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Abstract 14 

Social networks are critical to the success of behavioural interventions in conservation as network 15 

processes such as information flows and social influence can enable behaviour change to spread 16 

beyond a targeted group. We investigated these mechanisms using social network data and 17 

longitudinal behavioural data from a conservation intervention in Cambodia, and Stochastic Actor-18 

Oriented Models. The intervention initially targeted ~11% of the village population, but knowledge 19 

of the intervention reached ~40% of the population within six months. The likelihood of an individual 20 

having this knowledge nearly doubled with each additional knowledgeable household member. In 21 

the short term, there was also a modest, but widespread improvement in pro-conservation 22 

behavioural intention, but this did not persist into the long term. Estimates from network models 23 

suggest that the influences of social peers, rather than knowledge of the intervention, were driving 24 

changes in intention and contributed to the failure to change behavioural intention in the long term. 25 

Our results point to the importance of accounting for the interaction between networks and 26 

behaviour when designing conservation interventions.  27 

https://doi.org/10.1111/cobi.13833
https://doi.org/10.1111/cobi.13833
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Introduction 28 

Biodiversity conservation practitioners and researchers are increasingly interested in designing 29 

interventions that influence human behaviour (St. John et al., 2013). Social networks  – i.e. the 30 

connections between individuals within a population – play a strong role in shaping behaviour as 31 

individuals communicate with and influence one another (Borgatti et al., 2009; Prentice & Paluck, 32 

2020). The structure of social networks therefore has important implications for environmental and 33 

conservation outcomes (Bodin et al., 2006; Barnes et al., 2016), and understanding how social 34 

networks influence behaviour can enable practitioners to design more effective interventions (de 35 

Lange et al., 2019; Valente, 2012).  36 

Human behaviour is shaped by a wide range of beliefs and perceptions that individuals hold about 37 

the world. The Theory of Planned Behaviour, a widely-used model for understanding intentional 38 

behaviours in individuals, posits that intentions to act in a particular way within a particular context 39 

are dependent on attitudes (i.e. is the behaviour good?), perceptions of control (i.e. am I able to do 40 

it?), and perceived social norms (Ajzen, 1991). Perceived norms can further be described as 41 

descriptive (i.e. how do others behave?) or injunctive (i.e. how do others expect me to behave?), 42 

which act independently (Schultz et al., 2016). These perceptions are updated as individuals receive 43 

information about the world around them (Schlüter et al., 2017). 44 

An individual’s social network can influence these constructs in two important ways (Contractor & 45 

DeChurch, 2014; de Lange et al., 2019). Firstly, as individuals communicate and share information 46 

about the world, this information will alter beliefs and perceptions. For example, if a social peer 47 

provides useful information about using a new technology, this is likely to improve perceived ability 48 

to use the technology. If they share information about the benefits of social programme, attitudes 49 

towards participation may improve (Cai et al., 2015; Hilbert et al., 2017). The social contexts and 50 

relationships within which information is shared may influence how it is interpreted and acted upon 51 

(Pornpitakpan, 2004; Faraji-Rad et al., 2015). These processes of information transfer and persuasion 52 

are at the heart of the classic Diffusion of Innovations theory, which describes how practices and 53 

technologies spread through social groups: initially slowly, but gaining momentum as more 54 

individuals adopt (Rogers, 2003). However, this theory has been critiqued because it conceptualises 55 

communication as a one-way process, and is focused on the factors that enable diffusion and not 56 

limiting factors (Karch et al., 2016).  57 

Drawing on analysis and simulation of fine-scale network data, the more recently developed theory 58 

of ‘complex contagions’ sheds light on why diffusion can fail, and emphasises the central role of 59 

social information (Centola, 2010). This theory distinguishes between simple contagions which are 60 
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transmitted in one direction through a single exposure, such as information, and complex contagions 61 

which require social reinforcement/influence or multiple exposures in a social network to diffuse. 62 

Among other reasons, many behaviours are ‘complex’ because there are social risks involved with 63 

adoption or because they require coordination between adopters (Centola, 2018). Information 64 

about and perceptions of the behaviour or attitudes of referent others in the individual’s social 65 

networks are therefore critical and can influence behaviour through changing perceived norms 66 

(McDonald & Crandall, 2015; Bicchieri, 2017). When norms and the behaviours of social referents 67 

are not supportive of a new practice, individuals may tend to comply or conform and diffusion will 68 

fail, even if they receive positive information about the practice and hold positive attitudes towards 69 

it (Cialdini & Goldstein, 2004). Conversely, positive social influences can be a driver of widespread 70 

behaviour change (Kim et al., 2015; Nakano et al., 2018), and are therefore a second important 71 

network process.  72 

Most network studies aiming to inform conservation practice use observations of social relations 73 

and behaviour at a single point in time, usually before the intervention takes place (Groce et al., 74 

