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Abstract—Alzheimer’s Disease (AD) is the most common form 

of dementia. Mild Cognitive Impairment (MCI) is the term given 

to the stage describing prodromal AD and represents a ‘risk 

factor’ in early-stage AD diagnosis from normal cognitive 

decline due to ageing. The electroencephalogram (EEG) has 

been studied extensively for AD characterization, but reliable 

early-stage diagnosis continues to present a challenge. The aim 

of this study was to introduce a novel way of classifying between 

AD patients, MCI subjects, and age-matched healthy control 

(HC) subjects using EEG-derived feature images and deep 

learning techniques. The EEG recordings of 141 age-matched 

subjects (52 AD, 37 MCI, 52 HC) were converted into 2D 

greyscale images representing the Pearson correlation 

coefficients and the distance Lempel-Ziv Complexity (dLZC) 

between the 21 EEG channels. Each feature type was computed 

from EEG epochs of 1s, 2s, 5s and 10s segmented from the 

original recording. The CNN architecture AlexNet was modified 

and employed for this three-way classification task and a 70/30 

split was used for training and validation with each of the 

different epoch lengths and EEG-derived images. Whilst a 

maximum classification accuracy of 73.49% was obtained using 

dLZC-derived images from 10s epochs as input to the model, the 

classification accuracy reached 98.13% using the images 

obtained from Pearson correlation coefficients and 5s epochs.  

 
Clinical Relevance— The preliminary findings from this study 

show that deep learning applied to the analysis of the EEG can 

classify subjects with accuracies close to 100%. 

I. INTRODUCTION 

Alzheimer’s Disease (AD) is the most common form of 
dementia worldwide. It accounts for nearly 70% of all 
dementia diagnoses [1] and has an annual estimated societal 
healthcare cost of $818 billion worldwide. Mild Cognitive 
Impairment (MCI) is a term used to represent a decline in 
cognitive function. Confusion with healthy subjects is 
particularly problematic for early-stage diagnosis because age-
matched healthy control (HC) subjects also present natural 
neurological degradation due to ageing and significant 
heterogeneity exists within the human ageing population. 
Although MCI is likely to result in dementia, approximately 
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30% of MCI individuals may also remain in stable MCI state 
or revert to that of normal ageing [1]. Current methods for 
clinical AD diagnosis in symptomatic individuals involve 
cognitive and functional assessments, the patient’s medical 
history, and expensive, time-consuming neuroimaging scans 
[2]. Clinical diagnostic accuracy is reported to be 
approximately 79% on average and is highly dependent on the 
study of test results by specialists [3]. Definitive diagnosis is 
only possible by necropsy [4]. 

The electroencephalogram (EEG) signal has been used 
extensively in the characterization of AD: AD is a cortical 
dementia and the EEG reflects the electrical activity of neurons 
in the cortex of the brain. Furthermore, acquiring the EEG non-
invasively is an easy, portable, and cost-efficient procedure 
compared to other neuroimaging modalities [1]. The analysis 
of EEG signals with suitable signal processing techniques 
could provide relevant information for AD diagnosis. 

The use of artificial intelligence techniques has grown 
exponentially in recent years, with increased interest in 
applying machine learning (ML) and deep learning (DL) 
methods to diagnostic biomedical applications. DL is a subset 
of the ML algorithms which emulate the structure of biological 
neuronal tissue. DL models consist of multiple layers of 
artificial neurons, known collectively as a neural network 
(NN), able to tune millions of learnable parameters. DL has 
the distinct advantage over traditional ML techniques because 
deep NNs can process and learn latent discriminative features 
from raw data, in what is known as end-to-end learning. The 
volume and scope of research employing DL methods for EEG 
classification tasks have increased exponentially in the past 
decade, with the most significant domains being sleep staging, 
epilepsy seizure detection and prediction, and brain–computer 
interfaces [5]. 

