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Abstract

Modern recording technologies now enable simultaneous recording from large numbers of
neurons. This has driven the development of new statistical models for analyzing and interpret-
ing neural population activity. Here we provide a broad overview of recent developments in this
area. We compare and contrast dierent approaches, highlight strengths and limitations, and
discuss biological and mechanistic insights that these methods provide.

Introduction
Large scale recordings from neurons with dense, high channel count probes now yield sucient
data to understand the precise covariation in neural populations [35, 65, 79]. This departure from
analyzing the tuning properties of individual neuron, often pooled across experiments, requires
model-based approaches that capture the complexity of high-dimensional population activity
while remaining computationally tractable.

Statistical models have emerged as an essential tool for overcoming this challenge. Infor-
mally, these models can be grouped into two categories: fully observed models and latent vari-
able models. Fully observed models try to explicitly capture the interactions between neurons
by directly modeling the joint activity of the population. Since modeling the full space of activity
patterns is intractable, a key ingredient for tractable fully observedmodels is an ecient descrip-
tion of the interactions between neurons that retains essential characteristics. Latent variable
models, on the other hand, assume that population activity can be summarized by a small set of
variables called latent factors. Rather than directly modeling interactions, latent variable models
capture neuronal interactions through activation of these factors.

This conceptual dierencemeans that the specic hypotheses each of thesemodel classes can
address are also dierent and that conclusions drawn from such analysis have to be considered
in the light of the main assumptions the model is based upon. In this review, we rst briey
discuss how single neuron activity is extracted from high-density recordings. Next, we provide
an overview of current developments and show which questions can and cannot be addressed
with each model class. We close with a discussion of limitations and future directions.
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Figure 1: The process of extracting the activity of single neurons with a spike sorter is error-prone with dierent sorters
having dierent failure modes. It is, therefore, recommended to make use of dierent sorters before performing model-
based analysis. A rst method is to perform the same analysis on the output of dierent sorters to see if functional
insights are independent of the chosen spike sorter (bottom). Alternatively, one could obtain a consensus sorting (top)
where false positive units are largely removed by taking the agreement between dierent sorters. Any analyses could
then be performed on this consensus sorting. These pipelines, together with various pre- and postprocessing steps as well
as automated curation, can be easily implemented using the SpikeInterface framework [9] which supports all commonly
used spike sorters.

Extracting modeling data
Large scale recordings can be obtained with high density extracellular probes or using calcium
imaging. From extracellular recordings, spike trains of individual neurons are extracted through
a process called spike sorting. There are several algorithmic approaches for spike sorting of data
from dense probes which are reviewed elsewhere [68, 30, 12, 41]. Accurately extracting spike
trains is essential since mistakes, including incorrectly merged or split units, unresolved over-
lapping spikes, or incorrect clustering due to probe drift, have been shown to bias subsequent
analysis [4, 91, 92]. For example, in regions with high-ring rates and synchronicity, spike sort-
ing mistakes can lead to articial correlations between independently ring neurons [4, 17].

It is important to acknowledge that none of the existing spike sorting algorithms are error-
free, and that the scale of these recordings nowmakes manual curation dicult. To aid selection
of an appropriate spike sorter, a large collection of ground truth comparisons is available on the
SpikeForest website [45]. Moreover, the comparison of spike sorter outputs has shown surpris-
ingly low agreement in part due to a large number of false positive units [9]. A viable approach to
mitigate against spurious ndings is, therefore, to perform the same analysis on multiple sorter
outputs or on an ensemble agreement among multiple sorters; this can be done using a software
framework such as SpikeInterface (Figure 1) [9].

While calcium imaging allows unequivocal identication of single neurons, the much lower
sampling rate and the binding kinetics of calcium indicators mean the recorded signal may be
an incomplete record of the spiking activity of these neurons [32]. A rst approach is to recover
neural spike trains using deconvolution methods. Similar to spike sorting however, dierent al-
gorithms have been shown to produce conicting results when analyzing correlations between
neurons [19]. It is therefore prudent to avoid analysis based only on a single convolution al-
gorithm. Second, recent work aims to to include a model of the dynamics giving rise to the
calcium signal directly into statistical models [63]. This approach is promising in particular for
latent variable models if the dierent sources of variation (neural and calcium dynamics) can be
eectively disentangled.
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Figure 2: Fully observed models construct a joint distribution of population activity with various levels of detail. The
horizontal arrow orders the methods according to their expressivity (i.e. how much dependence structure the method can
account for).