2018). This data is used to predict how an intervention might harness social influence, such as by 75 

identifying influential individuals to target (Mbaru & Barnes, 2017) or to delimit relevant social 76 

groupings (Crona & Bodin, 2006). However, social change is a temporal process and to untangle the 77 

mechanisms shaping behaviour there is a need to move beyond cross-sectional approaches and 78 

adopt a longitudinal perspective (Robins, 2015; Shalizi & Thomas, 2011; Steglich, Snijders & Pearson, 79 

2010). Such studies have rarely been conducted in conservation. 80 

In this study, we aim to understand how two important network processes – information flow and 81 

social influence - mediate the success or failure of a conservation intervention taking place in a part 82 

of Cambodia where pesticide misuse has been linked to the killing of threatened wildlife species and 83 

harm to humans. The intervention aimed to promote the use of a hotline for reporting pesticide 84 

contamination in one village (de Lange et al., 2020), and was designed to reach a small part of the 85 

population directly. We measured the village's social networks, then conduct a longitudinal analysis 86 

of behaviour change by collecting survey data at three time points before and after the intervention.  87 

We hypothesised that: intervention participants would gain knowledge about reporting (H1), which 88 

would alter their beliefs and intention to report poisoning (H2). Moreover, other residents would 89 

also become knowledgeable about the intervention (H3), because they received information about 90 

the intervention through their social networks (H4). Other residents would also change their beliefs 91 

and intentions to report poisoning (H6), because of increased knowledge (H6), and because they are 92 

influenced by the changing intentions of participants or others in their social networks (H7; Figure 1). 93 
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Furthermore, this social influence would occur through changing perceptions of social norms (H8). 94 

We use a combination of linear mixed-effect models (LMMs) and Stochastic Actor-Oriented Models 95 

(SAOMs) to test these hypotheses. 96 

 97 

Methods  98 

Study context 99 

Cambodia’s Preah Vihear province contains the largest remaining lowland dry forests in South-east 100 

Asia, and is home to 28 Critically Endangered or Endangered species (Clements et al., 2010). Many 101 

species rely on seasonal waterholes and are threatened by waterhole poisoning, first documented 102 

here in 2015. Research has revealed that poisoning is a method for harvesting wild meat practiced 103 

by some local farmers and youths. However, most residents do not approve of this practice due to 104 

risks to health and the environment, leading authorities in some villages to act against poisoning (de 105 

Lange et al., 2020). To support these efforts, the Wildlife Conservation Society (WCS) and the 106 

Department of Environment have piloted the introduction of a reporting hotline, enabling 107 

anonymous reporting and fast response by authorities. A paired social marketing strategy aims to 108 

promote the hotline, and influence perceptions and beliefs about reporting poisoning (Saypanya et 109 

al., 2013). 110 

Study design 111 

In one village in February 2019, WCS delivered an information session to 41 parents of children aged 112 

10 to 15, a group identified as a priority audience (de Lange et al., 2020). The intervention aimed to 113 

improve attendees' intention to report pesticide contamination, by providing information about 114 

poisoning and the hotline that was expected to alter their beliefs and perceptions. Different media 115 

and participatory formats were used to deliver the messages in a vivid and engaging way. Materials 116 

with practical and persuasive information were distributed, which attendees were encouraged to 117 

display or share with others, such as posters and stickers, and they were encouraged to discuss the 118 

issue with their friends and neighbours (see SM1 & Figure S1).  119 

To observe changes in knowledge and psychological outcomes, we conducted questionnaire surveys 120 

in the village at three time points before and after the intervention. The presence of outside 121 

researchers may increase the salience of the research topic, causing respondents to re-evaluate their 122 

beliefs, communicate with others, or seek further information. We considered it necessary to be 123 

able to control for this effect. Therefore, in the first wave, we excluded a randomly selected half of 124 

the village. In all other waves, we aimed to interview all adults in the village. We modelled the data 125 
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in conjunction with social network data collected previously. The study was approved by the 126 

