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Abstract: 23 

The prediction that telomere length (TL) shortens with increasing age is a major element 24 

in considering the role of telomeres as a key player in evolution. While telomere attrition is 25 

found in humans both in vitro and in vivo, the increasing number of studies reporting diverse 26 

age-specific patterns of TL challenges the hypothesis of a universal decline of TL with 27 

increasing age. Here we performed a meta-analysis to estimate the relationship between TL and 28 

age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, 29 

TL does decline with increasing age during adulthood. However, this decline was weak and 30 

variable across vertebrate classes, and we also found evidence for a publication bias that might 31 

weaken our current evidence of decreasing TL with increasing age. We found no evidence for 32 

a faster decline in TL with increasing age when considering the juvenile stage (from birth to 33 

age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was 34 

explained by the method used to measure telomeres: detectable TL declines with increasing age 35 

were found only among studies using TRF with in-gel hybridisation and qFISH methods, but 36 

not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL 37 

declines with increasing age in most adult vertebrates, our results identify an influence of 38 

telomere measurement methodology, which highlights the need to examine more thoroughly 39 

the effect of the method of measurement on TL estimates.  40 

 41 

Keywords: Ageing, Telomere attrition, Life-history traits, Systematic review, Telomere 42 

Restriction Fragment, qPCR 43 

 44 

Introduction:  45 

 46 

Telomeres are composed of non-coding DNA sequences repeated in tandem (TTAGGG 47 

in most animals) at the extremity of chromosomes in eukaryotes (Blackburn, 1991). Telomeres 48 

prevent chromosomal fusions during mitosis and play an essential role in chromosomal 49 

segregation during cell division (Aubert & Lansdorp, 2008). However, each time a cell 50 

replicates, DNA polymerase is unable to fully replicate the 5’-3’ strand (the so-called “end-51 

replication problem”) leading to a loss of nucleotide sequences (Levy et al., 1992). This 52 

telomere attrition has attracted a lot of attention because short telomeres can be responsible for 53 

chromosomal fusions, and ultimately lead to replicative cell senescence and apoptosis. 54 

Although telomere length (TL) declines with each mitotic cell cycle due to the end-replication 55 



 

 

problem, oxidative damage on telomeric DNA is another mechanism involved in accelerated 56 

telomere attrition (von Zglinicki et al., 2001; Reichert & Stier, 2017). Accumulation of 57 

oxidative damage, known as oxidative stress, is favoured when the generation rate of reactive 58 

oxygen species (ROS) exceeds the antioxidant machinery. ROS are highly reactive and cause 59 

damage to nucleic acids, proteins and lipids. Because of their guanine rich structure, telomeres 60 

are highly sensitive to oxidative damage (Kawanishi & Oikawa, 2006). Telomere erosion 61 

patterns can be modulated by the activity of telomerase. This enzyme is a reverse transcriptase 62 

that adds telomeric repeats and can potentially compensate telomere shortening (Sherratt et al., 63 

2004). In mammals, the activity of telomerase in most somatic cells is negatively linked to the 64 

species body mass and is mostly expressed (at least in fibroblasts) in species weighing less than 65 

2kg (Gomes et al., 2011) and in very proliferative tissue (e.g. antlers in cervids; Li, 2012). In 66 

birds, high telomerase activity was found in bone marrow in two long-lived species but not in 67 

two short-lived species (Haussmann et al., 2007). Telomerase activity was found in somatic 68 

tissue in the limited number of fish, reptiles and amphibians studied to date (Gomes et al., 2010), 69 

which suggests different telomere dynamics compared to birds and mammals. However, 70 

available data remain scarce and little is known about telomerase activity in vertebrates and the 71 

effect of this activity on age-related telomere dynamics.  72 

Early research on telomere dynamics in humans found that TL consistently declines 73 

with increasing age in cultured fibroblasts (Harley et al., 1990) and the research that has been 74 

done on human’s telomere dynamics since (Aubert et al., 2012; Lapham et al., 2015) has led to 75 

the same conclusion. The shortening of telomere repeats is now considered as a marker of 76 

ageing (López-Otín et al., 2013) and telomere length is known to predict subsequent morbidity 77 

(Herrmann et al., 2018). In addition, shorter telomeres are linked to an increased mortality risk 78 

in both humans and non-human vertebrates (Wang et al., 2018; Wilbourn et al., 2018). 79 

Telomere length and dynamics have also been linked to growth (Monaghan & Ozanne, 2018) 80 

and reproduction (Sudyka 2019), conferring them a possible key role in mediating life-history 81 

trade-offs.  Since the early 2000s, we have witnessed a burst of studies measuring TL in 82 

laboratory animals and wild populations (Monaghan et al., 2018). Similarly to the patterns 83 

observed in humans, most of these studies reported a decline in TL with increasing age (e.g. 84 

Pauliny et al., 2006 in two species of birds, the dunlin (Calidris alpina) and the sand martin 85 

(Riparia riparia), Beirne et al. 2014, in the badger (Meles meles)). However, other studies 86 

reported no decline (e.g. Horn et al., 2011 in the kakapo, Strigops habroptilus; Lewin et al., 87 

2015 in the spotted hyena, Crocuta crocuta) or even an increase in TL with age (Hoelzl et al., 88 



 

 

