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Abstract 20 

The five known melanocortin receptors (MCs) have established physiological roles. 21 

With the exception of MC2, these receptors can behave unpredictably and since they 22 

are more widely expressed than their established roles would suggest, it is likely that 23 

they have other poorly characterized functions.  The aim of this review is to discuss 24 

some of the less well-explored aspects of the four enigmatic members of this 25 

receptor family (MC1,3-5) and describe how these are multifaceted G-protein coupled 26 

receptors (GPCRs).  These receptors appear to be promiscuous in that they bind 27 

several endogenous agonists (products of the proopiomelanocortin gene) and 28 

antagonists but with inconsistent relative affinities and effects.  We propose that this 29 

is a result of post-translational modifications that determine receptor localization 30 

within nanodomains.  Within each nanodomain there will be a variety of proteins, 31 

including ion channels, modifying proteins and other GPCRs,that can interact with 32 

the MCs to alter the availability of receptor at the cell surface as well as the 33 

intracellular signalling resulting from receptor activation.  Different combinations of 34 

interacting proteins and MCs may therefore give rise to the complex and inconsistent 35 

functional profiles reported for the MCs.  For further progress in understanding this 36 

family, improved characterization of tissue-specific functions is required.  Current 37 

evidence for interactions of these receptors with a range of partners resulting in 38 

modulation of cell signalling suggests that each should be studied within the full 39 

context of their interacting partners.  The role of physiological status in determining 40 

this context also remains to be characterized.    41 
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Introduction 42 

Melanocortin receptors (MCs) are instrumental for a range of clinically-relevant 43 

physiological functions. MC1 mediates pigmentation of both skin and hair, MC2 is 44 

required for adrenal steroidogenesis and therefore the stress response, MC3 and 45 

MC4 modulate the central control of food intake and satiety and MC5 regulates 46 

sebogenesis.  These are essential functions: it might therefore be assumed that the 47 

receptors are both structurally and functionally well characterized.  The aim of this 48 

review is to demonstrate that there are many aspects of the multifaceted MCs that 49 

warrant further investigation. 50 

For each of the 5 receptors identified to date, the primary and secondary structures 51 

are well described but the tertiary structures are only recently being revealed for 52 

some. Hhow structure relates to function is therefore a work in progress.  Except for 53 

MC2, the MCs bind multiple ligands and this lack of specificity is an unusual feature 54 

of a G-protein coupled receptor (GPCR).  Another exceptional feature is that some 55 

MCs also have endogenous antagonists.  Receptor activation is associated with a 56 

range of cellular responses, which at first was attributed to the multiple ligands that 57 

can activate the receptors. However, it is increasingly apparent that this explanation 58 

is inadequate: the reality is far more complex and context-dependent.  MCs are more 59 

widely expressed throughout the body than the functions described in the opening 60 

sentences might suggest, albeit in some tissues their expression is very low. Their 61 

functions in these other tissues are not well characterized if indeed known.  More 62 

than one MC type may be expressed in a single tissue and even within the same 63 

cell.  In vitro data suggests that MCs can form heterodimers which may affect 64 

signalling on activation.  Two melanocortin receptor accessory proteins, the MRAPs, 65 
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interact with the MCs to influence MC signalling.  MC signalling can be further 66 

modified by not just the MRAPs and MC interactions with each other but also 67 

through specific interactions with some other proteins as well as other GPCRs.  68 

Hence multiple factors need to be considered when trying to characterize each of the 69 

MCs before we can further our understanding of the multifaceted MC family.   70 

This review will not consider MC2: it is the ‘black sheep’ of the family in that it only 71 

binds one of the melanocortin peptides.  In the future though, we may learn more 72 

about the other MCs by exploring why MC2 is different. 73 

 74 

Established physiological roles of MCs and consequences of genetic variation 75 

The complexity of the MCs and their multifaceted features belies “textbook” views of 76 

a simpler range of functions, many of which are underpinned by overt human and 77 

mouse phenotypes resulting from mutations: these are described briefly below to put 78 

in context the more complex aspects we will describe later. 79 

MC1 80 

In epidermal and hair follicle melanocytes, MC1 regulates the synthesis of eumelanin 81 

(black/brown) pigments.  The MC1 gene is highly polymorphic in individuals of 82 

European ancestry, but not in those of African ancestry, and many of the 80 plus 83 

variants identified to date produce a non-functional receptor (1).  Loss-of-function in 84 

