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Abstract:

• In an environmental framework, extreme values of certain spatio-temporal processes,
for example wind speeds, are the main cause of severe damage in property, such as
electrical networks, transport and agricultural infrastructures. Typically, as is the case
of wind speeds, data are available at few stations with many missing observations and
consequently simulators are often used to augment information. However, simulated
data often mismatch observed data, particularly at tails, therefore calibrating and
bringing it in line with observed data may offer practitioners more reliable and richer
data sources. In this work we will concentrate on calibrating the bulk and the extremes
of data, simultaneously, avoiding methods that rely on the choice of a threshold. We
propose and describe in detail a specific conditional quantile matching calibration
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method and exemplify it with wind speed data. We also briefly suggest how calibration
should be extended specifically to data coming from the tails of simulated and observed
data, using asymptotic models and methods suggested by extreme value theory.
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spatial extremes; Bayesian hierarchical models.
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1. INTRODUCTION

Extreme values of certain spatio-temporal processes, such as wind speeds,
are the main cause of severe damage in property, from electricity distribution
grid to transport and agricultural infrastructures. Accurate assessment of causal
relationships between environmental processes and their effects on risk indicators,
are highly important in risk analysis, which in return depends on sound infer-
ential methods as well as on good quality informative data. Often, information
on the relevant environmental processes comes from monitoring networks, as well
as from numerical-physical models (simulators) that typically solve a large set of
partial differential equations, capturing the essence of the physical process under
study (see, for example, Skamarock et al. 2008 [18], Cardoso et al. 2013 [6]). In
general, monitoring networks are formed by a sparse set of stations, whose instru-
mentation are vulnerable to disruptions, resulting in data sets with many missing
observations. On the other hand, simulated data from numerical simulators typ-
ically supply average yield of the process in grid cells of pre-specified dimensions,
often at high resolutions, spanning large spatial domains, with no missing obser-
vations. However, simulated data typically mismatch and misaligned observed
data, therefore calibrating it and bringing it in line with observed data may
supply modellers with more reliable and richer sources of data. Data assimila-
tion methods, namely combining data from multiple sources, are well known in
environmental studies, with data often being used to generate initial boundary
conditions for the numerical simulators (Kalnay 2003 [11]). There is a very rich
statistical literature on data assimilation and data fusion with the objective of
enriching the information for inference (Fuentes and Raftery 2005 [9], Berrocal
et al. 2012 [4], Zidek et al. 2012 [23], Berrocal et al. 2014 [5], McMillan et al.
2010 [12]). These statistical methods are often based on Bayesian hierarchical
models for space-time data (see Banerjee et al. 2004 [2]) and are constructed
around the idea of relating the monitoring station data and the simulated data
using spatial linear models with spatially varying coefficients (see Berrocal 2019
[3]). Since these relations involve data measured at different spatial resolutions,
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the models are often called downscaler models (see Berrocal et al. 2012 [4]). The
principal objective of these downscaler models is to relate observations measured
at different space resolutions using spatial linear models.

The motivation behind this present work has its roots in a consulting work
done for a major electricity producer and distributor. The electricity grid con-
stantly faces disruptions due to damages in the distribution system, with heavy
economic losses. These damages and consequent disruptions occur due to a com-
bination of many factors such as topography and precipitation, however extreme
winds and storms are the main cause of such damages. Risk maps that indicate
likely places of costly disruptions in electric grids are important decision support
tools for administering the power grid and are particularly useful in deciding if
costly corrective actions should be taken to improve structures. It is natural that
these risk maps should be based primarily on observed wind speeds among other
factors and it was decided that daily maximum wind speeds should be used as
proxy information. Hence, such risk maps can be interpreted as vulnerability
maps of electricity grid to extreme wind speeds, expressed in terms of probabil-
ity. However generating such maps depends on reliable wind data at fairly high
spatial and temporal resolutions.