2016 in the edible dormouse, Glis glis; Ujvari & Madsen, 2009 in the water python, Liasis 89 

fuscus). Patterns of telomere attrition also vary within species, which suggest that 90 

environmental conditions might to some extent also modulate telomere dynamics (Salmón et 91 

al., 2016; Wilbourn et al., 2017). Various patterns (i.e. an increase, a decrease or no relationship 92 

of TL with age) that has been reported across all classes of vertebrates calls into questions the 93 

hypothesis that TL is a universal marker of ageing. Here, we use meta-analyses to test whether 94 

or not the decline in TL with increasing age constitutes a general pattern in vertebrates. We also 95 

aim to identify factors that could modulate the strength of the decline in TL with increasing 96 

age, and determine whether these are ecological, biological or methodological. 97 

One factor that might explain variation in the relationships reported between TL and 98 

age among vertebrates is phylogeny. Indeed, telomerase is differentially expressed throughout 99 

life across taxa and across species within taxa (Gomes et al., 2010; Olsson et al., 2018). Besides 100 

telomerase expression, fish, reptiles and amphibians are indeterminate growers (in contrast with 101 

birds and mammals), which might influence the relationship with age. Indeed, somatic growth 102 

is linked to an increase in cell division and oxidative stress that will impair TL (Monaghan & 103 

Ozanne, 2018). It is then expected that organisms that grow throughout their life should display 104 

different age-specific patterns of TL than determinate growers.  105 

Related to phylogeny, the decline in TL with increasing age might vary with the species-106 

specific life history. So far, studies have highlighted that telomere attrition rate negatively 107 

correlates with maximum lifespan in birds (Dantzer & Fletcher, 2015; Tricola et al., 2018) and 108 

more generally that telomere attrition rate is linked to the species position along the slow-fast 109 

continuum of life histories (Dantzer & Fletcher, 2015), with fast-living species (i.e. short-lived 110 

species that start to reproduce early and produce several offspring per year) displaying steeper 111 

rates of telomere attrition than slow-living species (i.e. long-lived species that start to reproduce 112 

late and produce one offspring or less per year). The difference in telomere attrition rate 113 

between short- and long-lived species might be due to a difference in telomerase expression 114 

between those species or a lower level of oxidative stress in long-lived species than in short-115 

lived ones (Tricola et al., 2018; Vágási et al., 2019). However, this relationship has not yet been 116 

investigated in non-avian taxa, due to an evident lack of studies available. Besides the slow-fast 117 

continuum, we should observe different patterns of telomere dynamics, at least in mammals, in 118 

different-sized species because the activity of telomerase is higher in mammal species weighing 119 

less than 1kg (Gomes et al., 2011). 120 



 

 

In addition, because TL shortens with each mitotic cycle and cellular division may occur 121 

at a faster rate during the growth period, this may lead to a steeper decline in TL during the 122 

juvenile stage than during the adult stage (Monaghan & Ozanne, 2018). Substantial telomere 123 

loss has been found during the embryonic and the nestling stages in three species of birds 124 

(Boonekamp et al., 2014; Stier et al., 2020; Vedder et al., 2017) compared to adults. In addition, 125 

greater telomere shortening throughout the juvenile stage compared to the adult stage has been 126 

observed in some bird species (Hall et al., 2004; Pauliny et al., 2006) as well as in mammals 127 

(Aubert et al., 2012; Fairlie et al., 2016; Frenck et al., 1998; Seeker et al., 2018). A human-128 

based mathematical model further suggests that the rapid telomere loss during the juvenile stage 129 

(a four-fold difference between juvenile and adult stages, (Zeichner et al., 1999)) could be 130 

explained by a higher turnover rate of peripheral mononuclear cells in children than in adults 131 

(Sidorov et al., 2004). Hence, depending on the life stage analysed, the relationship between 132 

TL and age may not be consistent.  133 

The type of data collected might also influence the reported patterns. Indeed, because 134 

short telomeres might be associated with a higher mortality risk (e.g. Bichet et al., 2020; Bize 135 

et al., 2009; Wilbourn et al., 2018), the selective disappearance of individuals carrying short 136 

telomeres could lead to underestimation of the age-specific decline in TL with increasing age 137 

(see also Nussey et al., 2008 for a broader discussion of the importance of considering selective 138 

disappearance in the context of senescence). Therefore, the analysis of age-specific TL data 139 

collected from longitudinal studies, where known-aged individuals are regularly sampled 140 

throughout their life, will provide a much more accurate pattern of the changes in TL with 141 

increasing age.  142 

Finally, the method used to measure TL is known to be a source of heterogeneity in TL 143 

that potentially influences age-specific patterns. Currently, three methods are generally 144 

employed (Nussey et al., 2014), which provide absolute or relative measures. The first 145 

technique used is the telomere restriction fragment method (TRF), which involves the use of 146 

restriction enzyme to digest the genomic DNA without cutting within the telomeric fragment. 147 

Telomeric fragments are then separated by gel electrophoresis and probed with telomeric 148 

sequences providing an absolute measure of the mean TL in a sample of cells (Harley et al., 149 

1990). Two different types of TRF have been developed: TRF with in-gel hybridization 150 

(hereafter TRFI) and TRF followed by a southern blot (hereafter TRFS). In TRFI the probe 151 

binds to the single-stranded overhang of the telomere and therefore only telomeres at 152 

chromosome ends are measured. In contrast, DNA is denatured in TRFS and the probe binds 153 



 

 

not only to terminal telomeres but also to interstitial telomeric sequences, which are telomere 154 

repeats located all along chromosomes, that can vary in length both between and within species 155 

