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Compressive Sensing Technique for Mitigating
Nonlinear Memory Effects in Radar Receivers

Euan Ward, Student Member, IEEE, Shahzad Gishkori, Senior Member, IEEE and Bernard Mulgrew, Fellow, IEEE

Abstract—Receiver nonlinearities pose a serious risk to the
functionality of modern radar as they can compromise the
sensor’s immunity to interfering signals. With the radio fre-
quency (RF) spectrum becoming increasingly crowded, it is now
more important than ever that the sensor can maintain system
performance when exposed to mutual interference. In this paper,
we present a nonlinear compressive sensing (NCS) solution which,
unlike the standard nonlinear equalization (NLEQ) techniques, is
designed around the forward nonlinearity rather than the inverse.
Importantly, in this study the NCS theory is extended to include
nonlinear memory. Furthermore, a radar specific formalisation
is derived which allows the nonlinear optimization to exploit
the unique properties of pulsed-Doppler radar processing. As a
result, the NCS solution can successfully restore system sensitivity
back to the linear case when in-band interference drives the
radar receiver into its nonlinear regime. Additionally, it is shown
that the technique can consistently mitigate complex nonlinear
memory effects generated in the RF receiver. This is a significant
result as it proves that forward modelling techniques are a viable
alternative to NLEQ. This is of particular importance to radar
systems as they provide a far more explicit formalisation to
mitigate nonlinear memory effects.

Index Terms—Radar, Mutual Interference, Receiver Nonlin-
earity, Nonlinear Equalization, Forward Modelling, Nonlinear
Optimization, Nonlinear Compressive Sensing

I. INTRODUCTION

THE multi-sensor mutual interference problem is well-
known in the radar community with the development

of an intelligent radar network being the most widely ac-
cepted proposed solution [1]. The future of modern radar
will undoubtedly involve a network of cognitive sensors that
are frequency agile so that mutual interference is minimised
[2]. However, some self-sufficient protection operating within
each sensor is required if performance is to be maintained
even in the worst interference scenario. In the case where
an interferer is present in the radar’s desired channel, the
linearity of the radio frequency (RF) amplifiers in the receiver
front-end effectively defines the system’s immunity to the
unwanted signal [3]–[5]. As long as the active components
in the RF receiver remain in the linear regime, while the
desired signal and the interference signal pass through the
chain simultaneously, then the principle of superposition holds
and the task of removing the interference effects can be seen
as a linear signal separation problem [6].
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in Signal and Image Processing, School of Engineering and Electronics,
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Shahzad Gishkori is with the King Abdullah University of
Science and Technology, Thuwal 23955, Saudi Arabia, Email:
shahzad.gishkori@kaust.edu.sa

Frequency

Desired 

Signal

Interference 

SignalP
o
w

er

Spurious 

HarmonicsDistorted 

Output

Fig. 1: Illustration of nonlinear distortion effects caused by an
in-band interferer. Figure adapted from [9].

In an effort to save costs, modern radar systems are being
designed from commercial-off-the-shelf RF components which
have significantly poorer linearity specifications than their
bespoke counterparts [5], [7], [8]. These modern sensors must
therefore operate at the top of their linear regions in order
to achieve acceptable performance. Crucially, this leaves no
room to back-off the receiver in the presence of interference.
Operating at the top of the linear region poses a serious
risk to the functionality of these sensors as interference from
other nearby radars can force the RF amplifiers in its receiver
into a nonlinear state. With the use of consumer radars set
to increase dramatically over the next decade modern mass-
produced radar systems must evolve so that they can operate
effectively beyond a purely linear regime.

The diagram in Fig. 1 illustrates the potential nonlinear
effects an in-band interferer can cause if a radar’s receiver
linearity cannot be preserved. In contrast to the linear receiver,
where the interferer and the desired signal are amplified
separately, the nonlinearity causes the desired signal to become
distorted as well as generating spurious harmonics across the
spectrum [3]–[5], [10]–[12]. This paper presents a novel digital
signal processing solution that is capable of mitigating the in-
channel nonlinear distortion caused by the presence of an in-
band interferer. It is assumed for the purposes of this paper
that any spurious harmonics generated by the nonlinearity are
successfully filtered out further down the RF receiver chain
and are therefore omitted from this study.

While little work has been published on the mitigation
of nonlinear receiver effects in the radar literature [4], [5],
[10], [11], [13]–[15] it is an area of active research in the
related field of communications. To save costs it is common
for communications systems to operate their receivers in the
weakly nonlinear regime and compensate for the nonlinear
distortion digitally [5], [7], [8], [16], [17]. By far the most
popular of these techniques is nonlinear equalization (NLEQ)
where the corrupted signal is passed through an inverse
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of the forward nonlinearity so that the dominant nonlinear
effects are suppressed. There have been several studies into
to the use of NLEQ techniques in radar [5], [10], [13]–
[15]. In principle, they offer an attractive solution to the
nonlinear receiver problem as they are mode independent and
computationally inexpensive to implement. However, they are
notoriously difficult to identify for systems with memory [15],
[18] and their effectiveness is severely limited by the power
of the input signals [15], [19].

The memory of a system is intrinsically linked to its band-
width [8], [20] and with modern radars moving to increasingly
wider receiver bandwidths they can no longer be approximated
as strictly memoryless systems. It was shown in [11] that
as nonlinear memory effects are introduced to the radar
receiver, memoryless NLEQ techniques become increasingly
decorrelated significantly reducing their effectiveness. In order
for NLEQ techniques to be effective in mitigating nonlinear
memory effects in the modern radar receiver, nonlinear inverse
models with memory must be used. However, the functional
form of these memory rich nonlinear equalisers is an open
question in the radar literature as usually more memory
and complexity is required in the inverse than the forward
nonlinearity. Equally the nature of the signal required to train
such a model is unclear [15], [18]. It is therefore thought
that an alternative more robust solution must be sought when
memory effects become significant in the RF receiver.

Forward modelling offers an alternative solution to standard
NLEQ techniques. The technique removes the need for a
complex nonlinear inverse structure as instead the forward
nonlinear model is integrated into the signal processing itself.
The extension of nonlinear behavioural models to included
memory effects is well defined for the forward model but
not so for the corresponding inverse structure. Designing a
nonlinear mitigation solution around the forward nonlinear
model rather than the inverse allows the technique to be
extended to include memory effects in a well-defined manner.
The problem can now be formulated as a nonlinear signal
processing one where the signal of interest is observed through
a nonlinear system.

The fact that the observations are intrinsically nonlinear
means that traditional transform techniques cannot be used to
infer the various signal components. Sparse signal processing
offers a forward modelling solution. By setting the problem
up as a sparse nonlinear optimisation problem the linear input
signal can be estimated from the measured nonlinear output
signal. Like most sparse signal processing problems, iterative
solutions which are signal dependent must be sought. In the
case of radar, this signal dependence results in the technique
being mode specific. Nonlinear sparse signal processing is
in its infancy with only one major paper published on the
topic [21]. In [21] Blumensath showed that a sparse or
structured signal observed through a nonlinear function could
be recovered by the iterative hard thresholding (IHT) algorithm
with constraints similar to those required in the linear setting.
Importantly, Blumensath’s proof holds under the condition
that the system is not too nonlinear and therefore the error
introduced in the linearisation is not too large.

Since [21] was published in 2013, Blumensath’s IHT al-

gorithm for nonlinear compressive sensing (NCS) has been
applied to a wide variety of different applications. In [22] Chen
et al. apply the technique to a communications system for the
first time with the aim of digitally correcting the nonlinear dis-
tortion from a front-end power amplifier leading to improved
efficiency. The nonlinearity was described by means of a Rapp
model and the NCS algorithm was shown to converge for both
simulated and experimental data. This is a significant result as
it proves that the NCS algorithm can be successfully employed
to digitally mitigate nonlinear effects in a communications-
based system. While Chen et al. employ Blumensath’s NCS
technique to mitigate a transmit side nonlinearity, Zhu et al.
develop the technique further in [23] by applying it to the
receive side of the system. The NCS technique in [23] focuses
on a front-end LNA driven into its weakly nonlinear regime
by the presence of an unwanted interferer in the spectrum.
The LNA was modelled by means of a cubic order Taylor
series and Blumensath’s IHT technique was tested alongside
a novel gradient pursuit method. Crucially, Zhu et al. prove
in [23] that the linear input signal can be recovered by the
NCS technique if the LNA is not too nonlinear and the Taylor
series model parameters are known. While [22], [23] provides
some encouragement, Blumensath’s NCS technique [21] must
be developed specifically to exploit the unique behaviour of
radar systems if it is to be successful in mitigating nonlinear
effects generated in the radar receiver.