The data available for this particular study corresponds to simulated wind
speeds from a simulator (The WRF model, version 3.1.1) at a regular grid of
81ksq grid cell size, obtained at 10 minutes interval from 2006-2013; however
only daily maximum wind speeds will be used. Observed daily maximum wind
speeds are also available during the same period of time, from 117 stations in
Portugal mainland, but missing observations reach to 90% in some stations. Only
around one third of the stations have less than 30% missing observations. There
is an additional challenge: although simulated and observed data match in the
bulk of the distribution, they quite often mismatch at extreme values. Therefore,
adequate methods of data fusion and calibration can be used to combine these
two different sources of data, providing information which is more reliable from a
spatial point of view and producing more accurate probability maps showing the
spatial distribution of damage risks. Since electricity grid damages are ultimately
caused by extreme wind speeds, the aim should be to develop statistical methods
for data fusion and calibration that can extrapolate beyond the range of observed
data into the tails of a distribution in line with extreme value theory.

We propose and describe, in detail, a specific conditional quantile matching
calibration method for the bulk and the extreme observations of the data, based
on models proposed by Naveau et al., 2016 [14]. The outline of the paper is
as follows: In section 2, we report a new approach for calibration through a
conditional quantile matching calibration method (Pereira et al., 2019 [15]), using
an extended Generalized Pareto distribution (Papastathopoulos and Tawn 2013
[16], Naveau et al. 2016 [14]), adequate for calibrating simultaneously the bulk
and the tails of the distribution. In section 3, we built a Bayesian hierarchical
model to implement this calibration strategy for spatio-temporal data. In section
4, this method will be exemplified using a wind speed data. Finally, further
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discussion and conclusions are given in section 5.

2. CALIBRATION METHODS FOR BULK AND TAILS

We denote by Y (s, t) and X(s, t), respectively the observed and simulated
wind speeds at location s ∈ R2 and time t. To simplify notation, often we will use
Y and X for observed and simulated wind speeds when data are used without
any space-time reference. Typically X are simulated over a regular grid, say B,
often represented by points sB which correspond to the centroid of the grid cells,
whereas Y are observed in stations located at different spatial points s.

For the time being, if we ignore totally space-time variations and depen-
dence structures, calibration can be seen as a simple scaling making use of
marginal distributions fitted corresponding to X and Y (CDF transform method,
Michelangeli et al. 2009 [13]), as we explain below.

Suppose we have a set of n observed yi and simulated xi, i = 1, . . . , n data.
Let FY and FX be, respectively, the distribution functions of Y and X. Then
the new calibrated (scaled) data x∗i is defined as

(2.1) x∗i = F−1
Y (FX(xi)), i = 1, . . . , n.

Since

P (X∗ ≤ z) = P (F−1
Y (FX(X) ≤ z) = P (U ≤ FY (z)) = FY (z),with U ∼ U(0, 1),

calibrated data has the same distribution as the observed data. Note that if
FX = FY then x∗i = xi. Figure 1 depicts the result of applying this calibration
method when Y follows a Student distribution with 3 degrees of freedom, and X
follows a standard normal distribution.

This calibration method depends on the marginal distributions of the ran-
dom variables involved Y and X and hence it does not take into consideration
the expected strong dependence between the two sets of data. Thus, an ideal
calibration should involve the joint distribution of Y and X defined in some way.
One possibility is the use of a conditional quantile matching approach, which will
be described in section 2.2. Further, in the same section, we also introduce an
extension to cover space-time non-homogeneity by scaling (calibrating) the data
from

(2.2) x∗(s, t) = F−1
Y (s,t)(FX(s,t)(x(s, t)),

assuming marginal distributions of Y (s, t) and X(s, t) for every s and t. This cal-
ibration method will take into consideration the strong space-time dependence
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Figure 1: Illustration of the quantile matching approach.

structures expected in the data and consequently these distributions will be esti-
mated by fitting them to data and considering the parameters as smooth functions
of spatially and temporarily varying covariates and space-time latent processes
as in section 4. Notice that, in this case, x∗(s, t) as defined in (2.2) will depend
on unknown parameters and hence calibrated data have to be estimated.