MC1 results in an increase in the relative amount of phaeomelanin (yellow/red) to 85 

eumelanin synthesized.  The resulting phenotype is fair skin, freckles and red hair 86 

(red hair colour (RHC) variants).  An association between fair skin and the incidence 87 
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of melanoma has generated interest in these variants. RHC variants are associated 88 

with an increased susceptibility to developing both melanoma and non-melanoma 89 

skin cancers however not all variants associated with an increase in skin cancer 90 

susceptibility are also associated with changes in pigmentation (2). Not all loss-of-91 

function is associated with reduced cyclic AMP (cAMP) activity on receptor activation 92 

as some of the variants result in a reduced number of receptors at the cell 93 

membrane suggesting dysfunctional receptor trafficking (3).    94 

MC3 95 

The MC3 knockout (KO) mouse has reduced lean body mass and increased fat mass 96 

resulting in an obese phenotype (4,5).  The association between human MC3 gene 97 

variants and obesity is still unclear due to the rarity of such variants (6). The two 98 

most common variants, T6K and V81I, have been reported by some as associated 99 

with an obese phenotype but by others not: a mouse model with these two variants 100 

is obese (6).   101 

Both male and female MC3 KO mice have impaired linear growth (5).  Screening 102 

whole-exome sequence data of 200,000 individuals from the UK Biobank revealed 103 

over 170 different variants in the human MC3 gene (7):all are exceptionally rare.  The 104 

researchers selected the 3 most common variants and did sophisticated analyses 105 

using all 500,000 participants in the UK Biobank to demonstrate that these 3 variants 106 

were each associated with shorter stature (7).  MC3 co-localizes to GHRH neurones 107 

in the hypothalamus and the authors suggest that MC3 may therefore act at the level 108 

of the hypothalamus to regulate height.  Rat anterior pituitary somatotrophs both 109 

express MC3 and respond to melanocortins (8,9) so the potential involvement of 110 

pituitary function in this phenotype should not be ignored. 111 
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MC4 112 

Like the MC3 KO, the MC4 KO mouse is obese, however, there are substantial 113 

differences between the two KOs; in particular, the MC3 KO is hypophagic and has 114 

reduced linear growth whilst the MC4 KO mouse is hyperphagic with increased linear 115 

growth (10).   Appreciation of a possible role for MC4 in regulating body weight in the 116 

mouse (10,11),prompted a search for variants resulting in obesity in humans.  Back-117 

to-back publications reported the identification of two individuals and some of their 118 

family members who were heterozygous for a rare frame-shift variant that resulted in 119 

a truncated MC4 and therefore a non-functional receptor: the affected individuals 120 

were all obese (12,13).  From then, the focus on MC4 has been mainly on its roles in 121 

regulating appetite.  Using publicly available data, a number of heterozygous loss-of-122 

function variants in MC4 with associations to body weight have been identified 123 

(14,15).  Variants with a loss of function resulting in reduced generation of cAMP on 124 

receptor activation are associated with weight gain, whilst gain of function mutations, 125 

which result in biased increased beta-arrestin recruitment followed by increased 126 

mitogen-activated protein kinase (MAPK) pathway activation, are associated with a 127 

lean phenotype (14).  Body weight is not just a function of appetite: evidence is 128 

accumulating that MC4 in the dorsal raphe may also have a role in regulating both 129 

thermogenesis and locomotion, and hence energy expenditure (16).  Both POMC 130 

and AgRP neurones in the arcuate have projections to the dorsal raphe (17,18).  131 

Within the dorsal raphe, there are both GABAmergic and glutamergic neurones that 132 

express MC4 (18,19).  Activation of GABAergic neurones by -MSH results in 133 

decreases in firing rate concomitant with decreases in food intake (19,20).  134 

Increased prolylcarboxypeptidase, an enzyme which results in decreases in 135 

available synaptic -MSH (21), was associated with increased thermogenesis and 136 
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locomotion (20).  Arcuate AgRP acts as an inverse agonist on MC4 expressing-137 

glutamatergic neurones within the dorsal raphe, resulting in activation of a cluster of 138 

5HT-neurones also within the dorsal raphe.  These serotonergic neurones stimulate 139 

thermogenesis without eliciting an effect on food intake (18). 140 

To date the focus has remained on centrally expressed MC4 and their role in body 141 

weight regulation, however, there is evidence for MC4 expression in the periphery 142 