(Foote et al., 2013). The second technique is the quantitative real time PCR method (qPCR) and 156 

gives a relative measure of TL by amplifying telomeric fragments and a non-telomeric reference 157 

gene that does not vary in copy number (Cawthon, 2002). As for TRFS, qPCR amplifies both 158 

telomeres and interstitial telomeric sequences. Finally, the quantitative fluorescent in situ 159 

hybridisation (qFISH) technique uses a specific fluorescent-conjugated telomere probe to 160 

quantify average TL from tissues or isolated cells (Lansdorp et al., 1996). It is important to 161 

mention that methodologies are not equally distributed across the phylogeny. Indeed, while 162 

qFISH methodology is barely used in ecology, TRFI is mostly used in birds. In a previous meta-163 

analysis looking at sex differences in TL in humans (Gardner et al., 2014), TL was found to be 164 

longer in women only in studies using the TRF (TRFS and TRFI pooled) method. In a meta-165 

analysis linking TL and mortality in vertebrates (Wilbourn et al., 2018), the negative 166 

relationship between TL and mortality was stronger in studies using qPCR.  167 

We performed a phylogenetically-controlled meta-analysis to examine the relationship 168 

between TL and age in non-human vertebrate species. We predicted that telomere dynamics 169 

with age should vary depending on the class of vertebrates due to differences in telomerase 170 

expression. More precisely, we expected a stronger decline in species where telomerase 171 

expression seems to be repressed (e.g. large mammals and short-lived birds). We also predicted 172 

that TL declines on average with increasing age across vertebrates but with a steeper decline 173 

during the juvenile than the adult stage. Based on both theoretical aspects and previous 174 

empirical studies, we also predicted that the decline in TL should be more pronounced in short-175 

lived species, since the TL decline is fastest in short-lived species of birds. We also predicted 176 

that the decline in TL with increasing age is more likely to be recorded in longitudinal studies 177 

due to selective disappearance in transversal studies. All analyses were corrected for the method 178 

used to measure telomeres and associated heterogeneity was calculated to assess whether the 179 

method used influenced the detected association between telomere length and age.  180 

 181 

Material and methods: 182 

1) Literature search 183 

The literature search was performed using the ISI Web of Science Database in December 184 

2019 and updated in May 2021. Key words used in the Topic window for the search were 185 



 

 

telom* not (clinic OR hospital). The keyword telom* was used instead of telomere to ensure 186 

studies on telomerase were included in the results. By using “not (Clinic OR hospital)” we also 187 

avoided a lot of articles from medical literature. We restricted our search to the following 188 

categories: “Evolutionary biology”, “Marine Freshwater Biology”, “Multidisciplinary 189 

sciences”, “Geriatrics gerontology”, “Physiology”, “Zoology”, “Environmental sciences”, 190 

“Fisheries”, “Ecology”, “Agriculture dairy animal sciences”, “Veterinary sciences”. We 191 

limited our search to articles providing TL estimates for known age individuals of vertebrate 192 

species. Since the main goal of our analysis focused on the non-manipulated decline of TL with 193 

increasing age we excluded studies of laboratory strains of mouse and rat as well as 194 

experimental studies (e.g. pathogen infection, diet experiment etc.). We found very few studies 195 

(i.e. 4 studies only in birds) that measured TL at different time point during the first month of 196 

life. Hence, we decided to include only studies that covered more than the first month of life in 197 

the juvenile stage to avoid this very limited number of studies that focus solely on the first 198 

month of life due to a manifest lack of data. When data were not available within the main text 199 

or supplementary materials, we requested the dataset directly from the authors. Thirty-two (out 200 

of 43) authors kindly provided their dataset. At the end of the literature survey, we ended up 201 

with 87 articles (See Figure 1). 202 

 203 

2) Effect size calculation 204 

To assess the relationship between TL and age, we calculated Fisher’s Z transformation of 205 

the correlation coefficient using the following procedure. We first fitted either a linear model 206 

between TL and age for transversal studies or a linear mixed-effects model (package lme4 207 

(Bates et al., 2020)) with individual identity as a random factor for longitudinal studies. We 208 

then computed the correlation coefficient: 209 

𝑟 =  
𝑡 ∗ (1 +

𝑁𝑖
𝑁𝑜 ∗ 𝑅) ∗ √1 − 𝑅

√𝑡2 ∗ (1 +
𝑁𝑖
𝑁𝑜 ∗ 𝑅)

2

∗ (1 − 𝑅) + 𝑁𝑜 − 𝑘

 210 

with t being the t-value of the linear regression, Ni being the number of individuals, No the 211 

number of observations, k the number of parameters including the intercept and R the intra-212 

class correlation (Nakagawa & Cuthill, 2007). In the case of transversal studies (i.e. studies 213 

without repeated measurements), the formula become: 214 



 

 

𝑟 =  
𝑡

√𝑡2 + 𝑑𝑓
 215 

because in this case R = 0, Ni/No = 1 and the number of degree of freedom df is No – k. 216 

We finally transformed the correlation coefficient to Fisher’s Z:  217 

𝑍𝑟 =  
1

2
log (

1 + 𝑟

1 − 𝑟
) 218 

And we calculated the sampling variance associated: 219 

𝑉𝑧 =
1

𝑁𝑖 − 3
 220 

 221 

Zr was used over the correlation coefficient because Zr is normally distributed and thus 222 

not bounded between –1 and 1 unlike the correlation coefficient. A negative effect means a 223 

decrease of TL with increasing age, whereas a positive effect means an increase of TL with age. 224 