Pereira et al. (2019) [15] develop a covariate-adjusted version of the quantile
matching-based approach as in (2.1) where the distributions of simulated and real
data change along a covariate. At the same time they suggest a regression method
that simultaneously models the bulk and the (right) tail of the distributions
involved, using the extended Generalized Pareto distribution (EGPD) (Naveau
et al., 2016 [14]) as a model for both the simulated and observed data. In their
approach, Pereira et al. (2019) [15] do not take into consideration any strong
spatio-temporal variations and dependence structures that may exist both in
the simulated as well as in the observed data. In what follows, we propose an
extension of this conditional quantile matching calibration for the bulk and tails,
taking into consideration spatio-temporal variations and dependence structures,
thus extending their results significantly.

de Carvalho et al. 2020 [7] also work on covariate adjusted version of
the extended Generalized Pareto distribution (EGPD) (Naveau et al., 2016 [14])
for the conditional bulk and conditional tail of a possibly heavy-tailed response.
However, their objective, contrary to ours, is not calibration, but to learn the
effect of covariates on an extreme value setting via a Lasso-type specification.

Under fairly general conditions, according to the asymptotic theory of ex-
tremes, the generalized Pareto distribution (GPD) appears as a natural model
for the right tail of a distribution, by focusing on the excesses over a high but
fixed threshold. Here, the choice of this threshold plays a very important role
in inference, ignoring the part of the data that lie below this threshold. See, for
example, Beirland et al. (2004) [1]. The EGPD modelling strategy suggested
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by Naveau et al (2016) [14] avoids this selection problem, as we will see in next
section.

2.1. Naveau et al. (2016) EGPD models

Naveau et al. (2016) [14] suggest an extension of Generalized Pareto model
tailored for both the bulk and tails, and — contrarily to most methods for ex-
tremes — does not require a threshold to be selected. The objective of this ex-
tension is to generate a new class of distributions with GPD type tails consistent
with extreme value theory, but also flexible enough to model efficiently the main
bulk of the observed data without complicated threshold selection procedures.

Let Y be a positive random variable with cumulative distribution function
defined as:

FY (y | θ) = G

(
H(y | ξ, σ)

)
,

where H is the cumulative distribution function of a Generalized Pareto distri-
bution (GPD) and G is a function obeying some general assumptions, so that a
Pareto-type tail is ensured and the bulk is driven by the carrier G. (see Naveau
et al. 2016 [14] and de Carvalho et al. 2020 [7]), that is

H(y | ξ, σ) =

{
1− (1 + ξ

σy)
−1/ξ
+ , ξ 6= 0.

1− exp(− y
σ ), ξ = 0 .

with a+ = max(a, 0), σ > 0, and y > 0 if ξ ≥ 0 and y < −σ
ξ if ξ < 0. The

parameter σ is a dispersion parameter while ξ is a shape parameter controlling
the rate of decay of the right tail of a distribution (e.g. de Zea Bermudez and
Kotz [8]).

Naveau et al. [14] consider four forms of G(u) resulting in four different
classes of distributions. Although the theory below can be easily extended to any
of the forms of the G function, in what follows we use one of the forms, namely,
G(u) = uκ, the canonical form of the EGPD (de Carvalho et al. 2020 [7]), where
κ is a parameter controlling the shape of the lower tail. It is clear that smaller
the κ more the distribution is concentrated near zero. The EGPD will have then
three parameters, and we will refer to it as a EGPD(κ, ξ, σ).

2.2. Spatio-temporal conditional quantile matching calibration for the
bulk and tails

Let us assume that both random variables X and Y are space-time depen-
dent and we want to calibrate X based on Y . The calibrated data are given
as in (2.2). Now assume further that both random variables are distributed as a
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canonical EGPD(κ, ξ, σ) where the parameters are indexed by the correspondent
random variables. In order to better accommodate for the situation ξ < 0 we
make a transformation δ = −σ

ξ . Hence, for ξx 6= 0

(2.3) FX(s,t)(x(s, t) | δx(s, t), ξx, κx) =

(
1−

(
1− 1

δx(s, t)
x(s, t)

)−1/ξx

+

)κx
,

for x > 0 if ξx > 0 and x < δx if ξx < 0.

Assuming as well ξy 6= 0

(2.4) FY (s,t)(y(s, t) | δy(s, t), ξy, κy) =

(
1−

(
1− 1

δy(s, t)
y(s, t)

)−1/ξy

+

)κy
,

for y > 0 if ξy > 0 and y < δy if ξy < 0.