This study uses DL in a novel way to explore the 
classification problem presented by early-stage AD diagnosis. 
It is hypothesized that the combination of DL with EEG-
derived features using linear and non-linear methods would 
improve the classification accuracy of AD and MCI. 
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II. MATERIALS AND METHODS 

A. EEG database 

The EEG data used in this study were recorded from 141 
subjects at the Neurology Department of the Samaritan 
Hospital in São Paulo, Brazil, between 2010 and 2016. The 
EEG database consists of age-matched groups of 52 AD 
patients (age of 82.3 ± 4.7, mean ± standard deviation), 37 
MCI subjects (age of 78.4 ± 5.1), and 52 healthy controls (HC, 
age of 79.6 ± 6.0). All recordings were 587s in length except 
for 2 AD, 1 MCI and 2 HC subjects (with recording lengths 
between 119s and 572s), The scalp electrode placement 
followed the International 10-20 system using 21 electrodes: 
Fp1, Fp2, Fpz, F3, F4, Fz, C3, C4, Cz, P3, P4, Pz, O1, O2, Oz, 
F7, F8, T3, T4, T5 and T6. The sampling frequency was 200 
Hz. 

The raw EEG recordings were filtered using a 1-60Hz 
band-pass, FIR filter with an order of 330 and de-noised using 
independent component analysis and notch filters at 21 and 42 
Hz. EEGs were processed further using the Multiple Artefact 
Rejection Algorithm (EEGLAB plugin for MATLAB©) to 
remove other noise sources. Furthermore, prior to splitting the 
data into non-overlapping epochs, 3.5s from the start and end 
of each signal were removed to account for discrepancies or 
settling noise.  

B. Pearson Correlation Coefficients 

Pearson correlation coefficients between the different 
electrodes were computed from each EEG data epoch and 
arranged into matrices with 21x21 pixels. Greyscale images 
were produced from the correlation matrices by normalizing 
the absolute values to a greyscale pixel interval and resizing 
the image to fit the model’s input dimensions. Fig. 1 shows 
examples of the resulting images using 5s epochs. 

C. Distance Lempel-Ziv Complexity 

Distance Lempel-Ziv Complexity (dLZC) is a recently 
introduced method to compute the LZC of pairs of signals [6]. 
The dLZC of channel pairs with few subsequences in common 
would be higher than in signal pairs with a large proportion of 
subsequences in common. Therefore, the dLZC measures how 
similarly complex two signals are [6]. If a signal x(n) is coarse-
grained to form a binary sequence P and signal y(n) to form a 
binary sequence Q, the dLZC can be computed as follows [6]: 

 𝑑𝐿𝑍𝐶(𝑥, 𝑦) =
𝑐(𝑃𝑄)−𝑐(𝑃𝑃)+𝑐(𝑄𝑃)−𝑐(𝑄𝑄)

𝑏(2𝑛)
 () 

where c(PQ) denotes the complexity for the concatenation of 
P and Q, c(QP) denotes the complexity for the concatenation 
of Q and P, c(PP) is the complexity for the concatenation of P 
and P, c(QQ) is the complexity for the concatenation of Q and 
Q and b(2n) normalizes the dLZC considering the length of the 
sequences. A detailed description of the dLZC algorithm can 
be found in [6]. 

The resulting dLZC matrix was of dimension 21x21, with 
each value representing the dLZC values computed for every 
electrode channel pair combination. These matrices were 
converted into 21x21-pixel greyscale images. Fig. 2 shows an 
example of these images for one subject from each of the three 
groups. 

D. Deep Learning Architecture 

Transfer Learning with AlexNet was employed in this 
investigation for the three-way classification task of AD, MCI, 
and HC. AlexNet is the groundbreaking convolutional NN 
(CNN) that won the 2012 ImageNet Large Scale Visual 
Recognition Challenge [7]. In AlexNet, a series of five 
convolutional layers, employing max pooling and rectified 
linear unit (ReLU), reduce the image size from 224x224 to 
13x13 while increasing the depth of the filter response from 96 
to 256. The final fully connected layer of AlexNet was 
replaced with a new final classification layer with three nodes, 
as this is equal to the number of classes (AD, MCI, and HC) in 
this classification problem.  

A set of standard hyperparameter values based on previous 
work [8] were used in the DL: ADAM optimizer, mini-batch 
size of 64, piecewise learn rate schedule, initial learn rate of 
10-4, learn rate drop factor of 0.33, learn rate drop period equal 
to 10, and a validation patience equal to 10.  

