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Compressive learning forms the exciting intersection between compressed sensing and statistical learning
where one exploits sparsity of the learning model to reduce the memory and/or computational complexity
of the algorithms used to solve the learning task. In this paper, we look at the independent component
analysis (ICA) model through the compressive learning lens. In particular, we show that solutions to the
cumulant based ICA model have particular structure that induces a low dimensional model set that resides
in the cumulant tensor space. By showing a restricted isometry property holds for random cumulants e.g.
Gaussian ensembles, we prove the existence of a compressive ICA scheme. Thereafter, we propose two
algorithms of the form of an iterative projection gradient (IPG) and an alternating steepest descent (ASD)
algorithm for compressive ICA, where the order of compression asserted from the restricted isometry
property is realised through empirical results. We provide analysis of the CICA algorithms including
the effects of finite samples. The effects of compression are characterised by a trade-off between the
sketch size and the statistical efficiency of the ICA estimates. By considering synthetic and real datasets,
we show the substantial memory gains achieved over well-known ICA algorithms by using one of the
proposed CICA algorithms.

Keywords: Independent Component Analysis, Compressive Learning, Sketching, Compressive Sensing,
Summary Statistics, Cumulants

1. Introduction

In recent years, the size of datasets have grown exponentially as a result of advances in technology,
signal acquisition, and the sophistication of modern day mobile phones and devices. This has enabled
researchers, statisticians and machine learning practitioners to build increasingly accurate models as
a consequence of larger sample sizes and feature dimensions. Nevertheless, this poses a fundamental
challenge to large scale learning as (i) traditional algorithms that act on the non-compressed full data
have computational complexity that scales with the order of the dataset dimensions1 (ii) the whole
dataset has to be stored centrally or transferred to a local computer as optimisation methods need to
return to the data (or a random subset of the data) at subsequent iterations, and (iii) one is vulnerable
to malicious attacks of potentially sensitive and personal information as the data needs to be stored or
transferred locally. Compressive learning (CL) [34, 35] partially addresses these fundamental challenges
by severely compressing the whole dataset into a random representation of fixed size, named a so-
called sketch, in a single (or limited) pass of the data prior to learning. Once the sketch is formed, the
parameters of the model are inferred solely from the sketch, hence a CL algorithm, for a given task or

1for instance the number of samples and features of the data.

© The author 2022. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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model, needs never to return to the original dataset, and the latter can be deleted from memory as a result.
Fundamental to the CL framework [34, 45], the size of the sketch does not scale with the dimensions
of the dataset, or indeed the data’s underlying dimensionality, but instead is driven by the complexity or
dimensionality of the task or model of interest. In theory, one can work with datasets of arbitrary length
(number of samples/data points), as the dimension of the sketch is fixed constant throughout, making CL
especially amenable to large scale learning. Inferring the parameters of a model solely from the sketch is
an under determined inverse problem. As a result, we need regularity assumptions to make the problem
well-posed. These assumptions come in the form of a low dimensional model set that the solution to
the inference problem lies on or close to. The reader may notice this is reminiscent of compressive
sensing where one assumes the signal of interest is k sparse in some domain, and therefore the solution
lies on or close to the union of k dimensional subspaces representing a low dimensional model set. The
sparse regularity assumption allows one to take a limited number of measurements to recover the signal
of interest and reduce the complexity and cost of acquisition. In later sections, we take inspiration from
compressive sensing to develop and analyse our CL algorithms.

In this paper, we develop a CL framework, including theory and practical algorithms, for indepen-
dent component analysis (ICA). ICA is an unsupervised learning task that attempts to find the linear
transformation that separates some given data into components of maximal independence. It is used
extensively in the machine learning and signal processing communities for example as a dimensionality
reduction tool [43], to uncover underlying factors that effect the price movements of a collection of
stocks [48] and to detect independent sources in the brain through EEG signals [63]. As will be dis-
cussed in section 2, the ICA problem can be solved directly from the data or through some higher order
statistics of the data, such as the kurtosis. Denoting the number of independent sources by n and the sig-
nal or data length by N, then the memory complexity typically scales either with O(nN +n2) or O(n4)
depending on the method of choice. As one can see, this becomes infeasible for large scale datasets. In
this paper, we show theoretically and empirically that it is possible to design a CL ICA algorithm where
the sketch dimension, and therefore the memory complexity, scales at O(n2) which can be orders of
magnitudes smaller than current approaches.

1.1 Contributions and Outline

This paper is an extension of the conference paper in [55] that further includes theoretical results as well
as algorithmic improvements. Below, we highlight the main contributions of the paper:

• Focusing on the cumulant based ICA approach, we establish a low-dimensional model set that
resides in the larger cumulant space. We show that an optimal sketch of size m ≳ 2n(n+ 1),
computed using sub-Gaussian measurements, satisfies the well-known restricted isometry prop-
erty2 (RIP) on the model set with high probability. Furthermore, the RIP induces information
preservation guarantees on the recovered cumulant tensor that shows the error between an arbi-
trary cumulant tensor and the recovered cumulant tensor is bounded linearly by modelling error
and sampling noise. This establishes the existence of a robust decoder that, coupled with the
sketching operator, forms a tractable compressive ICA scheme.

• In general, we do not have access to the true expected cumulant tensor but instead an approxi-
mation of the cumulant tensor formed by the finite samples. We establish an upper bound on the

2The RIP states that the distance between points in the model set are approximately preserved under the action of the sketching
operator. (see Section 3)
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finite sampling error between the sketch of the expected cumulant tensor and the sketch of the
approximated cumulant tensor. It is shown that the sampling error reduces as a function of the
number of samples.

• Two inherently different compressive ICA algorithms are proposed. The first algorithm is inspired
by a greedy approach, where we design a projection operator that projects the updated tensor onto
the model set at each iteration. The second algorithm is an alternative steepest descent scheme
that employs Riemannian optimization to optimize directly on the model set.

• As part of the empirical results, we show that in practice a sharp phase transition, between suc-
cessful and unsuccessful parameter estimation, occurs as the sketch size m grows. The region at
which the transition transpires provides a pragmatic lower bound on the size of the sketch which
one can use in practice. Furthermore, it is shown that this pragmatic lower bound coincides with
the size of the sketch required to satisfy the RIP result. The loss of information incurred by taking
a sketch of the ICA cumulants is demonstrated by comparing the statistical efficiency between the
ICA estimates inferred by our compressive ICA algorithms and by existing algorithms that make
use of the full data available.

1.2 Related Works

1.2.1 Existing Compressive Learning Models. The framework of CL has been successfully applied
to a host of learning tasks and models with the desired outcome of reducing the complexities associ-
ated with signal acquisition, computation and memory storage. In [45], Keriven et al. proposed a CL
framework for mixture models, in particular the mixture of Gaussians distribution and k-means models.
In both cases, a sketch is constructed by randomly sampling the (empirical) characteristic function of
the mixture model which can be equivalently seen as taking and averaging random Fourier features of
the data [50]. The compact representational sketch of each mixture model scales both theoretically and
empirically as O(k2d), where k is the number of mixtures in the model and d is the feature space dimen-
sions of the data. In [45] a compressive mixture model algorithm was proposed that minimised the ℓ2
distance between the characteristic function and it’s empirical counterpart calculated over the data for
m randomly sampled frequencies. Fundamentally, the compressive mixture model algorithm have both
computational and space complexities that scale independently of the number of data points N. In [34],
a compressive principal component analysis (PCA) framework was proposed. As will be discussed in
Section 2.2, the compressive PCA methodology is aligned closely to our compressive ICA framework.
Distinct from compressive mixture models, the compressive PCA method is distribution free and it is
assumed that the data lives on, or can be approximately modelled, by a k-dimensional subspace related
to the top k eigenvectors of the covariance matrix. As a result, a sketch of size O(kd) can be com-
puted by taking a random projection of the covariance matrix Σ ∈ Rd×d of the data, hence reducing the
memory complexities of storing either the data of size Nd or the covariance matrix of size d2.

1.2.2 Generalised Method of Moments. Compressive learning is similar to the technique of Gen-
eralised Method of Moments (GeMM) [37, 38, 66] where the parameters of interest θ are estimated
by matching a collection of generalised moments of the distribution with the empirical counterparts
calculated through the data. In most cases it is used instead of maximum likelihood estimation when
calculating the likelihood is not tractable. CL differs from much of the GeMM literature as the goal
is fundamentally different: in compressive learning one attempts to construct a compact representation
of data with the aim of reducing complexity constraints (computation, memory, acquisition) whilst in
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GeMM the goal is to primarily estimate θ when the model is either partially specified or the likelihood
does not have a closed form solution. Moreover, the selected generalised moments may be a function of
the parameter being estimated, hence not providing a one off sketch. In [4], the authors employ a gen-
eralized method of moments technique to estimate the parameters for a range of latent variable models,
including ICA. For the case of ICA, the decomposition of a 4th order cumulant tensor is used, however,
as it will be shown in Section 2.3.2 the 4th order cumulant tensor has size that scales with n4 compared
to our proposed sketch which has size that scales with n2.

1.2.3 Streaming Methods. Closely related to CL is the collection of streaming methods [26, 61],
where data items are seen and queried only once by the user and then discarded. This is of particular
interest when the summary statistic of choice is updated and maintained in real time, for example in
the online learning setting [36], to reduce space complexities. Notably, the count-min-sketch [27] was
developed to query data in an online fashion with the application of maintaining histograms of quantiles.
However, these methods in general focus on discrete collections of objects and database queries while in
CL the framework and method is applied to machine learning tasks where typically the signal is question
is continuous. Tropp et al. [60] proposed a streaming framework for large scale PCA. In particular, in
[61], the authors design random sketches for on-the-fly compression of data matrices associated with
large scale scientific simulations. Here the data matrix A of interest can be decomposed into a sequence

A = H1 +H2 +H3 + . . . (1.1)

where it is assumed each Hi has some structural redundancies for example sparsity or low-rank. These
methods have a subtle yet fundamental difference from CL, as in CL the structural assumptions which
are exploited to form the CL sketch arise from the model or distribution itself, while in these streaming
methods the structural assumptions come directly from the data. Moreover, several passes of the data
may be required to reduce the low-rank approximation error [60]. Compressive learning, which will
be formally introduced in Section 2.1, falls under the category of sketching. However, there is a subtle
yet important difference compared to the (linear) sketching techniques discussed in this section. In
compressive learning, the sketch is linear over the space of distributions P but typically non-linear over
the data. In contrast, the sketches defined in this section are linear over the dataset.