In this paper, the NCS algorithm is extended and applied to
mitigate nonlinear effects in the radar receiver caused by the
presence of an in-band interferer. In addition to introducing
this novel digital mitigation technique to the field of radar, the
following key contributions are presented:

1) Input and output noise are addressed as part of the
complex baseband nonlinear model, see section III-B.

2) The forward nonlinear function in the NCS algorithm
is extended to include nonlinear memory effects, see
section III-C.

3) Unlike previous work that deals with the purely real
problem, the NCS algorithm is extended to the complex
case, see section III-D.

4) A unique CS problem that exploits signal sparsity in
slow-time and tackles a complex baseband nonlinearity
with memory in fast-time is addressed, see section III-E.

5) The NCS algorithm is shown to mitigate nonlinear
memory effects in the radar receiver for the first time,
see section V.

6) The NCS algorithm is tested against real radar data for
the first time, see section VI.

In section II, the interference scenario and the system model
used to describe the nonlinear RF receiver are presented. In
section III, the novel NCS algorithm is derived in full before
the simulation used to test the performance of the technique are
discussed in Section IV. Finally, simulated and experimental
results are displayed in Sections V and VI respectively with
the performance of the NCS algorithm discussed in detail.

II. SYSTEM MODEL

The Volterra series is a powerful black-box behavioural
model capable of modelling complex nonlinear memory ef-
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fects. It is often described as a Taylor series with memory
and has a unique linear-in-the-parameters formalisation that
makes it ideal for modelling weakly nonlinear RF amplifiers
[8]. Mathematically it is described as a sum of multidi-
mensional convolutions and in this paper we employed it
in its complex baseband (BB) form [24] for computational
efficiency. Importantly, when deriving the BB equivalent form
of the Volterra series (BBVS) [9], [11], [24] the narrowband
assumption is invoked which restricts its modelling capabilities
to a small bandwidth around the carrier frequency. Referring
to the nonlinear scenario illustrated in Fig. 1, this mean that
only the in-channel distortion effects can be captured by the
model. We must therefore assume that any spurious harmonics
generated by the passband nonlinearity are successfully filtered
out further down the RF receive chain. The full form of the
BBVS model employed in this paper is displayed in (1) below:

y{n} =

P∑
p=0

{
L−1∑
i1=0

. . .

L−1∑
i2p+1=0

}
h{2p+1,{i1,...,i2p+1}}

p∏
s=1

x∗{n−is}

2p+1∏
d=p+1

x{n−id}

(1)
where y{n} denotes the current BB output sample, x{n}
represents the current BB input sample and P specifies the
nonlinear model order. The BBVS model [9], [11], [24]
described above takes a purely odd order form as the distortion
generated from the even order terms fall outside the desired
channel [24] and can therefore be ignored. Importantly, each
power term in (1) describes a sum over Volterra taps. We use
the phrase Volterra tap here to describe a single term from
the multidimensional sum over {i1, . . . , i2p+1}. In essence,
the memory length L defines the amount of memory in the
system with the terms {i1, . . . , i2p+1} defining each subse-
quent component’s BB sample delay. The specific behaviour
of the nonlinear model is defined by a set of nonlinear
coefficients h{2p+1,{i1, ... ,i2p+1}} referred to as the Volterra
kernel coefficients in the case of the BBVS model. Importantly,
in the memoryless case where L = 1 the BBVS model
reproduces the baseband Taylor series (BBTS) model exactly1.
The complexity of the BBVS model grows exponentially with
nonlinear order P and memory length L, however even for
small values of P and L the BBVS model can capture complex
nonlinear memory effects. For the purposes of this paper, we
simplify the entire radar RF receiver to be a single amplifier
stage and choose to model its behaviour using one of the
nonlinear black box behavioural models discussed above.

As mentioned previously, Fig. 1 illustrates the scenario of
interest where the presence of an in-band interferer drives the
radar receiver into the weakly nonlinear region causing the
desired signal to be distorted. We therefore describe the BB
input signal x(t) as consisting of the desired radar signal v(t)
and the in-band interference signal s(t).

x(t) = v(t) + s(t) (2)

Importantly, the desired radar signal v(t) consists of a linear
combination of target, clutter and noise signals while we

1The coefficients for the BBTS model are distinguished from those for the
full BBVS model by omitting the delay-tap indices {i1, . . . , i2p+1} from the
notation.

choose signal s(t) to be a continuous-wave (CW) interferer.
For simplicity we assume that the radar transmits a single-
tone pulsed signal and the CW interferer is ever-present in
the received pulse repetition interval (PRI). The discrete-
time input for the black-box receiver model (1) is therefore
formed by sampling the continuous-time signal x(t) through
the Nyquist-Shannon sampling theorem [25] and stacking the
fast-time signal samples x{n} into a column vector x of length
N . Each received PRI signal is indexed with the subscript xq ,
for q = 1 . . . Q, and is concatenated into a received signal
matrix of size N ×Q labelled X =

[
x1 x2 . . . xQ

]
in what

is referred to as the slow-time dimension. The corresponding
output matrix Y is constructed similarly by concatenating each
subsequent PRI output yq from the black-box receiver model
into an N ×Q matrix as follows Y =

[
y1 y2 . . . yQ

]
. The

nonlinearity is therefore applied down the columns of matrix
X to produce matrix Y acting in what is referred to as the
fast-time dimension2.

In this paper we focus on airborne pulsed Doppler radar
and more specifically the medium pulse repetition frequency
(MPRF) mode [6], [25], [26] for several key reasons:

1) The MPRF mode is one of the most popular modes of
operation for modern radar as it provides both range and
velocity measurements of the scene.

2) In a typical MPRF mode the radar is tasked with
detecting low signal to noise ratio (SNR) targets in the
presence of a strong clutter signal which can leave it
susceptible to nonlinear effects.

3) The MPRF mode is intrinsically narrowband which as
mentioned previously is the main assumption that must
be satisfied when employing BB behavioural models to
simulate the RF receiver.

4) The unique characteristics of the clutter in the MPRF
mode makes it well-suited to the NCS mitigation tech-
nique.

Typically, in an MPRF radar mode pulse-Doppler processing
is employed to detect targets in the scene. In standard pulse-
Doppler radar processing [6], [25], a matched filter is applied
down the columns of Y to convert the raw fast-time signals
into range before a discrete-time Fourier transform (DFT)
is applied across the received PRIs to reveal the Doppler
behaviour of the artifacts in the scene. By performing this
simple processing on the received data, the weak targets can
be separated from the clutter in Doppler and due to their
coherent nature can also be pulled above the noise floor.
It is in this range-Doppler (RD) space that target detection
analysis is typically performed. An example RD plot for the
in-band interference scenario in the case where the RF receiver
operates in its linear regime is displayed in Fig. 2.

In the case where an interferer drives a nonlinearity in
the RF receiver, the resulting distortion generated in the RD

2A single matrix element is denoted by a non-bold symbol with dual
subscripts, x{n,q}. Furthermore, specific rows and columns of a matrix are
denoted by a bold lowercase symbol with a single subscript that indicates
the matrix dimension that has been pulled out. Importantly we use a tilde
accent to distinguish row vectors from column vectors in the notation. Thus,
x̃n denotes a vector corresponding to row n of matrix X of size 1×Q and
xq denotes a vector corresponding to column q of matrix X of size N × 1.
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Fig. 2: Example RD plot for the linear in-band interference
scenario. The target {−6.2kHz,−1.3km} is clearly visible in
the noise limited region away from the clutter at −3.0kHz →
−0.7kHz and the CW interferer at 11.2kHz Doppler.

domain can have devastating effects on the radar’s target
detection performance. The most common in-band nonlinear
distortion effect observed in the RD space involves the broad-
ening of the main-beam clutter [14]. This clutter broadening
effect can result in weak targets being masked by the nonlinear
distortion. Importantly, the introduction of nonlinear memory
effects is not expected to change the gross nonlinear effect
described above but rather subtly change the structure and
phase of the nonlinear distortion observed. While these subtle
differences might not be enough to alter the target detection
performance from the memoryless case, they can decorrelate
the memoryless mitigation techniques [11].