University of Edinburgh School of Geosciences ethical review board, and all participants gave their 127 

informed consent. All survey instruments were piloted with a small sample of respondents in 128 

another village. 129 

Network data 130 

In September 2017 (Table 1) we collected social network data through a survey capturing ~91% of 131 

adults in the village. We measured a general social network, aiming to capture habitual social 132 

contact (i.e., time spent together) between adult villagers (>18 years). To construct this network, we 133 

measured ties of three kinds: 1) co-residence ties between adults in the same household, 2) 134 

household visits, and 3) household visitors. For co-residence ties, we conducted a household census 135 

and verified this with information provided by the village chief. We assumed that ties existed 136 

between adults living in the same household (i.e., that individuals within a household mix and 137 

communicate homogenously). We measured the other ties using a name-generator survey: 138 

respondents were asked to nominate others whom they visit at home, or who come to visit them at 139 

home (Knoke & Yang, 2011). Extensive prior qualitative research suggested that these ties are likely 140 

to comprise the bulk of everyday social interaction in the village, therefore making them a key 141 

conduit for both information and influence (see SM2). We re-measured the social network at survey 142 

wave 3 (see below).  143 

Psychological & knowledge data 144 

We measured outcomes in three waves: 1) two weeks before the intervention, 2) two weeks after 145 

the intervention, and 3) six months later, in August 2019 (Table 1). Our measured intervention 146 

outcomes are psychological constructs from the TPB; intentions, attitudes, perceived control, 147 

perceived descriptive norms, and perceived injunctive norms. Reporting is likely to be a planned 148 

behaviour because it requires conscious forethought to retrieve the hotline number and make the 149 

call from an appropriate location. Because the number of poisoning events in the vicinity of any 150 

village is likely to be very low (two events were confirmed at the study site in the four years prior to 151 

introduction of the hotline and no events were reported during the study period), measuring actual 152 

reports of poisoning events is not a useful indicator of behavioural change, hence the use of 153 

intention to report as our outcome measure.  We measured each construct using multiple five-point 154 

Likert scales, which were summed to produce continuous measures (see SM2). We assessed the 155 

internal consistency of the measures for each construct using Cronbach’s alpha.  156 

Following the intervention, we also measured knowledge of key intervention messages using twelve 157 

questions related to three components of the intervention (see SM1). We asked questions in an 158 
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open-ended manner, recorded the response verbatim, and subsequently coded answers that 159 

correctly referred to intervention messages. We then summed correct responses to arrive at a 160 

knowledge score. Questions were worded so as not to give away information for future surveys. We 161 

asked respondents to describe the source of their information and coded responses into the 162 

following categories: relatives, other people, and intervention materials.  163 

Analytical approach 164 

All analyses were conducted in R 4.02 (R Core Team, 2017). We used LMMs to explore variation in 165 

outcomes over time and between groups. We used SAOMs to test if the network predicted 166 

outcomes.  167 

Missing data imputation 168 

We used analyses both of complete-cases and of multiply imputed data to handle missingness in 169 

outcomes data (Pepinsky, 2018). We generated 20 imputations using predictive mean matching in 170 

the ‘mice’ package (van Buuren & Groothuis-Oudshoorn, 2011). Twenty was considered a good 171 

compromise between robustness and computation time (Krause et al., 2018). Furthermore, we 172 

observed that model estimates did not vary greatly between 5 and 20 imputations, suggesting they 173 

are robust to the number of imputations. The imputation model included all knowledge and 174 

psychological constructs for all waves, and all demographic and other variables used in the analysis 175 

models. We graphically checked for implausible imputations (Nguyen et al., 2017). For SAOMs we 176 

took the imputations from mice as a starting point, and then carried out 20 joint multiple 177 

imputations of the network and outcomes taking into account the model specification (Krause et al., 178 

2018). For full details see SM3&4.  179 

Changes in knowledge and psychological outcomes 180 

To explore variation in the data, we fitted LMMs. First, we examined how intervention outcomes 181 

changed over time amongst attendees and non-attendees (hypotheses H1 & H2) by modelling the 182 

interaction between attendance and time-period as predictors. We used linear hypothesis testing in 183 

the ‘car’ package to compare the effects of time on different groups, and calculated standard errors 184 

using the delta method (Fox & Weisberg, 2019). Second, we examined the relation between 185 

knowledge and psychological outcomes (H3), in two ways: with the total knowledge score, and with 186 

knowledge of the three intervention components as separate predictors (hotline, story, pledge). All 187 

LMMs included the following control variables; gender, age (normalised), pesticide use, household 188 

wealth, participation in survey wave 1, and participation in the conservation agriculture programme 189 

‘Ibis Rice’ (www.ibisrice.com). Respondent identity was included as the random effect. We pooled 190 

estimates modelled on each imputed dataset (van Buuren, 2018). Finally, to assess the psychological 191 
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determinants of intention to report poisoning, we fitted a generalised linear model (GLM) for the 192 

TPB at each survey wave. 193 

Stochastic actor-oriented models 194 

To understand how the social network influenced changes in knowledge and behaviour (H3-5) we 195 

fitted SAOMs, implemented in the R package “RSiena” (Ripley et al., 2020). SAOMs typically model 196 

network-behaviour co-evolution, where changes are driven by the simulated decisions of individual 197 

actors in continuous time. The simulations are calibrated to empirical observations of the 198 

network/behaviour at fixed time points (Snijders et al., 2010; Greenan, 2015; Snijders, 2017). By 199 

setting the rate parameters at a low value, SAOMs can also be used to model static networks 200 

