

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Atomic layer deposited Al2O3 passivation layer for few-layer WS2 field effect transistors

Citation for published version:

You, YG, Shin, DH, Ryu, JH, Campbell, EEB, Chung, H & Jhang, SH 2021, 'Atomic layer deposited Al O passivation layer for few-layer WS, field effect transistors', *Nanotechnology*, vol. 32, no. 50, pp. 505702. https://doi.org/10.1088/1361-6528/ac2390

Digital Object Identifier (DOI):

10.1088/1361-6528/ac2390

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Nanotechnology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Young Gyu You^{1,3}, Dong Ho Shin^{1,3}, Jong Hwa Ryu¹, E.E.B. Campbell^{1,2}, Hyun-Jong Chung¹ & Sung Ho Jhang¹

¹ Department of Physics, Konkuk University, Seoul 05029, South Korea

² EaStCHEM, School of Chemistry, Edinburgh University, David Brewster Road, Edinburgh EH9 3FJ, U.K.

E-mail: shjhang@konkuk.ac.kr

July 2021

Abstract.

We have investigated the effect of an Al_2O_3 passivation layer on the performance of few-layer WS₂ FETs. While the performance of WS₂ FETs is often limited by a substantial decrease in carrier mobility owing to charged impurities and a Schottky barrier between the WS₂ and metal electrodes, the introduction of an Al_2O_3 overlayer by atomic layer deposition (ALD) suppressed the influence of charged impurities by high- κ dielectric screening effect and reduced the effective Schottky barrier height. We argue that n-doping of WS₂, induced by positive fixed charges formed at Al_2O_3/WS_2 interface during the ALD process, is responsible for the reduction of the effective Schottky barrier height in the devices. In addition, the Al_2O_3 passivation layer protected the device from oxidation, and maintained stable electrical performance of the WS₂ FETs over 57 days. Thus, the atomic layer deposition of Al_2O_3 overlayer provides a facile method to enhance the performance of WS₂ FETs and to ensure ambient stability.

Submitted to: Nanotechnology

Keywords: WS_2 , Al_2O_3 , field effect transistor, dielectric screening, ambient stability, Schottky barrier

1. Introduction

Two-dimensional van der Waals materials such as transition metal dichalcogenides (TMDC) and graphene have attracted considerable attention owing to their wide variety of electronic properties[1]. Among various TMDC, MoS_2 attracted the most attention due to its excellent electrical properties and robustness, and showed potential as a field-effect transistor (FET)[2, 3, 4] and photo-detector with high sensitivity[5, 6]. Interest in WS_2 , another representative of semiconducting TMDC, has been raised in anticipation of higher carrier mobility than MoS_2 . Because of a smaller effective mass, a higher mobility and on-current density than MoS_2 were expected for $WS_2[7]$ and there have been considerable efforts to investigate WS_2 -based FETs[8, 9].

Despite excellent theoretical mobility of WS_2 , $\sim 250 \text{ cm}^2 V^{-1} \text{s}^{-1}$ for the monolayer at room temperature [10, 11], the performance of WS₂ FETs is limited by three factors. Firstly, charged impurities such as chemical residue and gaseous adsorbates were shown to result in a substantial decrease in carrier mobility [12, 13, 14], similar to the case for $MoS_2[15]$. High- κ oxide could reduce the effect of charged impurities by dielectric screening [16, 17, 18, 19, 20, 21, 22], and Cui et al. [14] reported the enhancement of the mobility in WS_2 FETs by using a thin Al_2O_3 dielectric layer between WS_2 and the SiO_2 substrate. Another limiting factor for the device performance is damage due to oxidation. Oxidation of WS_2 has been reported in many publications [23, 24, 25] and the degradation of WS_2 via oxidation under ambient conditions is a potential obstacle for application as FETs. Polymer, hBN or Ga_2O_3 encapsulation are reported to prevent the degradation in air 23, 26. The last factor affecting the performance of FETs is the Schottky barrier and the contact resistance between WS_2 and electrodes. Achieving low contact resistance in WS_2 by simply using low work function metals is known to be difficult because the Fermi level tends to be pinned at charge neutrality level located in the middle of the bandgap [27, 28, 29, 30]. As an alternative approach, an ultrathin Al_2O_3 layer was inserted between the metal and WS₂ as a depinning layer [30] or heavy doping of WS_2 under the metal is reported to decrease the contact resistance [31, 32]. Heavy doping reduces the Schottky barrier width and enhances the electron tunneling through the barrier.