Fully observed models
When recording from just 20 neurons, there are over onemillion possible instantaneous ON/OFF
patterns of spiking (220) for a small time bin; this number grows to one billion for 30 neurons
(230). While the number of spike patterns that are actually observed is much smaller and con-
strained by the connectivity between neurons, estimating all pattern frequencies reliably from
typical recordings is impossible even for small populations. Fully observed statistical models
are a tool to achieve precisely this by approximating this full distribution using as few parame-
ters as possible together with suitable constraints [3, 20, 100]. As always, dierent approaches
exist with dierent trade-os between complexity, tractability and interpretability (see Fig. 2
and Tab. 1). A main purpose of these models is to ask how much information recorded activ-
ity contains about stimuli or behavior, which can be addressed using information-theoretical or
decoding approaches.

Models

Maximum Entropy models (MaxEnt) provide a principled way to construct probability distribu-
tions for spiking activity by nding the least structured distribution that fullls specic con-
straints obtained from the data [78]. Typical constraints for MaxEnt models are the ring rates
of and pairwise correlations between the neurons [80, 83, 88] and the population synchrony [88].
While MaxEnt models have been shown to model spiking activity well, the computational cost
of tting them is prohibitive for large neuronal populations. This has led to the development of
analytically tractable models constrained by the dependencies between individual neurons and
the aggregate population activity [88, 25, 53, 51]. Related and more scalable is the Dichotomized
Gaussianmodel [2, 43] which can be used tomodel spike count variables with arbitrarymarginal
distributions [43].

MaxEnt models cannot easily take external inputs into account. If these are well speci-
ed, generalized linear models (GLMs) can successfully describe the activity of large popula-
tions [90, 60, 61]. In these models, external inputs, inputs from other neurons, and each neuron’s
spiking history are weighted, summed up and transformed by a rate function, which drives a
stochastic process to model spiking activity. For typical rate functions, tting GLMs is a con-
vex optimization problem which can be solved eciently, making GLMs scalable to large-scale
neural recordings [90, 61]. Along with modeling the observed neural population, the activity of
unobserved neurons can be inferred [5], and knowing the topology of the external covariates can
further aid in inferring the activity of the unseen neurons [86]. Despite their exibility, GLMs
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Model References
Number of
parameters

Closed-form
pattern probabilities?

Fit for
large 𝑁 ?

Dichotomized
Gaussian

Amari et al. [2]
Macke et al. [43] ∼ 𝑁 2 No Yes

Pairwise
MaxEnt

Schneidman et al. [80]
Shlens et al. [83] ∼ 𝑁 2 No1 Dicult

Tractable
MaxEnt

Tkačik et al. [88]
Gardella et al. [25]
O’Donnell et al. [51]

∼ 𝑁 2 Yes1 Yes

GLM Pillow et al. [61] ∼ 𝐷𝑁 2 No Dicult

Vine
Copula

Aas et al. [1]
Onken and Panzeri [54] ∼ 𝐷𝑁 2 Yes Yes

Table 1: Fully observed models: A table (adapted from O’Donnell et al. [51]) characterizing model properties and limita-
tions. Here, 𝑁 is the number of neurons and 𝐷 is the number of coecients per interaction term, such as lter sizes for
GLM or number of parameters for parametric copula families. Sampling is possible from all of these models. 1. For a more
detailed comparison of MaxEnt models, see Table 1 in [78].

cannot model networks with neurons that perform non-linear integration of multiple external
inputs [6].

A more direct representation of statistical dependencies is provided by copula models, which
decompose neural population activity into the distributions of individual neuron activities and
the dependence between these neurons, represented by a copula [34]. Copula models can rep-
resent inter-neuronal dependencies that go beyond linear (Gaussian) correlations [7], as well as
non-linear stimulus-response relationships [37]. These highly exible models can for example
be used to jointly model dierent recording modalities such as local eld potentials and individ-
ual neurons’ spiking activities [1, 54]. They are particularly promising for analyzing recordings
of neural data and exploring its relation to behavior and stimuli which typically follow dierent
statistics and tend to have complex dependencies [37, 33].

Interpretation and biological insights

Fully observed models can be used in two main areas. First, they provide access to the full
joint activity distribution of the population in place of direct, typically biased estimates from the
recordings for information theoretic analyses and for decoding [33, 37, 71, 59]. GLMs and copula
models that were t to population activity have been shown to have high decoding performance
of external variables [90, 61, 38, 39, 33, 37]. For instance, GLMs with coupling lters were shown
to capture 40% more visual information from the retina than optimal linear decoding [61], indi-
cating that GLMs can model additional details in the activity that are relevant for representing
the stimulus. In large-scale datasets with complex statistics, GLMs may however not be appro-
priate. In these cases, copula models can be useful for measuring the amount of information in
the population response about external covariates [54, 33, 37]. Additionally, for complex stim-
uli with spatial or temporal correlations, one must distinguish ‘stimulus correlations’ that arise
from stimulus statistics from ‘noise correlations’ due to circuit interactions. Including this yields
better performance in MaxEnt models [26], and prevents spurious eects in GLMs [46]. More
generally, comparisons of these models with linear decoders can quantify the information that
emerges from the network interactions, i.e. how the whole network is dierent from the sum of
its parts [60, 61, 80, 52].