(Snijders & Steglich, 2015; Block et al., 2016). We fitted SAOMs using the measured social network, 201 

which is static, with three waves of (dynamic) outcomes data. We used forward estimation to build 202 

the model; including theoretically important effects, and then including effects related to our 203 

research questions (Ripley et al., 2020), until the models included as many effects of interest as 204 

possible, had an overall convergence ratio under 0.2, and adequately fitted the data as observed 205 

using the visual method described by Wang et al. (2020) (see SM5). We perform a robustness check 206 

by repeating our models using the partially re-measured network data in wave 3. In this network, 207 

individuals not surveyed in wave 3 retain their network ties from wave 1 (see SM3). 208 

First, we modelled whether having knowledgeable social peers predicts diffusion of knowledge (H3). 209 

We used the ‘Diffusion of Innovations’ extension to the SAOM (Greenan, 2015) where knowledge is 210 

binary (i.e., does the individual have any knowledge?) and non-decreasing. In the first wave, we 211 

assumed that only those who participated in the intervention had knowledge. We modelled 212 

information diffusion in relation to the habitual social contact network, and separately with the 213 

three types of social tie (i.e., co-residence, visits, and visitors) separately. In each model, the effect of 214 

interest was the total network exposure to information (i.e., the total number of peers with 215 

knowledge at each time point). No further effects were included as this decreased model fit or 216 

reduced convergence.  217 

Next, we used SAOMs to examine peer influences on psychological outcomes. We separately 218 

modelled three social influence pathways, using the combined network: First, do individuals tend to 219 

change their behavioural intention to match their peers (H4)? Second, do perceptions of descriptive 220 

norms vary with the intentions of an individual’s peers (H5)? And third, do perceptions of injunctive 221 

norms vary with the attitudes of an individual’s peers (H5)? For the first model, we modelled social 222 

influence using the ‘average similarity’ effect. This effect is defined as the average of the similarity 223 

scores between an individual’s behaviour and that of the others to whom they are tied. The second 224 
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and third models examined the effect of peer intentions or attitudes on an individual’s perceived 225 

norms. We used the ‘alter’s covariate average’ effect; the product of the individual’s perceived norm 226 

(i.e., descriptive or injunctive norm) and the average covariate values (i.e. intention or attitudes) of 227 

those with whom they are connected.  228 

These models also included the effect of knowledge about the intervention. We included a time 229 

dummy variable to account for heterogeneity in effects between time periods (Lospinoso et al., 230 

2011). This dummy variable would indicate whether psychological outcomes tended to improve or 231 

decline in period 2. We interacted this variable with the social influence effects to determine if social 232 

influence is stronger in either period. We also interacted knowledge with social influence. The first 233 

two models included effects controlling for gender, age, wealth, participation in Ibis Rice, pesticide 234 

use, in-degree and out-degree. The latter effects express the tendency for individuals with higher 235 

numbers of incoming or outgoing connections, respectively, to increase their behavioural outcome 236 

over time. Due to difficulties with SAOM convergence (see Ripley et al., 2020), only in-degree and 237 

out-degree were included as control effects in the third model.  238 

Results 239 

Overall, 400 adult residents from 156 households participated in this study, of which 365 were 240 

included in the measured social network and SAOMs. In total, the village social network comprised 241 

1637 asymmetric ties, of which 650 (40%) were co-residence ties. The three waves had 181 (50% of 242 

the network), 283 (78%), and 192 (53%) respondents, respectively (Table 1). Before the intervention, 243 

attitudes and intention to report poisoning were largely positive but varied widely, while 244 

perceptions of control and perceptions of norms were less positive (Figure 2). Initially, no outcome 245 

variable differed significantly between those who would later attend the intervention and others 246 

(Tables S5:S9). In all three waves, intention was significantly correlated with all TPB variables except 247 

perceptions of descriptive norms (Figure 3). Attitudes remained the most important predictor 248 

throughout (GLM, βatt=0.25, SE=0.05, p<0.01, in wave 3), while the correlation with injunctive norms 249 

was higher in wave 2 (βinj=0.28, SE=0.03, p <0.01), than in wave 3 (βinj=0.12, SE=0.04, p=0.02). 250 

Analysis of the imputed data showed similar patterns (Table S10).  251 

H1: Participant’s knowledge of the intervention 252 

In wave 2, intervention attendees could recall on average, 58% (SD = 25%) of messages from the 253 

intervention, and 48% (SD = 27%) in wave 3, across all imputations.  254 
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H2: Participant’s beliefs and intentions  255 

Participants increased their intention to report poisoning in wave 2 (βpar+w2=1.19, SE=0.39, p<0.01). 256 