In this study, 30 nm-thick Al_2O_3 was used as the passivation layer of WS₂ FETs and the effect on the performance of devices was investigated. The introduction of an atomic layer deposited Al_2O_3 overlayer not only suppressed the influence of charged impurities by high- κ dielectric screening but also reduced the effective Schottky barrier height and provided ambient stability for a longer period.

2. Experimental Methods

 WS_2 was prepared by mechanical exfoliation on a 300 nm SiO₂/Si substrate. WS_2 samples were selected with thickness ranging from 3.5 to 12 nm, determined via atomic force microscopy (AFM). Seven WS_2 FETs were fabricated using conventional e-beam

lithography, followed by e-beam evaporation of Ti(5 nm)/Au(50 nm) contacts. Al_2O_3 layers were then grown on the WS_2 FETs by using atomic layer deposition (ALD) at 200 °C. Before the ALD process, the WS_2 devices were exposed to UV-O₃ light for 3 minutes to functionalize the WS_2 surface with weak sulfur-oxygen bonds to provide nucleation sites. [33]. The UV-O₃ pre-treatment also removed any residual e-beam resist on the WS₂ surface, ensuring uniform growth of $Al_2O_3[34]$. For the ALD process, trimethylaluminum (TMA) and deionized water were used as precursors. 30 nm-thick Al_2O_3 was deposited by alternately injecting precursors and N_2 gas $(TMA/N_2/H_2O/N_2)$ injections for 0.2/10/0.2/10 s) over 2 hours (300 cycles with a growth rate of 1 Å per cycle). Fig. 1(a) shows optical images of an exfoliated WS_2 on SiO_2 (upper) and the fabricated WS_2 FET covered with Al_2O_3 film (lower). And Fig. 1(b) displays an AFM image (upper) of the WS_2 FET and the AFM height profiles (lower) along the red line indicated in the AFM image. The height profiles of WS_2 over the SiO_2 substrate, recorded before and after the Al_2O_3 deposition, exhibit almost the same thickness difference of 3.5 nm, indicating the uniform growth of Al_2O_3 over the surface. Fig. 1(c) presents a typical cross-sectional transmission electron microscope (TEM) image of WS_2 capped with Al_2O_3 .

3. Results and Discussion

Fig. 1(d) displays the transfer characteristics of the WS_2 device shown in Fig. 1(a), measured at room temperature in vacuum before and after the Al_2O_3 deposition. The WS_2 transistor characterized before the Al_2O_3 deposition exhibits a large clockwise hysteresis caused by charge traps such as residual e-beam resist and water molecules. By introducing the Al_2O_3 capping layer on WS_2 , the hysteresis is suppressed and the carrier mobility, estimated from the slope of the transfer curves in the on-current regime, is enhanced from 0.4 to 22 $\text{cm}^2 \text{V}^{-1} \text{s}^{-1}$. In addition, the on-off current ratio increased from 10^3 to 10^6 and the subthreshold swing decreased from 2.07 V/dec to 1.25 V/dec. During the ALD process, the moisture on the WS_2 surface may react with TMA to form $Al_2O_3[18]$, and high- κ dielectric screening reduces the effect of the charged impurities, resulting in the suppression of hysteresis and the enhancement of the mobility and better performance of the WS_2 FET. On the other hand, we note the threshold voltage was negatively shifted after introducing the Al_2O_3 overlayer. It is common in Al_2O_3 that interface traps exist at the Al_2O_3/WS_2 interface and they are usually positively charged [18, 35], leading to the negative shift of threshold voltage via electrostatic doping of WS_2 . Later, we show the doping effect decreases the contact resistance between the metal electrodes and WS_2 , and contributes to the enhancement of the performance of transistor. Similar changes in transfer characteristics are observed for all 7 WS_2 FETs investigated. In Fig. 1(e), mobility enhancement is summarized for the 7 devices (3.5 to 12 nm in thickness) labelled from a to g. The mobility increased after the deposition of Al_2O_3 , regardless of the thickness of WS_2 . On average, the mobility at room temperature increased from 9.4 to 38 $\rm cm^2 V^{-1} s^{-1}$ with the Al₂O₃ capping layer. On the other hand,