Following the Cohen’s rule of thumb (Cohen, 1977), absolute values of Zr of 0.25, 0.5 and 0.75 225 

represent low, moderate and strong relationship, respectively 226 

 Fisher’ z was calculated separately in juveniles and adults (i.e. before and after the species-227 

specific age at first reproduction, defined as the earliest age at which females give birth). We 228 

also calculated Zr on data combining juveniles and adults (‘all age-classes’ dataset), which leads 229 

to three distinct datasets.  230 

3) Moderators included 231 

To investigate the various factors that could explain the direction and the magnitude of the 232 

relationship between TL and age, we included the following moderators as covariates in the 233 

meta-analytic models:  234 

- The age at first reproduction (hereafter AFR) of the species was used as a proxy of the 235 

slow-fast continuum of life histories (Gaillard et al., 2005).  236 

- The mean body mass of adult females for each species was included since body mass is 237 

negatively correlated with telomerase expression in mammals (Gomes et al., 2011).  238 

- The method of telomere measurement was included as a four-level factor: TRFI, TRFS, 239 

qPCR and FISH. 240 

- The type of study was included as a two-level factor (“Transversal” vs. “Longitudinal”).  241 



 

 

- The ratio of the age range covered by the data (hereafter lifespan coverage) corresponds 242 

to the age range covered by the data divided by the maximum lifespan of the species.  243 

With a wider lifespan coverage, we expected a more accurate estimate and so a higher 244 

probability to detect a change in TL with age. However, this moderator was not tested 245 

on the juvenile dataset because the age range was inevitably too low in this specific 246 

case.  247 

All species information (i.e. AFR, mean adult female body mass and maximum lifespan) 248 

was retrieved in the literature (See Supplementary material). 249 

 250 

4) Meta-analysis  251 

The meta-analysis was performed using R (version 4.0.2) (R Core Development Team, 252 

2020). Phylogenetically-corrected mixed effect models were run using the package metafor 253 

(Viechtbauer, 2010). To assess phylogenetic relatedness, since there is no single pan-vertebrate 254 

phylogeny, a phylogenetic tree was built using the website http://www.timetree.org/ (Kumar et 255 

al., 2017). A correlation matrix of phylogenetic relatedness among the species was then 256 

extracted from the tree. 257 

Random-effects meta-analytic models were performed with the effect sizes entered as 258 

the dependent variable along with the sampling variance associated with each effect size 259 

included in the model. The phylogeny (using the phylogenetic distance matrix), the population 260 

and the species independently of the phylogeny were included as random factors. The same 261 

model was used for each age class (juvenile, adult and ‘all age classes’ datasets) (See Table 1 262 

for a summary of the data analysed). To quantify heterogeneity in our data accounting for 263 

random factors, we estimated I² for each random factor (i.e. the percentage of the total variance 264 

explained by each random factor) as well as I² total (i.e. the percentage of the total variance 265 

explained by the between-study variance) following Nakagawa & Santos (2012).  266 

First the overall association between TL and age was quantified using the intercept 267 

model (i.e. null model). Next, we added the taxonomic class as a fixed effect to analyse the 268 

heterogeneity between vertebrate classes. Finally, to explain the variability in the association, 269 

we built a full model that included the moderators listed above as fixed effects for the dataset 270 

on adults and on ‘all age classes’. For the dataset on juveniles, we tested the same moderators 271 

but we removed the lifespan coverage. For all models, AFR and body mass were log-272 

transformed to improve normality. Since results from the ‘all age classes’ dataset were 273 

http://www.timetree.org/


 

 

qualitatively the same as results from the adult dataset, we decided, for the sake of clarity, to 274 

present only the results on juveniles and on adults in the main text. Results on the ‘all age 275 

classes’ dataset are therefore presented in Supplementary (Table S1-S4 and Figure S1-S4). 276 

To avoid the use of multiple correlated proxies of life-history (See Supplementary, Table 277 

S11), AFR and body mass were included separately in the full model. Since results did not 278 

change qualitatively whether we used AFR or body mass, we decided to present results using 279 

only the AFR. In addition, the use of phylogenetically-controlled mixed models allowed us to 280 

test the effect of different life history variables while accounting for the phylogenetic 281 

relatedness among species. The sex of individuals might be a source of heterogeneity in 282 

telomere dynamics as males and females of the same species might have a different relationship 283 

between TL and age (Barrett & Richardson, 2011; but see Remot et al., 2020). However, due 284 

to a high number of studies that did not report information regarding the sex of the individuals, 285 

we analysed the effect of sex separately and these results are presented in supplementary section 286 

(See Supplementary, Table S5-S7). For this complementary analysis, we built a new dataset 287 

by calculating Zr for each sex separately. 288 

Models with every possible combination of fixed effect were then compared using the 289 

corrected Akaike Information Criterion (AICc) using the MuMIn package (Bartoń, 2019), 290 

selecting the model with the lowest AIC value. When models were within two AICc units, the 291 

simpler model was retained (Burnham & Anderson, 2002).  292 

Orchard plots were used to visualize the results from both meta-analyses and meta-293 

regressions (Nakagawa et al., 2019). The orchard plot displays the estimate of the model and 294 

its confidence interval. In addition, it also displays the prediction interval and the effect size of 295 

each study allowing us to visualize precisely the heterogeneity in the data. Orchard plots were 296 

drawn using the package orchaRd (Nakagawa et al., 2019). 297 

5) Publication bias: 298 

To test for possible publication bias, we used contour-enhanced funnel plots to represent 299 

the precision of each study (i.e. the inverse of the standard error) against the estimate of the 300 

study. When the data points are symmetrically distributed around the mean, this indicates an 301 

absence of publication bias. In addition to funnel plots, we performed an Egger’s regression 302 