III. NONLINEAR COMPRESSIVE SENSING

A. Signal Model

In this section we derive the novel NCS algorithm in full.
We start by considering the input signal vector xq for the
qth PRI which consists of a linear combination of received
pulses from both the radar scene and the interference source.
As mentioned previously, xq denotes the signal corresponding
to column q of matrix X and contains a series of fast-time
signal samples n. In standard pulse-Doppler radar processing
a matched filter is applied down each received PRI in order to
convert fast-time, n, into range, r. This is illustrated formally
for a single PRI signal in (3).

xq =

R∑
r=1

ψr x
′
{r,q} = Ψx′q (3)

where ψr represents column vector r of the fast-time filter
matrix Ψ size N × R which can take the form of a Toeplitz
convolution matrix; and x′q denotes the range converted sig-
nal vector for PRI q size R × 1. Now that the received
PRI signals have been converted from fast-time into range,
their underlying structure can be studied in the slow-time
dimension which acts along the rows of matrix X′ where
X′ =

[
x′1 x′2 . . . x′Q

]
. Note in this paper we adopt the

convention whereby row vectors are denoted by the accent
tilde e.g. x̃′r = [x′{r,1} x

′
{r,2} . . . x′{r,Q}]. Let us therefore

examine the slow-time signal vector for a single range gate r.
The observed signal vector x̃′r can be represented as a linear
combination of J frequency vectors {φ̃j}Jj=1 where each

frequency vector is weighted by the corresponding complex
coefficient θ{r,j}. Therefore the row vector θ̃r, where θ̃r =
[θ{r,1} θ{r,2} . . . θ{r,J}], contains a set of Fourier coefficients
that describes the slow-time behaviour of the scatterers at a
particular range gate r. This is displayed formally in (4) below,

x̃′r =
1√
J

J∑
j=1

θ{r,j} φ̃j = θ̃rΦ (4)

where Φ is a frequency basis matrix of size J×Q comprising
the row vectors φ̃j . By combing (3) and (4) we can define
the two-dimensional linear signal model (5) which effectively
describes the simple radar processing operation applied in a
pulse-Doppler radar. In (5), the Fourier vectors θ̃r have been
concatenated in range to form the matrix Θ of size R×J , e.g.
Θ =

[
θ̃
T

1 θ̃
T

2 . . . θ̃
T

R

]T
where T denotes the matrix transpose

operation.
X = ΨΘΦ (5)

Henceforth the matrices in (5) are referred to as follows:
Ψ represents the range projection matrix that maps range to
fast-time, Φ describes the slow-time Fourier basis matrix and
Θ denotes the corresponding signal model regressors. Impor-
tantly, in this paper we assume that the radar transmits a single-
tone waveform resulting in the matched filter operation being
redundant as fast-time is directly equivalent to range in our
received signal matrix. This assumption simplifies the structure
of the range projection matrix Ψ to be an identity matrix of
size N×R where N = R. If the radar were to transmit a more
complex waveform then the range projection matrix Ψ would
need to be updated to represent the new mapping from range to
fast-time. In contrast, the Fourier basis matrix has a size J×Q
and is constructed so that each column of the orthonormal
matrix Φ represents an independent frequency vector. When
dealing with the radar signal model (5), it is often convenient
to adopt the elementwise formalisation stated in (6) below.

x{n,q} =
∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q} (6)

In (6), the subscripts n, q, r, j are used to denote the elements
of the corresponding matrix3. Additionally, the subscripts
are used to label the dimensions of each specific matrix
with: n representing the fast-time dimension, q indicating the
slow-time dimension, r denoting the range dimension and j
representing the Doppler dimension. Importantly, it is clear
from (6) that the model regressors themselves describe the
entire range-Doppler detection space.

Finally, we define the nonlinear observation model (7)
which relates the measured nonlinear output matrix Y to
the linear regressor matrix Θ by combining the radar signal
model (5) with the specific black-box nonlinear receiver model
denoted by function Γ(.).

Y = Γ(X) = Γ(ΨΘΦ) (7)

By integrating this nonlinear observation model into the radar
processing, the problem of recovering the linear input signal

3When indexing elements from a matrix, a lowercase symbol is used if the
variable represents a set of signals while an uppercase symbol is used if it
represents a basis/projection matrix.
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X is equivalent to estimating the model regressor matrix
Θ. Importantly, this allows prior knowledge of the radar
detection space to be incorporated into the estimation process.
The problem can therefore be setup as a sparse nonlinear
optimisation one where the linear regressor matrix Θ can
be estimated from the measured nonlinear output matrix Y.
Like most solutions to sparse signal processing problems,
the NCS algorithm is signal dependent and has an iterative
formalisation. The algorithm’s sparsity constraint and resultant
signal dependence are discussed in detail at the end of this
section once the iterative step has been derived in full. We
start however by considering the effect of introducing noise to
the nonlinear observation model in the following section.

B. Dealing with Noise

When dealing with noise in the nonlinear observation model
we consider two independent noise sources: input noise U and
output noise W. The former is additive noise present at the
input of the receiver. The latter is additive noise present at
the output of the receiver. For linear systems these could be
used interchangeably [25], [26], however due the nonlinearity
in the observation model we must start by treating these
noise sources separately. Therefore, U might be thought of
as representing the background noise from the radar scene
with W representing the thermal noise in the RF receiver. If
we assume that the black-box behavioural model (1) accurately
captures the forward nonlinearity, then the output noise W can
be considered to be genuinely additive and uncorrelated from
sample to sample. It is therefore straightforward to address by
simply tagging the N × Q noise matrix W to the nonlinear
output matrix Y. It is important to note that the output noise
term W may also be viewed as accounting for un-modelled
terms in the in-band nonlinear behavioural model (1) i.e. terms
beyond the P th one. In which case, the output noise will be
signal dependent and most likely correlated from sample to
sample in the fast-time dimension n.

The input noise is more challenging to deal with in the case
of the nonlinear observation model as unlike the linear case,
we cannot assume that each output sample is a linear combi-
nation of signal plus noise. To study this further we follow the
input noise through the memoryless forward nonlinear model
described by (1) where L = 1. The full matrix form of the
linear signal model with input noise is shown below. The input
noise is represented by U and is a matrix of size N ×Q.

X = ΨΘΦ + U (8)

For mathematical simplicity we continue with an elementwise
formalisation where each dimension is labelled using the
previously defined subscripts. Thus, the elementwise signal
model takes the following form:

x{n,q} =
∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q} + u{n,q} (9)

The memoryless observation model is formed by combining
the elementwise formalisation of (7) with the BBTS black-
box behavioural model from (1) where L = 1. Thus, the

elementwise form of the memoryless nonlinear observation
model is as follows,

y{n,q} =

P∑
p=0

h2p+1|x{n,q}|2p x{n,q} + w{n,q} (10)

Substituting (9) into (10) leads to,

y{n,q} =

P∑
p=0

h2p+1

∣∣∣∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}+ u{n,q}

∣∣∣2p{∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}+ u{n,q}

}
+ w{n,q}

(11)
For what might be called the signal limited case,∣∣∑

j

{∑
r Ψ{n,r}θ{r,j}

}
Φ{j,q}

∣∣ >> ∣∣u{n,q}∣∣, we find that∣∣x{n,q}∣∣2p ≈ ∣∣∑
j

{∑
r Ψ{n,r}θ{r,j}

}
Φ{j,q}

∣∣2p. Thus, (16)
can be reduced to the following form:

y{n,q} =

P∑
p=0

h2p+1

∣∣∣∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}

∣∣∣2p{∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}+ u{n,q}

}
+ w{n,q}

(12)
and expanding out the brackets,

y{n,q}=
P∑
p=0

h2p+1

{∣∣∣∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}

∣∣∣2p
∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}

}

+ u{n,q}

P∑
p=0

h2p+1

∣∣∣∑
j

{∑
r

Ψ{n,r}θ{r,j}

}
Φ{j,q}

∣∣∣2p+ w{n,q}

(13)
If we now re-define the signal model to remove the noise
term u{n,q} as in (6), the associated memoryless nonlinear
observation model becomes:

y{n,q} =

P∑
p=0

h2p+1

∣∣x{n,q}∣∣2p x{n,q}
+ u{n,q}

P∑
p=0

h2p+1

∣∣x{n,q}∣∣2p + w{n,q}

(14)

Examining (14) it is clear that in the signal limited case the
associated input noise term is separate from the dominant
nonlinear response described by (10). This strictly additive
nature allows the input noise term to be absorbed by the output
noise term w{n,q}. We rename w{n,q} as system modelling
error as it now encompasses both output and input noise terms.
In essence, the system modelling error captures any deviation,
both noise or otherwise, from the black-box behavioural model
output and the true nonlinear output. Importantly, this novel
approach for treating the noise in the nonlinear observation
model will be validated in section IV of this paper.