Figure 1. (Color online) (a) Optical images of (Upper) an exfoliated WS₂ on SiO₂ and (Lower) the fabricated WS₂ FET capped with Al₂O₃. (b) (Upper) AFM image of the WS₂ FET and (Lower) AFM height profiles before(black) and after(red) the Al₂O₃ deposition along the red line indicated in the AFM image. (c) A typical cross-sectional TEM image of WS₂ with Al₂O₃. (d) Drain current per unit width versus gate voltage for a WS₂ FET before and after Al₂O₃ deposition measured in a vacuum at room temperature. Source-drain bias voltage, V_{bias} , of 1 V is applied. (e) Summary of mobility enhancement for 7 WS₂ FETs labelled from a to g. The images and the transfer characteristics shown in (a), (b) and (d) are from the sample a, marked with a star. (f) Output characteristics of a WS₂ FET (sample a) with Al₂O₃.

a clear relationship between thickness and mobility was not found. Charge transport in WS₂ FETs was dominated by extrinsic factors such as charged impurities, and the extracted mobilities (w/o Al₂O₃) varied between 0.3 and 50 cm²V⁻¹s⁻¹ depending on the level of impurities. When the device was fabricated with fewer impurities, a much larger mobility resulted as seen from the sample e. With the Al₂O₃ passivation layer, the mobility was not only enhanced but also varied much less, between 5 and 70 cm²V⁻¹s⁻¹. The observed mobility of 70 cm²V⁻¹s⁻¹ is slightly larger than previously reported roomtemperature mobility of few-layer WS₂ FETs. Chloride molecular doping [31] or LiF doping [32] enhanced the mobility of few-layer WS₂ up to 60 and 34.7 cm²V⁻¹s⁻¹, respectively, by reducing the contact resistance. Inserting a thin Al₂O₃ layer between the metal and WS₂ as a depinning layer resulted in enhanced mobility of 10 cm²V⁻¹s⁻¹ [30]. Fig. 1(f) shows the output characteristics of the WS₂ device with Al₂O₃.

To further understand the mechanisms that limit the mobility of WS₂ FETs capped with Al₂O₃, we have investigated the temperature(T) dependence of the transfer curves. Figs. 2(a) and 2(b) present the transfer characteristics of the WS₂ transistor on a linear

Figure 2. (Color online)(a), (b) Transfer characteristics of the WS₂ transistor measured between 80 and 340 K at $V_{\text{bias}} = 1$ V and 10 mV, respectively. The threshold voltage was adjusted to be located at $\widetilde{V_G} = 0$ V in order to better investigate the temperature dependence of the WS₂ FET. (c) Temperature dependence of field-effect mobility for the WS₂ FET at different source-drain bias voltages. (d) Temperature dependence of mobility at $V_{\text{bias}} = 1$ V (hollow red circles) and the fitted electron mobility (dashed line). The fitted mobility combines contributions from optical phonons (green), acoustic phonons(blue), and impurities (purple).

scale, measured between 80 and 340 K with source-drain bias voltage of $V_{\text{bias}} = 1$ V and 10 mV, respectively. We note the *T*-dependences of the transfer curves are distinct depending on applied V_{bias} . When $V_{\text{bias}} = 1$ V, the drain current *I* decreases with *T*, presenting metallic behavior for gate voltages $\widetilde{V}_G > 30$ V. The Ioffe-Regel criterion predicts a metal-insulator transition at $k_F \cdot l \sim 1$, with the Fermi wavevector $k_F = \sqrt{2\pi n}$ and mean free path $l = \hbar k_F \sigma / ne^2$ for 2D semiconductors. Here *n* is the carrier density and σ is the conductivity with \hbar being Planck's constant and *e* being the elementary charge. For our few-layer WS₂ device, we obtain $k_F \cdot l \sim 0.5$, slightly lower than 1. The lower value of 0.5 could be due to the Schottky barrier formed between the metal electrode and WS₂ as the contact resistance results in a smaller σ , thereby a smaller *l* in our estimation. When a low V_{bias} of 10 mV is applied, the Schottky