Perceptions of injunctive norms (β par+w2=1.76, SE=0.55, p<0.01) and perceptions of control 257 

(βpar+w2=1.41, SE=0.44, p<0.01) also improved significantly, but attitudes and perceptions of 258 

descriptive norms did not. Analysis of the multiply-imputed data only showed clear evidence for 259 

more positive perceptions of injunctive norms in the short term (β par+w2=1.76, SE=0.50, p<0.01, Table 260 

S8). However, in wave 3, none of the TPB variables differed significantly from wave 1.  261 

H3: Other residents’ knowledge of the intervention 262 

Non-attendees also learned about the intervention. In wave 2, at least 55 individuals (15% of non-263 

attendees)  had some knowledge about the intervention. Across all imputations, an average of 79 264 

individuals (SD=5.1) were knowledgeable, recalling on average 18% (SD = 13%) of messages. In wave 265 

3, at least 141 adult residents (39% of the whole sample, including attendees) could recall 266 

information from the event (Figure 4). Across all imputations an average of 148 respondents 267 

(SD=8.6) were knowledgeable, recalling on average 32% (SD = 22%) of messages shared. Information 268 

about the three key components of the intervention spread differently; on average in wave 3, 50 269 

(SD=5.6), 52 (SD=7.4), and 72 (SD=9.2) non-participants were knowledgeable about the hotline, 270 

pledge, and film, respectively across all imputations. 271 

H4: Information flow 272 

Of non-attendees with knowledge, 27% stated that they learned about the intervention from 273 

relatives, 10% reported learning about the intervention through disseminated materials (e.g., 274 

stickers with the hotline number printed), and 8% through communication with others in the village. 275 

However, 52% could not recall where they had received the information. SAOMs showed that having 276 

an additional social tie with an individual knowledgeable about the intervention increased the 277 

probability that a respondent would become knowledgeable by a factor of 1.39 (i.e. the exponent of 278 

the effect size        , SE=0.12, Table S11). When modelling different ties separately, only 279 

exposure within the household was significant. Having an additional household member with 280 

knowledge of the intervention increased the probability that an individual would become 281 

knowledgeable by a factor of 1.87 (      , SE=0.26, Table S11).  282 

H5: Other residents’ beliefs and intentions 283 

Changes in outcomes were also observed amongst residents who did not attend the intervention 284 

(Tables S5:S9). In wave 2, intention to report poisoning (β w2=0.55, SE=0.18, p<0.01), and perceptions 285 

of control (βw2=0.79, SE=0.21, p<0.01) were improved. In wave 3, intention to report poisoning was 286 

no longer different from wave 1, but perceptions of control remained more positive (βw3=0.67, 287 
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SE=0.22, p<0.01). Attitudes (βw3=0.58, SE=0.25, p=0.02) and perceptions of descriptive norms (β 288 

w3=0.41, SE=0.14, p<0.01) were also more positive in wave 3. Analyses of the imputed datasets 289 

suggested similar patterns of change for each variable, except that perceived control did not change 290 

(Table S6). 291 

H6: The effect of knowledge on intention 292 

In LMMs, knowledge was associated with more positive behavioural intention (βkno=0.14, SE=0.06, 293 

p=0.02), attitudes (βkno=0.31, SE=0.08, p<0.01), perceptions of control (βkno=0.23, SE=0.07, p<0.01), 294 

perceptions of descriptive norms (βkno=0.09, SE=0.04, p=0.04), and perceptions of injunctive norms 295 

(βkno=0.32, SE=0.09, p<0.01). In imputed data, the effect of knowledge on intention and perceptions 296 

of descriptive norms were not significant. Modelling knowledge of each intervention component 297 

separately, the only significant correlation was between knowledge about the hotline and perceived 298 

injunctive norms (βhot=0.38, SE=0.14, p<0.01). However, SAOM models showed that knowledge was 299 

not a significant predictor of changes in intention, when accounting for social influences (Table 2, 300 

Model 1, effect 3).  301 

H7: Peer influences on intention 302 

SAOM estimates for social influence models are presented as log-odds ratios in Table 2. Changes in 303 

intention to report poisoning were predicted by the intentions of social peers, (Model 1, effect 1). 304 