(EMBL-EBI gene expression atlas).   143 

MC5 144 

The only phenotype observed in global MC5 KOs was that the mice took longer to 145 

dry their fur after doing swim tests because of reduced sebogenesis (22).  In a study 146 

of the human gene, five variants were identified in a small sample of individuals with 147 

skin/sebaceous gland disorders, however, these same variants were also found with 148 

a similar distribution in individuals of a wide range of ethnicities that were 149 

phenotypically normal (23).  In mouse models, there are also reports of roles for MC5 150 

in regulating immunological responses in autoimmune disorders of the eye, fatty acid 151 

oxidation in skeletal muscle and lipolysis in adipocytes (24-28).  To date there are no 152 

reported variants in the human gene associated with any of these roles. 153 

 154 

Tissue distribution of the MCs 155 

Perhaps based on the results of the studies described above it is generally thought 156 

that MC1 is confined to the integumentary system, MC3 and MC4 to the central 157 

nervous system (CNS) and MC5 to exocrine glands.  To date, the validity of these 158 
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conclusions have been hampered by the inability to specifically identify the different 159 

MCs using immunohistochemical approaches.  The commercially available 160 

antibodies for the MCs are not specific (example (29)).  Databases such as the 161 

EMBL-EBI gene expression atlas suggest that all four receptors are more widely 162 

distributed throughout the body and basic searches of available literature identifies 163 

multiple reports of expression in other tissues, albeit with varying strength of 164 

evidence.  Importantly, it is evident that some tissues express more than one type of 165 

MC: perhaps even within the same cell (30).  In vitro, it is known that MCs can 166 

heterodimerize with each other so a better understanding of within-tissue expression 167 

is required. The advent of multiplex nucleic acid in situ hybridization technologies, 168 

like RNAscope©, are enabling better precision in identifying MC expression patterns. 169 

The lack of clarity of the tissue distribution of the MCs has important consequences 170 

for fully understanding the aetiology of some of the phenotypes associated with MC 171 

variants, as these may in part be due to dysfunction of the receptor in peripheral 172 

tissues. For example, MC4 is expressed in the heart (EMBL-EBI gene expression 173 

atlas, (31)) and therefore some of the associations with cardiovascular dysfunction 174 

(32,33) may be due to direct effects on cardiac function and not sequelae of obesity 175 

and/or central MC4 effects.  Insulin release is decreased in both lean and obese rats 176 

following treatment with NDP-MSH, a synthetic agonist of MC4 (34).  Given that MC4 177 

is expressed in the pancreas (EMBL-EBI gene expression atlas, (34)), dysfunctional 178 

insulin release from the pancreas may contribute to the obesity linked to MC4. 179 

 180 

Why are the MCs unique amongst GPCRs? 181 

MC ligands 182 
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Except for MC2, which is highly selective for adrenocorticotrophic hormone (ACTH), 183 

MC1,3-5 interact with each of the melanocortin proteins derived from the post-184 

translational cleavage products of the proopiomelanocortin (POMC) gene.  The 185 

melanocortin proteins are alpha-, beta- and gamma-melanocyte stimulating hormone 186 

(-, -, -MSH) and ACTH.  All the melanocortin ligands, have a conserved HFRW 187 

motif (35) with the motif found at the base of the ‘U’ in their U-shaped three-188 

dimensional structures.  The benzene ring of the phenylalanine of the HFRW motif 189 

penetrates deeply into the TMD core of the receptor (36-38) and results in the 190 

downward movement of two phenylalanines (F257 and F280) in MC1 and a leucine 191 

(L133) in MC4.  The downward movement of these residues in turn pushes on 192 

residues (W254 on MC1 and W258 on MC4) that act as toggle switches on TMD6.  193 

When switched on, TMD6 moves outward and the receptors are activated.   194 

There are also two other gene products that bind to MCs: an inverse agonist, agouti-195 

related protein (AgRP), that is specific for MC3 and MC4 (39,40); and an antagonist of 196 

-MSH, agouti-signalling peptide (ASIP), that competes for binding to MC1 and MC4 197 

(41).  The ligands can be released into the circulation or act in an autocrine or 198 

paracrine way.  This ligand diversity and their inconsistent potencies at each MC 199 

(described further below) is unique amongst GPCRs. 200 

MC structure 201 

The 5 MCs identified to date are all members of the -subfamily of class A 202 

(rhodopsin-like) GPCRs and the human receptors share 42-67 % of their amino acid 203 

sequences (42). There are strong similarities between the reported tertiary structures 204 

of MC1 and MC4 (36-38), hence it could be assumed that the other MCs will also be 205 

structurally similar. 206 
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The MCs have several structural features that set them apart from other class A 207 