6

C. IHT Algorithm for NCS
Now that the linear signal model has been defined in (5)

we derive the IHT algorithm’s iterative step in full. As with
the input noise analysis above, we employ an elementwise
formalisation for simplicity. By combining the BBVS expres-
sion (1) with the nonlinear observation model (7) we rewrite
the nonlinear output signal y{n,q} in terms of the elementwise
nonlinear function F{n,q,p,{i1,...,i2p+1}}:

y{n,q} =

P∑
p=0

{
L−1∑
i1=0

. . .

L−1∑
i2p+1=0

}
h{2p+1,{i1,...,i2p+1}}

F{n,q,p,{i1,...,i2p+1}} + w{n,q}
(15)

where F{n,q,p,{i1,...,i2p+1}} takes the generalised BBVS form,

F{n,q,p,{i1,...,i2p+1}} =

p∏
s=1

x∗{n−is,q}

2p+1∏
d=p+1

x{n−id,q} (16)

In (15) and (16), i denotes the baseband sample delay as
previously defined. As with any compressive sensing (CS)
problem the task for the NCS IHT algorithm is to recover the
desired signal x{n,q} from the corrupted output signal y{n,q}.
If we assume that the modelling error w{n,q} is small then we
may define the observation error e{n,q} as follows:

e{n,q} = y{n,q}−
P∑
p=0

{
L−1∑
i1=0

. . .

L−1∑
i2p+1=0

}
h{2p+1,{i1,...,i2p+1}}F{n,q,p,{i1,...,i2p+1}}

(17)
with the corresponding least squares (LS) cost function, C,
defined in the usual manner (18).

C =
∑
q

∑
n

e∗{n,q}e{n,q} (18)

By seeking an iterative gradient-based solution the above cost
function can by minimised with respect to the unknown linear
signal model parameters Θ subject to any constraints on Θ
e.g. sparsity. Unlike Blumensath’s IHT algorithm for NCS [21]
which dealt with the strictly real case, the cost function in
(18) has been derived in the baseband domain and is therefore
complex in nature. This is potentially problematic for the IHT
algorithm as the usual mathematical concept of derivation
to obtain a gradient is only defined for real numbers [27],
[28]. An operational solution for the optimization of real cost
functions as a function of a complex vector was developed by
Brandwood in [29] and is applied here to deduce the gradient
step. This will require a 1 × J row vector of co-factors for
each range gate regressor vector θ̃r.

dC

dθ̃r
=

[
∂C

∂θ{r,1}

∂C

∂θ{r,2}
. . .

∂C

∂θ{r,J}

]
(19)

and associated gradient vector,

∇C(θ̃r) =

{
dC

dθ̃r

}∗
(20)

Two equations define the gradient step in the iterative learning
procedure:

θ̃{k}r = θ̃{k−1}r − µ∇C(θ̃{k−1}r ) (21)

and a constraint step which is applied to the entire R × J
regressor matrix Θ{k}.

Θ{k} =
[
θ̃
{k}T
1 θ̃

{k}T
2 . . . θ̃

{k}T
R

]T
Θ{k} ← PA(Θ{k}) (22)

In (21) and (22); PA(.) denotes the projection operator that
enforces the radar sparsity constraint, µ represents the step
parameter and k denotes the IHT iteration number. These
steps are applied repeatedly until the LS error C is suitably
small at which point the algorithm can be considered to have
converged. Obviously in the full formalisation of the IHT
algorithm for NCS, the regressor matrix Θ{k} must be updated
as part of a loop over range gate r. This is illustrated in
Algorithm 1 where the full algorithm is presented. Importantly,
the function vec(.) on line 7 of Algorithm 1 denotes the
vectorisation operation which stacks matrices in a column-
wise manner and H denotes the matrix Hermitian/conjugate
transpose.

Algorithm 1 IHT algorithm for NCS. The algorithm runs for a
maximum of kmax iterations or at least until it has converged
to a minimum-error solution, see line 10. The model regressors
Θ are initialized during the first iteration, see line 3, before
being updated in all subsequent iterations. The error matrix E
is calculated in line 6 from the current estimate of the input
signal matrix X before being used to compute the LS error in
line 7. The NCS gradient is calculated in lines 13-18 before
the radar constraint PA(.) is applied in line 20.
Input: kmax, Ψ, Y , Φ, Γ, R, µ, PA

1: for k = 1 : kmax do
2: if (k = 1) then
3: Θ = ΨHY ΦH Initialization
4: else
5: X = ΨΘΦ
6: E = Y − Γ(X) Calculate error matrix
7: C = vec(E)H vec(E) Compute LS error
8: if (k > 2) then
9: if (C{k} > C{k−1}) then

10: break Convergence condition
11: end if
12: end if
13: for r = 1 : R do
14: dC

dθ̃r
=
[

∂C
∂θ{r,1}

∂C
∂θ{r,2}

. . . ∂C
∂θ{r,J}

]
15: ∇C(θ̃r) =

{
dC
dθ̃r

}∗
16: θ̃r = θ̃r − µ∇C(θ̃r) Calculate NCS gradient
17: end for
18: Θ =

[
θ̃T1 θ̃T2 . . . θ̃TR

]T
19: end if
20: Θ = PA(Θ) Apply radar constraint
21: end for
Output: Estimated Θ̂
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Blumensath showed in [21] that the IHT algorithm can
theoretically recover a sparse signal observed through a non-
linear function under similar assumptions to those made in
the linear CS case. However, Blumensath assumes that the
nonlinear observation has a proper linear approximation which
effectively projects it back into a linear function. In [22] and
[23], the NCS algorithm is extended to exploit knowledge
of the nonlinear function through which the input signal is
observed. While the nonlinear functions in [22] and [23] are
more complicated than that in [21] both are still strictly real
and have a purely memoryless formalisation. For the NCS
algorithm to be extended to the complex BBVS case we must
consider the complex gradient calculation more carefully.

D. Calculating the Gradient

In order for the IHT algorithm to converge to the correct
solution, the LS cost function C must be minimised with
respect to the unknown model regressor matrix Θ subject
to the chosen radar constraint PA(.). The gradient step (21)
therefore plays a crucial role in the iterative learning procedure
as it constantly steers the algorithm towards the minimum
of the cost function. The calculation of the gradient is non-
trivial in the NCS algorithm as the desired signal has been
observed through a complex nonlinear function. Let us start
by considering a single term ∂C

∂θ{r,j}
from the vector of co-

factors described by (19). As with the previous sections in this
paper we adopt an elementwise formalisation for mathematical
simplicity.

∂C

∂θ{r,j}
=

∂

∂θ{r,j}

{∑
q

∑
n

e∗{n,q}e{n,q}

}
=
∑
q

∑
n

{
e∗{n,q}

∂

∂θ{r,j}
{e{n,q}}+

∂

∂θ{r,j}
{e∗{n,q}}e{n,q}

}
(23)

Substituting (17) in for e{n,q} we find,

∂C

∂θ{r,j}
=

−
∑
q

∑
n

{
e∗{n,q}

P∑
p=0

{
L−1∑
i1=0

. . .

L−1∑
i2p+1=0

}
h{2p+1,{i1,...,i2p+1}}

∂

∂θ{r,j}
{F{n,q,p,{i1,...,i2p+1}}}

+ e{n,q}

P∑
p=0


L−1∑
i1=0

. . .

L−1∑
i2p+1=0

h∗{2p+1,{i1,...,i2p+1}}

∂

∂θ{r,j}
{F ∗{n,q,p,{i1,...,i2p+1}}}

}
(24)

By applying the chain rule of differentiation to (24) we can
expand the expression to the following form,

∂C

∂θ{r,j}
=

−
∑
q

∑
n

{
e∗{n,q}

P∑
p=0


L−1∑
i1=0

. . .

L−1∑
i2p+1=0

h{2p+1,{i1,...,i2p+1}}{{∂F{n,q,p,{i1,...,i2p+1}}

∂x{n−i1,q}

∂x{n−i1,q}

∂θ{r,j}
+
∂F{n,q,p,{i1,...,i2p+1}}

∂x∗{n−i1,q}
∂x∗{n−i1,q}

∂θ{r,j}

}
+ . . .+

{∂F{n,q,p,{i1,...,i2p+1}}

∂x{n−i2p+1,q}

∂x{n−i2p+1,q}

∂θ{r,j}

+
∂F{n,q,p,{i1,...,i2p+1}}

∂x∗{n−i2p+1,q}

∂x∗{n−i2p+1,q}

∂θ{r,j}

}}

+ e{n,q}

P∑
p=0


L−1∑
i1=0

. . .