Second, the parameters in many fully observed models can be interpreted as the strength
of the interactions between neurons. For example, the coupling parameters in dichotomized
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Figure 3: Latent variable models assume that neural activity is generated by a set of low-dimensional latent states. (a)
When modeling the temporal evolution of the latent states, one can explicitly model the dynamics with a state-space
model or can instead model the statistics of the latent trajectories with a Gaussian Process (GP). (b) The latent trajectories
can be related back to neural activity (e.g. the ring rates) with a variety of mapping functions including linear functions,
neural networks, and GPs. (c) An additional step to further constrain the dynamics is to reconstruct the spiking activity
using a point-process distribution such as the Poisson distribution. (d) Recently, it has been shown that explicitly modeling
the relationship between the latent factors and the observed behavioral variables can further constrain the factors to be
low-dimensional and ’behaviorally relevant’ [76]

Gaussian and in pairwise MaxEnt models describe the strength of pairwise interactions between
single neurons [43, 80]. As these connections are inferred from the population activity alone,
they are usually referred to as functional interactions or connections, to emphasize the dierence
to synaptic connections. This analysis has been used to uncover the spatial extent of interactions
in the retina [83, 52] and to characterize interactions between neurons with dierent selectivity
in the entorhinal cortex [14].

Whether or not inferred functional connectivity is biologically interpretable critically de-
pends on the identiability of the relevant parameters, and here caution should be exercised.
For instance, while the coupling lters in GLMs have unique solutions, lter parameter changes
do not necessarily change the GLM responses much [8] suggesting that, in practice, coupling
lters may not be properly identiable. Similarly, in MaxEnt models inferred functional connec-
tivity is not well constrained by the recorded spike trains. As a result, many coupling parameters,
even those with large absolute values, can be altered without signicantly changing the network
activity predicted by the model [55, 62].

Limited data can be a main contributor to poor parameter identiability. To address this,
the uncertainty of the model parameters can be quantied with approximate Bayesian infer-
ence methods [99]. A recently developed LR-GLM utilized low-rank data approximations to
scale approximate Bayesian inference methods to high-dimensional real datasets making these
methods more applicable to large-scale neural recordings [89]. However, closer inspection of
MaxEnt models suggests weakly constrained couplings could also be an intrinsic property of
neural circuits. Simulations have shown that re-wiring even a large number of synapses may
only have minor functional consequences [48], hence the corresponding inferred connections
are also weakly specied. Analysis of long term recordings has shown that these less important
connections are also subject to more intensive re-modeling over time [55, 62]. Therefore, taking
into account the reliability of the inferred couplings in functional connectivity models allows
for the identication of the neurons, connections and circuit motifs that most determine the
population activity statistics [31, 55, 62].
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Latent variable models
Despite the apparent high-dimensionality of population activity, recent studies suggest that
the activity patterns underlying neural function are conned to low-dimensional manifolds
[47, 13, 74, 29, 22, 18]. In other words, neural computation results from the activation of specic
population-wide activity patterns rather than the independent modulation of single neurons
[21]. In this regime, latent variable models are a natural choice as they aim to capture arbitrarily
complicated response structure in the neural activity with only a few latent variables.

Models
Latent variable models aim to capture the population activity structure through the temporal
evolution of their learned latent variables. There are two main approaches for modeling the
latent trajectories (shown in Figure 3 and summarized in Table 2): State-space representations,
where the dynamics of the latent trajectories are modeled explicitly with an evolution function
that relates past latent states to future latent states, and moment representations where, rather
than having an explicit model of the dynamics, the statistics of the latent trajectories over time
are modeled. With both approaches, there is an observation model which relates the neural
trajectories back to the observed activity.