The significant average similarity effect indicates a tendency for individual intentions to become 305 

more similar to the average of their peers over time. Residents were 1.24 times more likely to adjust 306 

their intention in this way than not to change (i.e., exponent of the effect size divided by the number 307 

of levels of the behaviour    
     

 ). This effect did not vary over time or with knowledge of the 308 

intervention (effects 5 & 6). There was also a tendency to reduce intention in the second period (i.e., 309 

between waves 2 and 3, effect 4), which was not accounted for by other effects, indicating a 310 

potential weakening of the intervention’s effects over time.  311 

H8: Peer influence mechanisms 312 

Peer intentions and attitudes did not predict changes in perceived norms (Table 2, Models 2 & 3, 313 

effect 2), but knowledge of the intervention did tend to improve perceptions (effect 3). There was 314 

also a tendency for perceived injunctive norms to reduce in the second period (i.e., between waves 2 315 

and 3). Participants in Ibis Rice were also more likely to gain more positive perceptions of descriptive 316 

norms. 317 
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Discussion 318 

Using state-of-the-art models of network-behaviour dynamics, longitudinal behavioural data 319 

collected across an entire village, and an innovative study design, we show how social networks 320 

shape the outcomes of an important conservation intervention. Specifically, we show that a social 321 

marketing event aiming to reduce wildlife poisoning by encouraging use of a reporting hotline had 322 

spill-over effects beyond the individuals targeted (i.e., the intervention participants) that were 323 

mediated by a village social network representing habitual social contact. We observed a significant 324 

improvement in intention to report poisoning throughout the entire village after two weeks, and 325 

information from the intervention spread widely through the village. However, despite lasting 326 

changes in some psychological outcomes, such as perceived behavioural control and attitudes, the 327 

intervention failed to change behavioural intentions in the long term. Evidence from SAOMs 328 

suggests that both the improvement and subsequent decline in intention were driven by the social 329 

influences of network peers, rather than by individuals learning about the intervention (Table 2). The 330 

social network may therefore have initially promoted and subsequently undermined the 331 

intervention as residents sought to align their intentions with those of their social peers.  332 

The intervention included dissemination of information and materials to facilitate learning about 333 

poisoning and the hotline, as this was considered an essential precondition for behaviour change. 334 

This information flowed relatively well for a small intervention; after six months, the number of 335 

residents knowledgeable about the intervention more than tripled. Much of this flow could be 336 

predicted by household co-residence ties, not social visiting ties, suggesting that reaching at least 337 

one member of as many households as possible could be an effective information dissemination 338 

strategy in this context. Our measured social network did not adequately capture the interactions 339 

through which information might have spread between households. This highlights the difficulty in 340 

capturing and measuring the weak interactions through which information spreads in physical 341 

communities (Granovetter, 1973), which may include brief encounters with strangers, or even 342 

overhearing others’ conversations.  343 

Knowledge of the intervention was correlated with more positive intentions, attitudes, perceived 344 

control, and perceptions of social norms in linear models. However, dynamic SAOMs showed that 345 

learning about the intervention did not lead to changes in behavioural intention (Table 2). Instead, 346 

individuals with more positive attitudes towards or perceptions of reporting may have actively 347 

sought out information or were better able to recall it (Valente et al., 1998). In support of this 348 

interpretation, we observed no improvement in attitudes in the short term despite widespread 349 

dissemination of information. Instead, these models showed that the influences of network peers 350 
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predicted changes in intention, as individuals improved or reduced their intention to be more similar 351 

to their peers. After learning about the hotline, residents may have sought out social cues to 352 

determine whether reporting was a socially appropriate behaviour (Prentice & Paluck, 2020). Rather 353 

than driving behavioural change, communication about the new behaviour may ultimately have 354 

reinforced the status quo, pushing residents to conform with existing levels of behaviour. This 355 

contradicts evidence from elsewhere that increased communication about a new conservation 356 

behaviour tends to increase behavioural change (Green et al., 2019). 357 

Although our models indicated that social influences were occurring, we could not establish the 358 

cognitive mechanisms underlying this effect as peer intentions did not appear to drive changes in 359 

perceptions of descriptive norms, nor did peer attitudes influence perceptions of injunctive norms 360 

(Cialdini et al., 1991). Perhaps individuals are mis-perceiving the attitudes or intentions of their peers 361 

because reporting poisoning is both a rare and potentially sensitive behaviour, which makes 362 

observation of others' behaviour or communication about the behaviour uncommon (Prentice & 363 

Miller, 1996). In the absence of clear social cues from their network peers, residents may have used 364 

other sources of information to evaluate social norms, such as cues from outside the village, on 365 

social media, or from village leaders. This might explain why knowledge about the intervention 366 

tended to drive more positive norm perceptions, indicating that the intervention messages were 367 

appropriately framed (Kusmanoff et al., 2020). For example, the short film and pledging ceremony 368 

were both designed to alter norm perceptions (Bicchieri, 2017). But, our measures of the perceived 369 

descriptive norm had a low internal consistency, suggesting that we did not adequately measure the 370 

underlying construct.  371 

The peer-influence effects we observed for behavioural intention may have occurred through other 372 

processes. For example, individuals may resolve ambiguity around reporting poisoning by deferring 373 

to the opinions of their peers, without updating their perceived norms (i.e. informational influence, 374 

