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Abstract: Biochar produced by pyrolysis at elevated temperatures under oxygen limited 

conditions can contain both well-known contaminants (polycyclic aromatic hydrocarbons, 

potentially toxic elements, dioxins, and volatile organic compounds) and emerging contaminants 

(e.g., persistent free radicals, metal cyanide). Their potential to induce phytotoxicity, cytotoxicity, 

and neurotoxicity highlights the need to establish effective strategies to control and eliminate 

contaminants for sustainable biochar use. Although some articles have reviewed the ecotoxic 

potential of biochar in relation to some of these contaminants, strategies to mitigate the whole suite 

of contaminants potentially present in biochar have not been systematically reviewed so far.  Thus, 

this review discusses (i) the formation mechanism of such contaminants and (ii) evaluates their 

potential risk to ecosystems, a prerequisite (iii) to understand and explore effective control strategies 

for producing biochar with minimum contamination. The pyrolysis unit design is of crucial 

importance to avoid biochar contamination with organic contaminants. Pyrolysis vapors need to be 

fully separated from biochar, which can be achieved by avoiding cold spots in the zone where vapors 

and biochar are separated and through optimization of pyrolysis parameters (e.g, carrier gas flow). 

Post-production treatments, such as thermal treatment or natural and artificial aging help organic 

contaminant removal and breakdown. Co-pyrolysis of metal-rich feedstock with metal-poor 

biomass is the main strategy to reduce total PTE levels, though levels of available PTEs are low in 

biochars and decrease further with pyrolysis temperature. With our proposed recommendations, 

biochars that pose minimum risk to the environment can be produced. 

Keywords: Biochar; Contaminants; Toxicity; Potential risk; Control strategies; Ecosystems 
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Abbreviations  

PAHs: Polycyclic aromatic hydrocarbons  

VOCs: Volatile organic compounds 

PFRs: Persistent free radicals  

MCN: Metal cyanide  

PTEs: Potentially toxic elements 

CNTs: Carbon nanotubes  

NAP: Naphthalene 

PHE: Phenanthrene 

DahA: Dibenz[a,h]anthracene  

BghiP: Benzo[ghi]perylene 

Ind: Indeno[1,2,3-cd]pyrene  

EBC: European Biochar Certificate 

IBI: International Biochar Initiative 

ISO: International Organisation for Standardisation 

ROS: Reactive oxygen species  

SOD: Superoxide dismutase 

PCBs: Polychlorinated biphenyls  

DEP: Diethyl phthalate 

PNP: p-nitrophenol  

TC: Tetracycline 

SMT: Sulfamethazine  

SMX: Sulfamethoxazole 

DCP: 2, 4-dichlorophenol  

CIP: Ciprofloxacin 

BPA: Bisphenol A 

PNT: Phenacetin  

AO7: Acid orange  

o-NCB: Nitrochlorobenzene 
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PMS: Peroxymonosulfate  

PS: Persulfate 

RSBC-CuO: Copper oxide-modified rice straw biochar  

PDS: Peroxydisulfate 

PCDD: Polychlorinated dibenzo-p-dioxins 

PCDF: Polychlorinated dibenzofurans 

TEQ: Estimating 2,3,7,8-TCDD equivalents 

DL-PCBs: Dioxin-like polychlorinated biphenyls  

AhR: Aryl hydrocarbon receptors  

MOCN: Metal oxy-cyanide 

WSOCs: Water soluble organic compounds 

DOM: Dissolved organic matter 
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1 Introduction 

Biochar is derived from biomass, such as agricultural and industrial residues, including sewage 

sludge, that has been pyrolyzed in an oxygen-limited environment and per definition should be used 

for environmental management [1]. Due to its lower cost and simpler production process with better 

energy balance, biochar offers clear advantages over commercial activated carbon in many 

environmental management applications [2, 3], such as water treatment [4, 5]. Biochar can also play 

a key role for carbon sequestration [6], and soil and plant growth [7]. Further proposed applications 

of biochar are in catalysts for chemical synthesis, biorefinery, and biofuel production (syngas, liquid 

fuel and esters) [8-10]. The ability of biochar to sorb organic and inorganic compounds during 

wastewater treatment applications has accelerated the development of novel biochar-based materials, 

such as aluminum-biochar composites [6], biochar-clay composites [11], layered double 

hydroxides-biochar composites [12], nano-biochar composites [13], biochar-concrete composites 

[14], and CuZnFe2O4-biochar composites [15]. An essential consideration in all these applications 

is the potential of biochar to introduce potentially toxic contaminants to the environment following 

its application to soil or water. 

One category of contaminants in biochar are potentially toxic elements (PTEs) that originate 

from the feedstock material and are enriched during pyrolysis [16]. While PTEs cannot be destroyed, 

organic contaminants in the feedstock material are typically decomposed during pyrolysis and 

subsequent combustion of pyrolysis vapors [17]. However, some organic contaminants are formed 

during pyrolysis and can be introduced into biochar. Pyrolysis generates polycyclic aromatic 

hydrocarbons (PAHs) [18, 19], dioxins (PCDD/DFs) [20], volatile organic compounds (VOCs) [21], 

persistent free radicals (PFRs) [22], and metal cyanide (MCN) [23]. These contaminants can pose a 

potential risk to human health and the environment [24, 25]. While many studies that investigated 

the effect of biochar on different organisms did not report negative effects, some observed 

phytotoxicity [25], ecotoxicity [26], cytotoxicity [27], and neurotoxicity [28] (Table 1). For instance, 

biochar promoted the formation of reactive oxygen species in animal and plant tissue, resulting in 

cytotoxicity and genotoxicity in human lung epithelial cells [29]. Therefore, it is essential to 

systematically evaluate the potential risk of biochar application and measures for their prevention.  

javascript:;
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Various strategies have been proposed to alleviate the formation of contaminants and eliminate 

potential risks to ensure the safe application of biochar [30-33], including elevated pyrolysis 

temperatures [34], co-pyrolysis with uncontaminated feedstocks [35, 36], thermal post-treatment, 

and aging [37]. Although several reviews have discussed the ecotoxicity of biochar related to PTEs 

[38, 39], PFRs [40, 41], VOCs [42], and PAHs [43], no reviews exist on formation and levels of 

MCN, and dioxins in biochar and their strategies to reduce contaminants in biochar. This review 

seeks to fill these gaps, and systematically summarizes the main types and formation mechanisms 

of contaminants in biochars and evaluates their potential risks to ecosystems. This is followed by 

highlighting the most effective strategies for mitigating contaminants in biochar, during production 

and using post-treatment measures. The overall aim is to give recommendations for production of 

biochar that is safe for use in a wide range of environmental applications. 

2 Evaluating the risk of contaminants in biochars and their 

control strategies 

2.1 PAHs 

PAHs have attracted widespread attention owing to their mutagenic and carcinogenic 

properties. A large variety of PAHs can be generated during biomass pyrolysis, yet, typically only 

the PAH concentration based on a set of 16 PAHs (Σ16PAHs) defined by the US EPA is reported for 

evaluating the risk to natural environments, such as rivers, sediments, and the atmosphere [44, 45]. 

Typical PAH concentrations in different biochars range from 0.07 mg·kg−1 to 100 mg·kg−1 (Table 

2), and the threshold values of PAHs in ‘standard’ biochars, as suggested by the European Biochar 

Certificate (EBC, 2012) and International Biochar Initiative (IBI, 2015), are 6 mg·kg−1 and 300 

mg·kg−1 [46, 47]. Therefore, it is essential to understand the formation mechanism of PAHs in 

biochar and its mitigating strategies. 