L−1∑
i2p+1=0

h∗{2p+1,{i1,...,i2p+1}}{{∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x{n−i1,q}

∂x{n−i1,q}

∂θ{r,j}
+
∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x∗{n−i1,q}
∂x∗{n−i1,q}

∂θ{r,j}

}
+ . . .+

{∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x{n−i2p+1,q}

∂x{n−i2p+1,q}

∂θ{r,j}

+
∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x∗{n−i2p+1,q}

∂x∗{n−i2p+1,q}

∂θ{r,j}

}}}
(25)

As discussed previously, the derivative of a complex function
of a complex variable does not exist in general. However, using
the theory developed in [29] it can be defined to give a gradient
for a real function C of a complex variable θ{r,j} if θ∗{r,j} is

treated as a constant and
∂θ∗{r,j}
∂θ{r,j}

= 0. Therefore, in the context
of the NCS algorithm:

x{n−i2p+1,q} =
∑
j

{∑
r

Ψ{n−i2p+1,r}θ{r,j}
}

Φ{q,j};

∂x{n−i2p+1,q}

∂θ{r,j}
=
∑
j

∑
r

Ψ{n−i2p+1,r}Φ{q,j};

x∗{n−i2p+1,q} =
∑
j

{∑
r

Ψ∗{n−i2p+1,r}θ
∗
{r,j}

}
Φ∗{q,j};

∂x∗{n−i2p+1,q}

∂θ{r,j}
= 0;

(26)

Additionally, since
∂x∗{n−i2p+1,q}

∂θ{r,j}
= 0 then x∗{n−i2p+1,q} can

also be treated as a constant for other partial derivatives when
applying the chain rule. By applying these simple rules to
(25) the form of the gradient can be drastically simplified.
Importantly, the Fourier basis matrix Φ is not dependent on
range and can therefore be removed as a common factor
from the summation over p. Thus, the final expression for
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the gradient takes the following form,

∂C

∂θ{r,j}
= −

∑
q

Φ{q,j}
∑
n

{

e∗{n,q}

P∑
p=0


L−1∑
i1=0

. . .

L−1∑
i2p+1=0

h{2p+1,{i1,...,i2p+1}}{{∂F{n,q,p,{i1,...,i2p+1}}

∂x{n−i1,q}

}
Ψ{n−i1,r} + . . .

+
{∂F{n,q,p,{i1,...,i2p+1}}

∂x{n−i2p+1,q}

}
Ψ{n−i2p+1,r}

}

+ e{n,q}

P∑
p=0


L−1∑
i1=0

. . .

L−1∑
i2p+1=0

h∗{2p+1,{i1,...,i2p+1}}{{∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x{n−i1,q}

}
Ψ{n−i1,r} + . . .

+
{∂F ∗{n,q,p,{i1,...,i2p+1}}

∂x{n−i2p+1,q}

}
Ψ{n−i2p+1,r}

}}

(27)

Integrating the above gradient expression with the rest of the
IHT algorithm described in Algorithm 1 completes the iterative
step of the NCS technique for the complex BBVS case.
However, for the IHT algorithm to minimize the cost function
with respect to the unknown linear signal model parameters
Θ, the constraint step (22) must be applied effectively at each
iteration. The nature of this radar constraint is discussed in
detail in the next section.

E. Radar Constraint Step

The choice of the constraint applied at step (22) will be
signal dependent and therefore unique to the radar’s mode of
operation. For the purposes of this paper we focus on the
MPRF mode but the algorithm is not limited to this case.
As mentioned previously, our unique formalisation of the
NCS algorithm means that vector θ̃r represents the Doppler
spectrum at range gate r. We choose to exploit the sparsity
constraint here as for the MPRF mode the dominant clutter
is typically limited to a small region of the Doppler spectrum
[26]. Furthermore, we expect the spectral behaviour of the
clutter to be largely consistent across multiple range gates
[26]. Before invoking the sparse threshold constraint PA(.)
we must first consider the unique formalisation of the NCS
algorithm.

In the NCS algorithm, the memory of the BBVS model
acts down the fast-time dimension while the sparse nature of
the MPRF radar signal, which we wish to exploit, exists in
the slow-time dimension. In the case where the nonlinearity
has memory, the estimate θ̃{k}r not only depends on θ̃{k}r but
also θ̃{k}r−1 to θ̃{k}r−{L−1}. Therefore, if the gradient (27) is to
be calculated correctly in the memory case then every range
regressor vector θ̃r must be updated simultaneously at each
iteration. This is displayed formally in (22) where the thresh-
old constraint PA(.) is applied to the full regressor matrix
Θ{k}. Importantly, this is where we exploit our knowledge
of the radar mode in the choice of sparsity level set. The

dependency between the range regressor vectors explains why
the problem’s complexity is intrinsically linked to the memory
of the fast-time nonlinearity. This complexity ultimately man-
ifests itself in the constraint step of the algorithm and can lead
to the NCS algorithm requiring more iterations to converge to
the correct solution.

There are a multitude of different ways to apply the sparse
threshold holding constraint step in (22), however for this
analysis we choose to employ Blumensath’s hard thresholding
method [21], [30]. This is illustrated in Algorithm 2 where
the hard thresholding constraint implemented in this paper is
presented in full. In short, the hard thresholding constraint
PA(Θ{k}) represents a nonlinear operation where all but the
A largest (in magnitude) elements for each range regressor
vector θ̃r are set equal to zero. While the number of retained
regressors is predefined by the specified Doppler sparsity level
for the MPRF radar scene, the locations of these A regressors
are independently determined for every range regressor vector
θ̃r at each iteration k. Crucially, this allows the hard threshold-
ing algorithm to identify artifacts in the scene such as targets,
inhomogeneous clutter and interference that do not exist across
all range gates. For best results the Doppler sparsity level
should be set to be slightly lower than the true sparsity level
of the MPRF radar scene to provide the hard thresholding
algorithm with some leeway when determining the locations
of the strongest regressors in each range gate vector θ̃r.

Algorithm 2 Hard thresholding algorithm that implements the
radar constraint step PA(Θ{k}) at every iteration k of the NCS
algorithm. Where the sort(.) function outputs a vector of size
1 × J that contains the indices of θ̃r arranged in ascending
order by the magnitude of the elements.
Input: Θ, R, J , A

1: for r = 1 : R do
2: α̃ = sort(|θ̃r|) Order regressor indices by magnitude
3: for j = 1 : {J −A} do
4: β = α{j}
5: θ{r,β} = 0 Zero weakest A regressors
6: end for
7: end for

Output: Θ

IV. SIMULATION ARCHITECTURE

In order to test the performance of the novel NCS algorithm
derived above, an MPRF radar simulator capable of simu-
lating in-band nonlinear distortion effects with memory had
to be developed. In short, the comprehensive radar simulator
simulated the pre-defined radar scene for a standard MPRF
mode before passing the raw time-domain signals through the
black-box nonlinear receiver model described by (15) and (16).
The MPRF simulator was set-up specifically to generate the
problematic in-band nonlinear effects detailed in section II and
was configured to operate entirely in the BB domain. Once the
radar scene and CW interferer characteristics were defined, the
structure of the in-band nonlinear distortion effects produced
in the simulation were entirely governed by the particular
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nonlinear transfer function chosen. Furthermore, the gross
level of the nonlinear distortion generated in the simulated
RF receiver was determined by the magnitude of the specific
nonlinear coefficients chosen for the memoryless case; h1
and h3. The magnitude of the linear coefficient h1 was set
equal to the RF receiver gain, while the magnitude of the
third order coefficient h3 was subsequently selected so that
the unwanted nonlinear effects sat just below the level of the
noise floor when the CW interferer was not present in the
scene. In specifying the forward nonlinearity in this manner,
we can assume that the simulated radar operates within its
linear region when the interference is not present in the scene.
Additionally, in order to ensure that the same strength of
nonlinear effect was being generated in the radar receiver
when memory effects were introduced to the problem, each
BBVS kernel was normalised so that the respective power
contributed from each group of terms in the BBVS model
(15) was equivalent to that from the strictly memoryless case.