1.2.4 Other Compression Techniques. Coresets are a popular method used to compress a database
into a summary statistic used for inferring the parameters of a given model and have been used widely
in subspace clustering based tasks [32, 39]. In a similar vein to CL, the compact data representation
has size that is a fraction of the original dataset dimensions. However, the coresets are constructed in
a hierarchical manner, possibly resulting in multiple passes of the data and are therefore not naturally
amenable to online or distributed learning. Projections that include both random projections and feature
selections [11, 14] are used widely to reduce the dimensionality of the data. In [14], datasets were ran-
domly projected into a compressed domain using both random Gaussian and Bernoulli matrices. In a
similar vein to compressive sensing [31], the data was assumed to be k-sparse therefore the dependency
of the feature space dimension d was removed within the space and acquisition complexities. In con-
trast to random projections, more structural based projections are proposed. In [58], different feature
selection techniques for classification are reviewed including structured graph methods and the use of
embedded models. The well-known PCA method is a popular preprocessing technique that projects
the dataset onto a k-dimensional subspace of maximal variance [44]. In both random and structured
projections, the methods discussed only tackle the dependency of the feature space dimension d and
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do not address the challenges posed by a large data size N. Sub-sampling methods are also a popular
method for dimensionality reduction whereby a subset of the original dataset is used for learning. As
discussed previously, the method of coresets [32, 39] is a sub-sampling technique that attempts to sub-
select dominant items that well approximate the structure of the dataset. Other sub-sampling techniques
include random and adaptive sub-sampling [26]. The disadvantage of sub-sampling techniques is that
there is a risk of discarding important information relating to non-sampled data items. Moreover, these
techniques only tackle the constraint on the number of data items N and don’t combat the complexity
issues posed by the feature space dimensional d.

Specifically to ICA compression, Sela et al. [53] used kernel approximation techniques to reduce
the dimensions of the Kernel ICA method proposed by Bach [5]. Random Fourier features are used to
approximate the kernel, reducing the memory complexity from O(d2N2) to O(MN), where M is the
number of random Fourier weights used. Despite the reduction in memory complexity, the algorithm
still has storage demands which scale linearly with N. In comparison, we remove the dependency of the
data length N completely, within our framework, when estimating the ICA mixing matrix.

2. Background

2.1 Compressive Learning

Let x1,x2, . . . ,xN be independent and identically distributed samples from an unknown probability dis-
tribution π on (X ,B) where X ⊂ Rd is some Euclidean space and B is a Borel σ -field. Classically,
π is parametrized by some parameters denoted by θ ∈Θ(⊂ Rk). A statistical learning problem can be
formalised as follows: find a hypothesis h∗ from a hypothesis class H that best matches the probability
distribution π over the training collection {xi}N

i=1, given some data fidelity term. Given a loss function
l : X ×H 7−→ R, this is equivalent to minimizing the risk defined as

h∗ = argmin
h∈H

R(π,h) = argmin
h∈H

Ex∼π l(x,h). (2.1)

Formally, the model set associated to the hypothesis class can be defined as:

SH := {π ∈P(X ) : ∃h ∈H , R(π,h) = 0}. (2.2)

In other words, the set containing all distributions for which zero risk is achievable. As a result, the
model set has a dimension which is intrinsic to the hypothesis class of the model. In practice, one
cannot minimize the true risk as we generally do not have access to the true distribution π , so instead,
one can minimize the empirical risk with respect to the finite samples of the true distribution and as a
result this may mean all the data is required to be stored in memory.

In CL [34, 35, 45], we find a compact representation, or a so-called sketch, that encodes some
statistical properties of the data. Its size is ideally chosen relative to the intrinsic complexity of the
problem, making it possible to work with arbitrarily large datasets while storing in memory an object
of fixed size. Given a feature function Φ : X 7−→ Cm, such that Φ is integrable with respect to any
π ∈P(X ), define the linear operator A : P(X ) 7−→ Rm by

A (π) := Ex∼π Φ(x). (2.3)

The sketch defined in (2.3) can be seen as taking the expectation of some particular features of the
distribution π , which is similar to the field of kernel mean embedding [47] where one uses feature maps
to embed probability distributions. Therefore, we would like to construct A so that A (π) captures
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sufficiently relevant information of the data to allow us to infer the parameters of the model directly from
the sketch. As a trivial example, if we seek to infer only the mean of a normal distribution π =N (µ,σ),
the construction A (π) where Φ(x) = x would constitute a trivial yet sufficient sketch. In reality, CL is
applicable to much more complex models where the feature function is non-trivial and the model may
not necessarily possess a finite dimensional sufficient statistic. The goal of CL is to therefore construct
a sketch of size m≪ Nd that captures enough information to recover an estimated risk which is close to
the true risk with high probability [34]. In practice, as in the kernel mean embedding literature [47], the
empirical distribution is used to form an empirical sketch defined as

ŷ = A (πN) where πN :=
1
N

N

∑
i=1

δxi (2.4)

denoting by δx the Dirac distribution on x, and therefore the empirical sketch can be formed directly
from the data. Due to the law of large numbers, limN→∞ A (πN) = A (π). Once the sketch has been
computed, one can discard the dataset {xi}N

i=1 from memory. As a result, CL reduces down to solving
an inverse problem of the form

θ̂ = argmin
θ∈Θ

C(θ | ŷ) (2.5)

where C(· | ŷ) is a cost function designed for the specific learning task at hand. In a compressive sensing
light, we can exploit structural assumptions of the model set and the associated parameter space Θ , e.g
sparsity, low rankness, low dimensional manifold properties, to make (2.5) well-posed and finding a
solution tractable. As such, one can design a decoder ∆ that exploits the structural assumptions of the
model set SH to recover the parameters of the model from the sketch whilst minimizing the risk. The
sketching operator A and the decoder ∆ form the pair (∆ ,A ) that define the CL algorithm for a specific
learning problem. It should be noted that minimizing (2.5) plays the role of a proxy for minimizing the
empirical risk.

Model Model Set SH Feat. Func. Φ(x) Cost C(θ | y) Sketch Size m

k- Means {π |mix. of k Diracs}
(

eiωT
j x/w(ω j)

)m

j=1
min

π∈SH

∥y−A (π)∥2 O(k2d)

GMM {π |mix. of k Gauss.}
(

eiωT
j x
)m

j=1
min

π∈SH

∥y−A (π)∥2 O(k2d)

PCA {π | Rank k cov. mat. Σπ} (⟨A j,xxT ⟩)m
j=1 min∥Σπ∥∗ s.t A (Σπ ) = y O(kd)

ICA {π | sparse tensor decomp.Zπ} (⟨A j,z⊗
4⟩)m

j=1 min
Z ∈SH

∥y−A (Z )∥2 O(n2)

Table 1. Summary of existing methods in the CL framework. For the compressive k-means and compressive GMM scheme, the
random Fourier feature function is used where w are randomly sampled weights. For compressive PCA and our proposed ICA
scheme, A j denotes the jth row of a random Gaussian matrix A (see Section 4). For the compressive PCA case, the cost function
reduces to a low-rank matrix recovery problem by minimising the nuclear norm ∥·∥⋆. For more details on the existing compressive
learning schemes see [34].

2.2 Compressive Principal Component Analysis

In Section 2.1, the framework of CL was discussed in a general manner without specific consideration
of the distributional form of the model. As will be discussed in Section 2.3, the PCA and ICA models
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are similar in nature in that the model is often left distribution free. In other words, the distribution of
the sampled data is left unspecified. In Table 1, it is shown that the compressive PCA model set [34] is
defined as

SH = {π | rank(Σπ)⩽ k} . (2.6)

Due to the distribution free assumption of the PCA model, we seek structural assumptions that are man-
ifested within some intermediary statistic space S to make computing a sketch possible [55]. In the case
of compressive PCA, the space of d× d covariance matrices is leveraged as an intermediary statistic
space S where the rank of the covariance matrices is exploited. Figure 1 depicts a geometric viewpoint
of both compressive parametric learning (e.g. k-means, GMM) and distribution free compressive learn-
ing (e.g. PCA, ICA). In general, distribution free CL poses distinct challenges and advantages from the
typical parametric CL framework [54]. Challenges arise when choosing an intermediary statistic space
S, for instance (1) what set of intermediate statistics can we use? (2) How do the structural assumptions
of the model set manifest within the intermediate statistic? Equivalently, there are many advantages.
Specifically, by leveraging some set of intermediate statistics we have implicitly mapped the problem
from an infinite dimensional probability space to a typically finite dimensional statistic space. As a
result, we can utilise a host of existing techniques within the compressive sensing literature to design
encoder and decoder pairs (A ,∆). Moreover, it also allows us to use a more flexible semi-parametric
model that is only partially specified. As will be discussed in Section 4, the compressive ICA frame-
work follows a similar convention where the space of 4th order cumulant tensors S = C is used as an
intermediary statistic space to exploit structural assumptions of the model set SH to form a sketch.

FIG. 1. A schematic diagram of parametric compressive learning (left) and distribution free compressive learning (right).

2.3 Independent Component Analysis

Independent component analysis (ICA) is used frequently in the machine learning and signal processing
communities to identify latent variables that are mutually independent to one another. It can be seen
as an extension to PCA due to the assumption of independence between the latent variables which is
stronger than the uncorrelated constraint in PCA. To formulate the ICA problem, consider a data point
x = (x1,x2, . . . ,xd)

T , then the problem of ICA concerns finding a mixing matrix M ∈ Rd×n (here we
assume d ⩾ n) such that

x = Ms, (2.7)

where s = (s1,s2, . . . ,sn)
T and the components si are statistically independent:

p(s1,s2, . . . ,sn) =
n

∏
i=1

pi(si). (2.8)
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Here p denotes the joint probability distribution of the independent components and pi denotes the
probability distribution of the ith component. The ICA model in (2.7) has the following ambiguities:

• As both s and M are unknown, any scalar multiplier in one of the independent components s j can
always be cancelled by dividing the corresponding column in M by the same scalar.

• The order of the independent components and the corresponding columns in M can freely change.

As a result, the mixing matrix M and the independent components s are only identifiable up to scaling
and permutation ambiguities.

The data point x is only one realisation of a data matrix or signal X∈RN×d of length N, so therefore
we attempt to infer M with the collective set of linear equations X = MS, where s is a realisation of
S ∈ RN×n. There are many techniques and methods in the literature to solve the ICA problem. The
simplest method is to assume the distributional form of each of the independent components pi(si) and
then solve the ICA problem through a maximum likelihood approach [6]. In practice, the distributions
are not known a-priori so therefore in most methods the distributions are left unspecified. As a result,
practitioners and researchers often resort to minimizing a given contrast function (see Section 2.3.3) to
solve the ICA problem.

2.3.1 Prewhitening. A useful preprocessing strategy in ICA is to first whiten the observed variables
x via a linear transformation . This involves the process of finding the matrix V such that

z = Vx, (2.9)

where z has identity covariance matrix. One popular method of whitening is to use the eigendecompo-
sition of the covariance matrix and retain the n principal eigenvectors. Whitening has two main advan-
tages: (1) it handles the scenario when there are more mixing components than independent components
d > n as one can discard the d−n smallest eigenvalues, (2) the matrix Q := VM ∈ Rn×n is necessarily
orthogonal and contains n(n− 1)/2 degrees of freedom. The whitening matrix V is not unique and
any orthogonal rotation of V will also define a whitening matrix [43]. For the sake of presentation, we
will subsequently consider the whitened version of the data for the remainder of this section and the
corresponding whitened ICA equation

z = Qs. (2.10)

In Section 4.3, we propose 2 equivalent sketching frameworks that can either incorporate prewhitened
and unwhitened data.