Although it is assumed that these random variables are conditional inde-
pendent, a dependence structure is introduced through the transformed space-
time dependent parameters δx, δy by modelling them as a function of a common
latent spatio-temporal process, in a Bayesian hierarchical modelling framework.
Here, we are mainly interested in modelling the right tail as function of space
and time. de Carvalho et al. 2020 [7], consider a Bayesian hierachical modelling
of the EGPD for the case ξ > 0, where both bulk and tail are covariate adjusted.

As an exemplification of this modelling strategy, in the next section, we
will built a Bayesian hierarchical model for the wind speed data.

3. BAYESIAN HIERARCHICAL MODEL FOR WIND SPEED DATA

A preliminary data analysis of the wind speed data used in this study,
shows that observed and simulated data are consistent with the case ξ < 0 and
hence, the distributions for X and Y will have an end-point characterized by the
respective parameter δ.

Let T be length of the time period under study, N the number of stations
with complete observed data during that period and Ns the total number of
stations (N < Ns).

The observed data Y(s, t) = {Y (si, tj), i = 1, ..., N ; j = 1, ..., T}, is as-
sumed to follow a distribution as in (2.4), with parameters κy, ξy and δy(i, j),
such that δy(i, j) ∼ Exp(λy(i, j)), δy(i, j) > max(y), i.e., follows a shifted expo-
nential distribution, with

(3.1) log(λy(i, j)) = βy +W (si) + Z(tj),

where W ∼ MVN(0, τWΣW ) follows a Multivariate Gaussian process, defined
on the space, as in Thomas et al. (2014) [21], with τW a precision parameter
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and the matrix ΣW with diagonal elements equal to 1 and off-diagonal elements,
Σi` = f(di`;α), where

f(di`;α) = 2/π ∗
{

cos−1(di`/α)− [(di`/α)(1− (d2i`/α
2))]1/2

}
, di` < α,

is a function of di`, the centroids’ distance of every two stations si and s`, and α a
parameter representing the radius of the ‘disc’ centred at each s. The parameter
α controls the rate of decline of correlation with distance.

For the temporal random process {Z(tj)} we assume a random walk process
of order 1, Z ∼ MVN(0, τZΣZ), where τZ is a precision parameter and ΣZ is a
matrix with a structure reflecting the fact that any two increments zi − zi−1 are
independent (Rue and Held, 2005 [17]).

For the simulated data X(s, t) = {X(si, tj), i = 1, ..., Ns; j = 1, ..., T} we
assume a distribution as in (2.3) with Ns total number of stations, where the
model for δx(i, j) ∼ Exp(λx(i, j)), δx(i, j) > max(x), shares the same latent
processes W and Z as the model for the observed data 3.1, i.e.,

log(λx(ij)) = βx +W (si) + Z(tj).

Let θ be a vector containing all model parameters including the latent
Gaussian models W and Z. Assuming conditional independence, the likeli-
hood L (θ | y(s, t),x(s, t)) is a product of individual terms Lij (θ | y(si, tj)) and
L`j (θ | x(s`, tj)).

To complete the Bayesian hierarchical model we consider the following prior
specification for the parameters and hyperparameters of the models not yet spec-
ified.

βy, βx i.i.d. N(0, 100)

κy, κx i.i.d. Ga(0.05, 0.05)

ξy, ξx i.i.d. U(−0.5, 0)(3.2)

τW , τZ i.i.d. Ga(1, 0.1)

α ∼ U(0.1, 0.9)

Further, all these parameters are assumed to be a priori independent and hence
the prior distribution h(θ) is the product of the individual priors. In subsection
4.1 an explanation is given for the choice of these priors.

The posterior distribution

h (θ | y(s, t),x(s, t)) ∝ L (θ | y(s, t),x(s, t))h(θ),

is analytically intractable and hence one has to resort to the use of computational
methods, such as MCMC methods.
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Now, let FX (x(si, tj) | κx, ξx, δx(i, j)) = pij , for i = 1, ..., Ns and j =
1, ..., T . Then, since, for any p ∈ (0, 1) the inverse function of FY is

δy

[
1−

(
1− p1/κy

)−ξy]
,

the calibrated values defined in (2.2), as a function of the model parameters, are
given by

(3.3) x∗(si, tj | θij) = δy(si, tj)

[
1−

(
1− p1/κyij

)−ξy]
,

where θij = (κx, ξx, δx(i, j), κy, ξy, δy(i, j)).