For this analysis, we assume that the dominant nonlinear
receiver effects can be captured by terms up to the cubic order
of the BBVS model [10], [12]. For the in-band nonlinear
scenario, this corresponds to the case where the black-box
receiver model, (15) and (16), has a nonlinear order of P = 1.
We can therefore simplify the expression for the forward
nonlinearity to the following form,

y{n,q} =

L−1∑
i1=0

h{1,{i1}}F{n,q,0,{i1}}

+

L−1∑
i1=0

L−1∑
i2=0

L−1∑
i3=0

h{3,{i1,i2,i3}}F{n,q,1,{i1,i2,i3}}

(28)

where,

F{n,q,0,{i1}} = x{n−i1,q}

F{n,q,1,{i1,i2,i3}} = x∗{n−i1,q}x{n−i2,q}x{n−i3,q}
(29)

Furthermore, the generalised expression for the NCS gradient
can be drastically simplified for this specific case by: substi-
tuting (29) into (27), setting P = 1, performing the partial
differentiation and collecting terms. The final expression for
the NCS gradient implemented in the MPRF radar simulator
therefore takes the following form,

∂C

∂θ{r,j}
= −

∑
q

Φ{q,j}
∑
n

{
e∗{n,q}

L−1∑
i1=0

h{1,{i1}}Ψ{n−i1,r}

+ e∗{n,q}

L−1∑
{i1,i2,i3}=0

h{3,{i1,i2,i3}}

{{
x∗{n−i1,q}x{n−i3,q}

}
Ψ{n−i2,r}

+
{
x∗{n−i1,q}x{n−i2,q}

}
Ψ{n−i3,r}

}
+ e{n,q}

L−1∑
{i1,i2,i3}=0

h∗{3,{i1,i2,i3}}
{
x∗{n−i2,q}x

∗
{n−i3,q}

}
Ψ{n−i1,r}

}
(30)

Importantly, the matrix rotations denoted by Ψ{n−i2p+1,r} in
the above expression for the NCS gradient were performed
in the simulations via a linear shift rather than a circular
one. This simple extension meant that the simulations were

more realistic than the theoretical NCS algorithm which is
why it was implemented for all of the results presented in this
paper. In essence, the linear shift introduces edge effects to
the problem as not all of the range regressors vectors, θ̃r, that
affect the gradient are updated as part of the IHT iteration.

While the magnitude of the linear gain and the nonlinear
distortion generated in the forward black-box receiver model
were fixed in the simulation, the particular choice of complex
BB kernel coefficients were subject to change. It is understood
that introducing nonlinear memory effects is not expected to
change the gross level of the distortion observed at the output
of the radar receiver but rather subtly change its structure
and phase. The NCS algorithm was therefore tested against
a wide variety of different nonlinear transfer functions with
varying degrees of memory in order to gain a comprehensive
understanding of its performance. Crucially, the nonlinear
models tested in the radar simulation had to fit into the Volterra
series framework otherwise the above expression for the NCS
gradient (30) becomes invalid. The specific nonlinear models
tested in the simulation were therefore: the BBTS model,
the BBVS model, the BB Hammerstein model and the BB
parallel Hammerstein model [8], [31]. For each nonlinear
model listed above, the radar simulator was configured to
perform statistical convergence analysis on the NCS algorithm
whereby the algorithm’s mitigation performance was tested
against randomly generated sets of kernel coefficients.

While this broad convergence analysis is important, it is
also important to determine the true performance the NCS
algorithm for a MPRF radar mode with a realistic black-box
nonlinear receiver model. Unfortunately, there is a severe lack
of published data in the available literature on the memory
behaviour of front-end receiver amplifiers. One of the very
few papers that has published such data is [8] by Vansebrouck
et al. In [8], the authors’ employ a quintic, P = 2, parallel
Hammerstein model with memory length L = 5 to describe
a wideband communications receiver centred on 250MHz. It
is clear from the data published in [8] that the third-order
nonlinear effects are far more dominant than the fifth order
distortion generated which allows us to truncate Vansebrouck’s
nonlinear model to order P = 1. Furthermore, to implement
the nonlinear model described in [8] in our MPRF radar
simulator we must translate the passband nonlinear impulse
response from a centre frequency of 250MHz to baseband.
In performing this translation, we convert the real passband
coefficients to complex BB coefficients and disregard the even
order terms in the model as they fall outside the bandwidth
of the desired receiver channel. The final forward nonlinear
model implemented in the MPRF radar simulator was there-
fore a BB parallel Hammerstein model with coefficients equal
to those displayed in Table I. In terms of the full Volterra
formalisation, (15), these coefficients correspond to the on-
diagonal elements of the respective Volterra kernels, i.e. where
i1 = i2 = i3, with all other off-diagonal elements set equal
to zero. Note, in order to distinguish this specific nonlinear
model from other BBVS models employed in this paper we
refer to it as the “BBVS-[8]” model as it was derived from
the parallel Hammerstein model in [8]. An example RD plot
outputted from the MPRF radar simulator that corresponds to
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the above parallel Hammerstein model is displayed in Fig. 3
with the corresponding desired linear output displayed in Fig.
2.

i Linear Kernel:
h{1,{i}}

Cubic Kernel:
h{3,{i,i,i}}

0 {1 + 0j} {0.1886 + 0j}
1 {0} {0 + 0.1766j}
2 {0} {−0.0881 + 0j}
3 {0} {0 + 0.0072j}
4 {0} {0.1625 + 0j}

TABLE I: List of the dominant BBVS kernel coefficients
implemented in the MPRF radar simulator for the NCS per-
formance analysis. All coefficients not listed in Table I were
set equal to zero in the BBVS-[8] model.
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Fig. 3: Simulated RD plot for the BBVS-[8] nonlinear in-band
interference scenario. Target {−6.2kHz,−1.3km} masked by
clutter broadening effect at −8.0kHz → −5kHz Doppler.

In order to study the performance of the novel NCS al-
gorithm for a typical MPRF radar mode in detail, statistical
probability of detection (PD) analysis was performed in the
RD domain on a single target. On each burst, the MPRF radar
simulator generated input receive data matrices, X, consisting
of 256 received pulses based on a pre-defined radar scene.
The simulation then generated three output matrices, Y, by
passing the input data through the following black-box receiver
models: the BBVS-[8] model, the corresponding BBTS model
and finally the linear gain model. In all cases, both input
and output noise were added to the received signals with the
SNR level referenced to the input so that the output noise
level was not biased by the specific nonlinear transfer function
chosen, SNRnoise = 35dB. A further three data sets were then
generated by applying the memory rich NCS algorithm to the
BBVS-[8] receiver output and by applying the memoryless
NCS algorithm to both the BBVS-[8] and BBTS outputs
respectively. Simulation results for a single burst illustrating
the nonlinear distortion generated from the BBVS-[8] model
and the subsequent correction by the memory rich NCS
algorithm are displayed in Fig. 3 and Fig. 4 respectively. It
is clear from Fig. 4 that the memory rich NCS algorithm has
performed well in restoring the simulated radar’s performance
back to the desired linear case. However, the performance
and robustness of the algorithm can be studied in much more
detail through the stochastic based PD analysis. It is important

to recognise at this point that the noise assumptions invoked
during the derivation of the NCS algorithm have not been
implemented in the radar simulator. Therefore, the fact that
the NCS algorithm has recovered the correct solution in Fig.
4 clearly validates the noise approach detailed in section III-B.

As well as performing the PD analysis on the scenarios
discussed above, further results were generated to probe the
robustness of the algorithm for varying levels of modelling
error, w{n,q}. While all of the simulations conducted had
some degree of modelling error due to the input and out-
put noise added to the receive data matrices, more in-depth
analysis was required to fully understand the limitations of
the algorithm. The NCS algorithm is fundamentally designed
around the forward black-box receiver model and therefore its
performance is limited by how well the nonlinear behaviour of
the RF receiver has been characterised. For a real radar system,
it is highly likely that this nonlinear system identification
will be performed offline and it is therefore reasonable to
assume in the simulations that the forward nonlinearity has
been identified to a high degree of accuracy. However, it
is important to understand how much modelling error the
algorithm can tolerate before it fails. To perform this modelling
error analysis as part of the simulation, the MPRF radar
simulator was configured to identify the forward nonlinearity
for each burst through varying levels of output noise. The
accuracy of the forward nonlinear coefficients was therefore
dependent on the level of the output noise through which
they were learnt. The linear least squares (LLS) algorithm
was used to learn the nonlinear coefficients by means of a
noise identification procedure [9] with the residual error value
providing an accurate measure of the modelling error in the
simulation.
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Fig. 4: RD map for the BBVS-[8] in-band interference
scenario mitigated by the memory rich NCS algorithm.
The algorithm has succeeded in recovering the target
{−6.2kHz,−1.3km} from the nonlinear clutter broadening
effect.