barrier becomes dominant in electrical transport and exhibits insulating behavior for all gate voltages (Fig. 2(b)). Fig. 2(c) displays the temperature dependence of the field-effect mobility extracted from the transfer curves measured at various drain bias voltages. At $V_{\rm bias} = 1$ V, the mobility follows $\mu \sim T^{-\gamma}$ with the exponent $\gamma = 0.93$ and saturates below ~ 150 K. Considering only the effect of phonon scattering in monolayer WS₂ devices, theory suggests a temperature dependence of mobility with $\gamma = 0.99$ - 1.28[36]. Experimentally, $\gamma = 0.73$, 1.75 were reported for mono and bi-layer WS₂ devices on SiO₂ substrates, respectively [14] and 1.15 for a few-layer WS₂ device [37]. Our results are in general consistent with previous studies, but we report a slightly lower gamma of 0.93. Suppression of the out-of-plane phonon mode by the presence of the Al_2O_3 capping layer could be responsible. On the other hand, as we decrease $V_{\rm bias}$ below 100 mV, the temperature dependence of the mobility presents different behavior. At $V_{\text{bias}} = 10 \text{ mV}$, the role of the Schottky barrier becomes dominant and the extracted mobility decreases with decreasing temperatures. Before we discuss the Schottky barrier in the device, we focus on the charge scattering mechanism in our WS₂ FETs. Fig. 2(d) shows the temperature dependence of mobility at $V_{\text{bias}} = 1$ V and we fit the data including scattering contributions from optical phonons, acoustic phonons and charged impurities. Using Mathiessen's rule, the total mobility is given by $\mu^{-1} = \mu_{op}^{-1} + \mu_{ac}^{-1} + \mu_{imp}^{-1}$, combining three contributions. Here we neglect the contribution from the contact resistance R_c , as we estimate R_c to be less than 4% of the total resistance at $V_{\text{bias}} = 1 \text{ V}$ (see supplementary information). The temperature dependence of optical phonon scattering can be described by the equation

$$\mu_{op} = \left(\frac{4\pi\varepsilon_0\varepsilon_p\hbar^2}{e\omega m^{*2}t}\right) \left[\exp\left(\frac{\hbar\omega}{k_BT}\right) - 1\right] \tag{1}$$

, where $\hbar\omega$ is the optical phonon energy, m^* is the effective electron mass, t is the crystal thickness, and $1/\varepsilon_p = 1/\varepsilon_{\infty} - 1/\varepsilon_s$ with ε_{∞} and ε_s being the high frequency and static dielectric constant, respectively[38]. The acoustic phonon scattering was calculated using following equation;

$$\mu_{ac} = \frac{e\hbar^3 \rho \nu}{Dm^{*2} k_B T} \tag{2}$$

, where ρ is the crystal density, D is the deformation potential, and ν is velocity of the acoustic phonon. To fit our data, an effective mass of 0.45 m_e was used, and other parameters were obtained from the literature[39]. The temperature dependence of the mobility from the measurement agrees well with the fitted mobility. The optical phonon limits the mobility near room temperature, resulting in $\mu \sim T^{-0.93}$ as seen in the Fig. 2(c). On the other hand, for low T below 150 K, contribution from impurities dominated and the mobility saturated. Impurity limited mobility ($\mu_{\rm imp}$) can be extracted from the fitting result. For the device with an Al₂O₃ overlayer, $\mu_{\rm imp} \sim 60 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ is estimated (data not shown). This indicates that Al₂O₃, a high- κ oxide, indeed reduces the influence of charged impurities by the dielectric screening effect.