(Egger et al., 1997), which is a linear regression of the mean of each study against their 303 

precision. However, because means are not independent, we fitted the linear regression on the 304 

residuals of the meta-analysis (which are independent) against its precision. In absence of 305 



 

 

publication bias, the intercept of the regression should not differ from zero. To confirm and to 306 

assess the influence of the publication bias, the trim and fill method was used (Viechtbauer, 307 

2010). This method estimates the number of missing studies on one side of the funnel plot and 308 

provides an adjustment of the meta-analysis mean according to those missing studies.  309 

 310 

Results: 311 

1) Meta-analyses in juveniles and in adults 312 

 In our meta-analyses, the relationship between TL and age was weak and negative. The 313 

negative relationship was statistically significant in adults (estimate and 95% CI: -0.16, [-0.26:-314 

0.06]) but not in juveniles (estimate and 95% CI: -0.13, [-0.50:0.24]). However, estimates in 315 

adults and in juveniles were not detectably different, as their confidence intervals overlapped; 316 

Table 2, Figure 2 and Figure 3).  317 

2) Heterogeneity analysis 318 

The total heterogeneity was high and similar for juveniles (I² total = 84.06%) and adults 319 

(I² total = 83.94%). In juveniles, the total heterogeneity was mainly due to the phylogeny (I² 320 

phylogeny = 54.51%) and the heterogeneity within populations (I² population = 29.55%). 321 

However, the species independently of the phylogeny and the population explained the I² Total 322 

in adults, and the phylogeny had little contribution to total heterogeneity (Table 2). 323 

3) Meta-regression 324 

We found a negative (but weak) association between TL and age in juvenile and adult 325 

stages of all taxa (except for juvenile reptiles, likely due to the low number of effect sizes). In 326 

mammals, estimates were similar between juvenile and adult stages but their 95% CI 327 

overlapped zero (estimate and 95% CI = -0.04, [-0.24:0.17] and -0.09, [-0.26:0.08] for juveniles 328 

and adults, respectively). In fish, estimates were moderate and statistically significant for 329 

juveniles (estimate and 95% CI = -0.47, [-0.69:-0.26]) but low and not statistically significant 330 

for adults (estimate and 95% CI = -0.14, [-0.42:0.15]). Finally, in birds, estimates were negative 331 

and the 95% CI overlapped zero in juveniles but not in adults (estimate and 95% CI = -0.17, [-332 

0.36:0.01] and -0.22, [-0.36:-0.08]). For adult reptiles, estimates were very close to zero 333 

(estimate and 95% CI = -0.08, [-0.38:0.22]) (Figure 4) 334 



 

 

In the juvenile dataset, the model selected was the null model, meaning that none of our 335 

moderators, independently of phylogeny, explained the heterogeneity in the relationships 336 

between telomere length and age during this stage (Table S8). The selected model for adults 337 

included the type of study and the method of TL measurement (Table S9). When tested 338 

separately, the relationship was weak and negative in both Transversal and Longitudinal studies 339 

but not statistically different (estimate ± 95% CI = -0.20, [-0.31:-0.08] and -0.11, [-0.26:0.03] 340 

for Transversal and Longitudinal studies, respectively). Regarding the effect of the method, the 341 

association between TL and age was negative whatever the method considered. However, the 342 

estimate was strongly negative for FISH (estimate and 95% CI = -0.73, [-1.18:-0.28]) and small 343 

to moderate for TRFI (estimate and 95% CI = -0.30, [-0.49:-0.12]). The estimates for studies 344 

using TRFS and qPCR were small and their 95% CI overlapped zero (estimate and 95% CI = -345 

0.23, [-0.49:0.03] and -0.07, [-0.16:0.03]; Table 3, Figure 5).  346 

In the adult dataset, we performed the same meta-regression as above but this time using 347 

data restricted to the methods that provided evidence for a decline in telomere length with 348 

increasing age (i.e. TRFI and FISH). The model selected was the null model, meaning that none 349 

of our variables could explain the decline of telomere length with increasing age (Table S10).  350 

4) Publication bias analysis 351 

There was no detectable publication bias for the juvenile dataset because the intercept 352 

of the Egger’s regression was not different from zero (Estimate ± SE: 0.06 ± 0.09) and the trim 353 

and fill method did not detect any missing studies (Figure 6). However, we found a funnel plot 354 

asymmetry in the adult dataset. The intercept of the Egger’s regression was different from zero 355 

(Estimate ± SE: -0.39 ± 0.07) and the trim and fill method detected 56 missing studies on the 356 

right-hand side of the funnel plot (Figure 6). Those missing studies might change the estimate 357 

of the meta-analysis mean (change in the meta-analysis mean = 0.13, SE = 0.04) leading to a 358 

weaker relationship between TL and age (estimate after the trim and fill = -0.03).  359 

 360 

Discussion: 361 

Our meta-analysis based on 175 effect sizes and 98 species, encompassing birds, 362 

mammals, fish and reptiles, revealed a negative relationship between TL and age in adults but 363 

not in juveniles. However, the relationship was both weak and variable across taxonomic 364 

classes, which suggests more complex telomere dynamics than a simple decline with increasing 365 