2.1.1 Formation mechanism of PAHs  

Decomposition of biomass and subsequent recombination reactions (fusion of smaller 

hydrocarbons into larger) form PAHs during pyrolysis [48]. PAH formation is associated with 

successive ring buildup where the yields of PAHs with fewer rings is higher than the yield of higher-

molecular weight PAHs and PAHs are fused to larger PAHs with increasing temperature [48]. An 
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increase in the Ea (activation energy) values ranging from 50 to 110 kcal·mol−1 resulted in increased 

ring numbers from one to five rings, along with decreased PAH yields [48]. Low-molecular-weight 

PAHs (2-rings or 3-rings) are formed already at temperatures < 500 °C [43], but the formation 

increases further until ~900 °C [48]. At temperatures of 500–950°C, higher molecular weight PAHs 

(4-, 5- and 6-rings) are pyro-synthesized through the recombination reaction of hydrocarbon radicals 

(Fig. 1a) [48, 49]. Overall, the PAH concentration accumulated over the three pyrolysis fractions 

(solids, liquids and gas)  increases exponentially at ~700 °C [48, 49]. 

2.1.2 Factors responsible for PAHs formation  

PAH formation during pyrolysis, however, must be distinguished from the PAH concentration 

in biochar since the distribution of PAHs within the different pyrolysis products is temperature-

dependent [49]. Parameters, such as biomass type, pyrolysis temperature, and reactor type, influence 

the levels of PAHs in biochars [34, 50, 51]. Although the biomass type does influence the 

concentration in biochar, there is no clear consensus, whether lignin or cellulose preferentially form 

PAHs [52, 53].The effect of temperature on the concentrations of PAHs in biochar was inconsistent 

in different studies [19, 54], e.g. Devi et al. found that the maximum concentration of PAHs in 

biochar was observed in the medium temperature range (400–500 °C) (Fig. 1c)[55]. This variable 

response is a result on the interaction of pyrolysis unit, feedstock type and other pyrolysis 

parameters [51].  PAHs are formed during pyrolysis, but feedstock-inherent PAHs can also be 

degraded and vaporized, e.g., the conversion of sewage sludge into biochar at 500-700 °C results in 

a decrease in the PAH content of sewage sludge by 8–25 times [56]. 

In most cases, naphthalene (NAP) and phenanthrene (PHE) account for the highest 

contribution of total PAHs in biochar (Fig. 1b) [25, 50, 55]. In some studies, no high molar weight 

PAHs with five and six rings, such as dibenz[a,h]anthracene (DahA), benzo[ghi]perylene BghiP, 

indeno[1,2,3-cd]pyrene (Ind), were detected due to their formation at the upper range of pyrolysis, 

and they need an optimized extraction technique for recovery from biochar [57, 58]. Levels of 

oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen-containing polycyclic 

aromatic compounds (N-PACs) in biochars were also very low, in many cases below the limit of 

detection [58].
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Fig. 1. Fate and contents of polycyclic aromatic hydrocarbons (PAHs) in biochar. a, Formation mechanism of PAHs from various feedstock-based biochars 

[43]; b, PAH composition in biochars produced under a variety of pyrolysis conditions [34]; c, Effect of pyrolysis temperature on the PAH content of biochars 

from three feedstocks [20, 34, 50, 55]; d, Concentrations of sum of 16 US EPA PAHs in biochars with threshold values for biochars according to IBI and EBC 

guidelines [46, 51]. WB: wicker biochar; CSB: coconut shell biochar; MB: miscanthus biochar; WSB: wheat straw biochar; RB: redwood biochar; RSB: rice 

straw biochar; BB: bamboo biochar; MAB: maize biochar; PMSB: paper mill sludge biochar; BRB: biogass residue biochar; SSB: sewage sludge biochar; 

RHB, rice husk biochar; PWSB,  pine wood sawdust biochar; SCGB, spent coffee ground biochar.
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Table 1. Examples from the literature on the effects of biochar on microbial communities, 

plants, soil fauna, and human health  

Toxicity Biochar 

feedstock 

Experiment 

media 

Effect Ref. 

Ecotoxicity Wheat straw soil 
No negative impact on soil microbial 

communities 
[59] 

Ecotoxicity Pine wood  soil 
Change of microbial metabolic activity but not 

community structure 
[60] 

Cytotoxicity Wood chips extract 

Change surface morphology of E.coli and 

metabolites content associated with tricarboxylic 

acid cycle and glycolysis  

[61] 

Cytotoxicity 

Maize silage,  

Food leftovers, 

Digestates,  

Grass cut,  

Sewage sludge 

extract 
Caused chromosomal aberrations of pollen cells 

in Tradescantia, inhibiting its germination 
[62] 

Phytotoxicity Argan shell extract 
Stimulated the germination and fresh biomass of 

salad and barley 
 [63] 

Cytotoxicity 
Miscanthus, 

Wheat straw 
extract 

Inhibited the growth of alga Selenastrum 

capricornutum 
[25] 

Cytotoxicity Pine needle extract 

Upregulated the ROS and SOD level in 

Scenedesmus obliquus and decreased 

chlorophyll-a concentration 

[64] 

Cytotoxicity 
Cotton leaf and 

Cu(II) 
extract Inhibited the growth of M. aeruginosa [24] 

Cytotoxicity Apple wood soil 
Caused weight loss of earthworms without 

influencing its reproduction 
[65] 

Neurotoxicity Rice straw  agar 
Caused neurotoxic effect on model organism 

Caenorhabditis elegans, 
[28] 

Ecotoxicity 
Urban pruning 

wood  
soil Had no effect on soil invertebrates [66] 

Cytotoxicity Softwood pellets extract 
Inhibited the growth of  NIH 3T3 mouse 

fibroblast cell line 
[27] 

Cytotoxicity 
Nano-sized 

carbon black 
extract 

Increased the level of TNF-α, IL-6 and IL-8 of 

human monocytes 
[67] 

Cytotoxicity Tobacco stem extract 
Caused adverse oxidative responses in normal 

human lung BEAS-2B cells. 
[29] 

Note: ROS: reactive oxygen species; SOD: superoxide dismutase. 

2.1.3 PAHs in biochars exhibit low risk to organisms  

Elevated PAH uptake by the earthworm E. fetida has been observed when present in biochar-

amended soil [68]. Yet, Oleszczuk et al. evaluated the PAH content in four commercial biochars and 

their eco-toxicological properties in a battery of biotests (plants, bacteria, alga, protozoa and 

crustaceans) [25] and a correlation between content of PAHs and toxicity was noted only in the case 

of crustaceans (Daphnia magna). Rombolà et al. proposed that water-soluble components (e.g., 

organic acids) are responsible for the high phytotoxicity of poultry litter biochar, rather than PAHs 

[69]. Biochars can also pose mutagenic effects, yet no clear relationship between biochar 

mutagenicity in plants and PAH levels could be established [62]. The cancer risk of biochar is 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
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assumed to be low due to human exposure [70]. Due to coexistence of other organic contaminants 

with PAHs in biochars, it is difficult to establish a direct relationship between PAHs levels and 

biochar toxicity, but the evidence indicates that PAHs toxicity is a minor concern [21].  