Hence, following Bayesian methodology, calibrated data is estimated as the
mean of the calibrated function, defined in (3.3), with respect to the posterior
distribution h(θ | x,y), that is

x∗(si, tj) =

∫
δy(si, tj)

[
1−

(
1− p1/κyij

)−ξy]
h(θ | x,y)dθ.

In what follows we will call this posterior mean as the calibrated data.

Computation of calibrated data is achieved through MCMC methods, by
simulating a sample of size M from the posterior distribution and approximating
the integral as

x∗(si, tj) ≈
1

M

M∑
k=1

δy(si, tj)
(k)

[
1−

(
1− (p

(k)
ij )1/κ

(k)
y

)−ξ(k)y

]
,

where δy(si, tj)
(k),−p(k)ij , κ

(k)
y , ξ

(k)
y are simulated values at the kth iterate after

convergence is achieved. A sample of size M from the posterior distribution of
the calibrated function given by

δy(si, tj)
(k)

[
1−

(
1− (p

(k)
ij )1/κ

(k)
y

)−ξ(k)y

]
, k = 1, ...,M

will allow the computation of any relevant summary statistics, such as, γ% cred-
ible intervals.

4. APPLICATION TO WIND SPEED DATA

We used observed and simulated wind speed data from 01/01/2013 to
28/02/2013, so T = 59. There are N = 51 stations where we have both ob-
served and simulated daily maximum wind speeds. Additionally we have extra
66 stations with simulated values for the maximum daily wind speeds, so that
Ns = 117. In Figure 2 we depict the median of observed and simulated wind



10 A. Turkman, K. Turkman, de Zea Bermudez, S. Pereira, P. Pereira, de Carvalho

0 10 20 30 40 50

0
5

1
0

1
5

2
0

stations

w
in

d
 s

p
e

e
d

median observed

median simulated

0.95IQR_obs

0.95IQR_sim

Figure 2: Median of observed and simulated wind speeds for the 51 sta-
tions, and the 95% IQR wind speeds by station (dashed lines).

speeds for the 51 stations together with the 2.5% and 97.5% empirical quantiles
(referred to on the figure as the 95% IQR).

The model was implemented in R2OpenBUGS (Sturtz et al. 2005 [19]). In
Table 1 we show the summary statistics for the marginal posterior distributions
of the parameters of the model, based on a sample of size 40000, after a burn-in
period of 20000 iterates. Convergence was assessed for the parameters of the
model specified in section 4.1.

We observe that the posterior mean of κy has a much smaller value than the
posterior mean of κx which is consistent with the fact that, in general, simulated
data are shifted to the right in relation to the observed data, indicating the
possible existence of some bias in the simulated data. The posterior mean of the
precision (inverse of the variance) parameters for the space model (τW ) and for
the temporal model (τZ) suggest that time dependence is stronger than space
dependence. The posterior mean for βy is slightly smaller than the posterior
mean for βx. This naturally contributes for higher values for σy(i, j) relatively
to σx(i, j) and with greater dispersion, as it can be seen in Figure 3 where we
show daily boxplots of the posterior means of the parameters σ(i, j), ∀j for both
models. In that figure it is marked two dates, 19 of January, a day where it
was observed a storm with heavy winds (storm GONG, maximum observed wind
29.6m/s), particularly in regions close to the littoral, and 14th of February, a
very mild day all over the country (Valentine’s day; maximum observed wind
8.20m/s). The variation observed along the days is consistent with the fact that
on windy days the maximum wind speed along the stations varies much more
than on mild days. Also the temporal dependence is clear in these pictures.
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Parameter Mean Standard 2.5% Median 97.5%
deviation quantile quantile

α 0.6691 0.1007 0.4668 0.5028 0.8564
βy -1.1552 0.1702 -1.4760 -1.4250 -0.8063
βx -0.9274 0.1614 -1.2300 -1.1830 -0.5957
κy 5.2951 0.1976 4.9020 4.9740 5.7020
κx 18.7384 0.7467 17.2900 17.5100 20.3000
τW 3.5699 0.7274 2.3280 2.4840 5.1520
τZ 0.4240 0.1081 0.2457 0.2678 0.6675
ξy -0.0703 0.0018 -0.0739 -0.0675 -0.0670
ξx -0.0806 0.0014 -0.0834 -0.0782 -0.0777