2.3.2 Cumulant Based ICA. Tensorial or cumulant based methods are a group of techniques used
to solve the ICA problem and are of particular interest in this paper. Statistical properties of the data
instance z can be described by its cumulants Z K

i1i2...iK . In the multivariate setting, cumulants give rise to
tensors, denoted Z K for a cumulant tensor of order K. Assuming the data has zero mean, the first four
cumulants are defined [29] as

Z 1
i =0

Z 2
i j =E[ziz j]

Z 3
i jk =E[ziz jzk]

Z 4
i jkl =E[ziz jzkzl ]−E[ziz j]E[zkzl ]−E[zizk]E[z jzl ]−E[zizl ]E[z jzk]

(2.11)
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where E is the expectation operator. Given the model in (2.10) that equates z to s, then the following
multilinear property holds for their associated cumulant tensors:

Z K = S K×1 Q×2 Q×3 · · ·×K Q, (2.12)

where× j represents the j-mode tensor-matrix product and S K represents the Kth order cumulant tensor
of the independent source signals [29]. In this paper we will only consider 4th order cumulant tensors
(e.g. K = 4) and for the sake of simplified notation we shall drop the superscript in (2.12) for the rest
of the discussion. We denote by C⊂ Rd×d×d×d the space of 4th order cumulant tensors which account
for the symmetry in (2.11), where each cumulant tensor Z ∈ C has a maximum of

(n+3
4

)
unique entries

(degrees of freedom) [24]. The diagonal entries Zi jkl (i jkl = iiii) are the auto-cumulants of z, while
the off-diagonal entries Zi jkl (i jkl ̸= iiii) are the cross-cumulants. If the variables (z1,z2, . . . ,zn) are
statistically independent then, as seen by (2.11), the cross-cumulants vanish to 0 resulting in a strictly
diagonal cumulant tensor. In other words, independence implies diagonality. It is shown in [25] that
under mild conditions3 the converse is also true, i.e. diagonality implies independence. Once the data is
whitened, the cumulant based ICA problem reduces to finding a linear transformation QT such that the
resulting cumulant tensor

S := Z ×1 QT ×2 QT ×3 QT ×4 QT (2.13)

is strictly diagonal. We can define the following ICA model set:

SH := {π |Zπ = S ×1 Q×2 Q×3 Q×4 Q, S ∈D, Q ∈ O(n)}, (2.14)

where O(n) denotes the group of n× n orthogonal matrices and D ∈ C is the set of diagonal cumulant
tensors, defined formally as

D :=
{
S |Si jkl = 0 ∀i jkl ̸= iiii and Siiii ⩾ εS

}
, (2.15)

Here, we have the additional requirement4 that each diagonal cumulant is greater than or equal to a small
constant εS > 0. The expected cumulant tensor Z is typically not known owing to finite data length
approximations and non-Gaussian additive noise [30] and so in general Z cannot be fully diagonalized
by a linear transform. As a result, contrast functions are used to approximately diagonalize Z and
maximize the independence of the system.

2.3.3 Contrast Functions. Comon [23] proposed the use of contrast functions as a solution to tractably
measure independence even when the independent components are left distribution-free. A contrast
function ρ : P(X ) 7→ R is a mapping from the space of distributions to the real line and can be thought
of as a tractable approximation of mutual information. For a function ρ to be a contrast function it
must be both permutation and scale invariant, due to the ICA ambiguities, as well as being maximum
if and only if components are statistically independent. Comon [23] proposed various cumulant based
contrast functions that are Edgeworth expansions of information theoretic measures such as negative
mutual information, maximum likelihood and negentropy. In Section 3.4, we utilise contrast functions
as a measure of independence as part of our compressive ICA algorithms. For further details, compre-
hensive reviews of cumulants and tensors can be found in [23, 29].

3For instance, at most 1 independent component is Gaussian distributed.
4A standard requirement in ICA is that at maximum one diagonal cumulant Siiii can be zero which arises from the ICA

assumption that at maximum one source signal si is Gaussian [43]. Here we have the slightly stronger assumption that all source
signals are non-gaussian.



10 of 35 MICHAEL SHEEHAN AND MIKE DAVIES

2.3.4 Existing ICA Algorithms. The Fast ICA algorithm developed by Hyvarinen in [41] is a com-
putationally efficient algorithm that iteratively estimates the column vectors of the mixing matrix in a
projection pursuit manner with respect to some measure of independence (e.g. non-gaussianity). In
general, the Fast ICA algorithm requires an initial prewhitening step as discussed in Section 2.3.1. A
limitation of the Fast ICA algorithm requires access to the whole dataset for each iteration of the algo-
rithm resulting in a memory and computational complexity that is dependent on the number of samples
N. The algorithm proposed by Comon in [23] and the joint approximation diagonalization of Eigen-
matrices (JADE) algorithm proposed by Cardoso et al. [19] estimate the mixing matrix directly from the
4th order cumulant tensor associated with the data. In principle, the two algorithms attempt to approx-
imately diagonalize the 4th order cumulant tensor of the data with respect to a mixing matrix estimate
by maximising a contrast function (see 2.3.3). The JADE algorithm [19] estimates the mixing matrix
by jointly diagonalizing the Eigen-matrices of the cumulant tensor with respect to a mixing matrix. Uti-
lizing a Given’s rotation scheme, an optimal mixing matrix can be estimated that best diagonalizes the
set of Eigen-matrices. Similarly, Comon proposed an ICA algorithm that recursively employs a rotation
scheme on pairwise cumulants to approximately diagonalize the 4th order cumulant tensor with respect
to a contrast function. Comon showed that simple functions based on the cumulant tensors are tractable
approximations to information theoretic measures like negentropy and mutual information [23]. In con-
trast to the Fast ICA algorithm, both the Comon and JADE algorithm have a computational complexity
that is independent to the number of samples N. We have detailed 3 of the most well-known algorithms
in the ICA literature and we will compare these algorithms to our proposed compressive ICA scheme in
Section 6. See [43] for a thorough exposition on other existing ICA algorithms.

As discussed in Section 2.2, the 4th order cumulant tensor will act as an intermediary statistic space
(S = C). It is well documented through identifiability results in the cumulant based ICA literature
[23, 30] that the parameters of the ICA model, namely the mixing matrix Q, can be estimated solely
from the 4th order cumulant tensor. As such, the 4th order cumulant tensor can be seen in its own right
as a sketch, albeit inefficient with respect to compression being O(n4). In the next section, we motivate
the principles behind sketching the 4th order cumulant tensor to form a compact representational sketch
that has size O(n2).

3. Compressive Learning Principles for Cumulant ICA

It was discussed in Section 2.3.2 that the model set SH of the ICA problem defined in (2.14), maximizes
any given cumulant based contrast function [23]. The model set SH is itself a low-dimensional space
residing in the space of cumulant tensors C. Specifically, SH can be described as the product set of
the set of n×n orthogonal matrices, denoted O(n), and the set of diagonal cumulant tensors D that was
defined in (2.13). We can therefore initially count the degrees of freedom of the model set SH :

• D - A maximum of n degrees of freedom on the leading diagonal.

• O(n) - A maximum of n(n−1)
2 degrees of freedom [56].

In total, the model set has a maximum of n(n+1)
2 degrees of freedom. In comparison, the space of 4th

order cumulant tensors C, in which the model set resides, has p :=
(n+3

4

)
≈ O(n4) degrees of freedom.

As the model set is of low complexity, in principle we could form a sketch of the 4th order cumulant
tensor Z and estimate the parameters of the ICA model, namely the mixing matrix Q, solely from the
sketch. The sketch of the 4th order cumulant tensor Z is defined by

yw = A (Z ) , (3.1)
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where w denotes that the sketch is acting on the whitened data z. The computation of the sketch is very
related to the sketching method of compressive PCA highlighted in Table 1. Akin to compressive PCA,
the sketching operator A acts on the finite dimensional space of 4th order cumulant tensors instead
of the infinite dimensional probability space which is left unspecified due to the nature of the ICA
model. The ICA sketch defined in (3.1) draws strong connections to finite dimensional compressive
sensing [16, 31] where limited (random) measurements of a finite dimensional sparse vector are taken
to reduce the complexities associated with signal acquisition. Throughout the compressive sensing
literature [15, 16, 31], the restricted isometry property (RIP) is fundamental tool that is extensively used
to show that a sketching operator A stably embeds all elements of the model set into a compressive
domain Rm, provided that the sketch dimension m is of sufficient size. In other words, given a sketching
operator A , it proves that the distance between every pair of signals in the model set are approximately
preserved under the action of the sketch therefore providing a near isometry. In the case of compressive
ICA, ∀Z1,Z2 ∈SH and an RIP constant δ ∈ (0,1), then

(1−δ )∥Z1−Z2∥2 ⩽ ∥A (Z1−Z2)∥2 ⩽ (1+δ )∥Z1−Z2∥2 (3.2)

provided that the sketch size m is of sufficient dimension. In many cases, the sketch size m is sufficient
to be of the order of the degrees of freedom of the model set. In [7, 10], it is proved that if the lower RIP
(LRIP) holds for a given sketching operator A , e.g. the left of (3.2), then there exists a robust decoder
∆ that recovers a signal from the model set in a stable manner with respect to noise and signals that lie
close to the model set. Moreover, it is proved in [10] that if the LRIP holds for the sketching operator
A on the model set SH then the decoder ∆ is robust and can be the constrained ℓ2 optimization, for
instance

∆ (yw,A ) ∈ min
Z ∈SH

∥yw−A (Z )∥2. (3.3)

In principle, if the RIP can be proved for a sketching operator A on the ICA model set SH , then we
have an optimization strategy for solving the compressive ICA problem.

4. Compressive Independent Component Analysis Theory

We begin by explicitly defining the sketching operator A : C 7→ Rm as

A (Z ) = Avec(Z ), (4.1)

where A ∈ Rm×p and vec denotes the vectorization operator. Here we assume A is some random mea-
surement matrix where the entries Ai j are sampled according to some distributing law, Ai j ∼ Λ . In
this paper, we consider two randomized linear dimension reduction maps, namely the Gaussian map
and the subsampled randomized Hadamard transform (SRHT) stated below. The CICA RIP, our main
result stated in Theorem 4.1, is proved using the Gaussian map, however fast Johnson-Lindenstrauss
transforms (FJLT), for instance the SRHT, still work in practice as will be discussed in Section 6.

4.0.1 Gaussian Maps. The most traditional randomized linear dimension reduction map is the sub-
gaussian matrix which has been used extensively in the CS literature [16, 31]. The subgaussian matrix
A ∈ Rm×p has entries that follow

Ai j ∼N
(

0,m−
1
2

)
. (4.2)

Gaussian maps typically require O(mp) in memory as well as exhibiting a computational complexity of
O (mp).
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4.0.2 Subsampled Randomized Hadamard Transform. The SRHT is an instance of a FJLT that approx-
imates the properties of the full Gaussian map [46]. Here A ∈ Rm×p is defined as

A =

√
p
m

RHD, (4.3)

where

• D ∈ Rp×p is a diagonal matrix whose elements are independent random signs {1,−1};

• H ∈ Rp×p is a normalised Walsh-Hadamard matrix that is scaled by p−
1
2 so it is an orthogonal

matrix;

• R ∈ Rm×p is a matrix consisting of a subset of m randomly sampled rows from the p× p identity
matrix.