Application of wood- and wheat straw-derived biochar to soil resulted in PAH contents in soil 

ranging from 0.1 mg·kg−1 to 1.5 mg·kg−1, which are below the agricultural soil limit [44, 71]. The 

concentration of bioavailable PAHs in biochar are very low, levels of water-extractable PAHs were 

≤ 162 ng· L−1 in biochars produced under various conditions [72]. Long-term (851 days) field 

experiments on soil amended with commercial biochar further confirmed that the available content 

of PAHs (Σ13Cfree PAHs 5 ng·L−1) was 42% lower than in the control soil [73]. Moreover, PAHs in 

biochar-amended soil can be degraded and removed from soil to background soil levels in a few 

months (105 days in this particular experiment) due to microbial degradation and leaching (Fig. 2) 

[71]. Although the formation of PAHs is inevitable as a result of biochar production, levels of 

bioavailable PAHs are low, resulting in a low risk to soil.  

 

Fig. 2. Fate of PAHs in biochar after soil application. Low risk of PAHs soil due to low 

bioavailability and microbial degradation of the accessible PAHs. PAHs: Polycyclic aromatic 

hydrocarbons 

javascript:;
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Table 2. Examples from the literature on concentrations of contaminants in biochar  

Biochar feedstock 
HTT 

(℃) 

RT 

(min) 

Pyrolysis 

reactor 

 

Extraction 

 method 

Contaminant  

concentration 

(mg·kg-1) 

Ref. 

Spent coffee 

ground 

300-

900 
120 Tubular 

acetone/n-

hexane mixture 
0.56 -0.85 PAHs [50] 

Wood chips, 

Paper sludge, 

Sewage sludge 

200-

620 
20 Rotary toluene  0.9-15.4 PAHs [44] 

Straw pellets, 

Soft pellets, 

Miscanthus chips, 

Demolition wood, 

Arundo donax, 

Willow chips, 

Sewage sludge 

350-

750 
10-40 

Tube 

furnace, 

Rotary kiln 

toluene 1.2-100 PAHs [51] 

Rice husk, 

Wheat, Wood 

Sewage sludge 

400-

600 

20-

240 
Rotary kiln toluene 0.80-6.36 PAHs [34] 

Miscanthus, 

Wheat straw, 

Coconut shell 

Wicker, 

350-

650 

- 

 

 

Rotary kiln toluene 

1.12-28.3 PAHs; 0.04-0.87 

Cd; 0.00-3.81 Cu; 0-9.95 Ni; 

0-18 Cr; 30.2-102.2 Zn 

[25] 

Redwood, Rice 

straw, Maize, 

Bamboo 

300-

600 

150-

720 

Muffle 

furnace  

 

hexane, toluene, 

dichloromethane  

0.08-8.7 PAHs; 0.02-0.94 

Cd; 0.12-6.48 Cr;0.04-13.2 

Cu; 0.1-1.37 Ni; 0.06-3.87 

Pb; 0.94-207 Zn; 0.03-0.27 

As 

[74] 

Softwood pellets 550 20 Rotary kiln toluene 
6-53 PAHs; 37.1-771.9 

LMW aliphatic acids; 
[21] 

Paper mill sludge 
200-

700 
- - toluene 0.32-16.92 PAHs [55] 

50 different 

feedstocks 

250-

900 
30 - toluene 

0.07-45 PAHs; 0-92 pg g-

1doxins 
[75] 

Solid residue from 

biogas production 

400-

800 
300 Rotary kiln toluene  

1.47-4.87 PAHs; 1.9-8.7 Cd; 

20.4-77.7 Cu; 6.6-33.6 Ni; 

4.2-38.9 Cr; 22-301 Zn; 128-

484 Mn; 3.3-25.9 Pb 

[76] 

Sewage sludge 
400-

900 
- Microwave toluene 2.946 PAHs; 0.02-0.25 TEQ [77] 

Miscanthus, 

Willow, Wheat 

straw 

350-

650 
- Rotary kiln 

 hexane, toluene, 

dichloromethane  
3.8-40 PAHs [37] 

Softwood pellets 550 20 Rotary kiln - 1.79-2.79 PAHs [78] 

Dried raw sludge 
400-

600 
60 

Muffle 

furnace 
- 

1551-1697 Cu; 147.4-218.6 

Ni; 665-1374.4 Cr; 2572-

3368 Zn; 731.2-1382.7 Mn; 

84.7-110.7 Pb 

[79] 

Ten marginal 

biomass-derived 

feedstocks 

350-

750 
21.5 Rotary kiln - 

0.72-1.96 As; 0.04-44.86 Cd; 

0.08-9.81 Co; 0.49-176.4 Cr; 

2.17-118.6 Cu; 0.23 Hg; 

0.21-9.48 Mo; 0.48-110.6 Ni;  

0.74-149.5 Pb; 2.65-1404.3 

Zn 

[80] 

Sawdust 
250-

700 
180 

Muffle 

furnace 
toluene 

0.59-0.86 PAHs; 50-270 pg 

g-1 doxins 
[20] 

Softwood, 

Wheat straw 

550-

700 
5-10 

Auger, 

Rotary kiln 
toluene 

0.82-19.6 PAHs; 0.6-0.9 pg 

g-1 doxins 
[58] 

Pine needles, 

Wheat straw, 

Maize straw 

300-

500 
360 

Muffle 

furnace 
- 

(1.25-22.3)×1018 spins g-1 

PFRs 
[81] 

Pine needles 
200-

600 

120-

1440 

Muffle 

furnace 
- 

(0.06-37.1)×1018 spins g-1 

PFRs 
[64] 

Phytoremediation 350- 35-75 Muffle - 36.2 Zn, 41.0 Pb, 33.8 Cd [82] 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/wood-chips
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/paper
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sludge
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sewage-sludge
https://www.sciencedirect.com/topics/chemistry/miscanthus
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sewage-sludge
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residue 750 furnace 

Phyllostachys 

pubescens 

400-

700 
120 

Tube 

furnace 
toluene 

8.59-14.67 PAHs, 1.82-3.26 

Cu, 1.17-3.53 Pb, 8.76-

16.47 Zn 

[83] 

Pig manure 
300-

700 
60 

Tube 

furnace 
- 

513-819 Cr, 1390-1920 Mn, 

673-1080 Cu, 4310-7720 Zn 
[84] 

Cow manure 
300-

700 
60 

Tube 

furnace 
- 

0.02-0.42 Cd; 20.37-40.62 

Cr; 71.13-415.92 Cu; 3.62-

12.07 Ni;  1.52-6.56 Pb; 

15.37-559.21 Zn 

[85] 

18 different 

feedstocks 
800 60 

Tube 

furnace 
- 23,251-85,870 MCN [23] 

Note: HTT, highest treatment temperature; RT, residence time 

2.1.4 Strategies to minimize and mitigate PAHs in biochar 

PAHs in biochar pose little risk for the environment mainly due to low bioavailability (section 

2.1.2 and Fig. 2). However, some biochars still exceed threshold values for total levels of PAHs (Fig. 

1d). Total PAHs are the traditional way of assessing contaminants in environmental samples and 

although not always appropriate, biochars still require to meet these threshold values. Therefore, 

there is a need to evaluate measures to reduce the total PAH concentrations in biochar, which is 

done in the following section. 