Atomic layer deposited Al₂O₃ passivation layer for few-layer WS₂ field effect transistors7

Figure 3. (Color online)(a) Thermal activation energy E_a as a function of gate voltage extracted from the Arrhenius plots of the conductance (inset). (b) Extracted effective Schottky barrier height as a function of gate voltage by using the Schottky diode equation from the inset which shows $\ln(I_0/T^2)$ versus 1000/T for different $V_{\rm G}$. (c) Schematic diagram of the Schottky barrier for devices without Al₂O₃ overlayer(upper) and with Al₂O₃ overlayer(lower) at $V_{\rm G} = 0$ V.

We now turn our attention to the Schottky junction formed in our device, and to the data obtained at $V_{\text{bias}} = 10 \text{ mV}$, where the Schottky junction plays an important role in the electrical transport. The inset of fig. 3(a) shows the Arrhenius plot of conductance G for various gate voltages. The activation energy can be extracted by fitting the conductance with the expression $G(T) = G_0 e^{-E_a/k_BT}$, where G_0 is constant and E_a is the activation energy with k_B being the Boltzmann constant. The extracted activation energy is displayed in Fig. 3(a) and E_a decreases with increasing gate voltage. As mentioned earlier, positive fixed charges are formed at the Al₂O₃/WS₂ interface and n-doping to the WS₂ is induced. Owing to the enhanced n-doping, the Fermi-level is located near the conduction band edge and E_a ranges between 100 and 32 meV in our

gate-voltage window. E_a decreases with V_G as the Fermi level further approaches the conduction band. However, while the transistor already turned on at $V_G = 30$ V, the activation energy of ~ 40 meV remained, possibly due to the presence of the Schottky barrier. Recall that the same device showed metallic behavior for $\widetilde{V}_G > 30$ V when a V_{bias} of 1 V, which is large enough to overcome the barrier, is applied (Fig. 2(a)). In order to extract the effective Schottky barrier height ϕ_B , we used the Schottky diode equation.

$$I = AA^*T^2 \exp\left(\frac{-\phi_B}{k_BT}\right) \left[\exp\left(\frac{eV_{\text{bias}}}{\eta k_BT}\right) - 1\right]$$
(3)

, where A is the area of the Schottky junction and A^* is the Richardson constant, with η being the ideality factor. Inset of Fig. 3(b) shows $\ln(I_0/T^2)$ versus 1000/T for different $V_{\rm G}$, where $I_0 = AA^*T^2 \exp\left(\frac{-\phi_B}{k_BT}\right)$. From the slope, ϕ_B (square) is extracted and displayed as a function of the gate voltage in Fig. 3(b). The effective Schottky barrier height decreases from 105 meV to 10 meV with increasing $V_{\rm G}$ from 0 to 50 V. For comparison, ϕ_B (circle) is extracted for a device without the Al₂O₃ capping layer. Flat-band Schottky barrier height ($\phi_{\rm FB}$) is estimated to be 280 meV (see dashed line in Fig. 3(b)), comparable to 240 meV from the previous study for a Ti electrode[29]. We find the effective Schottky barrier height is much lower for the device with the Al₂O₃ capping layer at the same gate voltage. Positive fixed charges formed at the Al₂O₃/WS₂ interface induce n-doping to the WS₂ and make the Schottky barrier thinner for the device with the Al₂O₃ overlayer, as illustrated in Fig. 3(c). Owing to the thinner barrier, the current can flow via thermionic-field emission in addition to the traditional thermionic emission[40], resulting in the lower effective Schottky barrier for WS₂ FETs with an atomic layer deposited Al₂O₃ passivation layer.

Lastly, we have investigated the ambient stability of WS₂ transistors capped with Al₂O₃. Figs. 4(a) and 4(b) present transfer curves and the extracted field-effect mobility of the WS₂ FET (sample a) at room temperature, recorded between 2 days and 57 days after the deposition of Al₂O₃. Over the period, transfer curves and the extracted field-effect mobility remained stable as shown in Fig. 4(b). On the contrary, clear degradation is observed for WS₂ FETs without the Al₂O₃ overlayer. Figs. 4(c) and 4(d) display transfer curves and the extracted mobility of a 7.5 nm thick WS₂ FET at room temperature, recorded for 19 days. It is known that sulfur on WS₂ detaches from the WS₂ surface in air and the surface gradually changes to WO_x over time, consequently increasing the resistance (where $x \leq 3$)[24, 25]. Over 19 days, WS₂ gradually oxidized and the mobility of the WS₂ FET decreased significantly from 6.5 to 1.0 cm²V⁻¹s⁻¹, as seen in Fig. 4(d).