GPCRs. First, the receptors are short (ranging from 297360 amino acids) and 208 

compared to other class A GPCRs have relatively short N- and C- termini (42). 209 

Secondly, both MC1 and MC4 have a wide extracellular opening to the orthosteric 210 

ligand binding pocket (36-38).  The width is due to an exceptionally short second 211 

extracellular loop (ECL2), a lack of the conserved cysteines in transmembrane 212 

domain 3 (TMD3) and ECL2 found in other class A GPCRs, and the absence of 213 

conserved prolines in TMD2 and TMD5 that are present in other class A GPCRs 214 

(42).  Extracellular Ca2+ has long been recognised as a co-factor for melanocortin 215 

binding (43).  Within TMD2 and TMD3 are 3 conserved residues unique to the MCs, 216 

which form a Ca2+-binding pocket in conjunction with 3 conserved amino acids in the 217 

ligands (36-38).  Calcium ion binding is important for agonist interaction but not for 218 

that of antagonist (37). To date, no one has reported the tertiary structure in the 219 

presence of the MRAPs and/or other GPCRs that the MCs are known to interact with.   220 

 221 

Post-translational modification of MCs 222 

Several studies have demonstrated the importance of the conserved cysteine(s) in 223 

the C-terminus for normal function of the MCs.  These cysteines are sites for post-224 

translational modification by palmitoylation, which involves the enzymatic addition 225 

and removal of a palmitic acid to the cysteine. 226 

Lack of palmitoylation of C315 in the cytoplasmic tail of MC1 prevents proper 227 

receptor function. The zDHHC-protein acyl transferase (zDHHC-PAT), zDHHC-228 

PAT13, responsible for palmitoylation of MC1 is phosphorylated by UVB light (44).  229 

Increasing the interaction of MC1 with phosphorylated zDHHC-PAT13, results in 230 
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greater MC1 activation as seen by increases in palmitoylation, cAMP production, 231 

DNA repair and decreases in cell senescence (44).  In the presence of a mutated 232 

palmitoylation site, no rescue was achieved with increased phosphorylation and/or 233 

increased amounts of ZDHHC-PAT13 (44). 234 

In humans, two cysteine residues in the cytoplasmic tail of MC4 have been identified 235 

as predicted sites for palmitoylation (https://swisspalm.org/), which has been 236 

confirmed in studies by Moore and Mirshahi (45). This group has also suggested a 237 

functional consequence of loss of palmitoylation. MC4 variants that result in a 238 

truncation of the region of the cytoplasmic tail that is palmitoylated leads to loss of 239 

receptor function and is associated with altered BMI: the authors speculate that 240 

palmitoylation stabilises receptor localisation at the cell surface.   Further analysis is 241 

required to establish the consequences of MC4 palmitoylation and identify the 242 

ZHHCs, as well as specific depalmitoylating enzymes, regulating this post-243 

translational modification.  244 

Both MC3 and MC5 have two cysteines in their cytoplasmic tails, which are predicted 245 

to be palmitoylated (https://swisspalm.org/): at C315/C317 and C311/312, 246 

respectively.  To date there are no reports that describe these cysteines in any 247 

detail, however, mutation of the residue separating C315/C317 (pG316D) in MC3,  248 

has been reported to result in a lean phenotype (6).  We predict that this amino acid 249 

change is sufficient to prevent palmitoylation and hence anchoring of the cytoplasmic 250 

tail to the cell membrane and that a similar mechanism may be essential for the 251 

normal function of several MCs.  Diet, in particular fatty acids, have been shown to 252 

modulate palmitoylation (46) therefore one might speculate that MC function may 253 

also be modified by diet. 254 

https://swisspalm.org/
https://swisspalm.org/
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 255 

Not all MC signalling is mediated through cAMP 256 

Canonical MC signalling 257 

Initially descriptions of MC activation concurred that all MCs are Gscoupled, 258 

activating adenylyl cyclase, which in turn catalyzes the conversion of ATP to cAMP.  259 

cAMP is a second messenger and will initiate an intracellular cascade, often through 260 

activation of protein kinase C (PKC).  MC activation and signalling is terminated by 261 

recruitment of beta-arrestin, which traffics the receptor back to endosomes.   262 

The affinities and potencies reported for the different ligands at each MC are highly 263 

variable between studies. To understand this variability we systematically reviewed 264 

the literature reporting the cAMP response to different ligands for MC1,3-5.  We found 265 