The PAH content in biochar is primarily affected by feedstock type and pyrolysis conditions 

[43]. In a systematic study using over 50 biochars, fast pyrolysis and gasification biochar exhibited 

higher total PAHs levels (23 mg·kg−1 and 45 mg·kg−1, respectively) compared to slow pyrolysis 

biochar (0.07-3.27 mg·kg−1) [72]. Further, wood-derived biochar produced in a traditional kiln 

showed 6-fold higher PAHs than that produced by fast pyrolysis [44]. Pyrolysis in a Kon Tiki kiln, 

a simple, open flame-curtain pyrolysis kiln, demonstrated low levels of PAHs in the resulting 

biochar [86]. It highlights that modern high-tech pyrolysis units, but also simple kilns can produce 

biochars with low PAH levels. With respect to the operating parameters of batch pyrolysis reactors, 

increasing the carrier gas flow (0.67 L·min−1 in this particular study) resulted in a 92% reduction in 

PAH concentrations in straw-based biochar compared to the absence of a carrier gas [51, 87], 

whereas the change in residence time (10–40 min) had no impact on PAH concentrations in wood- 

and straw-based biochar [88]. The use of carbon dioxide as gas carrier further reduced PAH 

concentrations in biochar compared to nitrogen (Fig. 3a) [89].  

Increasing the pyrolysis temperature accelerates the formation of PAHs, including the 

concentrations in PAHs across pyrolysis solids (biochar), liquids and gases [49]. However, PAHs 

https://www.sciencedirect.com/topics/chemistry/pyrolysis-reactor
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are also increasingly evaporated from the pyrolysis solids (biochar) with higher pyrolysis 

temperatures and therefore, the concentration of PAHs in biochar is not directly linked to its 

production temperature [51]. Even at medium pyrolysis temperatures (e.g., 450 °C), > 99% of PAHs 

are evaporated and ended up in pyrolysis liquids and gases, resulting in clean and low-PAH biochar 

after the separation of the liquids from biochar. In contrast, cold spots in pyrolysis reactors can result 

in high PAH concentrations in biochar because of PAH condensation and deposition on the biochar. 

Under normal production conditions in a well-designed unit, the availability of PAHs in resulting 

biochar is very low [75], but this condensation effect increases the availability of PAHs substantially, 

which subsequently could pose a risk for the environment [21, 90]. Therefore, a suitable pyrolysis 

unit is vital for controlling PAH concentrations in biochar. The design of the part of the pyrolysis 

unit where vapors and biochar are separated seems to have the largest influence on PAH 

concentration in biochar. This area needs to be kept at the same temperatures as the pyrolysis area 

through insulation and/or active heating. This prevents vapor condensation and subsequent 

contamination of the biochar [91]. 

In addition to controlling the pyrolysis process itself, thermal post-treatment of biochar can 

reduce total (Ctot) and available (Cfree) PAHs in biochar [37]. Post-treatment of biochar at 100-300 ℃ 

caused a 33.8%-100% reduction in PAHs content within 24 h (Fig. 3b) [78, 92]. Thermal treatment 

below the actual biochar production temperature can be effective when the biochar was 

contaminated by condensation of pyrolysis vapors and PAHs within the cooler areas outside the 

main pyrolysis zone. Subsequent heating of biochar even to temperatures lower than the pyrolysis 

temperatures results in weight loss in biochars that were contaminated by pyrolysis vapors, though 

not in “uncontaminated biochar” as shown previously via thermogravimetric analysis [90]. 

Microbial degradation and abiotic oxidation are natural processes that reduce PAH 

concentrations in the environment and hence also reduce the concentrations in biochar [93]. Aging 

process increases organic functional groups in biochar along with decreasing surface area owing to 

the dissolution and re-precipitation of minerals [94]. Oleszczuk et al. found that aging for 420 days 

in airtight stainless steel at different temperatures (−20 to 70 °C) effectively decreased the Ctot and 

Cfree PAH content of wheat straw- and elephant grass-derived biochars by 25–50.2% [95]. Aging in 

the presence of microorganisms and nutrients caused a 12–100% reduction in Cfree PAH content and 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/micro-organism
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a 30–100% reduction in the Ctot PAH content (Fig. 3b). These observations correspond to the results 

of previous studies, in which aging of biochar using biological and chemical methods clearly 

decreased the content of pyrene [96] and phenanthrene [97]. Additionally, after artificial aging via 

H2O2 oxidation and horseradish peroxidase enzymatic oxidation, total and bio-accessible levels of 

PAHs in biochar were reduced, indicating that the highest risk is at initial biochar application [31]. 

Natural aging of biochar occurs because of microbial degradation and oxidation. This is confirmed 

by a field study where the application of biochar at 16 t ha-1 resulted in soil PAH levels below the 

limits established by Brazilian regulations and the concentrations after 6 years were comparable to 

the control [98].   

Overall, around 99% of the produced PAHs are separated and vaporized from the biochar 

during production, and subsequently are transferred into the pyrolysis liquid fraction. Optimized 

pyrolysis unit design and increased carrier gas flow rate can decrease PAH concentrations in biochar 

for safe environmental applications, as well as aging and thermal treatment. Of the 16 PAHs, 

naphthalene (NAP) is the least toxic with the lowest boiling point[99], but also is the most abundant 

PAH in biochar; As for rotary kiln biochars, NAP constituted 30-80% of total PAHs content [100]. 

It seems advisable to separate NAP from the other PAHs due to its very low toxicity to plants and 

animals [101]. Yet, this separation and independent evaluation of different groups of PAHs is rarely 

done. More importantly, it is essential for designing specific experiment to elucidate the direct 

relationship between PAHs in biochar and its toxicity. 

 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/phenanthrene
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Fig. 3. Strategies for the production of biochar with low-PAH levels through (a) optimization of pyrolysis parameters and (b) post-treatment of biochar [37, 

51, 95, 102]. PAHs: Polycyclic aromatic hydrocarbons. 
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2.2 PTEs: Metals and metalloids  

PTEs, such as As, Cd, Cr, Co, Cu, Pb, Hg, Ni, Zn, and Mo, are another class of contaminants 

in biochar that raises concerns [103]. The enrichment of PTEs within biochars could pose a threat 

to soil microorganisms and plants [82]. The International Biochar Initiative (IBI, 2015) proposed 

guideline values for Cd, Zn, Ni, Pb, Cr, and Cu at 1.5 mg·kg-1, 480 mg·kg-1, 50 mg·kg-1, 150 mg·kg-

1, 90 mg·kg-1, and 100 mg·kg-1, respectively [46], based on data on acceptable limits for other soil 

amendments, such as compost [103].  

2.2.1 PTE levels in biochar  

During pyrolysis, the majority of PTEs present in biomass are concentrated in biochars due to 

the loss of organic matter (Fig. 4a), resulting in elevated PTE levels compared to the feedstock 

material [24, 84]. Initial PTE concentrations in the feedstock primarily determine the PTE contents 

in the resulting biochar: PTE levels (e.g., Cd, Cu, Ni, Cr, Zn, Pb, As) in biochar derived from 

biomass containing low PTE levels, such as redwood, rice straw, maize, and bamboo, were lower 

than ambient background soil concentrations (89 mg·kg-1) [74], as published by the International 

Organisation for Standardisation (ISO, 2005). However, some marginal biomass-derived biochars, 

such as sewage sludge, biomass grown on contaminated soil or demolition waste, contained PTE 

concentrations above the recommended threshold values for soils and biochars (Fig. 4b) [79, 80].   
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Fig. 4. Fate and contents of potentially toxic elements (PTEs) in biochar. a, Pyrolysis enriches 

the PTEs present in the feedstock material; b, PTEs concentrations of sewage sludge (SS) and 

sewage sludge biochar (SSBC) under different pyrolysis temperature conditions. The value 

represents the guideline values of PTEs within biochars from IBI [79]. 