 

 

age throughout life in vertebrates. Despite the high number and diversity of species analysed, 366 

we were not able to include any amphibian species. Our dataset was also biased in favour of 367 

birds that were over-represented (45 bird species and 81 effect sizes out of 98 species and 175 368 

effect sizes) relative to the other taxonomic classes. Along with the taxonomic class effect, we 369 

also found a strong effect of the method used to measure telomeres in adults. Indeed, the 370 

relationship was statistically significant only when using TRFI and qFISH methodologies.  371 

Contrary to our hypothesis, we found a similar decline in age-specific TL during the 372 

whole juvenile and adult stage. Our results suggest that juveniles and adults do not differ in TL 373 

attrition rates on average across our set of species. Two non-mutually exclusive hypotheses 374 

could be made to explain this lack of difference in telomere dynamics among life stages. First, 375 

we used the age at first reproduction as the cut-off age between juveniles and adults. However, 376 

the period of most rapid growth (which corresponds to the period of highest cell division and 377 

thus decline in TL) might not cover the entire period before the age at first reproduction in all 378 

taxa (Monaghan & Ozanne, 2018). In birds, for instance, final body size is reached by fledgling 379 

or shortly after while sexual maturation could be achieved several years later for long-lived 380 

birds. This is well illustrated in the wandering albatross where chicks reached adult body size 381 

at around 10 months old (Mabille, et al., 2004) but individuals only start to reproduce around 7 382 

years old (Froy et al., 2013). While there is compelling evidence that telomeres shorten at a 383 

faster rate during embryonic development (Stier et al., 2020) and nestling stage in some bird 384 

species (Boonekamp et al., 2014; Vedder et al., 2017), we excluded those articles from our 385 

analyses due to the lack of data available covering the first month of life. The lack of available 386 

data on TL change over the earliest developmental stages could lead us to underestimate the 387 

decline of telomere length in juveniles. Repeated sampling in very young individuals, especially 388 

in taxa other than birds, is clearly needed to better understand early-life telomere dynamics and 389 

the link between growth and telomere shortening. However, repeated sampling of very young 390 

individuals in wild populations may be both ethically and logistically challenging. A second 391 

explanation is that variation exists in the form of the relationship between TL and age, being 392 

curvilinear in some species (Rollings et al., 2017; Ujvari et al., 2017) and bi-phasic (Aubert et 393 

al., 2012; Hall et al., 2004) in others, so that different relationships cancel into noise and we 394 

cannot pick up the expected difference between juveniles and adults. To perform our meta-395 

analyses, we made strong simplifying assumption (i.e. linearity of the relationship between TL 396 

and age and a cut-off between juvenile and adult stages using the AFR) that researchers working 397 



 

 

on single species do not have to make. In that respect, some relationships we estimated might 398 

be at odds with what is reported in the literature. 399 

 Among the different moderators included in our analyses, we found that the method 400 

used to measure telomeres influenced the mean effect size in adults. More precisely, we found 401 

stronger negative relationships in studies using TRFI and qFISH methodologies, but weaker 402 

and not statistically significant relationships in studies using TRFS and qPCR. Conversely, in 403 

a previous meta-analysis linking TL and mortality risk in non-human vertebrates (Wilbourn et 404 

al., 2018), the relationship was stronger in studies using qPCR. In another meta-analysis looking 405 

for the association between stress exposure and TL (Chatelain et al., 2020), the association was 406 

34% stronger when telomeres were measured with qPCR than TRF. The stronger association 407 

in qPCR was explained by a possible publication bias in qPCR studies, which is supposed to be 408 

higher than in TRF since qPCR is a cheaper and faster method than TRF. Chatelain et al. (2020) 409 

also explained such discrepancies by the fact that mean TL might be more accurately estimated 410 

using qPCR since TL distribution can be highly skewed and thus poorly reflected by average 411 

value obtained using TRF. On the other hand, a meta-analysis of human studies found sex 412 

differences only in articles using TRF (Gardner et al., 2014). The authors suggested that this 413 

difference could arise from higher measurement error in qPCR than in TRF. To date, only one 414 

published study compared estimates of TL using qPCR and TRFS on the same sample in 415 

relation to age (Aviv et al., 2011). While the authors found a higher measurement error in qPCR 416 

than in TRFS (6.45% against 1.74%), age accounted for 17.2% of the inter-individual variation 417 

of TL measured with qPCR against 29% using TRFS. While the number of studies measuring 418 

telomeres in wild vertebrates has increased dramatically in recent years, TRF, considered as a 419 

‘gold standard’ (Nussey et al., 2014), is being used less and less in favour of qPCR because 420 

qPCR requires less DNA and is easier to perform than TRF (Lai et al., 2018). However, qPCR 421 

assay is known to have higher measurement error than TRF in humans (Aviv et al., 2011; Elbers 422 

et al., 2014) and is subject to well-position effects in thermocyclers, which, when not controlled, 423 

increase the overall measurement error (Eisenberg et al., 2015). In overall, qPCR require to be 424 

highly optimized in order to increase the precision and the accuracy of telomere length 425 

measurement (Eastwood et al, 2018; Lin et al., 2019). However, a higher measurement error in 426 

qPCR than in TRF cannot explain the pattern we observe since in our analysis we detected an 427 

effect of age using TRFI but not using qPCR nor TRFS. Another explanation for the 428 

discrepancy between the methods used is that TRFI uses non-denatured DNA, contrary to TRFS 429 

and qPCR. By denaturing the DNA, TRFS and qPCR measure, in addition to telomeres, 430 



