bierman. LINQ: reconciling object, relations and
XML in the .NET framework. In SIGMOD, 2006. doi:10.1145/1142473.1142552.

[Mel95] Paul-André Mellies. Typed λ-calculi with explicit substitutions may not terminate. In Mariangiola
Dezani-Ciancaglini and Gordon Plotkin, editors, Typed Lambda Calculi and Applications, pages
328–334, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[Muñ01] César Muñoz. Dependent types and explicit substitutions: a meta-theoretical development. Math-
ematical Structures in Computer Science, 11(1):91–129, 2001. doi:10.1017/S0960129500003261.

[PE88] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of the SIGPLAN
’88 conference on Programming language design and implementation, volume 23 of Sigplan Notices
- SIGPLAN, pages 199–208, 07 1988. doi:10.1145/960116.54010.

[PG92] Jan Paredaens and Dirk Van Gucht. Converting nested algebra expressions into flat algebra
expressions. ACM Trans. Database Syst., 17(1), 1992. doi:10.1145/128765.128768.

[Pit98] Andrew M. Pitts. Parametric polymorphism and operational equivalence (preliminary version).
In HOOTS II, volume 10, pages 2–27, 1998. doi:10.1016/S1571-0661(05)80685-1.

[RC17] W. Ricciotti and J. Cheney. Strongly Normalizing Audited Computation. In V. Goranko and
M. Dam, editors, CSL 2017, volume 82 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 36:1–36:21. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. doi:10.
4230/LIPIcs.CSL.2017.36.

[RC19] Wilmer Ricciotti and James Cheney. Mixing set and bag semantics. In DBPL, pages 70–73, 2019.
doi:10.1145/3315507.3330202.

[RC20] Wilmer Ricciotti and James Cheney. Strongly Normalizing Higher-Order Relational Queries.
In Zena M. Ariola, editor, 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020), volume 167 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 28:1–28:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.FSCD.2020.28.

[TW89] Philip Trinder and Philip Wadler. Improving list comprehension database queries. In TENCON
’89., 1989. doi:10.1109/TENCON.1989.176921.

[UG15] Alexander Ulrich and Torsten Grust. The flatter, the better: Query compilation based on the
flattening transformation. In SIGMOD, pages 1421–1426. ACM, 2015. doi:10.1145/2723372.
2735359.

https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1145/3062341.3062348
https://doi.org/10.1017/S0960129500003224
https://doi.org/10.1017/S0960129500003224
https://doi.org/10.14778/3151113.3151116
https://doi.org/10.1007/978-3-319-71237-6_18
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.1007/11417170_20
https://doi.org/10.1016/0020-0190(94)90099-X
https://doi.org/10.1006/jcss.1997.1523
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1017/S0960129500003261
https://doi.org/10.1145/960116.54010
https://doi.org/10.1145/128765.128768
https://doi.org/10.1016/S1571-0661(05)80685-1
https://doi.org/10.4230/LIPIcs.CSL.2017.36
https://doi.org/10.4230/LIPIcs.CSL.2017.36
https://doi.org/10.1145/3315507.3330202
https://doi.org/10.4230/LIPIcs.FSCD.2020.28
https://doi.org/10.1109/TENCON.1989.176921
https://doi.org/10.1145/2723372.2735359
https://doi.org/10.1145/2723372.2735359

23:38 W. Ricciotti and J. Cheney Vol. 18:3

[vv06] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory reduction systems
and higher-order rewrite systems. Technical Report CS-R9361, CWI, January 2006.

[Wad92] Philip Wadler. Comprehending monads. Math. Struct. in Comp. Sci., 2(4), 1992. doi:10.1017/
S0960129500001560.

[Won96] Limsoon Wong. Normal forms and conservative extension properties for query languages over
collection types. J. Comput. Syst. Sci., 52(3), 1996. doi:10.1006/jcss.1996.0037.

[Won00] Limsoon Wong. Kleisli, a functional query system. J. Funct. Programming, 10(1), 2000. doi:
10.1017/S0956796899003585.

https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1006/jcss.1996.0037
https://doi.org/10.1017/S0956796899003585
https://doi.org/10.1017/S0956796899003585

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:39

Appendix A. Proofs

This appendix expands on some results whose proofs were omitted or only sketched in the
paper.

Proof of Lemma 4.2. If K ∈ SN is a continuation, then for all indices p we have K[p 7→
∅] ∈ SN .

We proceed by well-founded induction, using the metric:

(K1, p1) ≺ (K2, p2) ⇐⇒ (ν(K1), ‖K1‖p1) l (ν(K2), ‖K2‖p2)

• K ′[p 7→ ∅]σ, where K
σ
 K ′: by Corollary 3.33, we need to show K ′[q 7→ ∅] ∈ SN

whenever σ(q) = p; this follows from the IH, with ν(K ′) < ν(K) by Lemma 3.12.
• K0[p 7→ ∅], where K = K0 p©F for some frame F : by Lemma 3.31 we have ν(K0) ≤ ν(K);

furthermore, by Lemma 3.10 we show that ‖K0‖p < ‖K‖p; then the thesis follows
immediately from the IH.