2.2.2 Potentially toxic effects of PTEs in biochar 

Buss et al. did not find a relationship between phytotoxicity of biochar with total or available 

PTEs levels in biochar after investigating a set of 19 biochars that originated from PTE-

contaminated feedstocks [16]. Some of the biochars significantly exceeded threshold values of total 

and available PTE levels, yet the toxic effects that were observed could instead be attributed to high 

pH and salinity of biochars [83]. Available fractions of heavy metals are converted into stable 

fractions with low risk of leaching or plant uptake following pyrolysis [16, 85, 104]. Although PTEs 

are non-destructible and will accumulate in soil after repeated soil application, the release of heavy 

metals during aging in soil was low, in particular when high temperature biochar was applied to soil 

of pH < 7, the typical pH of agricultural soils [105]. Therefore, PTEs in biochar will also unlikely 

pose risk for leaching or plant uptake in the future. The low bioavailability of PTEs means that 

biochar use is safer than the application of un-pyrolysed biomass and there is little environment risk 

at typical application rates even if threshold values are exceeded [16, 106, 107].  

2.2.3 Strategies to reduce total and available PTE levels in biochar 

Pyrolysis does evaporate some feedstock-inherent PTEs with low boiling point, such as As and 

hence, can reduce total levels of some PTEs [80]. Still, the type of feedstock is the key factor that 

determines PTE concentrations in biochars. Among these feedstocks, phytoremediation residue [82], 

sewage sludge [108], and pig manure [35] contain high levels PTEs, resulting in high PTE 

concentrations in their corresponding biochars. Co-pyrolysis of high-PTE with low-PTE biomass is 

an option to reduce the PTE burden in biochar (Fig. 5) [109]. For instance, the co-pyrolysis of pig 

manure with rice straw resulted in lower levels of Cu and Zn when compared to biochar produced 

from only pig manure [35]. A similar finding was also observed following the co-pyrolysis of 

sewage sludge with various biomass feedstocks low in PTEs (e.g., bamboo sawdust, rice straw) [36]. 

Furthermore, the blending ratio of metal-poor biomass and metal-rich biomass has significant 
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impact on the PTE level in biochar, e.g. co-pyrolysis of straw and manure at a ratio of 3:1 was 

optimal to reduce environmental risks of PTE [35, 109]. Another way of reducing total PTE levels 

in biochar is pretreatment of biomass through acid washing, which removes some of the PTEs prior 

to pyrolysis [110]. This can be achieved using acids produced by the pyrolysis process itself, 

increasing circularity of the system. To some extent, operational parameters such as retention time, 

heating rate, gas flow rate, and particle size also control the availability/mobility of PTEs in biochars. 

Using a metal-accumulator invasive plant species, increasing pyrolysis temperature and heating rate 

decreased the ecological risk of biochar [111]. Mineral addition, such as phosphate or calcium 

minerals, can also decrease the availability of PTEs [112, 113].  

 

Fig. 5. Illustration highlighting the possibility of co-pyrolysis of metal-rich biomass and 

metal-poor biomass for mitigating PTE levels in biochars [76, 109] 

Overall, PTEs in biochars are enriched during pyrolysis, but the availability is reduced 

compared to the feedstock material, making soil application generally safe. To comply with 

legislation threshold values, which are typically based on concentrations of total PTEs, feedstock 

material with low PTE levels needs to be selected for biochar production. As for PTE-rich biomass, 

co-pyrolysis or pretreatment of biomass is feasible for the producing biochars with PTE levels below 

threshold values. Pyrolysis temperature has a profound impact on plant availability and leachability 

of PTEs, higher temperatures reduce the ecological risk of biochars [16, 82, 111]. Yet, there is not 

always a clear relationship between pyrolysis temperature and  available of total PTE content [16]. 

This is likely related to two effects that occur simultaneously with increasing pyrolysis temperature 

and that have opposite influences on PTE mobility: (i) the increase in biochar pH decreases mobility 

of most PTEs, while (ii) the loss of surface functionality reduces sorption of PTEs and hence 

increases PTE availability. 

2.3 PFRs 

PFRs are emerging contaminants in biochar with the potential to cause toxicity [114, 115]. 
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PFRs induce the formation of reactive oxygen species (ROS) in water, which can cause 

cardiovascular and respiratory diseases by attacking DNA [116]. In contrast to traditional toxins 

(e.g., metals and PAHs), low doses of PFRs in biochar (corn stalks, rice, and wheat straw biochar 

tested) showed considerable cytotoxicity and phytotoxicity [117]. 

2.3.1 Formation mechanism of PFRs 

Regardless of type of feedstock and their major components (cellulose and lignin), PFRs are 

ubiquitous in biochar [117]. Pyrolysis of cellulose and hemicellulose is accompanied by the 

formation of their own monomers and monomeric radicals for the cleavage of glucosidic bonds 

[118]. During lignin pyrolysis, the homolytic cleavage of the α- and β-alkyl-aryl ether bonds, C-C 

and C-O linkages firstly generates radicals, and further forms radical coupling products (Fig. 6a) 

[119]. Steric hindrance caused by the strong interaction between PFRs in biochar surface and 

adjacent solid particles reduce diffusion and hence interaction with compounds present in solution 

surrounding the biochar particle as the pore diameter drops below the minimum critical molecular 

diameter [120]. Such steric effect not only led to low adsorption affinity towards solutes, but also 

made PFRs more stable because PFRs cannot react with other molecules [41]. The half-lives of 

PFRs in biochars are on the order of hours to months [41], which is distinct from atmospheric gas-

phase free radicals that exist for mere seconds. PFRs can be detected by 

electron paramagnetic resonance (EPR), for which the g-factor values are used for distinguishing 

carbon-centered radicals (g < 2.003), carbon-centered radicals with an adjacent oxygen atom 

(g=2.003–2.004), and oxygen-centered radicals (g >2.004) [41]. At elevated temperatures, the PFR 

types shifted from oxygen-centered radicals to carbon-centered ones (Fig. 6b) [64].  

2.3.2 Factors responsible for the formation of PFRs  

Lignin in biomass is the main contributor of PFRs in biochars [121]. Abundant phenol or 

quinone moieties in biomass can induce the formation of surface-bound PFRs in biochar via 

transferring the electron to transition metals (Fig. 6a) [122]. In general, the contents of PFRs in 

biochar increased with elevated pyrolysis temperatures (300-600 °C) and then decreased sharply at 

700 °C [121]. In contrast, biochar derived from rice straw and pine wood produced below 300℃ 

showed weak EPR signal [117, 121, 123], suggesting biochars produced at temperatures below the 

typical pyrolysis range (torrefaction range) contain rather low levels of PFRs. High production 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/reactive-oxygen-species
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temperatures (e.g., 700 °C) destroyed the radical structures and resulted in the disappearance of 

PFRs [124]. Low concentrations of transition metals (Fe3+, Ni2+, Cu2+, and Zn2+ < 0.1 mM·L-1) or 

phenolic compounds (PCs, < 5 mM·L-1) loaded in biomass increased the concentration of PFRs (Fig. 