 

 

interstitial telomere sequences (ITS), which are telomeric repeats located inside the 431 

chromosomes (Foote et al., 2013; Meyne et al., 1990). ITS are known to be shorter than 432 

telomeres but should not shorten with increasing age (Foote et al., 2013). Accordingly, 433 

methodologies that include ITS may underestimate the average TL in a sample of cells. In 434 

addition, because ITS may also vary among individuals within a same species (Foote et al., 435 

2013), including ITS could also decrease the power to detect differences in TL over time. 436 

However, this hypothesis could not explain the negative result we found in studies using qFISH, 437 

since qFISH also include ITS in the estimation of TL. Overall, we cannot explain the effect of 438 

TL measurement method we found in our meta-analyses. At present, only one meta-analysis in 439 

the field of telomere dynamics makes the distinction between TRFI and TRFS (Remot et al., 440 

2020) and it is now necessary that forthcoming comparative and meta-analyses also make this 441 

distinction. In addition, reasons given to explain such discrepancies between methodologies 442 

remain hypothetical, and more research should focus on understanding how and why telomere 443 

measurement methods differ in the results they produce. To address this question, we 444 

recommend that further studies should focus on measuring TL in the same sample of known-445 

age individuals using different methodologies. Finally, while the qFISH is rarely used in non-446 

medical research (only 9 effect sizes in our dataset), the TRFI is almost exclusively used in 447 

birds (32 effect sizes in birds, 1 in mammals and 2 in reptiles, see Supplementary, Table S12). 448 

Hence, the effect of the method we found in our analyses and the fact that the methods used are 449 

not balanced across taxonomic classes could explain why we detected a decline in TL with 450 

advancing age in birds but not in mammals. In addition, because of the bias in methodologies, 451 

we may have underestimated the overall decline in telomere length with increasing age. To 452 

tease apart the effect of the phylogeny from the effect of the methodology, we recommend the 453 

use of methodologies such as TRFI and qFISH in taxa other than birds. 454 

 We found no evidence for an effect of the age at first reproduction nor a difference 455 

between the type of study (transversal vs. longitudinal) on the association between TL and age, 456 

contrary to what we expected. Previous studies found that telomere rate of change was 457 

positively linked with maximum lifespan in 19 species of bird (Tricola et al., 2018), and also 458 

associated with the species pace of life (i.e. fast-living species lose more telomeres per unit of 459 

time than slow-living species) in 14 species of birds (Dantzer & Fletcher, 2015). One potential 460 

explanation for this discrepancy with past studies of birds is that our analysis was performed in 461 

four different classes of vertebrates, encompassing 98 different species, with four different 462 

methods of TL measurement, while the two previous findings were made on birds only, whose 463 



 

 

telomeres were measured using TRF only. Thus, the heterogeneity due to the high number of 464 

species and the various methodologies in our dataset could prevent us from finding a detectable 465 

effect. We also did not find any effect of the type of study on the association between TL and 466 

age. A possible source of heterogeneity that could potentially explain the weak relationship we 467 

observed in adults is the tissue sampled. While some studies did not find any effect of the 468 

interaction between tissue and age on TL, a recent study made on humans found different 469 

telomere attrition rates depending on the tissue sampled (Demanelis et al., 2020). At the within-470 

tissue level, tissues are composed of various cell types that can have their own telomere 471 

dynamics. In the Australian Painted Dragon (Ctenophorus pictus), white blood cell (WBC) 472 

populations (lymphocytes and azurophils) have different TL, and TL is also much longer in 473 

WBC than in red blood cells (RBC) (Olsson et al., 2020). Given the lack of a nucleus in their 474 

erythrocytes, telomeres in mammals are mostly measured in WBC, which equates to measuring 475 

the average TL in a heterogeneous population of cells, each with potentially different sized 476 

telomeres. More problematically, it is known that the composition of WBC varies considerably 477 

with the age of individuals (Cheynel et al., 2017; Watson et al., 2017), which might cloud the 478 

pattern of telomere dynamics with age. From the few studies that measured cell-specific 479 

telomere dynamics, contrasting results occur. In the Soay sheep, while the composition of WBC 480 

varies with the age of individuals, it seems that those changes do not impact age-specific 481 

telomere dynamics (Watson et al., 2017). However, telomere attrition rates vary between 482 

subpopulations of leukocytes in humans (Lin et al, 2016), suggesting that average leukocytes 483 

TL might also vary following the composition of the cell population being measured. In our 484 

meta-analysis it was not possible to take into account the tissue sampled nor the cell type within 485 

tissue since most of the studies included (76%) measured TL in blood (whether RBC in birds, 486 

fish and reptiles or WBC in mammals) and because WBC are only measured in mammals, the 487 

tissue is confounded with the taxa. In addition, most of the other tissues present in our dataset 488 

were sampled once or twice (15 out of 21 tissues) meaning that we would not have enough 489 

repeated measures per tissue to detect tissue-specific telomere dynamics with age. We then need 490 

more studies that compare TL change with age over different tissues. 491 

We also found evidence for asymmetry in the funnel plot of the adult dataset. The trim 492 

and fill method estimated 51 missing effect sizes on the right-hand side of the funnel plot. Once 493 

these studies were accounted for, there was no evidence for a relationship between TL and age. 494 