The SRHT is particularly cheaper to compute and store in comparison to the Gaussian map. As we do
not explicitly store H, the SRHT only requires O (m+ p) in memory [59]. In addition, the computational
complexity of computing the sketch reduces to O (p log(m)) in comparison to using the Gaussian map
[1, 59]. Below we state our main result of the paper.

THEOREM 4.1 (Compressive ICA RIP) Denote by A the Gaussian map sketching operator defined in
(4.2). Then ∀Z1,Z2 ∈SH , the sketching operator A satisfies the RIP in (3.2) with constant δ ∈ (0,1)
and probability 1−ξ provided that

m ⩾
C
δ 2 max

{
2n(n+1) log(C0), log

(
6
ξ

)}
, (4.4)

where C > 0 is an absolute constant and C0 =C0(εS ) is a constant that is dependent on εS defined in
Lemma 4.1.

The proof of Theorem 4.1 is detailed in Section 4.1.

COROLLARY 4.1 (Information Preservation) Let Z ∗ ∈ C be an arbitrary 4th order cumulant tensor and
denote yw =A (Z ∗)+e where e∈Rm is some additive noise. Furthermore, let Z̃ := ∆ (yw,A ) denote
the solution to (3.3). Given that A satisfies the RIP in Theorem 4.1, then with probability 1−ξ

∥Z ∗− Z̃ ∥F ⩽ min
Z ∈SH

(
2∥Z ∗−Z ∥F +

2√
1−δ

∥Avec(Z ∗−Z )∥2

)
+

2√
1−δ

∥e∥2 +ν , (4.5)

where 0 < ν ⩽ 1 is a small positive constant.

Proof. Given the LRIP in Theorem 4.1, we use Theorem 7 in [10] to obtain our result. □
The proof of Theorem 4.1 uses covering numbers and ε-nets of the normalized secant set of SH . In

particularly, the size of the sketch m required to satisfy the RIP will scale with the upper box counting
dimension of the normalized secant set. So that the proof is self-contained, we summarize the following
definitions below.

DEFINITION 4.2 (Secant Set) The secant set of a set SH is defined as

SH −SH := {Y = Z1−Z2 |Z1,Z2 ∈SH } . (4.6)
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DEFINITION 4.3 (Normalised Secant Set) The normalized secant set N(SH −SH ) of a set SH is
defined as

N(SH ) := {Y /∥Y ∥F | Y ∈ (SH −SH )\{0}} , (4.7)

where 0 defines the zero tensor.

DEFINITION 4.4 (Covering number) Let ε > 0. The covering number CN(SH ,∥·∥,ε) of a set SH

is the minimum number of closed balls of radius ε , with respect to the norm ∥·∥, with centres in SH

needed to cover SH . The set of centres of these balls is a minimal ε-net for SH .

LEMMA 4.1 (Covering number of N(SH −SH )) The covering number of N(SH −SH ) with
respect to the Frobenius norm ∥·∥F is

CN(N(SH −SH ) ,∥·∥F ,ε)⩽

(
C0

ε

)2n(n+1)

, (4.8)

where C0 =C0(εS )> 0 is some constant.

Proof. See Appendix A.1. □

DEFINITION 4.5 (Upper box counting dimension) The upper box counting dimension of a set S is
defined as

dimB(S) := limsup
ε→0

log[CN(S,∥·∥,ε)]/ log[1/ε]. (4.9)

4.1 Proof of Theorem 4.1

Proof. To prove a RIP exists for the ICA model set SH using the sketching operator A defined in (4.1),
we follow a similar line of argument to [15, 52] by using an ε-covering of N(SH −SH ) to extend the
concentration results of the random Gaussian matrix A uniformally over the whole low-dimensional set.
Specifically, we use the Recipe framework proposed by Puy et al. [49], to formulate the compressive
ICA RIP proof. The proof is separated by showing that the following assumptions hold:

(A1) The normalised secant set, denoted N(SH −SH ), has finite upper-box counting dimension
dimB (N(SH −SH )) which is strictly bounded by s ⩾ 1, dimB (N(SH −SH ))< s

(A2) The sketching operator A satisfies the following concentration inequalities

EA∼Λ

(
∥A (Z )∥2

2
)
= ∥Z ∥2

F , (4.10)

and
Pr
(
|∥A (Z )∥2

2−∥Z ∥2
F |⩾ δ∥Z ∥2

F
)
⩽ 2e−pc0 (4.11)

for a constant c0 depending on δ .[49].

We begin with Assumption (A1). Using Lemma 4.1 and the definition of the upper box counting dimen-
sion in Definition 4.5, it can be seen that dimB (N(SH −SH ))⩽ 2n(n+1), so for any s > 2n(n+1)
we satisfy Assumption (A1). To prove Assumption (A2), we have the following definition.

DEFINITION 4.6 (Subguassian random variable) A subgaussian random variable X is a random variable
that satisfies

(E|X |q)1/q ⩽C1
√

q for all q ⩾ 1,
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with C1 > 0. The subgaussian norm of X , denoted by ∥X∥Ψ2 is the smallest C1 for which the last property
holds, i.e.,

∥X∥Ψ2 := supq⩾1

{
q−1/2(E|X |q)1/q)

}
.

Let Ai denote the ith row of the random Gaussian matrix A. Then we use the fact [49, 62] that

∥AT
i vec(Z )∥Ψ2 ⩽ D∥Z ∥F (4.12)

for all Z ∈ C, where D > 0 is an absolute constant. Therefore Assumption A2 is satisfied. Finally,
using Theorem 8 of [49], we get the desired RIP result in Theorem 4.1. □

4.2 Finite Sample Effects

In practice, the sketch is constructed from a finite set of data {zi}N
i=1 such that

ŷw =
1
N

N

∑
i=1

Φ
w (zi) , (4.13)

where Φw(·) is the feature function discussed in Section 2.1 acting on the whitened data z. For com-
pressive ICA we can explicitly define the feature function, acting on the whitened data, as

Φ
w(z) = ⟨A j,z⊗

4⟩F , (4.14)

for j = 1, . . . ,m, where A j ∈Rp are the rows of a Gaussian matrix A and ⟨·⟩ denotes the Frobenius inner
product. Furthermore, for shorthand we denote z⊗4

= z⊗ z⊗ z⊗ z, where ⊗ denotes the Kronecker
product. In other words, the feature function is taking random quartics of the data point z. Note that
the empirical sketch ŷw is equivalent to ŷw = A

(
Ẑ
)

, as specified in (2.4), where Ẑ is the finite data
approximation of the 4th order cumulant tensor Z defined by

Ẑ 4
i jkl =

1
N

N

∑
i, j,k,l=1

ziz jzkzl−
1

N2

N

∑
i, j=1

ziz j

N

∑
k,l=1

zkzl−
1

N2

N

∑
i,k=1

zizk

N

∑
j,l=1

z jzl

− 1
N2

N

∑
i,l=1

zizl

N

∑
j,k=1

z jzk.

(4.15)

In this case, the error e defined in Theorem 4.1 can be attributed to the finite sample effects of approx-
imating the true 4th order cumulant tensor Z from finite data. We now state our final result of this
section.

THEOREM 4.7 (Finite Sample Effects) Let A (Z ) = Avec(Z ) denote the sketching operator where
Ai j ∼N

(
0,m−

1
2

)
. Furthermore, let the independent components s have bounded support such that

∥S ∥F ⩽ R. Given that Ẑ is the finite approximation 4th order cumulant tensors computed from the
random draw of finite samples z1, . . . ,zN , then with probability at least 1−ρ−ξ

∥A (Z )−A (Ẑ )∥2 ⩽
CR
(

1+
√

2log(1/ρ)
)

√
N

. (4.16)

Proof. See Appendix B. □
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4.3 Discussion

The results in this section are all based on proving a RIP on the model set SH defined in (2.14), where it
is assumed the data x has been prewhitened to reduce the ICA model to z = Qs as discussed in Section
2.3. The prewhitening stage removes some of the degrees of freedom within the ICA inference task
as it is necessary to estimate an orthogonal mixing matrix Q. In some sketching cases, we may only
see the data once, for example in the streaming context [61], and therefore prewhitening may not be
possible. The fact that we are now estimating an arbitrary mixing matrix M instead of an orthogonal
mixing matrix Q increases the degrees of freedom from n(n+1)

2 to n(n+1). As a result, we must sketch
the unwhitened moment tensor X such that

yu = A (X ) , (4.17)

where A (·) = Avec(·) and A ∈ Rm×p is a random matrix as defined in (4.1). Here u denotes that the
sketch is acting on the unwhitened data x. In addition, the feature function Φu(·) for the unwhitened
data can be defined as

Φ
u(x) =

[
⟨A j,x⊗

4⟩F
x⊗2

]
, (4.18)

for j = 1, . . . ,m, where A j ∈ Rp are the rows of the matrix A. Note that the feature function for the
unwhitened data now includes quadratic moments5, as well as random quartic moments, that are needed
to estimate the mixing matrix M which has extra degrees of freedom. Recall from (2.9) that the mixing
matrix M has the following decomposition [30]

M = V−1Q (4.19)

where V := Π−
1
2 PT is computed via the eigendecomposition of the covariance matrix E[xxT ] where

P ∈ Rd×n, Π ∈ Rn×n are an orthogonal and diagonal matrix, respectively.

5. CICA Algorithms

In this section we propose two distinct compressive ICA algorithms to estimate the mixing matrix M
for both the whitened and unwhitened case.