6c) [22]. In this respect, transition metals and substituted aromatics are key factors in PFR formation 

of biochar.   

 
 

Fig. 6. Fate and contents of persistent free radicals (PFRs) in biochar. a, Formation mechanism 

of PFR in biochars; b, the PFRs concentrations of pine needles biochar increased with 

pyrolysis temperature, along with a change of PFR types from oxygen-centered radicals to 

carbon-centered ones [64]；c, effect of metal and organic loading on the concentration of 

PFRs in biochar and their EPR spectra [22]. 
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2.3.3 The risk of PFRs in biochar-a double-edged sword 

PFR-containing biochars induced the upregulation of ROS and superoxide dismutase in the 

aquatic organism Scenedesmus obliquus [64]. In addition, the toxicity of S. obliquus showed a 

positive correlation (R2, 0.807) with PFR concentration in pine needle biochar [64]. Recent studies 

have revealed the neurotoxic effects of straw biochar on model organism Caenorhabditis elegans, 

e.g., impairing defecation and recognition obstacles to chemical attractants (Fig. 7) [28]. Moreover, 

the application of corn cob biochars also inhibited urease activity of soil because of oxidative 

reactions with free radicals on the biochar surface or oxidative reactions with reactive oxygen 

species promoted by free radicals[125]. This suggests that some risks of specific types of biochars 

may have been overlooked.  

Extensive studies indicated that PFRs in biochar can also be beneficial by activating persulfate 

(PS) or H2O2 to produce SO4
−·and ·OH, respectively [22, 41]. These radicals can degrade refractory 

organic pollutants, such as polychlorinated biphenyls (PCBs) [22], diethyl phthalate (DEP) [81], p-

nitrophenol (PNP) [123], tetracycline (TC) [126], sulfamethazine (SMT) [127], sulfamethoxazole 

(SMX) [128], acetaminophen (ACT) [129], 2, 4-dichlorophenol (DCP), ciprofloxacin (CIP) [130], 

bisphenol A (BPA) [131], phenacetin (PNT) [132], acid orange (AO7) [133], phenol [134], atrazine 

[135], nitrochlorobenzene (o-NCB) [136], from water environments (Fig. 7). For instance, PFRs 

catalyzed the removal of 30 mg·L-1 TC with 87–100% efficacy in a biochar/H2O2 systems [126], 

and exhibited excellent TC removal efficiency in river water (95.4%) and municipal wastewater 

(83.7%). A similar SMT degradation rate in swine manure biochar/H2O2 systems was over 85% in 

30 min [127].  

PMS (peroxymonosulfate)- or PS-activated SO4
−· was found to possess higher oxidation 

reduction potential (2.5–3.1 V) than that observed in ·OH (1.8–2.7 V) and sustained a longer half-

time of 30–40 μs than the 20 ns of ·OH in solution [131]. These features offer an unprecedented 

advantage in the degradation of organic pollutants (e.g., BPAs). Li et al. confirmed that copper 

oxide-modified rice straw biochar (RSBC-CuO) contains four reaction oxygen species, namely 

SO4
−·, ·OH, O2

−·, and 1O2 in a PDS (peroxydisulfate)/RSBC-CuO system [132], thus possessing a 

range of 86–100% degradation potential toward PNT, SMT, paracetamol, aniline, p-chlorobenzoic 

acid, and 2,4,6-Trichlorophenol. Metal-modified biochar/PS systems, including Fe, N co-doped 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/attractant
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/tetracycline
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/tetracycline
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biochar, and CuFe2O4@BC showed a significant advantage in the removal of AO7 and o-NCB 

degradation compared to that of a raw biochar/PS system [133, 136]. Chemically-modified (e.g., 

HCl, NH4OH, and KOH) sludge biochars were also efficient in dye degradation by means of PMS 

activation, including AO7, methylene blue, and methyl orange [137]. In this respect, metal-modified 

biochars, such as Fe-Mg oxide/biochar displayed negligible inhibition on the growth of gram-

negative strain E. coli due to SMT degradation by biochar-supported bimetallic oxide/PS systems 

[138]. Apart from the degradation of organic pollutants, PFRs in corn straw biochar can also serve 

as an electron shuttle to mediate Cr(VI) reduction [139], and approximately 90% of Cr(VI) adsorbed 

in biochars can be reduced to Cr(III) by the consumption of PFRs on the surface of biochar. More 

importantly, PFR possesses excellent potential for degradation of organic compounds, such as 

atrazine (herbicide), including its intermediate products, reducing environmental toxicity [135, 140]. 

Nonetheless, the weak neurotoxicity of soil organisms caused by PFRs in biochars should be 

addressed for safe environmental applications [141]. 

 

 

Fig. 7. The risks and benefits of PFRs in biochar. PFRs: persistent free radicals; PMS: 

Peroxymonosulfate; PS: Persulfate 

 

2.3.4 Strategies to reduce PFRs levels in biochar 

As shown by existing studies [121, 123], high pyrolysis temperatures (>700 °C) yielded 

biochar with low content of PFRs, as many PFRs and their precursors were destroyed under such 

javascript:;
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conditions (Fig. 8a). High levels of oxidants [e.g., Cr(VI), Fe(III)] decreased PFRs in rice husk-

derived biochar (Fig. 8b),  because the resultant PFRs can be consumed for Cr(VI) [142] or Fe(III) 

reduction [139]. In addition, the involvement of lanthanum in pyrolysis significantly mitigated the 

phytotoxicity of oak sawdust biochar by reducing organic compounds and PFRs (Fig. 8c) [143].  

 

Fig. 8 Strategies for mitigating PFRs in biochar. Avoiding PFR in biochar through (a) pyrolysis 

temperatures of >700°C or (b) LaCl3 addition prior to pyrolysis. Removing PFR from biochar 

through (c) mixing biochar with excess oxidants or (d) clay. PFRs: persistent free radicals 

 

PFR stability and persistence in biochars depends on the metals they are bound to. Among 

transition metals, the PFRs in ZnO nanoparticles can be persistent over years [115]. Even after 

natural aging in a glass desiccator for one month, PFR concentrations in pine needle biochar 

decreased by less than 10% [64]. In addition to suppression of PFRs during production, natural 

process in soil, such as interactions with  organic matter and/or clay particles can inactivate the 

PFRs in biochars (Fig. 8d) [144], indicating clay-biochar composites could be good candidates for 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/desiccators
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soil amendments owing to synergies between the constituents [145]. 

Overall, PFRs from biochar production are stabilized on the surfaces of transition metals and 

can also persist in the atmospheric environment [30]. Although metals can significantly increase the 

PFRs concentration, the underlying mechanism remains unclear. Up until now, no research studies 

reported the impact of biochar-related PFRs on higher-level organisms such as animals and humans. 

Moreover, the roles of PAHs, clay surface properties, soil organic carbon and ultraviolet radiation 

should not be underestimated in the formation of PFRs in the environment. 

2.4 Dioxins 

Dioxins, a class of structurally and chemically related polyhalogenated aromatic hydrocarbons, 

have been classified as a “probable” carcinogen in human and other vertebrates [146]. Its high 

affinity towards cellular aryl hydrocarbon receptors protein (AhR) disrupts normal hormone 

signaling pathways, as well as reproductive and developmental defects [147]. Among of dioxins, 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was the most toxic dioxin. Polychlorinated dibenzo-

p-dioxins (PCDDs), dibenzofurans (PCDFs) and the ‘dioxin-like’ biphenyls (DL-PCBs) have been 

assigned dioxin toxic equivalency factors (TEFs) based upon their relative potency [148]. 