4. Conclusion

In summary, we have investigated the effect of an Al_2O_3 passivation layer on the performance of few-layer WS₂ FETs. The performance of WS₂ FETs is limited mainly

Figure 4. (Color online)(a) Transfer curves of the WS₂ transistor (sample a) recorded at 2 and 57 days after the deposition of Al_2O_3 at room temperature. (b) Extracted electron mobility of the WS₂ transistor versus the time after the Al_2O_3 passivation. (c) Transfer curves of a 7.5 nm thick WS₂ transistor without the Al_2O_3 overlayer at room temperature over time. (d) Extracted mobility of the WS₂ transistor without the passivation layer for 19 days.

by three factors; (1) substantial decrease in carrier mobility originating from charged impurities, (2) the Schottky barrier and the contact resistance between WS₂ and electrodes, (3) oxidation of WS₂ under ambient conditions. Our investigation shows that atomic layer deposition of an Al₂O₃ overlayer provides a facile method to enhance the performance of WS₂ FETs, dealing with all three issues mentioned above. Introducing the Al₂O₃ passivation layer resulted in the enhancement of field-effect mobility (20~60 $\text{cm}^2\text{V}^{-1}\text{s}^{-1}$ at room T), subthreshold swing, and on-off current ratio by the high- κ dielectric screening effect. In addition, during the ALD process the WS₂ FET is largely n-doped by the positive fixed charges formed at the Al₂O₃/WS₂ interface, and the doping effect reduces the effective Schottky barrier via thermionic-field emission. Lastly, the Al₂O₃ passivation layer protects the device from oxidation, ensuring that the electrical properties of WS₂ FETs remain stable over the 57 days studied. This simple introduction of an Al₂O₃ overlayer can be useful for the application of WS₂ devices.

Acknowledgments

This paper was supported by Konkuk University in 2016.