Epoch lengths of 1s, 2s, 5s and 10s were used to obtain the 
model input types (images from correlation coefficient and 
dLZC matrices). Before input to the model, the images were 
rescaled from size 21x21 to 224x224 using bilinear 
interpolation. Table I gives the number of training and 
validation image samples resulting from the different epoch 
lengths for a training-validation split of 70-30. 

TABLE I.  NUMBER OF IMAGE SAMPLES AVAILABLE FOR TRAINING 

AND VALIDATION (70-30 SPLIT) FOR THE DIFFERENT EPOCH LENGTHS USED 

Epoch Length Number of Image Samples 

Seconds/epoch 
Data 

points/epoch 
Training Validation 

1 200 56400 24171 

2 400 28248 12107 

5 1000 11338 4860 

10 2000 5669 2429 

 

Figure 1.  Greyscale 21x21-pixel images (not to scale) 

representing the correlation matrix computed across all 

channels from 5s data epochs for one subject from each class. 

 

 

Figure 2. Greyscale 21x21-pixel images (not to scale) 

representing the dLZC matrix computed across all channels 

from 5s data epochs for one subject from each class. 



  

Classification results are presented using confusion 
matrices, tables summarizing the success of the model at 
predicting samples belonging to various classes. 

III. RESULTS 

The epoch-based classification accuracies obtained using 
the different images described in the previous section as inputs 
to the model are summarized in Table II. When using images 
created with the correlation coefficients between the different 
EEG channels, it can be observed that the accuracy remained 
stable for all epoch lengths tested, with a maximum value of 
98.13% when using 5s epochs. Fig. 3 shows the corresponding 
confusion matrix, where the high accuracy of the model 
classifying the 3 classes becomes evident.  

On the other hand, the classification accuracies obtained 
using the images created with dLZC varied significantly, with 
values ranging from 56.96% when using 1s epochs to 73.49% 
with images obtained using 10s epochs. The confusion matrix 
corresponding to the highest classification accuracy is 
included in Fig. 4, where it is possible to see that the model 
performed best at classifying the AD patients and worst when 
identifying patients with MCI. 

TABLE II.  EPOCH-BASED CLASSIFICATION ACCURACIES ACHIEVED 

BY ALEXNET TRAINED ON IMAGES DERIVED FROM CORRELATION 

COEFFICIENTS AND DLZC USING EPOCH LENGTHS OF 1S, 2S, 5S AND 10S 

Epoch 

length (s) 

Classification Accuracies (%) 

Model input: Images 

derived from correlation 

coefficients 

Model input: Images 

derived from dLZC 

1 97.69 56.96 

2 98.08 61.61 

5 98.13 68.50 

10 97.82 73.49 

 

 

 

IV. DISCUSSION 

This study presents a novel application of DL to the 
challenging problem of differentiating AD from its prodromal 
diagnostic stage MCI and normal healthy ageing. To this aim, 
EEG recordings from patients with AD, patients with MCI, 
and age-matched HC were segmented into epochs of different 
lengths. To capture linear and non-linear dependencies in the 
signals from across the brain regions, matrices of Pearson 
correlation coefficients and dLZC between all pairs of 
electrodes were computed and subsequently transformed into 
2D greyscale images that were fed as inputs to the DL 
framework, with 70% of the data used for training and 30% for 
validation. The pre-trained CNN architecture AlexNet was 
used [7], with the final classification layer replaced with one 
containing three classes. The epoch-based accuracy was very 
high when the correlation coefficients were used as inputs to 
the model (maximum accuracy of 98.13% using 5s epochs), 
whilst the accuracies with dLZC were significantly lower 
(maximum value of 73.49% using 10s epochs). 

This study investigated four different epoch lengths (1s, 2s, 
5s, and 10s). The most frequently used epoch length in similar 
studies using DL and EEG signals for the classification of AD 
is 5s with no overlap between adjacent epochs [8-10]. 
However, other studies have used shorter segments (e.g., 1s in 
[11] and 2s with 50% overlap in [12]). In the current study, the 
classification accuracy of the CNN using the matrices of 
Pearson correlation coefficients is very robust to varying 
epoch length. In contrast, there is significant variability in the 
classification accuracy obtained using dLZC, which increased 
with epoch length. It has been suggested that relatively short 
10s epochs may not be able to provide long-term complexity 
information [13]. Thus, longer epochs might be needed to 
capture discriminative patterns from EEGs with dLZC. 