100-fold differences in the published EC50s (potencies) for MC1,3-5 in response to the 266 

same ligand (Figure 1).  These fold differences were even found in data published by 267 

the same laboratories.  As will be reviewed below, the cAMP response to different 268 

MC ligands is complex and context-dependent.  We suggest that the significant 269 

range of cAMP responses measured is a function of receptor interaction with other 270 

proteins and/or receptors.  271 

Evidence for signalling through other G protein alpha (G) subunits 272 

Some of the MCs may interact with other G subunits: Gi and/or Gq/11 (MC3 (47); 273 

MC4 (48)).  In neuronal cell culture, it has been demonstrated that activation of MC4 274 

by -MSH in neurones of the paraventricular nucleus (PVN) results in activation of 275 

Gq/11 and not Gs (49).  What has yet to be determined are the mechanisms that 276 

switch a MC from interacting with Gs to Gi or Gq/11.   277 

G independent coupling with Kir7.1 278 
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Kir7.1 is an inwardly rectifying K+ channel and coupling with MC1 and MC4 has been 279 

demonstrated (50).  In the PVN, the depolarization and hyperpolarization induced by 280 

-MSH and AgRP, respectively, occurred independently of G pathways 281 

downstream of MC4 (50).  MC4 appears to be unusual among the GPCRs assessed 282 

to date, in that it does not modulate the activity of Kir7.1 via glycosylation (51).  283 

Targeted deletion of Kir7.1 in MC4 expressing cells of the PVN, resulted in the failure 284 

of -MSH to activate these MC4 neurones and blocking of associated phenotypes 285 

(52).  By contrast, the phenotypes associated with the activation of MC4 by AgRP 286 

were not blocked.  Recent tertiary structural analysis suggests that MC4 signalling 287 

associated with coupling to Kir7.1 also requires Ca2+ binding (53).  It is not yet known 288 

if coupling to Kir7.1 is a generic property of the MCs or unique to MC4 and possibly 289 

MC1. 290 

Constitutive activity of MCs 291 

MCs appear to have constitutive cAMP-generating activity: the evidence for MC1 and 292 

MC4 are the most compelling though.  Pomc KO mice maintain normal coat colour 293 

even in the absence of endogenous ligands, whilst MC1 knockout mice are yellow 294 

(phaeomelanin), suggesting that the MC1 constitutive activity in the absence of 295 

endogenous ligands is sufficient to maintain coat colour (54).  MC4 has some 296 

constitutive activity and AgRP is able to act as an inverse agonist in the presence of 297 

this activity (55). 298 

Whether MC3 is constitutively active is debatable: some report that the human MC3 is 299 

not (56,57) whilst others report some basal activity as measured by cAMP.  The 300 

constitutive activity may therefore be species and context-dependent (58).  A mutant 301 

form of MC3 (F347A) is constitutively active (58): its basal cAMP activity is about 7-302 

fold greater than that for wild type MC3.  Even in the absence of ligand, mouse or 303 
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human MC5 stably transfected into B16/G4F melanoma or HEK293 cells, 304 

respectively, produced cAMP (40,59) although others have not detected this (57).  305 

In the late 1990s, it had been concluded that the N-terminus could be removed from 306 

all four receptors without effects on receptor function (60).  However, later work on 307 

MC4 showed that the N-terminus acts as a tethered ligand and is responsible for the 308 

constitutive activity of the receptor (55,61).  MC4 constitutive activity has been shown 309 

to be augmented in the presence of human MRAPa (the long isoform of human 310 

MRAP1) and may be due to human MRAPa enhancing N-linked glycosylation of the 311 

N-terminus of MC4 (57,62).  Constitutive activity may provide tone to a signalling 312 

pathway; that is, the ability to move in either direction from a set point.   313 

Biased signalling 314 

The early understanding of the role of beta-arrestin in GPCR signalling was that it 315 

terminated the intracellular signalling cascade initiated by the G subunit.  It is now 316 

understood that beta-arrestin can initiate its own signalling and this activity can occur 317 

once the activated receptor has been internalized and is in the early endosome.   318 