Table 1: Summary statistics for the marginal posterior distributions.
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Figure 3: Boxplot of the posterior means of σy(i, j) (left) and σx(i, j)
(right)

These two days were studied, in particular, for exemplification of the condi-
tional quantile calibration method proposed. For the purpose of exemplification
of the results we represent in Figures 4 and 5, on the left, a kernel density estima-
tion (considering all the stations) for the observed and simulated maximum wind
speed on that day, together with the mean of the posterior distribution of the
calibrated data as defined in (3.3). On the right side, we represent the observed
and simulated maximum wind speed on that day for each station, together with
the calibrated data with the corresponding 95% credible interval.

We observe that, on a storm day (Figure 4) the observed winds have longer
tails than simulated winds. The calibration method was able to capture both
tails of the distribution for the observed data, although it shifted the bulk of the
distribution to the left. Notice that the 95% credible intervals are very large.
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This was to be expected due to the great variability of the simulated values from
the posterior distribution of the shape parameter, as it can be observed in Figure
3. Regarding a mild windy day (Figure 5), the distribution of the simulated data
is shifted to the right relatively to the distribution of the observed data with
longer tails, as it was observed in a preliminary study. This bias is corrected with
the calibration method. The 95% credible intervals are, in general, small.
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Figure 4: Kernel density estimation (left), observed and simulated maxi-
mum wind speed for each station, together with the mean of the
posterior distribution for the calibrated data and 95% credible
interval, for a storm day.
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Figure 5: Kernel density estimation (left), observed and simulated maxi-
mum wind speed for each station, together with the mean of the
posterior distribution for the calibrated data and 95% credible
interval, for a mild day.

In Figures 6 and 7 there is a spatial representation of the observed, simu-
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lated and calibrated values for each of these two days.

Figure 6: Storm day: observed, simulated and calibrated maximum wind
speeds.

Figure 7: Mild day: observed, simulated and calibrated maximum wind
speeds.

4.1. Choice of prior specification and a sensitivity study

Here a justification is given on the particular choice of priors used in this
study. Apart from the parameters α and ξ, and in the absence of adequate
prior information, we considered relatively vague priors for the other parameters
involved, as described in 3.2.
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A preliminary data analysis of the wind speed data showed that observed
and simulated data were consistent with the case ξ < 0. Without further prior
information on ξ, we considered a uniform prior distribution with support between
-0.5 and 0, since it is known from the extreme value theory that estimators with
good properties for ξ exist when ξ > −0.5.

In order to set a prior for the parameter α, that controls the rate of decline
of correlation with distance, we follow the suggestion by Thomas et al., 2014
[21]. Accordingly, in the absence of prior information, “a sensible ‘default’ choice
is to consider an upper prior bound equal to a small multiple of the maximum
distance in the study region” and the lower prior bound should be larger than the
minimum distance between observations. Coordinates of the 117 stations were
given in decimal degrees and transformed into km to compute distances. In order
to avoid large numbers, we consider 100km as unit to compute distances. The
maximum Euclidean distance among the 117 stations was computed as 5.65 and
the minimum 0.01. Hence we set a uniform prior between 0.1 and 0.9. However
we performed a sensitivity study considering as upper bound 0.5, 0.9 and 1.2,
keeping the other priors unchanged. Summary results are displayed in Table 2
and in Figure 8.

As it can be seen, posterior distribution of α is sensitive to the its prior.
The upper bound 0.5 seems not to be adequate since it is clear that there is a
concentration of mass near the upper bound. However, when the upper bound
is 0.9 or 1.2, the influence of the prior for α on its posterior is much less evident,
particularly on the bulk of the posterior distribution. Influence of the prior on α
on the other parameters is almost negligible. Basically there is only some influ-
ence on the posterior distribution of the parameter τW , although this influence
is softened while comparing the prior with upper bound 0.9 and 1.2. More im-
portant it is that there is no influence of the prior for α regarding the calibrated
data (posterior distribution of F−1

Y (FX(x(si, tj))) at si, i = 1, ..., Ns and time
tj , j = 1, ..., T ).