However, the trim and fill method has shortcomings (especially when between-study 495 

heterogeneity exists (Peters et al., 2007)) and should be interpreted cautiously. Two hypotheses 496 



 

 

could explain the funnel plot asymmetry. First, positive associations between TL and age might 497 

be less likely to be published without strong statistical support (i.e. high precision) since TL is 498 

commonly expected to decline with increasing age. Alternatively, such positive relationships 499 

could be truly rarely observed. Indeed, due to the ‘end-replication problem’ and oxidative 500 

damages, it is biologically less likely that TL declines than increases with age, meaning that, in 501 

this case, funnel plot asymmetry might be due to biological constraint rather than publication 502 

bias. Either way, we highly recommend that researchers measuring TL in known age 503 

individuals publish their data, no matter the effect found nor the statistical significance because 504 

only a higher number of studies will allow us to clarify whether this asymmetry is due to 505 

publication bias or biological constraint. 506 

Our heterogeneity analysis reveals that the part of the total variance explained by the 507 

between-study variance in the meta-analysis performed on adults was mostly due to the 508 

heterogeneity among species (independently of the phylogeny) and populations (for species that 509 

were sampled in different populations), highlighting the role that environmental conditions can 510 

have on telomere dynamics. For example, in great tits (Parus major), individuals living in urban 511 

environments have shorter telomeres than individuals living in forest regardless of nestling 512 

origin (Salmón et al., 2016). In roe deer (Capreolus capreolus), shorter telomeres were 513 

observed in old individuals from a population facing strong resource limitation compared to 514 

those from a population experiencing better environmental conditions (Wilbourn et al., 2017). 515 

However, due to the lack of multiple sampling of the same species in contrasting environments, 516 

it was not possible to thoroughly examine the role played by environmental conditions on the 517 

relationship between telomere length and age.  518 

Available data indicate that telomere dynamics are complex both within and among 519 

species. While we found an overall decline of TL with increasing age among adult vertebrates, 520 

the publication bias we found might weaken the strength of the association. In addition, our 521 

results mainly point out the variability of the relationship between TL and age and, because 522 

none of the biological moderators we tested explained this variability, suggesting that there is 523 

much we still do not know about telomere dynamics. In addition, as highlighted in previous 524 

meta-analyses (Chatelain et al., 2020; Wilbourn et al., 2018), the methodology used to measure 525 

telomeres remains an important source of heterogeneity, which is worrying since at least four 526 

different methods are currently used, potentially giving different results. It is important that 527 

future research aims to better understand how methodologies and phylogeny influence patterns 528 

of variation in TL in relation to age. 529 
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Tables and Figures legends: 1029 

 1030 

Table 1: Number of species, studies and effect sizes for the two meta-analyses performed on 1031 
juveniles and adults. 1032 

 1033 

Table 2: Effect size of the relationship between TL and age estimated from the meta-analyses 1034 
we performed and I² associated with each random factor. 1035 

 1036 

Table 3: Estimate and 95% confidence interval for the effect of the method used to measure 1037 
TL in adults on the effect size of the relationship between TL and age. 1038 

 1039 

Figure 1: PRISMA statement (adapted from Liberati et al., 2009). 1040 

 1041 

Figure 2: The relationship between telomere length and age across adult non-human 1042 
vertebrates. Species-specific estimates were calculated using the factor ‘Species’ as a moderator 1043 
in the meta-regression model to calculate a mean relationship for each species.  1044 

 1045 

Figure 3: Orchard plots for juveniles (A, in blue) and adults (B, in yellow). The point on the x-1046 
axis represents the estimate of the model, the black line in bold the confidence interval, the grey 1047 

line in bold the prediction interval and coloured points represent the effect size of each study 1048 
(the size of the points is proportional to the precision, calculated as the inverse of the standard 1049 
error, of the study). Individual effect sizes are distributed on the y-axis to make them all visible. 1050 
For the ease of interpretation, all effect sizes were back-transformed into correlation 1051 
coefficients (r = tanh Zr). The I² total is also reported. 1052 

 1053 

Figure 4: Orchard plot for juveniles (A) and adults (B) split among taxonomic groups. The 1054 
point on the x-axis represents the estimate of the model (back-transformed into correlation 1055 
coefficients), the black line in bold the confidence interval, the grey line in bold the prediction 1056 

https://doi.org/10.5061/dryad.000000048


 

 

interval and coloured points represent the effect size of each study (the size of the points is 1057 

proportional to the precision, calculated as the inverse of the standard error, of the study). k is 1058 
the number of effect sizes for each level. 1059 

 1060 

Figure 5: Orchard plot displaying the effect of the method of TL measurement in adults. The 1061 
point on the x-axis represents the estimate of the model (back-transformed into correlation 1062 
coefficients), the black line in bold the confidence interval, the grey line in bold the prediction 1063 

interval and coloured points represent the effect size of each study (the size of the points is 1064 
proportional to the precision, calculated as the inverse of the standard error, of the study). k is 1065 
the number of effect sizes for each level. 1066 

 1067 

Figure 6: Contour-enhanced funnel plot for the meta-analyses on juveniles (A) and adults (B). 1068 
The precision (inverse of the standard error) is plotted against meta-analytic residuals. Areas of 1069 
statistical significance are displayed in grey. While there was no detectable publication bias in 1070 
juveniles, we found an important publication bias in adults with 56 missing studies on the right 1071 
side of the funnel plot (white dots), estimated by the trim and fill method.  1072 