5.1 Iterative Projection Gradient

Iterative projection gradient (IPG) descent is a popular optimization scheme which enforces low dimen-
sional structure e.g. sparsity, rank, etc, by projecting the object of interest onto the model set SH after
each subsequent gradient step. An iterative hard thresholding scheme was proposed in sparsity based
compressive sensing [8, 9], where the smallest n− k absolute entries are thresholded to zero to enforce
the sparsity constraint and project the object onto the k-sparse model set. Blumensath [7] shows that the
thresholding operator is an orthogonal projection onto the k-sparse set thereby projecting to an element
on the model set that is of minimal distance. For the case of compressive ICA, we also seek an orthogo-
nal projection on to the ICA model set SH . Formally, we can define an orthogonal projection operator

5One could further reduce the size of the unwhitened sketch by instead computing random quadratic moments, however the
reduction in complexity is minimal and therefore we leave this for future work.
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PSH
: C 7→SH of a 4th order cumulant tensor Z ∗ as

PSH
(Z ∗) ∈ argmin

Z ∈SH

∥Z ∗−Z ∥F . (5.1)

In other words, PSH
projects the object Z ∗ ∈ C onto the element in the model set that is of minimum

distance w.r.t the Frobenius norm. In practice it is often difficult to find a projection operator that is both
orthogonal and tractable in terms of computation. In [17, 18], Cardoso showed that the ICA model set
SH ⊆R∩L where R is the set of rank-n tensors defined as

R := {Z ∈R | rank(Z̄) = n}, (5.2)

where Z̄ ∈ Rn2×n2
is the matrix formed by rearranging the elements of the tensor Z into a n2× n2

Hermitian matrix and where rank defines the standard matrix rank [18], and L is the set of super-
symmetric tensors defined by

L := {Z ∈ L |Zq(i jkl) = Zi jkl} (5.3)

where q defines all permutations of the index i jkl. In fact, Cardoso proved in [17] that locally the
converse is true, for instance let Z ′ be within some neighbourhood of Z then the following holds:

Z ′ ∈R∩L =⇒ Z ′ ∈SH . (5.4)

Therefore, within some neighbourhood of Z ∗, projecting onto the ICA model set SH is equivalent to
projecting onto R∩L (i.e. R∩L⊆SH ). Moreover, in [13], Cadzow proved that alternate projections
onto R and L is guaranteed to converge onto the intersection6 R∩L. Fundamentally, the projections
onto R (rank-n approximation) and L (averaging over permutations), denoted by PR and PL respec-
tively, are both simple to compute and are orthogonal. Alternate orthogonal projections onto R and L
ensures a stable projection onto R∩L [13] which locally, results in an orthogonal projection onto the
ICA model set SH . Formally, we define the orthogonal projection PSH

below in Algorithm 1. In
practice, Algorithm 1 converges to below a small tolerance in very few iterations (∼ 10 iterations). We
can now state our full CICA IPG algorithm detailed in Algorithm 2. Here the step size µ j is computed
optimally to guarantee convergence [7, 9], A ∗ denotes the adjoint sketching operator and β is a fixed
shrinking step size parameter.

Algorithm 1 PSH
: Orthogonal Projection onto ICA Model Set

Require: Cumulant tensor Z ∗ ∈ C
while Not Converged do

Project onto R: Z 1 = PR(Z ) (Matricize Z into a n2×n2 Hermitian matrix and take a rank-n
approximation using truncated SVD)

Project onto L: Z 2 = PL(Z
1) (Average across all permutations of q(i jkl) for all indices i jkl)

end while

6In general, rank forcing destroys symmetry while symmetrization destroys the rank-n property, therefore alternate projections
are needed until convergence.
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Algorithm 2 CICAIPG : Iterative Projection Gradient Descent Compressive ICA

Require: Initialisation Z 0, tolerance ε and shrinking parameter β .
while ∥yw−A

(
Z j
)
∥2

2 > ε do

Compute µ j =
∥A ∗(yw−A

(
Z j
))
∥2

F

∥yw−A
(
Z j
)
∥2

2
while ∥yw−A

(
Z j+1

)
∥2

2 > ∥yw−A
(
Z j
)
∥2

2 do
µ j← β µ j

Z j+ 1
2 ←Z j +µ jA ∗ (yw−A

(
Z j
))

Z j+1←PSH

(
Z j+ 1

2

)
end while

end while

5.1.1 Unwhitened IPG. It was discussed in Section 4.3 that it is often convenient, from an online
processing point of view, to directly sketch the unwhitened data x. Using the properties of the matrix-
tensor product [29], it can be seen that

Avec(X ) = AV̄−1 vec(Z ) , (5.5)

where V̄ :=V⊗V⊗V⊗V. As defined in (4.18), the unwhitened feature function Φu includes the second
order moment of x, namely x⊗2

. The empirical sketch ŷu therefore includes the sample covariance Σ̂ :=
1
N ∑

N
i=1 x⊗

2

i , which can be used to estimate an approximation of V, denoted V̂, by using the eigenvalue
decomposition of Σ̂ [23] at the beginning of Algorithm 2. By denoting ˆ̄V := V̂⊗V̂⊗V̂⊗V̂, the gradient
step in Algorithm 2 can be replaced by

Z j+ 1
2 = Z j +µ jAT (yu−A ˆ̄V−1 vec

(
Z j)), (5.6)

as well as the associated step size µ j and stopping criteria. As a result, the CICA IPG algorithm proceeds
as normal by employing the original orthogonal projection PSH

.

5.2 Alternating Steepest Descent

The second proposed algorithm in the way of alternating steepest descent (ASD) is inherently different
from the IPG scheme previously discussed. To see why, it is insightful to rewrite (3.3) in terms of the
elements of the product set D and O(n):

min
QT Q=I
S∈D

F (S ,Q) = ∥yw−A (S ×1 Q×2 Q×3 Q×4 Q)∥2
2, (5.7)

where we have used the multilinear property discussed in (2.12). As the optimization problem is now
explicitly defined by the mixing matrix Q and a sparse diagonal tensor S , it is sufficient to optimise with
respect to these parameters in an alternating steepest descent scheme. This approach contrasts the IPG
scheme, as once we initialise the mixing matrix Q and the diagonal cumulant tensor S appropriately,
then we can optimise directly on the model set SH . We can initially state the ASD steps:

1. S ∗ = minS∈D F(S ,Q)
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2. Q∗ = minQT Q=I F(S ∗,Q)

Note that the diagonal cumulant tensor S ∈D can be simply reformulated as an n sparse vector with
known support, therefore one can perform element-wise differentiation on the n entries Siiii for i = 1 : n.
The second step requires more attention as we have the constraint QT Q = I (i.e. Q ∈ O(n)). The set of
n×n orthogonal matrices is an instance of a Stiefel manifold [64], therefore F is minimized directly on
the Stiefel manifold.

5.2.1 Stiefel Manifold Optimisation. Given a feasible matrix Q and the gradient ∇QF =
(

∂F(S ,Q)
∂Qi j

)
,

define a skew-symmetric matrix B as

B = ∇QFQT −Q(∇QF)T . (5.8)

The update on the Stiefel manifold is determined by the Crank-Nicholson scheme [28] denoted

Y (τ) = Q− τ

2
B(Q+Y (τ)) (5.9)

where Y (τ) = (I − τ

2 B)−1(I + τ

2 B)Q. The matrix (I − τ

2 B)−1(I + τ

2 B) is referred to as the Cayley
transform [64] of B. The descent curve Y (τ) has the following useful features

• Y (τ) is smooth on τ

• Y (0) = Q

• Y (τ)TY (τ) = QT Q for all τ ∈ R.

As a result, we perform a steepest descent on Q with line search along the descent curve Y (τ) with
respect to τ . For more details on optimisation methods constrained to the Stiefel manifold refer to [64].
We can now state our second proposed CICA algorithm in Algorithm 3.

Algorithm 3 CICAASD : Alternating Steepest Descent Compressive ICA

Require: Initialisation Z 0 = S 0×1 Q0×2 Q0×3 Q0×4 Q0, tolerance ε and step size µ .
while ∥yw−A

(
Z j
)
∥2

2 > ε do
S j+1 = S j +µ∇S F

(
S j,Q j

)
while Perform line search do

Y (τ) = Q− τ

2 B(Q+Y (τ))

Qt+1← Y (τ∗)
end while
Z j+1←S j+1×1 Q j+1×2 Q j+1×3 Q j+1×4 Q j+1

end while

5.2.2 Practicalities. We start by stating the computational complexity of each proposed CICA algo-
rithm. Here we assume that a fast SRHT, as discussed in 4.0.2, is used to compute the sketch. For the
IPG scheme, the symmetry projection PL costs O(n4) flops through averaging along all index permu-
tations. A rank-r approximation of a general matrix X ∈ Rm×n costs O(r2(n+m)) flops [65], therefore
the rank projection operator PR costs a total of O(n4) flops. The gradient step in Algorithm 2 costs a
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total of O(p log(m)) flops due to the use of the sketching operator A (Z j) at each iteration which results
in the IPG algorithm therefore having a total cost of O(p log(m)+ n4)) flops. In the second proposed
ASD algorithm, the gradient step in terms of the diagonal tensor in Algorithm 3, again has a cost of
O(p log(m)) flops. The line search Y (τ) costs a total of O(n3) flops [64] resulting in the ASD algorithm
having a computational complexity of O(p log(m) + n3). Note that both proposed CICA algorithms
have computational complexity that is independent of the length of the data N which can be extremely
large for modern day applications.

As is the case for the general ICA problem, the compressive ICA optimisation problem is non-
convex and both algorithms proposed may be prone to converging to local minima. As a result, we
consider the option of possible restarts at random initialisations to obtain a good solution. We also con-
sider a proxy projection operator that uses a Given’s rotation scheme, popular in many ICA algorithms
(see [19, 23]), that approximately diagonalises the cumulant tensor Z with respect to some contrast
function, followed by thresholding the cross cumulants of that approximately diagonalised tensor to
zero [55]. We have observed in practice that this proxy projection operator is less sensitive to the non-
convex landscape of the optimization problem, which could be explained by the robustness of Given’s
rotations [23], hence multiple restarts are rarely required. The proxy projection operator, which we
denote by P̂SH

, costs O(n4) flops for the Given’s rotation scheme to approximately diagonalise the
cumulant tensor [23], and O(n4− n) flops for the thresholding of the cross-cumulants. Therefore in
total the proxy IPG algorithm has approximately the same computational complexity as our previous
IPG algorithm.

6. Empirical Results

6.1 Phase Transition

Phase transitions are an integral part of analysis that are used frequently in the compressive sensing lit-
erature [3] to show a sharp change in the probability of successful reconstruction of the low dimensional
object as the sketch size m increases. The location at which the phase transition occurs can provide
a tight bound on the required sketch size needed given the number of independent components n and
further consolidates the theoretical bound of the RIP derived in Section 4. To set up the phase transition
experiment, we constructed the expected cumulant tensor S of n Laplacian sources and transformed
the tensor with an orthogonal mixing matrix M using the multilinear property in (2.12), resulting in
an expected cumulant tensor Z . For each number of independent components n, 250 Monte Carlo
simulations on the mixing matrix M were executed for increasing sketch size m between 2 and 700. A
successful reconstruction was determined if the Amari error7 [2] between the true mixing matrix M and
the estimated mixing matrix M̂, defined by

d(M,M̂) =
1
2n

n

∑
i=1

(
∑

n
j=1|bi j|

max j|bi j|
−1

)
+

1
2n

n

∑
j=1

(
∑

n
i=1|bi j|

maxi|bi j|
−1

)
, (6.1)

was smaller than d(M,M̂)⩽ 10−6, where bi j = (MM̂−1)i j. The probability of successful reconstruction
was given by the number of successful reconstructions within the 250 Monte-Carlo tests. We use the
IPG version of the CICA algorithm for these results, although the ASD version provides nearly exactly
the same results. It is insightful to begin by fixing the number of sources, here n = 8, to highlight the

7The Amari error is used widely in the ICA literature as it is both scale and permutation invariant, which are the two inherent
ambiguities of ICA inference.
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sharp transition as shown in Figure 2. We highlight some important bounds including the multiples of
2 and 4 times the dimension of the model set SH , depicted by the orange lines. For comparison, the
dimension of the space of cumulant tensors C, in other words the size of the cumulant tensor, is shown
by the red line. The phase transition occurs in between 2 and 4 times the model set dimension indicating
that choosing m ⩾ 2n(n+ 1) would be sufficient in successfully inferring the mixing matrix with high
probability.