Pearson correlation coefficients have not been previously 
used in this characterization problem despite the ability of the 

 

Figure 3.  Confusion matrix for the best performing epoch length trials 
(5s) when images derived from Pearson correlation coefficients between 
electrodes were used as the model input to AlexNet. 

 

Figure 4.  Confusion matrix for the best performing epoch length trials 
(10s) when images derived from dLZC between electrodes were used as 

the model input to AlexNet. 



  

method to capture the strength of the linear relationship 
between pairs of signals. The non-linear nature of EEG signals 
motivated the use of dLZC to generate inputs reflecting non-
linear dependencies between the different EEG electrodes. 
This method has shown promise in classification of AD, albeit 
with a much smaller EEG database than the one used in the 
current study [6]. Despite the inherent non-linear nature of the 
EEG, the performance of the model with dLZC-derived 
images was significantly worse than when a much simpler 
linear method was used. Nevertheless, the current study has 
only used one CNN framework; a deeper network capable of 
processing and learning higher order abstract features present 
within the images due to a greater number of convolution 
layers may be able to extract discriminative features from the 
dLZC matrices. 

Most of the existing studies using DL to classify AD 
patients from EEG signals have reported lower epoch-based 
accuracies than the current study. Some studies have focused 
on binary classification problems. A classification accuracy of 
59% between MCI and control subjects was reported in [12] 
using a small database with 10 subjects from each class. A 
higher accuracy was obtained in [14], where AD and HC were 
classified with 92% accuracy from signals from 15 patients 
and 15 control subjects. Another study found an accuracy of 
98% using 17 AD patients and 35 subjects with MCI [11]. 
Nevertheless, the classification problem becomes more 
challenging when there are three different classes present (AD, 
MCI, and HC). Bi and Wang found a classification accuracy 
of 95% using a very small database with 4 subjects in each 
class [15]. A bigger database was used in [9], where a 
classification accuracy of 82% was achieved with 23 AD 
patients, 23 controls, and 23 subjects with MCI, although 
substantial feature extraction was required before the 
application of a deep CNN. A very similar accuracy of 83% 
was reported in [10], where the database used contained 63 AD 
patients, 63 patients with MCI, and 63 controls and features 
related to the power spectral density of the EEGs were used as 
inputs to the CNN. Finally, a classification accuracy of 98.9% 
was obtained with the same database of the current study using 
images representing the time-frequency information from the 
EEGs and AlexNet [8]. 

Several limitations of the study should be discussed. The 
training and validation data sets need to be labelled for the 
supervised classification. Given that definite AD diagnosis is 
only possible by necropsy and that even the most experienced 
specialists may fail in the diagnosis of about 10–15% of the 
cases for early-stage AD [16], there may be an inconsistency 
in the labelling that could lead to biased results. Nevertheless, 
it was for the AD class that the algorithm yielded the best 
classification accuracy. Furthermore, the database used in the 
study is unbalanced, with 52 subjects in each of the AD and 
HC classes, but a lower number of 37 subjects in the MCI 
class. This could result in a bias against the MCI class in the 
confusion matrices. The interpolation process used to rescale 
the images from size 21x21 to 224x224 creates new virtual 
features and the impact of this in the results should be explored 
in the future. Moreover, cross-validation could be used to limit 
the possible impact of data selection on the classifier results. 
Another limitation is the possibility of intra-class variability, 
especially in the case of MCI, as not all patients would go on 
to develop AD. The heterogeneity that characterizes MCI and 

normal ageing might, therefore, be driving some of the 
outcomes. Future research should focus on enhancing 
specificity of DL-based classification algorithms. 

Despite these shortcomings, the current study presents 
some very promising results in the field of automatic 
classification of AD patients, showing that DL could 
potentially help in the early diagnosis of this form of dementia. 
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