Proof of Lemma 4.4. For all Q-continuations Q,O1, O2 with pairwise disjoint supports, if
Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪O2] ∈ SN .

We assume p ∈ supp(Q) (otherwise, Q[p 7→ O1] = Q[p 7→ O2] = Q[p 7→ O1 ∪ O2], and
the thesis holds trivially). Then, by Lemma 3.30, Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN
imply Q ∈ SN , O1 ∈ SN , and O2 ∈ SN : thus we can proceed by well-founded induction
on (Q, p,O1, O2) using the following metric:

(Q1, p1, O1
1, O

1
2) ≺ (Q2, p2, O2

1, O
2
2)

⇐⇒ (ν(Q1),
∥∥Q1

∥∥
p1
, ν(O1

1) + ν(O1
2)) l (ν(Q2),

∥∥Q2
∥∥
p2
, ν(O2

1) + ν(O2
2))

to prove that if Q[p 7→ O1] ∈ SN and Q[p 7→ O2] ∈ SN , then Q[p 7→ O1 ∪ O2] ∈ SN .
Equivalently, we will consider all possible contracta and show that each of them must
be a strongly normalizing term; we will apply the induction hypothesis to new auxiliary
continuations obtained by placing pieces of Q into O1 and O2: the hypothesis on the supports
of the continuations being disjoint is used to make sure that the new continuations do not
contain duplicate holes and are thus well-formed. By cases on the possible contracta:

• Q1[q 7→ Q2

[
L
/
x
]
][p 7→ (O1

[
L
/
x
]
) ∪ (O2

[
L
/
x
]
)] (where

Q = (Q1 q©
⋃

{� | x← {L}})[q 7→ Q2],

q ∈ supp(Q1), p ∈ supp(Q2)): let Q′ = Q1[q 7→ Q2

[
L
/
x
]
], and note that Q Q′, hence

ν(Q′) < ν(Q); note Q[p 7→ O1] Q′[p 7→ O1

[
L
/
x
]
], hence since the former term is s.n.,

so must be the latter, and hence also O1

[
L
/
x
]
∈ SN ; similarly, O2

[
L
/
x
]
; then we can

apply the IH with (Q′, p, O1

[
L
/
x
]
, O2

[
L
/
x
]
) to obtain the thesis.

• Q′[p 7→ O1 ∪O2]σ (where Q
σ
 Q′): by Corollary 3.33, we need to prove that, for all q s.t.

σ(q) = p, Q′[q 7→ O1∪O2] ∈ SN ; since Q[p 7→ O1] ∈ SN , we also have Q′[p 7→ O1]σ ∈ SN ,
which implies Q′[q 7→ O1] ∈ SN by Corollary 3.33; for the same reason, Q′[q 7→ O2] ∈ SN ;
by Lemma 3.12, ν(Q′) < ν(Q), thus the thesis follows by IH.
• Q1[p 7→ (

⋃
{Q2|x← O1}) ∪ (

⋃
{Q2|x← O2})] (where Q = Q1 p©

⋃
{Q2|x← �}):

by Lemma 3.31, ν(Q1) ≤ ν(Q); we also know ‖Q1‖p < ‖Q‖p; take O′1 :=
⋃
{Q2|x← O1}

and note that, since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm of a strongly
normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 :=

⋃
{Q2|x← O2} and show

23:40 W. Ricciotti and J. Cheney Vol. 18:3

it is s.n. in a similar way; then (Q1, p, O
′
1, O

′
2) reduce the metric, and we can prove the

thesis by IH.
• Q1[p 7→ (

⋃
{O1|x← Q2}) ∪ (

⋃
{O2|x← Q2})] (where Q = Q1 p©

⋃
{� | x← Q2}):

by Lemma 3.31, ν(Q1) ≤ ν(Q); by Lemma 3.10 we also know ‖Q1‖p < ‖Q‖p; take

O′1 :=
⋃
{O1|x← Q2} and note that, since Q[p 7→ O1] = Q1[p 7→ O′1], we have

O′1 is a subterm of a strongly normalizing term, thus O′1 ∈ SN ; similarly, we define
O′2 :=

⋃
{O2|x← Q2} and show it is s.n. in a similar way; then (Q1, p, O

′
1, O

′
2) reduce the

metric, and we can prove the thesis by IH.
• Q0[p 7→ (where B do O1) ∪ (where B do O2)] (where Q = Q0 p©(where B do �)): by

Lemma 3.31, ν(Q0) ≤ ν(Q); by Lemma 3.10 we also know ‖Q0‖p < ‖Q‖p; take O′1 :=

where B do O1 and note that, since Q[p 7→ O1] = Q0[p 7→ O′1], we have O′1 is a subterm
of a strongly normalizing term, thus O′1 ∈ SN ; similarly, we define O′2 := where B do O2

and prove it is strongly normalizing in the same way; then (Q0, p, O
′
1, O

′
2) reduce the

metric, and we can prove the thesis by IH.
• Contractions within O1 or O2 reduce ν(O1) + ν(O2), thus the thesis follows by IH.