Figure 3 generalises the single phase transition result for the number of independent components
varying between n = 2 and n = 10. Once again, the important bounds of the model set dimension
(green), 2 and 4 multiples of the model set dimension (orange) and the dimension of the space of
cumulant tensors (red) are shown. Figure 3 explicitly shows that the phase transition empirically occurs
within the location of m = n(n+1) and m = 2n(n+1) and provides us with a tight practical lower bound
of m ⩾ 2n(n+1) on the sketch size for successful inference of the mixing matrix with high probability.
Recall that in Theorem 4.1, the RIP holds when m≳ 2n(n+1). The location of the phase transition in the
empirical results therefore further consolidates the theoretical result. For a given number of independent
components n, the ratio between the upper orange line (4 times the model set dimension) and the red line
(space of cumulant tensor dimension) provides a realistic compression rate in comparison to using the
whole cumulant tensor of which many ICA techniques use. Importantly, as the number of independent
components increases the ratio between these two lines decreases, resulting in further compression.
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2x Model Set Dim.
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Legend

FIG. 2. A phase transition between unsuccessful and successful mixing matrix inference as the sketch size m increases and the
number of independent components is fixed at n = 8.

6.2 Statistical Efficiency

As was shown in Section 6.1, the potential compression rates of sketching the cumulant tensor are high
which can lead to a significantly reduced memory requirement. In this section we numerically analyse
the trade-off between the sketch size and the loss of information. Statistical efficiency is a measure
of the variability or quality of an unbiased estimator [33]. To quantify the statistical efficiency of the
compressive ICA algorithms and compare them to the well-known ICA algorithms in the literature (e.g.
Comon, JADE and Fast ICA - see Section 2.3.4), we compute the root mean squared error (RMSE)
with respect to the Amari distance in (6.1). By considering different sketch sizes, we can quantify
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FIG. 3. A phase transition between unsuccessful and successful mixing matrix inference as the sketch size m and the number of
independent components n increases.

the loss of efficiency (or information) incurred by different compression rates compared with the other
techniques in the literature that don’t compress the data. We perform our efficiency test on n = 6
independent components of signal length N = 1000. For each of the 250 Monte-Carlo simulations, the
n = 6 independent components are randomly sampled [5] from a range of distributions with unique
characteristics that are shown in Figure 4. The true mixing matrix Mθ was sampled once and fixed
throughout. The smallest sketch size considered was m = 65 coinciding with approximately 3 times
the model set dimension and, as it was established in Section 6.1, this sketch size achieves successful
estimation with high probability. Figure 5 shows the RMSE for both the unwhitened and whitened
CICA algorithms8 as well as the benchmark algorithms of JADE, Comon and Fast ICA. For each sketch
size, the 95% confidence interval is plotted as illustrated by the error bars. For both the whitened and
unwhitened versions of the CICA algorithm, the RMSE converges quickly towards the RMSE of the
full data algorithms as the sketch size m increases. However, even at a sizeable compression of m = 70,
the whitened CICA algorithm achieves a RMSE that is less than double that of the full data approaches
showing that there is a controlled trade-off between compression and loss of efficiency. The unwhitened
version of the CICA algorithm achieves a larger RMSE than its whitened counterpart, however this can
be attributed to the whitening errors propagating throughout each iteration of the algorithm.

6.3 Cylinder Velocity Field

We next analyse and compare the proposed CICA scheme on a dataset consisting of a flow field around
a cylinder obstruction as depicted in Figure 6. Using ICA, one can obtain a model that describes the
fluctuations of the streamwise velocity field around its mean value as a function of time. Details of
the experimental set up can be seen in [12, 40]. The dataset is of size X ∈ R100×14400 consisting of
14400 spatial locations over 100 time intervals. Here we compare our proposed CICA scheme with
the well-known fast ICA algorithm [42], as well the JADE [19] and Comon algorithm [23] which, like

8For sake of simplicity we only consider the IPG version of the CICA algorithm from Section 5.
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FIG. 4. (a) Student’s t distribution (ν = 3) (b) Laplace distribution (µ = 0,b = 1) (c) continuous uniform distribution (a =
−
√

3,b =
√

3) (d) mixture of 2 Laplaces (µ1,µ2 = −1,1 b1 = b2 = 1) (e) symmetric bimodal mixture of Gaussians (µ1,µ2 =
−1,1 σ1 = σ2 = 0.15) (f) asymmetric unimodal mixture of Gaussians (µ1,µ2 =−0.7,0.5 σ1 = σ2 = 0.5)

the proposed CICA scheme, are cumulant based. An initial prewhitening stage inferred the prewhiten
matrix V ∈ R8×14400. Each algorithm then estimated the Q ∈ R8×8, resulting in a mixing matrix esti-
mate M = V−1Q. For the proposed CICA scheme, the IPG version was used with a SRHT matrix A,
however ASD version produces similar reconstructions. Figure 7 shows the 8 independent components
which describe the fluctuations of the streamwise velocity around the cylinder obtained by Fast ICA,
JADE, Comon and CICA, respectively. For our proposed CICA algorithm, a sketch of size m = 114 is
used. Visually comparing the reconstructions, one can see that the CICA algorithm performs compet-
itively with negligible artifacts present. In addition, the CICA scheme achieves a compression rate of
approximately 3 in comparison to the other cumulant based ICA methods discussed.

Next, we compare the effect of the sketch size on the resulting reconstructions. A sketch size of
m = 72,108 and 144 are considered with the reconstructions shown in Figure 8. For m = 108, the
sketch is of sufficient size to successfully identify the unique fluctuations of the velocity field, however,
due to the harsher compression rate some notable artefacts are present. For example, in the first and third
fluctuations there are some oscillating type artifacts which can be attributed to the higher frequencies in
the system. Furthermore, the sketch of size m = 72 fails to identity the main fluctuations of the velocity
field.

7. Conclusion

In this paper we initially showed that a low dimensional model set exists for the ICA problem. It was
demonstrated theoretically that a RIP exists for the ICA model using Gaussian ensembles provided the
sketch size was set proportionally to the model set dimensions, which in turn induced the existence of
an instance optimal decoder. The theoretical results were empirically validated by showing the location
of a sharp phase transition between a state of unsuccessful inference to a state of successful inference
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sketch size m.

FIG. 6. The figure shows the velocity field around a cylinder for a fixed point in time.

of the ICA mixing matrix as the sketch size increased. Using both synthetic and real data, we analysed
the robustness of the proposed CICA algorithms and highlighted the effect of choosing the sketch size
m. Furthermore, the particular branch of compressive learning was discussed that consists of sketching
distribution free models (e.g. PCA, ICA) that leverage some intermediary statistic space, here the space
of cumulant tensors, to form the sketch. This poses some interesting open questions on how to design a
sketch given other distribution free models and how the low dimension nature of the model set manifests
itself structurally, in terms of sparsity, low rank, etc. to construct a practical sketching decoder. It can
often be challenging to find a statistic of the data that permits identifiability of the model parameters.
In addition, the identifiable statistic associated to the learning model might scale exponentially with the
dimensions of the underlying model, resulting in a intractable compression scheme.
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FIG. 7. From left to right the dominant fluctuations of the streamwise velocity field. From top to bottom the Fast ICA, JADE,
Comon and CICA reconstructions.
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FIG. 8. The figure shows the effect of the sketch size on the reconstruction of the fluctuations. From top to bottom a sketch size
of m = 144,108 and 72.
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distributions: A review and beyond. Foundations and Trends® in Machine Learning, 10(1-2), 1–141.

[48] OJA, E., KIVILUOTO, K. & MALAROIU, S. (2000) Independent component analysis for financial time series. in Pro-
ceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pp. 111–116.

[49] PUY, G., DAVIES, M. E. & GRIBONVAL, R. (2017) Recipes for Stable Linear Embeddings From Hilbert Spaces to Rm.
IEEE Transactions on Information Theory, 63(4), 2171–2187.

[50] RAHIMI, A. & RECHT, B. (2008) Random features for large-scale kernel machines. in Advances in neural information
processing systems, pp. 1177–1184.

[51] (2009) Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. in
Advances in neural information processing systems, pp. 1313–1320.
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A. Proof of Lemma 4.1
To prove Lemma 4.1, we use a similar line of argument to Clarkson in [20] by splitting the normalized secant set into the set of
short and long secants parametrized by a distance η . First we state an important lemma on covering the model set intersected with
the unit sphere in Rn̄, where n̄ = n4, denoted by ¯̄SH :=SH ∩Sn̄−1 (e.g. ∥Z ∥F = 1), that will used later in the proof.

LEMMA A.1 (Covering number of ¯̄SH ) The covering number of ¯̄SH with respect to the Frobenius norm ∥·∥F is

CN
(

¯̄SH ,∥·∥F ,ε
)
⩽

(
6
ε

)n(n+1)

(A.1)

Proof. Recall that Z ∈ ¯̄SH has the decomposition Z = S ×1 Q×2 Q×3 Q×4 Q such that ∥Z ∥F = 1 where S ∈ D and
Q ∈ O(n). As the Frobenius norm is rotationally invariant 9 then the following holds ∥Z ∥F = ∥S ∥F = 1 for all Z ∈ ¯̄SH .
Our argument constructs an ε-net for ¯̄SH by covering the sets D and O(n) respectively. As ∥Z ∥F = 1 =⇒ ∥S ∥F = 1, it is
sufficient to consider ¯̄D :=D∩Sn−1. Then we take ¯̄D to be an ε/2- net for ¯̄D. As ¯̄D is a n dimensional subspace, then

CN
(

¯̄D,∥·∥F ,ε/2
)
⩽
( 6

ε

)n
.

Next, we cover the set of n× n orthogonal matrices denoted O(n). We follow a similar argument to [15, 52] by letting Q(n) :=
{X ∈ Rn×n : ∥X∥1,2 ⩽ 1}, where

∥X∥1,2 = max
i
∥X(:, i)∥2

is the maximum column norm of a matrix X. It is straightforward to see that O(n) ⊂ Q(n) since the columns of an orthogonal
matrix are unit normed. It can be seen in [15] that an ε/2-net O(n), denoted by O(n), has a covering number

CN(O(n),∥·∥1,2,ε/2)⩽
( 6

ε

)n2

.

Now let ¯̄SH := {S ×1 Q×2 Q×3 Q×4 Q : S ∈ ¯̄D,Q ∈ O(n)}, and remark that

CN
( ¯̄SH ,∥·∥F ,ε

)
⩽ CN

( ¯̄D,∥·∥F ,ε/2
)

CN
(
O(n),∥·∥1,2,ε/2

)
⩽
( 6

ε

)n(n+1)
.