V. SIMULATION RESULTS

A. Convergence Analysis

For the NCS convergence analysis, the mitigation algorithm
was tested against different classes of randomly generated
nonlinear transfer functions in order to study its overall con-
vergence properties both in the memoryless and memory rich
case. While this stochastic based convergence analysis will not
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Nonlinear
Model Monotonicity Successful

Convergence %

BBTS Strictly
Monotonic 100

BBTS Non-
monotonic 49

BB
Hammerstein

Strictly
Monotonic 100

BB
Hammerstein

Non-
monotonic 53

BB Parallel
Hammerstein

Strictly
Monotonic 100

BB Parallel
Hammerstein

Non-
monotonic 89

Full BBVS N/A 83

TABLE II: List of NCS convergence results. 100 individual
nonlinear transfer functions were used to generate the suc-
cessful convergence value in each case.

inform us about the effectiveness of the NCS algorithm for all
nonlinear radar receivers, as there are infinitely many, it can
provide us with a better understanding of the specific nonlinear
characteristics that will prove problematic for convergence. We
use the percentage of successful convergence as a measure of
the algorithm’s efficacy, with a 100% convergence defining the
situation where the NCS algorithm always recovers the weak
target from the corrupted RD map, see Fig. 3 and Fig. 4. The
success of the mitigation technique was determined for each
realisation by means of local area average (LAA) target thresh-
olding algorithm combined with a residual error thresholding
technique. The NCS modelling error was strictly limited by
the receiver output noise in this case, SNRnoise = 50dB, as
there was no input noise and the nonlinear coefficients were
set equal to the true forward model coefficients in the NCS
algorithm. The convergence results for the NCS algorithm are
displayed in Table II with every convergence percentage value
determined from 100 realisations of the simulation each with
a unique nonlinear transfer function.

When dealing with nonlinear transfer functions, the concept
of monotonicity is a fundamental one. In the case of a static
nonlinearity, the transfer function is considered strictly mono-
tonic if there exists a one-to-one mapping between the inputs
and the outputs of the nonlinear model [32]. Importantly, if a
function is strictly monotonic then there exists a unique inverse
function that maps the outputs back onto the inputs. If however
this one-to-one mapping does not exist, then the nonlinear
transfer function is described as being non-monotonic and is
therefore non-invertible. In the context of the NCS algorithm,
non-monotonicity of the forward nonlinearity manifests itself
in the LS cost function whereby the ambiguity generates
multiple local minima for the algorithm to converge to. In
other words, there is more than one solution to the problem.
This is most easily observed for the BBTS result in Table
II. We must be very careful when interpreting the conver-
gence results in Table II as the nonlinear transfer functions
generated in the simulation are not representative of a real
RF receiver. However, it is clear from the results that if the
memoryless forward nonlinearity is strictly monotonic then

the NCS algorithm will converge to the correct solution. In
the case where the memoryless nonlinearity is non-monotonic,
the NCS algorithm’s ability to recover the correct solution is
dependent on the particular forward nonlinear transfer function
through which the desired input signal was observed.

In the case where memory is introduced to the forward
nonlinearity, we have to be careful with how we interpret
the concept of monotonicity which is only defined for one-
dimensional functions. We start with the Hammerstein nonlin-
ear model as it the simplest extension from the BBTS model
to the memory case. The Hammerstein model is described
by a memoryless nonlinearity followed by a FIR filter and
therefore its monotonicity is entirely defined by its static
nonlinearity. Examining the convergence results for the BB
Hammerstein model we find that they reflect that of the BBTS
case. This makes sense as the monotonicity of the forward
nonlinearity is defined in exactly the same way as the BBTS
model. Importantly, the NCS algorithm has been shown to
converge to the correct solution consistently in the case where
the forward nonlinearity exhibits nonlinear memory effects.
Taking this analysis one step further, the Hammerstein model
is extended to the parallel Hammerstein model by applying
an individual FIR filter to each term in the static nonlinearity
[8]. In essence, the parallel Hammerstein model consists of
L static nonlinear functions that can be thought of as acting
on individual taps of a FIR filter. Therefore, the nonlinear
transfer function is considered strictly monotonic if all of the
L static nonlinearities are themselves strictly monotonic. In
this case, the convergence of the NCS algorithm is guaranteed
which is indicated by the successful convergence percentage of
100% in Table II. Furthermore, we define the non-monotonic
case for the parallel Hammerstein model to be when any one
of the L static nonlinearities stop being strictly monotonic.
Interestingly, the successful convergence percentage is much
higher in this case than in the standard Hammerstein and
BBTS cases suggesting that the NCS algorithm can tolerate
some degree of non-monotonicity in its nonlinear memory
terms. Finally, we consider the full BBVS model where
unfortunately the nonlinear cross-terms mean that we cannot
define the concept of monotonicity in this case. Examining
the successful convergence percentage for the full BBVS
case we observe that the NCS algorithm can successfully
recover the desired input from the corrupted output even when
the forward nonlinearity exhibits complex nonlinear memory
effects. While the general convergence of the NCS algorithm
cannot be guaranteed in this case, the final result highlights
the capabilities of this novel mitigation technique.

B. Radar PD Analysis

For the PD performance analysis of the NCS algorithm, the
MPRF radar simulator employed an adaptive cell-averaging
constant false alarm rate (CA-CFAR) thresholding technique to
study the simulated radar’s detection performance in the differ-
ent scenarios. The CA-CFAR technique is discussed in detail
in [25] but in short, the algorithm was configured to maintain
a specified probability of false alarm rate (PFAR) which it
achieved by studying the power and statistical behaviour of
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the RD cells in the neighbourhood of the target cell. The
simulated radar therefore exhibits maximum sensitivity when
its receiver operates in the linear regime as in this case the cells
that surround the target cell in the RD map are strictly noise
limited. For the nonlinear scenarios, the level of the unwanted
distortion was set by the memoryless coefficients as discussed
previously with the BBVS-[8] model coefficients described by
those in Table I. Importantly, for this analysis both the BBTS
and BBVS-[8] nonlinearities had strictly monotonic forward
transfer functions. When the CW interferer is introduced to
the radar scene, the unwanted clutter broadening effect drives
the target detection threshold up and consequently reduces the
sensitivity of the sensor. Thus, for the NCS algorithm to restore
the system sensitivity of the radar back to the linear case it
must reduce the level of distortion in the RD detection space
without removing the potential targets from the scene. To study
the sensitivity of the radar in the different scenarios the input
SNR of the radar test target was varied with each SNR value
forming a single data point in the respective PD curves. The
simulation results for the PD analysis are displayed in Fig. 5
with the CA-CFAR algorithm set to maintain a PFAR of 0.2.
For each data point in Fig. 5, RD maps for 400 bursts were
used to estimate the PD value.
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Fig. 5: Performance PD results for the NCS algorithm. Ideal
system sensitivity illustrated by linear receiver curve, red;
Memoryless nonlinear receiver curve, black; Memory rich
nonlinear receiver curve, magenta; Memoryless nonlinear re-
ceiver output corrected by memoryless NCS algorithm, blue;
Memory rich nonlinear receiver output correct by memory rich
NCS algorithm, green; Memory rich nonlinear receiver output
corrected by memoryless NCS algorithm, cyan.

Examining the simulation results in Fig. 5, the first thing
that we observe is that the PD curves for the BBTS and
BBVS-[8] receiver outputs fall off at a much higher input
SNR value than that for the linear gain case. This reflects the
loss of system sensitivity experienced by the simulated radar
in the case where its RF receiver operates in the nonlinear
regime. Somewhat surprisingly, the PD curves for the BBTS
and BBVS-[8] cases do not lie on top of each other in Fig. 5
despite the strength of the nonlinearities being matched in the
MPRF radar simulator. This slight deviation between the two
curves is not due to any variation in the strength of the clutter

broadening effect but rather reflects subtle phase changes
introduced by the nonlinear memory that alters the relationship
between the nonlinear distortion and the test target. Examining
the blue curve in Fig. 5, it is clear that the memoryless
NCS algorithm has succeeded in fully restoring the sensitivity
of the simulated radar in the case where the nonlinear RF
receiver is strictly memoryless. This is a significant result as it
confirms that the NCS technique can be successfully employed
to mitigate nonlinear receiver effects in modern radar systems.
Interestingly, when the memoryless NCS technique is applied
to the memory rich BBVS-[8] output the mitigation algorithm
fails to restore any of the simulated radar’s lost performance.
Much like the memoryless NLEQ techniques discussed in [11],
the memoryless NCS algorithm is effectively decorrelated by
the subtle amplitude and phase effects introduced by nonlinear
memory terms in the forward receiver model. This confirms
that if memory effects are significant in the RF receiver
then memory rich mitigation techniques must be employed
if system sensitivity is to be restored.