2.4.1 Formation mechanism of dioxins  

The incomplete combustion of biomass generally produces dioxin-like substances, including 

PCDD, PCDF, and DL-PCBs [149]. These dioxins have been detected in various biochars formed 

at pyrolysis temperatures of 250–900 °C [150, 151]. Physical transformation from the feedstock 

via volatilization, followed by re-condensation or adsorption, is another mechanism of PCDDs and 

PCDFs formation [152].  

2.4.2 The potential risks of dioxins  

Hale et al. tested the toxic dioxin levels in 14 biochars and their TEQ varied from 0.008 to 1.2 

pg·g−1, which is below the Swedish guideline values for dioxin contamination of soil (250 pg·g−1 

TEQ) [72]. In sawdust biochar, a TEQ of 7 ng·kg−1 was observed, which is lower than the threshold 

value for dioxins established by the IBI (9 ng·kg−1) and the EBC (20 ng·kg−1) (Fig. 9) [46, 47]. 

Weidemann et al. were unable to detect any quantifiable dioxins in wood-, straw- and sewage sludge 

biochars produced in different pyrolysis units [58]. A hepatoma cell line H4IIE-luc test showed that 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/aromatic-hydrocarbon
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/dibenzofuran
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biphenyl
https://www.sciencedirect.com/topics/engineering/incomplete-combustion
https://www.sciencedirect.com/topics/chemistry/vaporization
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biochar produced at >400℃  exhibited lower AhR-mediated potency [20]. Overall, dioxins in 

biochars represent a low risk to the environment [58]. 

 
Fig. 9 PCDD/DF contents in biochar. a, Total PCDD/DFs and TEQ of sawdust biochar 

produced at pyrolysis temperatures of 250–700 °C [20]; b, Total dioxin concentrations in 

biochars produced from 8 different feedstocks and  PCDD/DFs threshold values for biochars 

suggested by the IBI and EBC [72]. PCDD: polychlorinated dibenzo-p-dioxins; PCDF: 

polychlorinated dibenzofurans; TEQ: estimating 2,3,7,8-TCDD equivalents. 

2.4.3 Strategies to reduce dioxins levels in biochar 

Suitable precursors present in feedstock (e.g. chlorine compounds) are the main source of 

PCDD/Fs formation in biochar during pyrolysis[153]. Some municipal solid waste contaminated 

with chlorine-containing plastic materials is another source of dioxin formation in biochar [72, 154]. 

Generally, more than 1% chlorine concentrations (e.g., CaCl2·6H2O) in biomass promoted the 

formation of PCDD/DFs and PCBs [155]. Such chlorine-mediated high PCDD/DFs levels can be 

counteracted by low-catalytic metals (chromated copper arsenate) and organic contaminants (e.g. 

pentachlorophenol) [152, 156]. Dioxins levels in biochar are feedstock-dependent (Fig. 9b), thus 

biomass with considerable amounts of chlorine and heavy metals (e.g., copper) should be avoided 

for biochar production. 

Several studies observed the highest concentration of PCDD/DFs in biochar due to pyrolysis 

at 300 °C [20, 72]. Another study conducted by Lyu et al.  reported pyrolysis at 700 °C significantly 

decreased the concentration of total PCDD/DFs in sawdust biochar [20]. During sewage sludge 

pyrolysis, the dioxin concentration accumulated in all three pyrolysis fractions also significantly 

decreased at temperatures >700°C, which was attributed to gas phase decomposition reactions [157]. 

Under controlled pyrolysis condition, the restriction of oxygen supply can avoid the formation of 

https://www.sciencedirect.com/topics/engineering/polychlorinated-dibenzofurans
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dioxins in biochar [158]. Furthermore, organic contaminants are present in much higher quantities 

in the pyrolysis liquid fraction than in biochar [21, 58] and therefore, pyrolysis unit design optimized 

for complete separation of pyrolysis liquids from biochar is essential for the production of dioxins-

free biochar. 

Overall, the toxicity of PCDD/DFs in biochar still rather limited, but the bioavailability of 

PCDD/Fs in biochar is lower than that observed in soil due to strong sorption of biochar. Dioxins 

levels in biochar are feedstock-dependent (Fig. 9b), thus we cannot give a clear recommendation 

about the most suitable temperature for producing biochar with minimum dioxin levels. Previous 

studies showed that the formation of MoCDF (Monochlorinated dibenzofuran) occurred 

preferentially pyrolysis units of larger-scale, yet this effect needs further investigation [58].  

2.5 MCNs  

Cyanides are carbon-nitrogen radicals that are naturally produced by various organisms as a 

defensive mechanism, such as bacteria, fungi and algae, but MCNs are also detected in biochar [23]. 

Elevated levels of cyanides in the environment are a serious concern due to their toxicity to human, 

animal, and aquatic life [159]. Long-term human exposure to cyanides causes weight loss, thyroid 

effects, nerve damage and death [160]. The toxicity of MCNs are based on inactivating 

metalloenzymes (e.g. cytochrome c oxidase) and blocking the mitochondrial electron transport 

chain due to binding with metals, resulting in depression of the central nervous system and 

myocardial activity [161].  

2.5.1 Formation mechanism of cyanide  

 The interactive reaction between organic nitrogen and metals can form new N-containing 

metal substances such as MCN [162]. A recent study by Luo et al. reported that MCN existed in 

biochars from food wastes, sludge, fungi residues, and algae, with the maximum concentration of 

85 g·kg−1 detected in phycocyanin-derived biochar [23]. In contrast, biochars from sawdust, wheat 

straw, and livestock manure exhibited only small amounts of cyanide ions (CN−). The complexation 

reaction of unstable O-containing alkali salts (e.g., Na2CO3, K2CO3, K2SO4) and organic nitrogen 

is a prerequisite to the formation of MOCN (metal  oxycyanide, sole precursor of MCN), which 

then converts into MCN via carbothermal reduction (Fig. 10 a). 
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Fig. 10. Formation mechanism (a) and strategies to control (b) metal cyanide (MCN) in 

biochar [23]. MCN: metal cyanide; MOCN: metal  oxycyanide. 

2.5.2 Strategies to reduce MCNs levels in biochar 

Pearson analysis revealed a positive correlation between Na content and CN− content in 

biochar, along with a negative correlation between CN− content and the content of Ca, Mg and Fe, 

suggesting that the alkali metals (e.g. Na) in biomass may provide sites to support CN− formation. 

Taking consideration of the fact that oxygen atoms from metal salts are important to form OCN−, 

metal chloride salts (e.g., KCl, FeCl3, and MgCl2) in biomass inhibited the formation of MOCN and 

hence MCNs (Fig. 10b) [23]. Moreover, pyrolysis temperatures < 500 °C also effectively decreased 

the content of CN- due to slow carbothermal reduction reaction [23], while biochar produced at 

900 °C exhibited low CN- level because of CN- volatilization. 