It remains to show that for all Z ∈ ¯̄SH there exists Z ∈ ¯̄SH such that ∥Z −Z ∥F ⩽ ε .
Fix Z ∈ ¯̄SH and note the decomposition Z =S ×1 Q×2 Q×3 Q×4 Q. Then there exists Z =S ×1 Q×2 Q×3 Q×4 Q∈

¯̄SH with S ∈ ¯̄D and Q ∈ O(n) obeying ∥S −S ∥F ⩽ ε/2 and ∥Q−Q∥1,2 ⩽ ε/2. This gives

∥Z −Z ∥F = ∥S ×1 Q×2 Q×3 Q×4 Q−S ×1 Q×2 Q×3 Q×4 Q∥F

= ∥S ×1 Q×2 Q×3 Q×4 Q+(S ×1 Q×2 Q×3 Q×4 Q−S ×1 Q×2 Q×3 Q×4 Q)

−S ×1 Q×2 Q×3 Q×4 Q∥F

= ∥S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q)+(S −S )×1 Q×2 Q×3 Q×4 Q∥F

⩽ ∥S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q)∥F +∥(S −S )×1 Q×2 Q×3 Q×4 Q∥F

The first part of the last line gives

∥S ×1 (Q−Q)×2 · · ·×4 (Q−Q)∥F = ∥vec(S ×1 (Q−Q)×2 (Q−Q)×3 (Q−Q)×4 (Q−Q))∥2

= ∥(Q−Q)⊗ (Q−Q)⊗ (Q−Q)⊗ (Q−Q)vec(S )∥2

⩽ ∥(Q−Q)⊗ (Q−Q)⊗ (Q−Q)⊗ (Q−Q)∥2∥S ∥F

= ∥(Q−Q)∥4
2

⩽ ∥(Q−Q)∥4
1,2

⩽ (ε/2)4

⩽ ε/2

9e.g. any tensor-matrix product with an orthogonal matrix does not change the norm, for instance ∥Z ×1 Q∥F = ∥Z ∥F for
any orthogonal matrix Q ∈ O(n).



30 of 35 REFERENCES

From line 1 to 2, the identity on pages [477-478] of [57] was used. From line 2 to 3 we have used the Cauchy-Schwarz inequality,
from line 3 to 4 we have used the equality ∥A⊗B∥ = ∥A∥∥B∥ and from line 4 to 5 we have used the identity in [52]. Finally,
notice that as Q is orthogonal

∥(S −S )×1 Q×2 Q×3 Q×4 Q∥F = ∥(S −S )∥F = ε/2.

Therefore
∥Z −Z ∥F ⩽ ε/2+ ε/2 = ε

□
Continuing, we let Ω := O(n)×D define the product set between the set of n× n orthogonal matrices O(n) and the set of

super symmetric cumulant tensors defined in (2.15) and define the map f : Ω 7→SH by

f (u) = S ×1 Q×2 Q×3 Q×4 Q, (A.2)

for all u := (Q,S ) ∈Ω . Let Z = f (u) be the tensor corresponding to the image of the map f . It is insightful to decompose the
normalised secant set N(SH −SH ) into the set of long and short secants parametrised by some distance η [20]. The set of
long secants of SH is defined as

Nη (SH −SH ) :=
{

Z1−Z2

∥Z1−Z2∥F

∣∣∣Z1,Z2 ∈SH , ∥Z1−Z2∥F > η

}
. (A.3)

Furthermore, the set of short secants Nc
η (SH −SH ) = N(SH −SH ) \Nη (SH −SH ) is the complement to the set of

long secants defined by

Nc
η (SH −SH ) :=

{
Z1−Z2

∥Z1−Z2∥F

∣∣∣Z1 ̸= Z2 ∈SH , ∥Z1−Z2∥F ⩽ η

}
. (A.4)

REMARK A.1 As the model set SH is conic, it is sufficient to cover the normalised secant set of S̄H :=SH ∩B1(0), where
B1(0) denotes the unit Frobenius ball centred at 0, since we have N(SH −SH ) =N

(
S̄H − S̄H

)
.

As the model set is conic, we can decompose the normalised secant set as follows

N(SH −SH ) =N
(
S̄H − S̄H

)
=Nη

(
S̄H − S̄H

)
∪Nc

η

(
S̄H − S̄H

)
=Nη

(
S̄H − S̄H

)
∪Nc

η

(
S̄H − ¯̄SH

)
,

(A.5)

We begin by covering the set of long secants Nη

(
S̄H − S̄H

)
.

LEMMA A.2 (Long Secants Covering Number) Let S̄H be an εγ-cover for S̄H . Then N(S̄H − S̄H ) is an ε-cover for
N4γ

(
S̄H − S̄H

)
with associated covering number of

CN
(
N4γ

(
S̄H − S̄H

)
,εγ
)
⩽

(
6

εγ

)2n(n+1)

. (A.6)

Proof. Lemma 4.1 in [20] states that if S̄H is a generalised εγ- cover of S̄H , then N(S̄H − S̄H ) is a generalised ε-cover for
N4γ

(
S̄H − S̄H

)
. Using the covering number of ¯̄SH from Lemma A.1 we get the result. □

Continuing, we cover the set of short secants. We begin by stating some preliminary lemmas.

LEMMA A.3 (Taylor Approximation Error) Let f : Ω 7→SH be defined as in (A.2) and let D fu define the first order differential
of f evaluated at the point u. Further assume that ∥S ∥F ⩽ R. Then ∀u,u′ ∈Ω , ∥u−u′∥⩽ 2ε0, we have∥∥ f (u)− f (u′)−D f T

u′ (u−u′)
∥∥

F ⩽C1
∥∥u−u′

∥∥2
2 , (A.7)

where C1 = n2(n+1)2 max{3R,1}

Proof. w.l.o.g consider the vectorized function f̃ (u) := vec( f (u)) such that

f̃ (u) =vec(S ×1 Q×2 Q×3 Q×4 Q)

=Q⊗Q⊗Q⊗Q vec(S ) .

Using Taylor’s theorem [22, p. 110] of f̃ evaluated at the point u′ ∈Ω , we get∥∥ f̃ (u)− f̃ (u′)−D f̃ T
u′ (u−u′)

∥∥
2 ⩽

1
2

∥∥(u−u′)T H f̃ξ (u−u′)
∥∥

2 .
(A.8)
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where D f̃u and H f̃u denote the Jacobian and Hessian of f̃ evaluated at u and ξ = λu+(1−λ )u′ ∈ Ω , for λ ∈ (0,1), denotes a
point on the line segment between u and u′. For shorthand let h = u−u′, and denote the integer T := n(n+1)

2 , we then have

∥∥hT H f̃ξ h
∥∥

2 =

∥∥∥∥∥ T

∑
i=1

T

∑
j=1

hih j
∂ 2 f̃

∂ui∂u j
(ξ )

∥∥∥∥∥
2

⩽ T 2 max
i, j

∥∥∥∥hih j
∂ 2 f̃

∂ui∂u j
(ξ )

∥∥∥∥
2

⩽ T 2
(

max
i
|hi|
)2

max
i, j

∥∥∥∥ ∂ 2 f̃
∂ui∂u j

(ξ )

∥∥∥∥
2

= T 2∥h∥2
∞ max

i, j

∥∥∥∥ ∂ 2 f̃
∂ui∂u j

(ξ )

∥∥∥∥
2

⩽ T 2∥h∥2
2 max

i, j

∥∥∥∥ ∂ 2 f̃
∂ui∂u j

(ξ )

∥∥∥∥
2
,

where hi = (ui−u′i). w.l.o.g let ξ = (Q,S ), we have that

max
i, j

∥∥∥∥ ∂ 2 f̃
∂ui∂u j

(ξ )

∥∥∥∥
2
= max


1

max
i, j,k,ℓ

∥∥∥∥ ∂ 2 f̃
∂Qi j∂Qkl

(ξ )

∥∥∥∥
2
,

2

max
i, j,k

∥∥∥∥ ∂ 2 f̃
∂Qi j∂Skkkk

(ξ )

∥∥∥∥
2
,

3

max
i, j

∥∥∥∥ ∂ 2 f̃
∂Siiii∂S j j j j

(ξ )

∥∥∥∥
2


1 It can be shown that

∂ 2 f̃
∂Qi j∂Qkℓ

(ξ ) = Πi jkℓvec(S ) , (A.9)

where

Πi jkℓ = Ei j⊗Ekℓ⊗Q⊗Q + Ei j⊗Q⊗Ekℓ⊗Q + Ei j⊗Q⊗Q⊗Ekℓ

+ Ekℓ⊗Ei j⊗Q⊗Q + Q⊗Ei j⊗Ekℓ⊗Q + Q⊗Ei j⊗Q⊗Ekℓ

+ Ekℓ⊗Q⊗Ei j⊗Q + Q⊗Ekℓ⊗Ei j⊗Q + Q⊗Q⊗Ei j⊗Ekℓ

+ Ekℓ⊗Q⊗Q⊗Ei j + Q⊗Ekℓ⊗Q⊗Ei j + Q⊗Q⊗Ekℓ⊗Ei j

and the matrix Ei j = eieT
j , where ei is the ith unit basis vector. Using the properties of the Kronecker product and the

triangle inequality we get ∥∥∥∥ ∂ 2 f̃
∂Qi j∂Qkl

(ξ )

∥∥∥∥
2
⩽ 12

∥∥Ei j∥∥
2

∥∥∥Ekl
∥∥∥

2
∥Q∥2

2 ∥S ∥F

= 12∥S ∥F .

Assuming that the diagonal tensor has bounded support ∥S ∥2 ⩽ R, then it follows that

max
i, j,k,ℓ

∥∥∥∥ ∂ 2 f̃
∂Qi j∂Qkl

(ξ )

∥∥∥∥
2
⩽ 12R. (A.10)

2 It can be shown that
∂ 2 f̃

∂Qi j∂Skkkk
(ξ ) = Γi jek, (A.11)

where and

Γi j = Ei j⊗Q⊗Q⊗Q + Q⊗Ei j⊗Q⊗Q

+ Q⊗Q⊗Ei j⊗Q + Q⊗Q⊗Q⊗Ei j.
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Similarly to 1 , we get

max
i, j,k

∥∥∥∥ ∂ 2 f̃
∂Qi j∂Skkkk

(ξ )

∥∥∥∥
2
⩽ 4

3 It can be easily shown that

∂ 2 f̃
∂Siiii∂S j j j j

(ξ ) = 0, (A.12)

therefore

max
i, j

∥∥∥∥ ∂ 2 f̃
∂Siiii∂S j j j j

(ξ )

∥∥∥∥
2
= 0. (A.13)

It therefore follows that

max
i, j

∥∥∥∥ ∂ 2 f̃
∂ui∂u j

(ξ )

∥∥∥∥
2
= max{12R,4} , (A.14)

and, ∥∥ f̃ (u)− f̃ (u′)−D f̃ T
u′ (u−u′)

∥∥
2 ⩽ n2(n+1)2 max{3R,1}

∥∥u−u′
∥∥2

2 . (A.15)