Wooten & Reed II, 1998). Alternatively, there may be important but unobserved variables, such as 375 

personality traits, which tend to be similar for socially close individuals and which are challenging to 376 

discount in observational studies (Shalizi & Thomas, 2011). Alternatively, individuals’ norm 377 

perceptions may be informed by individuals with whom they didn’t have direct ties represented in 378 

our social network (Shepherd, 2017). For example, they may be looking to local leaders, or others to 379 

whom they are weakly tied rather than their direct peers (Lee & Kronrod, 2020). Further research to 380 

understand which referent groups are salient in perceptions of norms is therefore critical (Prentice & 381 

Paluck, 2020).  382 
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Despite successfully diffusing information necessary for behaviour changes to occur (such as 383 

information about the hotline), and using appropriate message framings to influence norm 384 

perceptions, attitudes, and perceptions of control, our intervention failed to change intentions in the 385 

long-term. The countervailing effect of social influence indicates that use of the reporting hotline is a 386 

complex contagion, which, unlike information, requires social reinforcement for adoption (Centola & 387 

Macy, 2007). This is also likely to be the case for many conservation behaviours, which are often 388 

related to provision of public or common goods (Turaga et al., 2010). We also observed a tendency 389 

for intentions to decrease in the long-term independent of other effects. Although intention is 390 

measured in relation to a specific context and is theoretically semi-stable, it may be that the issue 391 

became less salient over time due to the rarity of poisoning events. The observed changes in 392 

knowledge and psychological outcomes provide the conditions necessary for future behaviour 393 

change to occur. To sustain these impacts and create behaviour change in the long-term, continued 394 

engagement with a community, consisting of repeated interventions, and other efforts at gradually 395 

influencing relevant social structures (Brooks et al., 2013) or exploiting social influences are needed 396 

(Valente, 2012; Centola, 2018). This could involve working with highly connected opinion leaders 397 

(Valente & Pumpuang, 2007), small groups of socially close individuals (Centola, 2018), or even 398 

forming new ties between receptive individuals (Contractor & DeChurch, 2014). In Cambodia, anti-399 

poisoning interventions could be integrated with broader social interventions, such as the Ibis Rice 400 

conservation agriculture programme, that aim to influence agricultural and conservation decision-401 

making (Clements et al., 2020). Furthermore, such strategies may alter the structures of social 402 

networks in the long-term, potentially producing more enabling social contexts (de Lange et al., 403 

2019). 404 

Although conservation scientists are increasingly interested in relational processes, little research 405 

has looked at how these processes operate in real-world conservation contexts (Groce et al., 2018; 406 

de Lange et al., 2019). Using an innovative network modelling approach (Greenan, 2015; Steglich, 407 

Snijders & Pearson, 2010), we interrogated the social influence processes that followed a 408 

conservation intervention. Our results highlight the critical importance of social relations in shaping 409 

conservation behaviours. In keeping with the theory of complex contagions, we found that 410 

information flow occurs more easily than behaviour change, and does not lead straightforwardly to 411 

change in intention (Schultz, 2002; Centola, 2018). Furthermore, as conservation practitioners begin 412 

to incorporate relational insights into their intervention, such as the targeting of network-central 413 

individuals (Mbaru & Barnes, 2017), longitudinal studies such as ours will be needed to evaluate 414 

these approaches. This will support better understanding of the dynamic processes of social change, 415 

and the design of more effective intentions (Ferraro & Pattanayak, 2006; de Lange et al., 2019).     416 
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 584 

Wave  Dates Before or 
after 
intervention 

Data Collected No. of individuals (% 
completeness of network) 

No. of Households (% 
completeness) 

Zero 26/09/17 – 
07/10/17 

Before Social network 365 (100%) 100 

One 21/01/19 – 
27/01/19 

Before Psychological outcomes 181 (50%) 60 

Two 25/02/19 – 
06/03/19 

After Psychological outcomes & 
knowledge 

283 (78%) 93 

Three 10/08/19 – 
31/08/19 

After Psychological outcomes, knowledge, 
& social networks 

191 (53%) 72 

Table 1: An overview of data collection for this study. The intervention took place on 13th February 585 

2019586 
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 587 

Dependent variable: 1. Change in 

Intention 

2. Perceived 

descriptive norm 

3. Perceived 

Injunctive norm 

Effect Estimate S.E. Estimate S.E. Estimate S.E. 