Regardless of the usual G subunit a GPCR normally activates, its associated beta-319 

arrestin can also recruit Gi to form a complex that interacts with the ERK1/2 320 

pathway (63).  Others have previously demonstrated that MC activation can 321 

upregulate the MAPK ERK1/2 pathway independent of cAMP but dependent on PI3K 322 

(MC1 (64,65); MC3 (66); MC4 (67); MC5 (68,69)) and inhibit the MAPK c-Jun N-323 

terminal kinase (JNK) pathways (MC4 (70); MC5 (71)). 324 

Biased agonism by AgRP binding to MC3 and MC4 has been demonstrated (72,73): 325 

activation of either receptor with AgRP independently stimulates the ERK1/2 326 

pathway whilst decreasing cAMP activity.  Whether any of these pathways are beta-327 

arrestin dependent is unknown, as is the extent of biased signalling. 328 
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 329 

Modulators of MC expression and activation 330 

There is accumulating evidence that several proteins can interact with the MCs to 331 

modulate their activation; including  the MRAPs,membrane bound attractin, 332 

mahogunin ring finger and defensin.  The latter three proteins will not be discussed 333 

in this review.  MC activation may also be modulated by whether the receptor is 334 

acting as a monomer, homodimer or heterodimer with other MCs or other GPCRs.  335 

What is not yet clear is how these putative modulators of MC activation exert their 336 

effects.  It is possible that these modulators result in biased signalling and/or 337 

regulate the number of MCs presenting at the cell membrane. 338 

MRAPs modulate MC activity 339 

MRAP1 and MRAP2 interact with and regulate the function of all members of the MC 340 

family (74) as well as other GPCRs (75-77).  While MRAP1 is present as antiparallel 341 

homodimers at the plasma membrane (78), MRAP2 can also form parallel 342 

homodimers as well as higher order oligomers (79).  Both MRAPs are widely 343 

expressed in tissues, including the brain, pituitary, adrenal gland, testis, ovary, lung 344 

and heart (74,75,80), which in part overlaps with expression of MCs. Co-expression 345 

of MRAP2 with MC3 and MC4 in the same cells has been demonstrated at the RNA 346 

level (81). 347 

The complexity of the MC family is further evidenced by the contradictory influence 348 

of MRAPs on MC function, MC3 being a prime example.  Co-expression of human 349 

MRAP2 and MC3 has been shown to either reduce (81) or have no influence (74) on 350 

MC3 surface expression.  Human MRAP1 and MRAP2 increased MC3 cAMP 351 

signalling in response to α-MSH (57,81), whereas human MRAP2 inhibited and 352 

MRAP1 did not significantly influence the MC3 cAMP response to NDP-α-MSH in 353 
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another study (74).  Chicken MRAP2 produced a 9-fold increase of the potency of 354 

chicken ACTH(1-39) at MC3 (82), whereas co-expression of chicken MRAP2 and 355 

MC3 had no effect on the potency of human ACTH(1-24) (83).  Zebrafish MRAP2a or 356 

MRAP2b had no significant effect on α-MSH-induced MC3 cAMP signalling at a ratio 357 

of 1:5 of receptor to MRAP2 (84), whereas MRAP2 of the related channel catfish 358 

inhibited the cAMP response of MC3 to α-MSH at the same receptor to MRAP2 ratio 359 

(85). 360 

The divergent effects of the interaction between MRAPs and MCs highlight the 361 

influence of context on MC function. The concentration of MRAPs appears to be one 362 

of the context-dependent factors that influence MC activity, as MRAP2 alters 363 

receptor function differently depending on the expression ratio of MRAP2 to MC 364 

(81,85,86).  What underlies the dose-dependent effects is unclear, however, the 365 

ability of MRAP2 to form different homo-oligomeric conformations, each with a 366 

potentially different effect on receptor function, may play a role (79,86).  As MRAP2 367 

is differentially expressed across zebrafish development (84) and in the 368 

endometrium during different stages of the human menstrual cycle (87), altering the 369 

cellular concentration of MRAP2 may be an additional mechanism used by 370 

organisms to fine-tune MC signalling.  371 

MC homo- and heterodimerization 372 

All 5 MCs have the ability to homodimerize (88-91).  While the exact cellular ratio of 373 

receptor monomers to homodimers is unclear, the prevalence of homodimers can be 374 

regulated by ligands and interacting proteins with potential functional consequences.  375 

ACTH binding increases MC2 homodimerization (92), MRAP1 reduces the plasma 376 

membrane concentration of MC5 by inhibiting MC5 homodimerization (91) and 377 

disruption of MC4 homodimers increases receptor-mediated cAMP accumulation 378 
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(93).  Furthermore, MC4 has two tandem binding sites with different ligand binding 379 

affinities and kinetics, likely corresponding to sites on receptor homodimers (94).  380 