Traditional dimensionality reduction techniques such as principal component analysis (PCA)
and factor analysis (FA) can be re-interpreted as static state-space models without temporal de-
pendence between states [69]. Extending these, linear dynamical state-space models such as
linear dynamical systems (LDS) [85, 38, 10, 58] and jPCA [13, 82, 50] can capture simple tempo-
ral dependencies between latent states. While ecient, these methods cannot model non-linear
dynamics which are thought to underlie rhythmic motor patterns [72, 28], decision making [64],
and pathologies such as epilepsy [27]. To capture these dynamics, non-linear dynamical state-
space models have been introduced including approaches that model dynamics with recurrent
neural networks (RNNs) [56, 81], piecewise-linear RNNs [15], switching linear dynamics [57],
and recurrent switching linear dynamics [42, 98]. A particularly ecient RNN-based model is
the recently introduced latent factor analysis via dynamical systems (LFADS) which utilizes neu-
ral networks to reduce the computational cost of inferring dynamics, making it more practical
for large-scale neural recordings [56]. Despite these recent developments, non-linear state-space
models are typically computationally expensive and parameter inference is dicult [73].

An alternative to explicitly learning a dynamical model for the neural population is to model
a statistical representation of the trajectories, typically as a Gaussian process (GP). GPs dene
a distribution over functions and allow to constrain certain features of the function such as its
smoothness. Unlike state-space models, GP-based models provide both uncertainty quantica-
tion and principled model selection. The most common GP-based latent variable model is the
Gaussian-process factor analysis (GPFA) [11]. In this model, each trajectory of the latent state is
sampled from an independent GP. This independence constraint, however, limits the ability of
GPFA to model joint temporal dependencies making them less useful for uncovering temporal
structure in neural data; for instance, GPFA cannot disentangle motor cortex trajectories during
hand reach [73]. Gaussian Process Factor Analysis with Dynamical Structure (GPFADS) seeks
to remedy this by constraining the learned trajectories to have lower probabilities of occurring
in reverse [73]. As a result, GPFADS can disentangle the trajectories generated by non-linear
non-reversible dynamical systems such as primary motor cortex arm reach data. Overall, while
GP-based latent variable models provide useful analytical properties and are generally quite ef-
cient, they still need to demonstrate that they can capture the complex temporal dynamics that
underlie neural activity as well as state-space models can.

An important aspect of all latent variable models is the observation model which relates the
trajectories back to the neural activity. Common approaches include modeling neural activity
with a conditional Gaussian model or the more plausible conditional Poisson model [44]. The
mapping between the latent trajectories and neural activity distribution can take on a number
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of functional forms including linear maps [85, 11, 56, 96], GPs [40, 94, 81], or neural networks
[24]. Most models, however, rely on a simple linear mapping function as it forces the latent
variables to capture more information about the joint neural activity. Recently, observation
models that take into account external behavioral variables have been introduced for capturing
‘behaviorally relevant’ latent trajectories. Sani et al. [76] introduced a novel linear Gaussian
state-space model (PSID) that jointly models the neural activity and the recorded behavioral
variables. Intriguingly, PSID found that behaviorally relevant latent trajectories are signicantly
lower-dimensional than previously thought.

Interpretation and biological insights

Unlike fully observed models, latent variable models provide a very succinct description of joint
population activity in the form of latent trajectories. A simple yet eective approach to interpret-
ing these latent trajectories is visualization; reducing the number of latent variables down to just
two or three allows for insightful visualizations. For example, Santhanam et al. [77] used factor
analysis to reduce preparatory neural activity in the premotor cortex to just three dimensions
that, when visualized, provided evidence that the population activity contained information that
could discriminate between goal-related target conditions in a delayed center-out reach task.

It may however not be appropriate to reduce the number of latent variables to two or three
for visualization without sacricing model t1. A more principled and exible way to interpret
the learned latent trajectories is to relate them back to a measured external variable [93]. For
example, one can measure how informative a latent variable is about an external variable by
decoding the external variable at each time step using a simple method such as a least squares
regression. While this approach has been used to interpret population response structure in the
olfactory and visual system [75, 16, 84, 95, 87], its value is best demonstrated in studies that
correlate latent trajectories in the premotor and motor cortex to arm reaching tasks. Church-
land et al. [13] found that low-dimensional rotational trajectories in the primary motor cortex
were correlated with arm reaches. Gallego et al. [21] extended this nding, demonstrating that
these low-dimensional trajectories are a stable neural correlate for consistent execution of arm
reaches over the course of many years. Moreover, Ramanathan et al. [66] showed that follow-
ing a stroke, diminished reaching function in the contralesional arm was correlated with a loss
of motor cortical neural trajectories. The trajectories only reemerged after motor recovery and
proved to be a useful neuromodulatory target for therapeutic electrical stimulation.