1. Average similarity +1.713 0.542 - - - - 

2. Average covariate 

alter (intention for 

model 2 or attitudes 

for model 3) 

- - -0.004 0.036 -0.012 0.013 

3. Intervention 

knowledge 

+0.036 0.022 +0.064 0.029 +0.047 0.015 

4. Period 2 -0.222 0.048 +0.099 0.068 -0.049 0.028 

Interactions       

5. Social influence x 

Knowledge 

+0.381 0.487 -0.011 0.029 +0.006 0.013 

6. Social influence x 

Period 2 

+0.448 0.699 +0.003 0.074 -0.036 0.027 

Control effects       

7. Linear shape +0.035 0.065 +0.039 0.091 -0.021 0.040 

8. Quadratic shape -0.034 0.011 -0.180 0.015 -0.048 0.003 

9. In-degree -0.001 0.009 +0.015 0.013 +0.014 0.005 

10. Out-degree +0.010 0.014 -0.010 0.019 -0.006 0.008 

11. Age +0.002 0.002 +0.002 0.002 - - 

12. Wealth -0.021 0.023 -0.019 0.030 - - 

13. Gender +0.0001 0.040 -0.013 0.062 - - 

14. Conservation +0.040 0.040 +0.140 0.068 +0.029 0.031 

https://doi.org/10.1111/cobi.13833
https://doi.org/10.1111/cobi.13833
https://doi.org/10.1111/cobi.13833
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Table 2: Summary results from three Stochastic Actor Oriented Models modelling the effect of the 588 

social network on 1) intention to report poisoning, 2) perceived descriptive norms, and 3) perceived 589 

injunctive norms.  590 

  591 

agriculture 

15. Pesticide use -0.007 0.047 +0.009 0.069 - - 
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592 
Figure 1: The hypothesised and observed relations between knowledge and variables from the 593 

theory of planned behaviour (TPB) throughout the village. The main hypothesised processes are 594 

labelled H1 to H8. The data were analysed using a combination of linear mixed effect models and 595 

stochastic actor-oriented models (SAOM). Left: Overview of the observed mechanisms of behaviour 596 

change in the village. The intervention influenced people’s intentions (H2) and increased knowledge 597 

about reporting of poisoning (H1). Information flowed through the village (H3, 4) but did not lead to 598 

increased intention (H6). Intention changed throughout the social network (H5) through social 599 

influences (H7). Right: Further detail on the hypothesised and observed cognitive mechanisms of 600 

behaviour change. Dotted arrows indicated hypothesised relationships between variables that were 601 

not supported by the data, while the thicker solid arrows represent correlations observed in the 602 

data. For the TPB variables, small circles indicate whether the variable changed in the short term 603 

(left) and long term (right). Black indicates change, and white indicates no change, relative to the 604 

baseline.  In turn, attitudes, perceived behavioural control, and perceived injunctive norms also 605 

correlated with intention. SAOMs showed a strong effect of peer intention but did not support other 606 

social influence mechanisms (H8). 607 

https://doi.org/10.1111/cobi.13833
https://doi.org/10.1111/cobi.13833
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608 
Figure 2: Changes in the measured values for each construct from the Theory of Planned Behaviour. 609 

From left to right: intention to report poisoning, attitudes towards reporting, perceived control, 610 

perceived descriptive norms, and perceived injunctive norms. Each construct is constructed from a 611 

set of questions answered on a five-point Likert scale. The range of values for each construct differs, 612 

so they are scaled from 0 to 1 to enable visual comparison. The mean value is shown by a black 613 

stripe, the box indicates the standard deviation, and the whiskers represent the 95% confidence 614 

intervals. Outliers are shown by dots. Significance levels are shown for the differences between 615 

waves, estimated using linear mixed effect models (* p<0.5, ** p<0.1, *** p<0.001, ns: not 616 

significant). 617 
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 619 

Figure 3: Estimates of the relationships of attitudes, descriptive norms, injunctive norms, and 620 

behavioural control with intention to report poisoning. The coefficients were estimated from 621 

Generalised Linear Models, using complete case data at each survey wave. Intention is positively 622 

correlated with attitudes, perceived injunctive norms, and with perceived behavioural control at all 623 

time points, but not with perceived descriptive norms. The relative importance of the perceived 624 

injunctive norm increases relative to perceived behavioural control in wave 2. 95% confidence 625 

intervals are shown. 626 
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Figure 4: Change over time in knowledge about the intervention. The mean number of individuals 

with each level of knowledge (measured out of 12), across twenty imputations. Those who 

participated in the event are shown in grey, while those who did not are in black. Before the 

intervention, in wave 1, nobody has knowledge because the messages were designed to be 

unknowable to those not attending the event. Wave 2 (left) was measured two weeks following the 

intervention, while wave 3 (right) was measured after six months. The standard error bars show the 

variation between imputations. Individuals without any knowledge are not shown: 248 non-

participants (SD=5) and 1 participant (SD=0) in wave 2, and 213 non-participants (SD=8) and 4 

participants (SD=1) in wave 3.  
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