References

- Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nature Reviews Materials 2 1–15
- [2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nature nanotechnology 6 147–150
- [3] Sebastian A, Pendurthi R, Choudhury T H, Redwing J M and Das S 2021 Nature communications 12 1–12
- [4] Cheng C C, Chung Y Y, Li U Y, Lin C T, Li C F, Chen J H, Lai T Y, Li K S, Shieh J M, Su S K et al. 2019 First demonstration of 40-nm channel length top-gate ws₂ pfet using channel area-selective cvd growth directly on sio_x/si substrate 2019 Symposium on VLSI Technology (IEEE) pp T244–T245
- [5] Perea-López N, Elías A L, Berkdemir A, Castro-Beltran A, Gutiérrez H R, Feng S, Lv R, Hayashi T, López-Urías F, Ghosh S, Muchharla B, Talapatra S, Terrones H and Terrones M 2013 Advanced Functional Materials 23 5511–5517
- [6] Yao J, Zheng Z, Shao J and Yang G 2015 Nanoscale 7 14974–14981
- [7] Liu L, Kumar S B, Ouyang Y and Guo J 2011 IEEE Transactions on Electron Devices 58 3042– 3047
- [8] Kim H C, Kim H, Lee J U, Lee H B, Choi D H, Lee J H, Lee W H, Jhang S H, Park B H, Cheong H, Lee S W and Hyun-Jong C 2015 ACS Nano 9 6854–6860
- [9] Ovchinnikov D, Allain A, Huang Y S, Dumcenco D and Kis A 2014 ACS Nano 8 8174–8181
- [10] Rawat A, Jena N and De Sarkar A 2018 Journal of Materials Chemistry A 6 8693-8704
- [11] Jin Z, Li X, Mullen J T and Kim K W 2014 Physical Review B 90 045422
- [12] Marinov D, de Marneffe J F, Smets Q, Arutchelvan G, Bal K M, Voronina E, Rakhimova T, Mankelevich Y, El Kazzi S, Mehta A N et al. 2021 npj 2D Materials and Applications 5 1–10
- [13] Joo M K, Yun Y, Yun S, Lee Y H and Suh D 2016 Applied Physics Letters 109 153102
- [14] Cui Y, Xin R, Yu Z, Pan Y, Ong Z Y, Wei X, Wang J, Nan H, Ni Z, Wu Y, Chen T, Shi Y, Wang B, Zhang G, Zhang Y W and Wang X 2015 Advanced Materials 27 5230–5234
- [15] Ma N and Jena D 2014 Physical Review X 4 011043
- [16] Jena D and Konar A 2007 Physical Review Letters 98 136805
- [17] Das S, Chen H Y, Penumatcha A V and Appenzeller J 2013 Nano letters 13 100–105
- [18] Na J, Joo M K, Shin M, Huh J, Kim J S, Piao M, Jin J E, Jang H K, Choi H J, Shim J H et al. 2014 Nanoscale 6 433–441
- [19] Na J, Lee Y T, Lim J A, Hwang D K, Kim G T, Choi W K and Song Y W 2014 ACS nano 8 11753–11762
- [20] Yu Z, Ong Z Y, Pan Y, Cui Y, Xin R, Shi Y, Wang B, Wu Y, Chen T, Zhang Y W, Zhang G and Wang X 2016 Advanced Materials 28 547–552
- [21] Liu N, Baek J, Kim S M, Hong S, Hong Y K, Kim Y S, Kim H S, Kim S and Park J 2017 ACS applied materials & interfaces 9 42943–42950
- [22] Ryu J H, You Y G, Kim S W, Hong J H, Na J H and Jhang S H 2020 Current Applied Physics 20 363–365
- [23] Gao J, Li B, Tan J, Chow P, Lu T M and Koratkar N 2016 ACS Nano 10 2628–2635
- [24] Kang K, Godin K, Kim Y D, Fu S, Cha W, Hone J and Yang E H 2017 Advanced Materials 29 1603898
- [25] Kotsakidis J C, Zhang Q, Vazquez de Parga A L, Currie M, Helmerson K, Gaskill D K and Fuhrer M S 2019 Nano Letters 19 5205–5215

- [26] Wurdack M, Yun T, Estrecho E, Syed N, Bhattacharyya S, Pieczarka M, Zavabeti A, Chen S Y, Haas B, Müller J et al. 2021 Advanced Materials 33 2005732
- [27] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Applied Physics Letters 102 012111
- [28] Gong C, Zhang H, Wang W, Colombo L, Wallace R M and Cho K 2013 Applied Physics Letters 103 053513
- [29] Tang H, Shi B, Pan Y, Li J, Zhang X, Yan J, Liu S, Yang J, Xu L, Yang J, Wu M and Lu J 2019 Advanced Theory and Simulations 2 1900001
- [30] Zheng S, Lu H, Liu H, Liu D and Robertson J 2019 Nanoscale 11 4811–4821
- [31] Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P, Tieckelmann R, Tsai W, Hobbs C et al. 2014 Nano letters 14 6275–6280
- [32] Khalil H M, Khan M F, Eom J and Noh H 2015 ACS applied materials & interfaces 7 23589-23596
- [33] Azcatl A, McDonnell S, KC S, Peng X, Dong H, Qin X, Addou R, Mordi G I, Lu N, Kim J, Kim M J, Cho K and Wallace R M 2014 Applied Physics Letters 104 111601
- [34] Kim J H, Haidari M M, Choi J S, Kim H, Yu Y J and Park J 2018 Journal of the Korean Physical Society 72 1045–1051
- [35] Li T, Wan B, Du G, Zhang B and Zeng Z 2015 AIP Advances 5 057102
- [36] Sohier T, Campi D, Marzari N and Gibertini M 2018 Physical Review Materials 2 114010
- [37] Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z and Wei J 2014 ACS Nano 8 10396–10402
- [38] Laturia A, Van de Put M L and Vandenberghe W G 2018 npj 2D Materials and Applications 2 1-7
- [39] Amin B, Kaloni T P and Schwingenschlögl U 2014 Rsc Advances 4 34561–34565
- [40] Chiu F C 2014 Advances in Materials Science and Engineering 2014