Reducibility for conditionals is proved similarly to comprehensions. However, to consider
all the conversions commuting with where, we need to use the more general auxiliary
continuations.

Proof of Lemma 4.10. Suppose Q[p 7→ where B do M] ∈ SN . Then for all B′ ∈ SN such
that BV(Q) and FV(B′) are disjoint, Q[p 7→ where B ∧B′ do M] ∈ SN .

We proceed by well-founded induction on (Q,B,B′,M, p) using the following metric:

(Q1, B1, B
′
1,M1, p1) ≺ (Q2, B2, B

′
2,M2, p2) ⇐⇒

(ν(Q1[p1 7→ where B1 do M1]), ν(B′1), size(M1))
l(ν(Q2[p2 7→ where B2 do M2]), ν(B′2), size(M2))

We will consider all possible contracta of Q[p 7→ where B ∧B′ do M] and show that each of
them must be a strongly normalizing term. By cases:

• Q1[q 7→ Q2

[
L
/
x
]
][p 7→ (where B ∧B′ do M)

[
L
/
x
]
], where

Q = (Q1 q©
⋃

{� | x← {L}})[q 7→ Q2],

q ∈ supp(Q1), and p ∈ supp(Q2); by the freshness condition we know x /∈ FV(B′), thus
(where B∧B′ doM)

[
L
/
x
]

= where B
[
L
/
x
]
∧B′ do (O

[
L
/
x
]
); to apply the IH, we need

to show ν(Q1[q 7→ Q2

[
L
/
x
]
][p 7→ where B

[
L
/
x
]
do M]) < ν(Q[p 7→ where B do M]):

since the former term is a contractum of the latter, this is implied by Lemma 3.12.

• Q′[p 7→ where B ∧ B′ do M]σ, where Q
σ
 Q′. By Corollary 3.33, it suffices to prove

Q′[p 7→ where B ∧B′ do M] for all q s.t. σ(p) = q; we prove ν(Q′[q 7→ where B do M]) ≤
ν(Q′[p 7→ where B do M]σ) (by Corollary 3.33), and ν(Q′[p 7→ where B do M]σ) <
ν(Q[p 7→ where B do M]) (by Lemma 3.12, since the former term is a contractum of the
latter); then the thesis follows by IH.
• Q1[p 7→ where B ∧B′ do

⋃
{Q2|x←M}], where Q = Q1 p©

⋃
{Q2|x← �}; to apply the

IH, we need to show ν(Q1[p 7→ where B do
⋃
{Q2|x←M}]) < ν(Q[p 7→ where B doM]):

since the former term is a contractum of the latter, this is implied by Lemma 3.12.
• Q0[p 7→ where B0 ∧ B ∧ B′ do O], where Q = Q0 p©(where B0 do �); to apply the IH,

we need to show ν(Q1[p 7→ where B0 ∧B do M]) < ν(Q[p 7→ where B do M]): since the
former term is a contractum of the latter, this is implied by Lemma 3.12.

Vol. 18:3 STRONGLY NORMALIZING HIGHER-ORDER RELATIONAL QUERIES 23:41

• Q[p 7→ ∅], where O = ∅: this term is also a contractum of Q[p 7→ where B do ∅], thus it is
strongly normalizing.
• Q[p 7→ (where B ∧ B′ do M1) ∪ (where B ∧ B′ do M2)], where M = M1 ∪M2; we note

that, for i = 1, 2, we have ν(Q[p 7→ where B do Mi]) ≤ ν(Q[p 7→ (where B do M1) ∪
(where B doM2)]) < ν(Q[p 7→ where B doM]), where the first inequality is by Lemma 4.6,
and the second by Lemma 3.12; we also note size(Mi) < size(M); then we can apply the
IH to prove Q[p 7→ where B ∧B′ do Mi] ∈ SN , which implies the thesis by Lemma 4.4.
• (Q p©

⋃
{� | x←M2})[p 7→ where B ∧B′ do M1], where M =

⋃
{M1|x←M2}; to apply

the IH, we need to show ν((Q p©
⋃
{� | x←M2})[p 7→ where B do M1]) < ν(Q[p 7→

where B do M]): since the former is a contractum of the latter, this is implied by
Lemma 3.12.
• Q[p 7→ where B ∧B′ ∧B0 do M0], where M = where B0 do M0; to apply the IH, we need

to show ν(Q[p 7→ where B ∧B0 do M0]) < ν(Q[p 7→ where B do M]): since the former is
a contractum of the latter, this is implied by Lemma 3.12.
• Reductions within B or M make the induction metric smaller, thus follow immediately

from the IH.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	1.1. -lifting and NRC-
	1.2. Summary

	2. Higher-order NRC
	2.1. Reduction and normalization

	3. Reducibility with branching continuations
	3.1. Contexts and continuations
	3.2. Renaming reduction
	3.3. Candidates of reducibility
	3.4. Reducibility sets

	4. Strong normalization
	4.1. Main theorem

	5. Heterogeneous Collections
	5.1. The simplified language NRC-
	5.2. Reducibility for NRC-

	6. Related Work
	7. Conclusions
	Acknowledgments
	References
	Appendix A. Proofs