5. DISCUSSION AND FURTHER EXTENSIONS

In this article we proposed a hierarchical Bayesian approach to implement
a conditional quantile matching calibration (CQCM) using a space-time extended
generalized Pareto distribution for both the observed and simulated data.

The performance of the CQCM method was exemplified with two specific
days, a storm day and a mild day. In both cases the calibrated data matched well
the observed data on the tails, although on the storm day it did not capture well
the bulk of the distribution. Also the 95% credible intervals were quite wide for
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Upper Parameter Mean Standard 2.5% Median 97.5%
bound deviation quantile quantile

0.5 α 0.4552 0.0403 0.3522 0.3733 0.4988
0.9 α 0.6691 0.1007 0.4668 0.5028 0.8564
1.2 α 0.6744 0.1075 0.4677 0.5020 0.8821

0.5 βy -1.1510 0.1505 -1.4390 -1.3970 -0.8641
0.9 βy -1.1552 0.1702 -1.4760 -1.4250 -0.8063
1.2 βy -1.1356 0.1514 -1.4250 -1.3820 -0.8353

0.5 βx -0.9170 0.1381 -1.1820 -1.1400 -0.6549
0.9 βx -0.9274 0.1614 -1.2300 -1.1830 -0.5957
1.2 βx -0.9014 0.1412 -1.1590 -1.1240 -0.6171

0.5 κy 5.3136 0.1926 4.9500 5.0080 5.6970
0.9 κy 5.2951 0.1976 4.9020 4.9740 5.7020
1.2 κy 5.3056 0.1890 4.9390 5.0050 5.7110

0.5 κx 18.7734 0.8037 17.2000 17.4800 20.3100
0.9 κx 18.7384 0.7467 17.2900 17.5100 20.3000
1.2 κx 18.7919 0.7302 17.4500 17.6200 20.2500

0.5 τW 4.1859 0.7078 2.9510 3.1180 5.7120
0.9 τW 3.5699 0.7274 2.3280 2.4840 5.1520
1.2 τW 3.5600 0.7378 2.2620 2.4460 5.1570

0.5 τZ 0.4244 0.1034 0.2519 0.2729 0.6535
0.9 τZ 0.4240 0.1081 0.2457 0.2678 0.6675
1.2 τZ 0.4101 0.0981 0.2454 0.2665 0.6256

0.5 ξy -0.0702 0.0018 -0.0738 -0.0673 -0.0668
0.9 ξy -0.0703 0.0018 -0.0739 -0.0675 -0.0670
1.2 ξy -0.0702 0.0017 -0.0736 -0.0674 -0.0670

0.5 ξx -0.0805 0.0016 -0.0836 -0.0778 -0.0774
0.9 ξx -0.0806 0.0014 -0.0834 -0.0782 -0.0777
1.2 ξx -0.0804 0.0014 -0.0831 -0.0781 -0.0776

Table 2: Summary statistics for the marginal posterior distributions.

the storm day, which may be an indication that appropriate methods to deal with
extreme data should instead be considered to accommodate these rare situations.

Ideally this method should be extended to the grid level, since the simulator
produces data at a fine grid level and this is much more interesting if the objective
is the construction of a risk map. However this extension is not trivial and some
assumptions regarding the model structure have to be assumed.

Damages in electricity grid are basically governed by extreme winds and
primarily simulated and observed data coming from the right tail differ. Hence
adequate calibration methods must be specifically adapted to extreme observa-
tions coming from the right tails and methods and models to be used in calibration
should ideally be compatible with extreme value theory. A range of approaches
for characterising the extremal behaviour of spatial process have been suggested
and a brief comparison of these methods can be found in Tawn et al. (2018)
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Figure 8: Boxplots of the posterior distribution of the parameters for dif-
ferent values for the upper limit of the prior for α.

[20]. Downscaling method described by Towe et al. (2017) [22] — based on the
conditional extremes process — is more suitable, with adequate modifications, to
calibrate extreme simulated data based on observed wind speeds. Work on this
approach is under progress. Alternatively, calibration methods based on bivari-
ate max stable processes (Genton et al., 2015 [10]) can be devised, although this
would require substantial computational complications.
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