Overall, avoiding biomass with O-containing alkali salts can effectively prevent the formation 

of MCN in biochar. To date, there has been a lack of information on the ecological risk of MCN 

from biochar. We now know that MCNs can be present in biochar, but it is very difficult and, in 

some cases, impossible to relate biochar ecotoxicity to specific contaminants present in biochar as 

pointed out in the manuscript when discussing the effects of PAHs. Therefore, some specific 

experiments should be designed to investigate MCN toxicity in biochar, e.g., by spiking a biochar 

with MCN and comparing its effect to an identical, non-spiked biochar. Although the availability 

of MCN in biochar is not still fully understood, existing studies revealed that cyanide seldom 

remains biologically available because of complexation reaction or volatilization [159]. 

2.6 VOCs 
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Volatile organic compounds are hydrocarbons with boiling points of ≤250°C that due to their 

volatility can be a human health risk [163]. Individual VOCs are not routinely assessed in biochar 

due to the diversity of compounds present in this group. Yet, the EBC recommends investigating 

total VOC levels in biochar via weight loss through TGA at first use of a pyrolysis unit [47]. 

2.6.1 Formation mechanism of VOCs and their potential risks 

During slow pyrolysis, VOCs evaporate from biochar at standard temperatures (>350°C) and 

become part of the pyrolysis liquids [90, 164]. In contrast to hydrochar and fast pyrolysis biochars, 

slow pyrolysis biochars typically contain lower, yet highly variable levels of VOCs. This high 

variability is caused by the different extent of devolatilization as well as condensation of pyrolysis 

vapors onto biochar during biomass pyrolysis and in the zone after the pyrolysis reactor. Both vapors 

(VOCs) and leachates (WSOCs) from high-VOC biochar fully inhibited seed germination of cress, 

demonstrating potential risk for the environment [90]. Spokas et al. firstly identified over 140 

volatile organic compounds (VOCs) sorbed to biochar via gas chromatographic-mass spectrometry 

[165]. The compounds identified as the same typically present in pyrolysis liquids and primarily 

organic acids, aldehydes, furans, ketones, alcohols, phenols, o-, m-, and p-cresol, and 2,4-

dimethylphenol [21]. Their concentrations can exceed 100 μg·g−1 in biochars that were in contact 

with pyrolysis vapors as a result of cold spots in the pyrolysis unit and subsequent vapor 

condensation [21].  

2.6.2 Strategies to reduce VOCs levels in biochar  

The levels of VOCs in biochars are feedstock-independent [165], with production conditions 

and post-production handling being the key factors that determine VOC levels in biochar [78, 165]. 

Unlike for dioxins, pyrolysis in the presence of small amounts of oxygen reduced the content of 

VOCs in biochar [165]. Carbonized biochars (typically H/C < 0.70) obtainable at relatively high 

pyrolysis temperatures (>400 °C) can’t release any VOCs [166]. Post-treatment of VOC-rich 

biochar (e.g., storage in aluminum trays and rinsing with deionized water) is an alternative strategy 

to alleviate their phytotoxicity [164], although this presents other contamination challenges related 

to air emissions and water contamination. Thermal post-treatment at 200 °C is another viable option 

for reducing VOC concentrations in softwood pellet biochar by >95% [78, 165]. Blending of high- 

and low-VOC biochars (ratio of 1:9) also demonstrated to be effective in reducing VOC emissions 
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and toxicity, which is a result of VOC sorption by the low-VOC biochar rather than just simple 

dilution [90].   

Overall, the largest impact on VOC levels in biochar from slow pyrolysis is condensation and 

deposition of pyrolysis vapors on biochar [21, 90]. Therefore, the best way to avoid unwanted VOC 

contamination is the use of production units where pyrolysis vapors are fully separated from biochar 

without contact in areas of the unit that have lower temperatures than the actual pyrolysis treatment 

temperature [90]. 

3 Conclusions and future perspectives 

The application of biochars can be considered a ‘win-win-win scenario’ in terms of energy, 

carbon storage, and ecosystem functions. Yet, under some circumstances, biochars can introduce 

organic (e.g., PAHs, PFRs, dioxins, and VOCs) and inorganic contaminants (PTEs and MCN) into 

the environment with the potential to cause phytotoxicity, cytotoxicity, and neurotoxicity. It is 

therefore important to have a very good understanding of mechanisms resulting in biochar 

contamination, and how to use this information to produce safe biochar. Most of the research on 

contaminants in biochar and their effects on the ecosystem focusses on pristine biochar, yet 

functionalized biochars, doped with minerals and activated via different processes are the focus of 

current biochar development. Therefore, there is a need to investigate contaminant levels in these 

novel biochar-based composites and their potential toxic effects. Another area of research is the 

potential re-release of PTEs and organic contaminants into the environment from biochars used for 

contaminant remediation due to aging. Because of the co-existence of different contaminants in 

biochar, it is challenging to obtain correlation analysis between biochar toxicity and specific 

contaminants. Thus, it is essential to expand standardized research on biochar toxicity, and further 

investigate the relationships with biochar toxicity via meta-analysis or regression analysis.  

The levels of contaminants in biochar are to a large extent feedstock- and pyrolysis 

temperature-dependent, but appropriate pyrolysis unit design can minimize the content of PAHs, 

VOCs, dioxins and PFRs for safe biochar production from a variety of materials and under a wide 

range of temperatures. Overall, wood and crop residue biochar produced under controlled pyrolysis 

conditions does not pose a risk to soil and plant health at any application rate. Biomass pyrolysis in 

a well-designed pyrolysis unit at the higher pyrolysis temperature range (e.g., 550−700 °C) can 
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decrease the majority of organic contaminants in biochar. In addition, aging and thermal post-

treatment of biochars offers significant potential to reduce content or completely remove PAHs and 

VOCs even from biochar produced under sub-optimal conditions (vapor condensation onto biochar). 

As for PTE-rich biomass, such as food waste, sewage sludge, pig manure, and phytoremediation 

residues, the co-pyrolysis with feedstocks low in PTEs (e.g., bamboo sawdust, rice straw) decreases 

the levels of PTEs and PFRs of the resulting biochars. Avoiding biomass with unstable, O-

containing alkali salts is effective in producing biochar with low levels of MCN [23]. In this respect, 

the fabrication of functionalized biochar composites should avoid the introduction of Na2CO3, 

K2CO3, and K2SO4 in practical applications. Among these recommended measures, pyrolysis 

temperature, for example, has a direct impact on adsorption ability of biochar and therefore, 

contaminant mitigation could go hand-in hand with higher performance of biochar for adsorption 

applications [167]. Yet, whether measures we recommend here affect the application performance 

of biochar needs further study on a case-by-case basis taking into account the large diversity of 

biochar uses. 

Recognizing the diversity of biochar properties, we cannot recommend the introduction of a 

particular threshold value that limits the per hectare application of biochar as a soil amendment. In 

fact, some of the most fertile soils globally contain biochar at up to 40-50% of their soil organic 

carbon contents [168]. Considering that some biochars are used as amendments to improve soil 

properties or for contaminant sorption, where large amounts of biochars are used, and others are 

used as high-efficiency fertilizers (low application rates), simple use of threshold values based on 

concentration of contaminants might also be inappropriate. Instead, maximum dosages per year 

could be introduced taking into account contaminant concentrations and biochar application rates 

as for example previously used for sewage sludge application in the EU[169]. Collectively, the 

environmental risk of contaminants in biochar can be considered low if recommendations for 

feedstock selection and biochar production are followed and contaminants should not hinder the 

large-scale application of biochar. 
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