Homodimerization may therefore produce additional MC states with new functional 381 

properties and distinct interactions with other membrane proteins. 382 

Bioluminescence resonance energy transfer and co-immunoprecipitation assays 383 

have provided evidence for physical association between different MCs.  384 

Heterodimerization between flounder MC1 and MC5 (95), human MC1 and MC3 (88) 385 

and mouse MC3 and MC4 (96) has been demonstrated in transfected cells.  The 386 

receptor pairs are also co-expressed in vivo: MC1 and MC5 in flounder melanophores 387 

(97), MC1 and MC3 in alveolar macrophages (98) and MC3 and MC4 in the murine 388 

hypothalamus (81).  Studies of the functional significance of MC interactions to date, 389 

indicate that any effects are highly ligand dependent.  The efficacy of α-MSH in cells 390 

co-transfected with flounder MC1 and MC5 was significantly lower than in cells 391 

transfected with either MC1 or MC5, whereas the efficacy of desacetyl-α-MSH was 392 

significantly increased in double transfected compared to single transfected cells 393 

(95).  Co-expression of mouse MC3 and MC4 had no significant effect on the 394 

potencies of α-MSH, NDP-α-MSH or melanotan II, whereas the potency of bivalent 395 

ligand CJL-1-87 was moderately increased in cells expressing both MC3 and MC4 396 

compared to a mixture of cells expressing MC3 and MC4 separately (96). 397 

The interaction partners of MCs are not limited to members of the MC family 398 

Recently, Li et al. provided a significant advance towards characterizing the protein 399 

interactomes of MC3 and MC4 by identifying 23 and 32 GPCRs, respectively, that 400 

physically associate with the two MCs in vitro (99).  The functional consequences of 401 

receptor co-expression were diverse, with inhibition, potentiation and no effect on 402 

MC3 and MC4 signalling observed depending on the GPCR partner present.  403 
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Previous studies have also described interactions between various GPCRs and MC3 404 

and MC4 (100,101).  Despite the attested ability of the receptors to heterodimerize at 405 

the membrane, the reported effects of receptor co-expression on signalling activity 406 

may also arise due to crosstalk between signalling pathways.  Such a mechanism 407 

may account for the combined effects of α-MSH and endothelin-1 on melanocyte 408 

function (102) and the signalling crosstalk between MC3 and the GH secretagogue 409 

receptor (103). 410 

 411 

Future perspectives 412 

Understanding MC signalling 413 

As described above, there are many examples of non-canonical MC signalling and 414 

therefore understanding what factors determine MC signalling is critical for 415 

optimizing the selectivity and efficacy of pharmacological interventions.  Recently, 416 

setmelanotide received FDA approval for chronic weight management for patients 417 

with, in effect, genetic ablation of POMC, PCSK1 (proprotein convertase 418 

subtilisin/kexin type 1: responsible for cleavage of POMC resulting in -MSH and 419 

ACTH) or LEPR (leptin receptor).  A series of clinical studies demonstrated 420 

significant weight loss in these patients and chronic treatment was not associated 421 

with the negative side-effects seen with the use of other agonists (104-106).  Its use 422 

has not been without off target effects though.  Individuals with genetic ablation of 423 

POMC and PCSK1 are characteristically fair with red hair.  After extended treatment 424 

with setmelanotide, the hair colour of these individuals became brown demonstrating 425 

that the setmelanotide is also acting on MC1 (107).  This is not surprising since 426 
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setmelanotide is known to also interact with both MC1 and MC3 albeit with lower 427 

potencies (108).  Setmelanotide has biased Gq/11 signalling and binds to MC4 428 

differently to -MSH (36).  Although the identification of a highly selective agonist or 429 

antagonist for any of the MCs remains elusive, compounds like setmelanotide have 430 

already and will continue to provide insight into the MCs’s structure and function as 431 

well as having therapeutic use.  432 

 433 

Understanding GPCR crosstalk 434 

To date, research on GPCR crosstalk has mostly been limited to interactions 435 

between two partners due to the lack of techniques for detecting large multi-member 436 

protein oligomers (109) and the challenge of untangling the complex functional 437 

effects caused by interplay between several proteins. New techniques have 438 

generated demonstrations of the formation of higher-order receptor oligomers (109-439 

112).  Such ”receptor mosaics” (113) may not only be composed of several different 440 