In the case of the NCS mitigation technique, the result
of introducing complex memory effects to the algorithm’s
formalisation is displayed in Fig. 5, see the green curve.
Clearly, introducing the memory terms to the NCS algorithm
has drastically improved the mitigation technique’s perfor-
mance in the BBVS-[8] scenario with the simulated radar’s
system sensitivity more or less restored back to the linear
gain case. This was fundamentally due to the expression for
the NCS gradient (30) which incorporated complex nonlinear
memory effects so that each iteration of the IHT algorithm was
correctly pointed towards the minimum of the cost function.
This is a significant result as it shows that the novel NCS
algorithm provides a forward modelling framework capable of
compensating for complex nonlinear memory effects generated
in the modern radar receiver.

C. Modelling Error Analysis

In this section of the simulation results we examine the
robustness of the NCS algorithm to varying levels of modelling
error. As discussed previously, the amount of modelling error
in the PD simulations was governed by the input/output noise
of the simulated radar receiver as well as the error in the
forward model coefficients implemented in the NCS algorithm.
While the SNR ratio was fixed at 35dB for both the input
and output noise in all simulations, the level of uncertainty
in the NCS forward model coefficients was varied. The PD
analysis performed by the MPRF radar simulator was therefore
exactly the same as that described in the previous section, with
the exception that the NCS algorithm was applied multiple
times on each burst using different sets of forward model
coefficients. We focus on the scenario where the nonlinearity
is described by the BB parallel Hammerstein model in Table
I, BBVS-[8], and is mitigated by the corresponding memory
rich NCS algorithm. The results are displayed in Fig. 6 with
each PD data point estimated from 400 bursts and the CA-
CFAR set to maintain a PFAR of 0.2 as before. As discussed
previously, the modelling error (ME) is given by the residual
error for the LLS noise identification procedure.
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Fig. 6: Modelling error PD analysis for the NCS algorithm.
Desired linear gain PD curve shown in red with the corre-
sponding BBVS-[8] nonlinear PD curve shown in magenta.
PD curves corresponding to the NCS mitigated outputs are
reference by their ME level from low to high respectively.
A ME value of −∞dB describes the case where the true
nonlinear coefficients are employed in the NCS algorithm.

Examining the PD result in Fig. 6, it is clear that mod-
elling error in the forward black-box receiver model can have
quite a profound effect on the mitigation performance of the
NCS algorithm. This makes sense as the mitigation technique
is fundamentally designed around the forward nonlinearity.
Encouragingly, the NCS algorithm can tolerate a reasonable
amount of modelling error in the forward model coefficients
before a significant drop in performance is observed. This
drop-off in performance of the NCS algorithm appears to occur
quite sharply around ME = −10dB, which suggests that
beyond this point the iterative learning procedure struggles
to consistently identify the minimum of the cost function and
therefore the desired solution. Despite this, the NCS algorithm
can still provide noticeable performance improvements from
the unmitigated BBVS-[8] case even when the modelling error
is significantly distorting the IHT estimate on each iteration.

VI. TRIALS DATA RESULTS

In order to study the performance and robustness of the NCS
algorithm further, the novel mitigation technique was tested
against real radar trials data that had been digitally corrupted
by a nonlinearity and a synthetically generated frequency
modulated CW (FMCW) interferer. The FMCW interference
scenario was chosen for this analysis as it is an extremely
popular waveform for modern radar systems [2] meaning
it is also one of the most likely signals to cause mutual
interference in the crowded RF environment. Importantly,
unlike the simple CW interferer the FMCW waveform has
a bandwidth which for this analysis was chosen to be equal
to the simulated bandwidth of the radar receiver. Performing
this type of analysis will further test the robustness of the
NCS algorithm as the high bandwidth nature of the FMCW
interferer will generate more sophisticated nonlinear memory
effects in the simulated nonlinearity. This is due to the fact that
the memory of a system is intrinsically linked to its bandwidth
[8], [20]. The trials data used for this analysis was collected
by Leonardo’s experimental AEXAR system as part of a flight
trial where the radar was setup to operate in an MPRF mode

with a downward looking configuration. The range, Doppler
and power values of the input trials data were normalised
for this analysis so that they matched those from the MPRF
radar simulator. By performing this normalisation, the same
nonlinear scenario studied in the previous results section could
be digitally stimulated for the trials data case. Thus, the
forward nonlinearity took the form of the BBVS-[8] model
with coefficients equal to those listed in Table I. The final
results from the trials data analysis are displayed in Fig. 7 with
mitigation outputs from both the memoryless and memory rich
NCS algorithm presented. In both cases, the forward model
coefficients employed in the NCS algorithms were learnt by
means of a noise identification procedure which importantly
allowed additional modelling error to be introduced to the
memory rich case. The residual LLS forward modelling error
attributed to the memory rich case was therefore−14dB which
compared to −6dB for the memoryless NCS case.

Examining the trials data results from Fig. 7 we firstly
observe that the ground clutter in the linear RD map, between
−4kHz → 5kHz Doppler, is noticeably more complex than
the simulated clutter generated in the MPRF radar simulator.
This is useful as it allows the performance of NCS algo-
rithm to be tested against a less uniform clutter spectrum
where the sparsity may not be at exactly the same Doppler
locations in each range gate. Importantly, there are three
distinct radar targets in the trials data RD map located around
−9kHz Doppler which can be used as a marker to gauge
the performance of the NCS mitigation technique. In Fig.
7b, these targets are no longer distinguishable from the radar
background as they have become entangled with the nonlinear
clutter broadening effect stimulated by the presence of the
synthetic FMCW interferer in the scene, −4.5kHz Doppler.
It is clear from Fig. 7c that the memoryless NCS algorithm
is incapable of correcting for the nonlinear memory effects
in the radar receiver resulting in the radar targets still being
indiscernible from the background. Examining the final result
in Fig. 7d, we observe that introducing memory terms to the
NCS algorithm allows it to unscramble the complex nonlinear
memory effects generated in the RF receiver and ultimately
restore the sensor’s performance almost back to the linear
case. Crucially, the test targets previously lost in the nonlinear
clutter broadening effect are now clearly identifiable above the
RD background. This is an extremely encouraging result as is
highlights the effectiveness of the NCS algorithm in mitigating
complex nonlinear receiver effects generated by modern radars
in sophisticated clutter and interference scenarios.

VII. CONCLUSION

In this paper, we presented a novel forward modelling
technique designed to digitally compensate for complex non-
linear memory effects in the radar receiver. The technique
builds on the work previously presented by Blumensath in
[21] and was specifically targeted at the in-band interference
scenario in radar. In order for the forward modelling tech-
nique to be successful, Blumensath’s nonlinear compressive
sensing framework had to be extended to represent the unique
processing applied in modern radar systems. Furthermore,
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Fig. 7: Trials data RD plots; (a) Linear gain output; (b)
Nonlinear BBVS-[8] output; (c) BBVS-[8] output mitigated by
memoryless NCS; (d) BBVS-[8] output mitigated by memory
rich NCS. Ground clutter located between −4kHz → 5kHz
Doppler with the synthetically added FMCW interferer located
at −4.5kHz Doppler. The mitigation technique successfully
recovers the strongest targets located around −9kHz Doppler
only when memory terms are introduced to the NCS algorithm.

the NCS algorithm had to be expanded beyond those results
published in [22] and [23] so that complex nonlinear memory
effects could be mitigated by the NCS technique for the
first time. The novel NCS algorithm was tested extensively
by means of a MPRF radar simulator that was capable
of simulating sophisticated nonlinear receiver effects. The
convergence properties of the NCS algorithm were studied
for a wide variety of nonlinear transfer functions with the
convergence of the algorithm guaranteed in the case where the
forward nonlinearity was strictly monotonic. Importantly, more
work needs to be done to fully understand the convergence
behaviour of the NCS algorithm in the non-monotonic case
however a full analysis of this problem is beyond the scope
of this paper.

In addition to the convergence analysis, the NCS algorithm
was shown to successfully mitigate deleterious effects from
both memoryless and memory rich receiver nonlinearities in a
MPRF radar mode through in-depth PD analysis. This impres-
sive mitigation performance was shown to hold for real-world
MPRF radar data and for significant levels of modelling error
built into the forward model of the NCS algorithm. If nonlinear
memory effects prove to be significant in the modern radar
receiver then forward modelling techniques offer a digital
signal processing solution that is not built around the inverse
nonlinear transform. Crucially, the unique formalisation of
the NCS algorithm provides a more explicit framework to
compensate for complex nonlinear memory effects than the
standard NLEQ mitigation techniques.
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