□

LEMMA A.4 (Bounded Curvature) Let f : Ω 7→ SH be defined as in (A.2) and let D fu define the first order differential of f
evaluated at the point u. Further assume that ∥S ∥F ⩽ R. Then ∀u,u′ ∈Ω , ∥u−u′∥⩽ 2ε0, we have

∥D fu−D fu′∥F ⩽C2
∥∥u−u′

∥∥
2 , (A.16)

where C2 = 2C1

Proof. Using the mean value theorem [22], it can be shown that,∥∥D f̃u − D f̃u′
∥∥

2 ⩽
∥∥∥H f̃ T

ξ
(u−u′)

∥∥∥
2

(A.17)

for some ξ = λu+(1− λ )u′ ∈ Ω , for λ ∈ (0,1). Then using the same argument as in the proof of Lemma A.3, it can easily
shown that ∥∥D f̃u − D f̃u′

∥∥
2 ⩽ 2C1

∥∥u−u′
∥∥

2 , (A.18)

giving C2 = 2C1. □

LEMMA A.5 (Bounded Gradient) Let f : Ω 7→ SH be defined as in (A.2) and let D fu define the first order differential of f
evaluated at the point u. Further assume, as in (2.15), that Siiii ⩾ εS (> 0) ∀i. Then ∀u ∈Ω∥∥∥D f †

u

∥∥∥
F
⩽C3, (A.19)

where C3 = 2εS

Proof. As in A.3, we consider the vectorized function f̃ (u) := vec( f (u)) w.l.o.g. It can be shown that the 1st order differential
has the following decomposition

D f̃ (u) =
[

∂ f̃
∂Q

(u),
∂ f̃
∂S

(u)

]
, (A.20)

where
∂ f̃

∂Qi j
(u) = Γi j vec(S ) . (A.21)

Furthermore, the partial derivative with respect to the super symmetric cumulant tensor S is defined as

∂ f̃
∂S

(u) = B.

where B := Q⊗Q⊗Q⊗Q. Equivalently, (A.19) can be rewritten as

min
∥∆u∥=1

∥∥∥D f̃ (u)T
∆u
∥∥∥

2
⩾C3, (A.22)
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where ∆u = (∆Q,∆S ). We therefore have

∥∥D f̃ (u)T
∆u
∥∥2

2 =

∥∥∥∥ ∂ f̃
∂Q

(u)T
∆Q
∥∥∥∥2

F
+

∥∥∥∥ ∂ f̃
∂S

(u)T
∆S

∥∥∥∥2

2

=
n

∑
i=1

n

∑
j=1

∥∥∥∥ ∂ f̃
∂Qi j

(u)T
∆Qi j

∥∥∥∥2

F
+

∥∥∥∥ ∂ f̃
∂S

(u)T
∆S

∥∥∥∥2

2

= (⋆).

As f is equivariant in Q, we can set Q = In w.l.o.g. As a result B = I and Γi j reduces to

Γi j = Ei j⊗ In⊗ In⊗ In + In⊗Ei j⊗ In⊗ In

+ In⊗ In⊗Ei j⊗ In + In⊗ In⊗ In⊗Ei j.

For shorthand, let T = Γab vec(S ) and noting that Eab = eaeT
b , we have

Ti jkℓ =
n

∑
p=1

(
Eab

ip I jpIkpIℓp + IipEab
jpIkpIℓp + IipI jpEab

kpIℓp + IipI jpIkpEab
ℓp

)
Spppp

=
n

∑
p=1

(
δaiδbpδ jpδkpδℓp +δipδa jδbpδkpδℓp +δipδ jpδakδbpδℓp +δipδ jpδkpδaℓδbp

)
Spppp

=
n

∑
p=1

(
δaiδ jpδkpδℓp +δipδa jδkpδℓp +δipδ jpδakδℓp +δipδ jpδkpδaℓ

)
δbpSpppp

=
(
δaiδ jbδkbδℓb +δibδa jδkbδℓb +δibδ jbδakδℓb +δibδ jbδkbδaℓ

)
Sbbbb.

As a result, we have that

∥∥∥Γ
ab vec(S )∆Qab

∥∥∥2

F
=

n

∑
i, j,k,ℓ=1

∣∣(δaiδ jbδkbδℓb +δibδa jδkbδℓb +δibδ jbδakδℓb +δibδ jbδkbδaℓ
)
Sbbbb∆Qab

∣∣2 .
It can be easily shown that for a = b

∥∥∥Γ
bb vec(S )∆Qbb

∥∥∥2

F
= 16 |Sbbbb∆Qbb|2 ,

and for a ̸= b

∥∥∥Γ
ab vec(S )∆Qab

∥∥∥2

F
= 4 |Sbbbb∆Qab|2 .

We therefore have

(⋆) = ∑
i= j

∥∥∥∥ ∂ f̃
∂Qii

(u)T
∆Qii

∥∥∥∥2

F
+∑

i̸= j

∥∥∥∥ ∂ f̃
∂Qi j

(u)T
∆Qi j

∥∥∥∥2

F
+∥∆S ∥2

2

= 16 ∑
i= j
|Siiii|2 |∆Qii|2 +4 ∑

i ̸= j
|Siiii|2

∣∣∆Qi j
∣∣2 +∥∆S ∥2

2

⩾ 4∑
i, j
|Siiii|2

∣∣∆Qi j
∣∣2 +∥∆S ∥2

2

= (⋆)

Now assume that |Siiii|⩾ εS for all i, therefore

(⋆)⩾ 4ε
2
S ∥∆Q∥2

F +∥∆S ∥2
2

⩾ 4ε
2
S ∥∆u∥2

2 .
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In the last line, we assume w.l.o.g that 4ε2
S ⩽ 1. We have therefore proved that

min
∥∆u∥=1

∥∥∥D f̃ (u)T
∆u
∥∥∥

2
⩾ 2εS , (A.23)

yielding C3 := 2εS . □
We have the following lemma to cover the set of short secants.

LEMMA A.6 (Short Secants Covering Number) Let Ω ′ = {ui} be an ε- cover for Ω ′ = O(n)× (D∩B1(0)) and considering the
following:

1.
∥∥ f (u)− f (u′)−D f T

u′ (u−u′)
∥∥⩽C1 ∥u−u′∥2 (Taylor approximation Lemma A.3)

2. ∥D fu−D fu′∥⩽C2 ∥u−u′∥ (bounded curvature Lemma A.4)

3.
∥∥D f †

u
∥∥⩽C3 (bounded gradient Lemma A.5),

where f : Ω 7→SH is defined in Eqn. A.2 and D fu defines the first order differential of f evaluated at the point u. Then given
ui ∈Ω , ∀u,u′ ∈Bε0 (ui) and ∥Z −Z ′∥⩽ η , where Z = f (u) and Z ′ = f (u′), we have∥∥∥∥ Z −Z ′

∥Z −Z ′∥ −D f T
ui

u−u′

∥Z −Z ′∥

∥∥∥∥⩽C4ε0. (A.24)

where C4 :=C3(2C1 +C2).

Proof. ∥∥Z −Z ′−D f T
ui
(u−u′)

∥∥= ∥∥∥ f (u)− f (u′)−D f T
u (u−u′)+(D fu−D fui )

T (u−u′
)∥∥∥

⩽
∥∥ f (u)− f (u′)−D f T

u (u−u′)
∥∥+∥∥∥(D fu−D fui )

T (u−u′
)∥∥∥

⩽C1
∥∥u−u′

∥∥2
+C2 ∥u−ui∥

∥∥u−u′
∥∥

= (⋆)

Given that u,u′ ∈Bε0 (ui), we have that ∥u−ui∥⩽ ε0 and ∥u−u′∥⩽ 2ε0. Therefore

(⋆)⩽ 2C1ε0
∥∥u−u′

∥∥+C2ε0
∥∥u−u′

∥∥
= (2C1 +C2)ε0

∥∥u−u′
∥∥ .

Now dividing by ∥Z −Z ′∥ gives:∥∥∥∥ Z −Z ′

∥Z −Z ′∥ −D f T
ui

u−u′

∥Z −Z ′∥

∥∥∥∥⩽ (2C1 +C2)
∥u−u′∥
∥Z −Z ′∥

⩽C3(2C1 +C2).

In the last line, we have used the fact that bounded (inverse) gradient implies Lipschitzness. □
As a result, the set of bounded tangent vectors, defined by

V :=
{

D f T
ui

u−u′

∥Z −Z ′∥ | ∀ui ∈Ω

}

forms a generalized ε-cover for Nc
η

(
S̄H − ¯̄SH

)
with covering number (see Lemma 4.3 of [20])

CN(V ,∥·∥,ε)⩽C4 CN
(

¯̄SH ,∥·∥,ε0

)( 3
ε

) n(n+1)
2

⩽C4

(
6
ε0

)n(n+1)( 3
ε

) n(n+1)
2

.
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From (A.5), we can bound the covering number of the normalized secant set:

CN(N(SH −SH ) ,∥·∥,ε)⩽ CN
(
Nη

(
S̄H − S̄H

)
,∥·∥,ε

)
+ CN

(
Nc

η

(
S̄H − ¯̄SH

)
,∥·∥,ε

)
⩽

(
6

γε

)2n(n+1)

+ C4

(
6
ε0

)n(n+1)( 3
ε

) n(n+1)
2

⩽

(
6

γε

)2n(n+1)

+ C4

(
6
ε0

)n(n+1)( 3
ε

)n(n+1)

=

(
6

γε

)2n(n+1)

+ C4

(
18
ε0ε

)n(n+1)

= (⋆).

Note that by definition ε0 ⩽ η (= 4γ), therefore γ ⩾ ε0
4 . As a result

(⋆)⩽C4

((
24
ε0ε

)2n(n+1)

+

(
24
ε0ε

)n(n+1)
)

⩽

(
48C4

ε0ε

)2n(n+1)

⩽

(
C0

ε

)2n(n+1)

where C0 =
48C4

ε0
.

B. Proof of Theorem 4.7
Proof. First, note that as the Frobenius norm is rotationally invariant we have that

∥Z ∥F = ∥S ×1 Q×2 · · ·×4 Q∥F = ∥S ∥F ⩽ R.

As Ẑ is an empirical average of the true expected cumulant tensor Z , we can use a version of the vectorial Hoeffding’s inequality
in Lemma 4 of [51] that states with probability at least 1−ρ on the random draw of z1, . . . ,zN that

∥Ẑ −Z ∥F ⩽
R
(

1+
√

2log(1/ρ)
)

√
N

. (A.1)

Next, we can use the boundedness property of random Gaussian measurements [21]. First, let e = vec
(
Ẑ −Z

)
denote the

finite approximation error from above. Then the boundedness property of subgaussian matrices (see Definition 6.2 in [21]) states
with probability at least 1−ξ on the sampling of A, that

∥Ae∥2 ⩽C∥e∥2 (A.2)

for some constant C > 0.
Combining the two equations, we get with probability at least (1− ρ)(1− ξ ) ⩾ 1− ρ − ξ on the drawing of both A and

z1, . . . ,zN that

∥A (Z )−A (Ẑ )∥2 ⩽
CR
(

1+
√

2log(1/ρ)
)

√
N

. (A.3)

□