GPCRs but also of accessory proteins, ion channels and other types of receptors 441 

which together determine the functional properties of the larger unit (114). 442 

The diverse interaction profiles of the MCs suggest that the receptors participate in 443 

larger heteromeric complexes. The GPCRs interacting with MC3 and MC4 are all 444 

expressed in the hypothalamus, many of them in the same cells (99). Given that 445 

several of the GPCRs heterodimerize with each other in addition to interacting with 446 

MCs, the number of possible oligomeric complexes that may form is staggering.  447 

Which of these interactions occur in vivo and what determines the oligomeric species 448 

present at any one time remains unclear, however, the cellular context is likely to 449 

have a major influence.  Complex interactions between MCs and the many different 450 

proteins that make up the cellular environment may therefore give rise to context-451 
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dependent functional units, which each respond to ligands in a unique manner.  452 

Differential expression of some of these functionally diverse MC complexes between 453 

different cell lines and cell states may help explain the variable potencies reported 454 

for MCs. 455 

What is the role of nanodomains in producing context-dependent functional units? 456 

Within a cell, there is the possibility of a variety of nanodomains (115): a localized 457 

membrane environment that may contain “receptor mosaics”, hetero- or homodimers 458 

of the MCs along with different G proteins, beta-arrestins and accessory proteins.  459 

MC3 transfected into a mouse neuronal cell line localizes to lipid rafts (116), one type 460 

of nanodomain.  Organization of different MC oligomers into distinct nanodomains 461 

could provide spatial separation of signalling responses and contribute to the diverse 462 

MC responses observed since the distribution and makeup of lipid rafts is 463 

heterogeneous between and within cell types (117,118). The importance of MC 464 

compartmentalization has already been shown for MC4, which requires MRAP2-465 

mediated trafficking into primary cilia in the PVN for its anorexigenic effect (119,120).  466 

The presence of MC4 on primary cilia may also be indicative of another role; that is, 467 

that the MCs may be involved in volume transmission (121).   468 

Understanding how these different membrane proteins are compartmentalized to 469 

different nanodomains, and the potential role for post-translational modifications 470 

such as palmitoylation, is going to be essential to understanding the diversity of 471 

responses following MC activation. 472 

 473 

Do specific MCs have roles in a broader range of tissues? 474 
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In order to advance our understanding of MC biology, further research into their 475 

exact cellular localization throughout the body is required.  The development of a 476 

‘rainbow’ mouse expressing each of the MCs tagged with a different fluorophore 477 

might therefore be useful.  Determining the exact cellular localization of each of the 478 

potential interactors with the MCs is also required and whether physiological status 479 

changes the combinations of interactors.  In the absence of specific antibodies for 480 

each of the MCs, this may be possible by multiplex RNAscope© combined with 481 

tissue optical methods (example, (122)).  The interactions of MCs with other GPCRs 482 

suggests they may act as the conductor of an orchestra by monitoring the activity of 483 

these other GPCRs – perhaps through oligomerization - to regulate their signalling 484 

and therefore cellular responses. Further structural studies to determine the tertiary 485 

structures of each of the MCs with and without either MRAP as well as with and 486 

without different receptor dimers are also required.  So many facets of MCs remain to 487 

be fully explored and understood. 488 

 489 

Conclusions 490 

The focus of a wide body of research on specific roles for the MCs attests to their 491 

importance in physiology, however, their potential importance in the function of a 492 

range of other tissues is currently unclear. This has implications for both 493 

understanding mechanisms leading to disease as well as their characterization as 494 

therapeutic targets. Study of these other roles, as well as those that are well-495 

established, will require a more complete understanding of their multifaceted biology 496 

and how this relates to ligand specificity, as well as modulation of signalling from 497 

these GPCRs in the context of their interacting partners.    498 

 499 
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Legends 885 

Figure 1.  Reported potencies (EC50) of endogenous and exogenous melanocortin 886 

ligands for the melanocortin receptors in the published literature.  To obtain the 887 

values, Web of Science was searched for “potenc*” or “ec50” and the names of 888 

the receptors using their various naming conventions.  Only values obtained with 889 



30 
 

the following methodologies were included: untagged receptor constructs 890 

transfected into a cell line and receptor activity measured in a cyclic AMP or cyclic 891 

AMP response element (CRE) based assay.  Values from literature reviews were 892 

excluded.   All values given for melanocortin receptor 1 (MC1) are for the MC1a 893 

isoform only.  Abbreviations: MC (melanocortin receptor), MSH (melanocyte-894 

stimulating hormone), ACTH (adrenocorticotrophic hormone), MTII (melanotan 895 

II), NDP ([Nle4, D-Phe7]). 896 