Despite the success of latent variable models, their usefulness can be dependent on the prop-
erties of the neuronal population and the specic experimental setting. Firstly, latent variable
models are most useful when the neural population activity is, in fact, low-dimensional. While
a number of studies have independently found this to be the case for their datasets, recent work
by Stringer et al. [87] suggests that the manifold dimensionality of stimulus-evoked activity in
the visual cortex is actually as high as it can be without becoming non-dierentiable. More-
over, Gao et al. [23] suggests that population activity is as high-dimensional as possible given
the simplicity of the given stimuli or tasks. While latent variable models can still be used to
model this data (by increasing the number of latent variables), they may no longer be as inter-
pretable. Another assumption in somemodels is that the latent trajectories are autonomous2, i.e.
they only depend on an initial condition (usually trial-specic) and an evolution function. This
limits the ability of these models to capture unmeasured inputs to the neural population from
other brain regions. Finally, and most importantly, latent variable models, by design, will mix
all sources of neural variability in the latent space [93]. This can make interpreting the latent
variables challenging in particular for complex behaviors or diverse stimulus ensembles. These

1Model t can be measured in dierent ways including the amount of variance explained or the cross-validated like-
lihood of observed activity given the model. GP-based latent variable models can also provide uncertainty estimates for
the latent trajectories.

2Pandarinath et al. [56] showed that LFADS could capture task-related inputs to a neural population by incorporating
them into the generative process. It is still an open question how generalizable this approach is to other types of inputs.
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Model Trajectories Mapping Function Observation Single-trial1

PCA/FA [69] Static Linear Gaussian No
dPCA [36] Static Linear Gaussian2 No
jPCA [13] Linear3 Linear Gaussian No
LDS [85] Linear Linear Gaussian Yes
PLDS [44] Linear Linear Poisson Yes
PSID [76] Linear Linear Gaussian4 Yes
PfLDS [24] Linear Neural Network Poisson Yes
SLDS [57] Switching Linear Linear Gaussian Yes

RSLDS [42, 98] Recurrent Switching Linear5 Linear Gaussian Yes
PLRNN-SSM [15] Piecewise-linear RNN Linear Gaussian Yes

LFADS [56] RNN Linear Poisson Yes
GP-RNN [81] RNN GP Poisson/Gaussian Yes
GPFA [11] GP Linear Gaussian Yes

GPFADS [73] GP6 Linear Gaussian Yes

vLGP [96] GP Linear Poisson7 Yes
P-GPLVM [94] GP GP Poisson Yes

Table 2: Latent Variable Models: A table (adapted from [81]) characterizing the latent variable models referenced in
this review. 1. The ability to extract dynamics from single-trials is important for capturing important variability that
can be obscured with trial-averaging [49]. 2. dPCA models trial-averaged and task averaged neural activity to demix
dierent sources of variability in the data. 3. jPCA is equivalent to a linear dynamical model with specic constraints
for modeling rotational dynamics [50]. 4. PSID models both the observed neural activity and behaviour with separate
Gaussian observation models. 5. RSLDS can model multiple neural populations and their time-varying interactions using
switching linear dynamics that is governed by a discrete latent state. 6. GPFADS introduces a new GP kernel which
allows for modeling the dynamical behaviour of temporal-irreversibility. 7. The activity of each neuron in vLGP is linearly
dependent on the latent variable and the self-history of the neuron.

constraints may be the reason why many of the conceptual breakthroughs provided by latent
variable models are for motor cortical activity where the dimensionality appears low, the trajec-
tories are largely autonomous given the trial conditions, and the variation is largely explained
by the measured behavior. A possible way forward to improve the interpretability of these mod-
els in more complex experimental regimes is to explicitly model external variables either in the
observation model [36, 76] or in the latent space [97].

Outlook
While both fully observed and latent variable models can be used to overcome the curse of
dimensionality in large-scale recordings, the two classes yield distinct yet complementary in-
sights into circuit function. In addition, they each have important limitations that are not easily
resolved. Fully observed models can suer from poor parameter identiability because data sets
have a limited size and potentially because many parameters are actually not well constrained in
real neural circuits. Possible future direction are to either simplify the description of the interac-
tions to reduce the number of parameters [67] or to augment a model with biologically informed
latent dynamics [70].

Latent variable models assume that circuit dynamics are inherently low-dimensional and
place specic constraints on how these dynamics unfold. It is perhaps for this reason that we
have, so far, few insights into neural dynamics during complex naturalistic behavior; experi-
mental design still favors simple, repeated stimuli and behaviors where sources of neural vari-
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ability are easy to de-mix. In more complex experimental regimes, it may no longer be sucient
to generically model the response structure of a neural population and perform ex post facto
analyses to relate it back to the variables of interest. Instead, there is increasing evidence that
approaches that explicitly model the measured external variables have improved interpretability
and can reveal novel insights about neural function [76, 97].
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