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Abstract 

Successful progression from bench to bedside for regenerative medicine products is 

challenging and requires a multidisciplinary approach. What has not yet been fully 

recognised is the potential for quantitative data analysis and mathematical modelling 

approaches to support this process. In this review, we highlight the wealth of opportunities 

for embedding mathematical and computational approaches within all stages of the 

regenerative medicine pipeline. We explore how exploiting quantitative mathematical and 

computational approaches, alongside state-of-the-art regenerative medicine research, can 

lead to therapies that potentially can be more rapidly translated into the clinic.  
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Introduction and vision 

 

The concept of using regenerative medicine approaches to repair and regenerate tissue 

damaged through disease or trauma has been maturing over the past few decades. 

Translation of regenerative therapies to the patient – bench-to-bedside – is one of the 

global multidisciplinary challenges of our time, offering a vision of new therapies with the 

power to address major unmet healthcare needs1. 

 

Regenerative therapies can utilise progenitor or stem cells which are delivered to a repair 

site or area of degeneration to restore tissue structure and function. Regenerative therapies 

may also include a molecule or biomaterial based approach which promotes endogenous 

recruitment and tissue repair. Key examples of the challenges which regenerative therapies 

are facing include: Choice of the best cell type from multiple sources, both autologous and 

allogeneic, or adult and embryonic2; new ways for manufacturing therapeutic doses of 

donor stem cells which are characterised as Advanced Therapy Manufacturing Platforms 

(ATMPs); new enabling technologies using optical, sensing and mechanical tools for routine 

use to support scaled up cell production3; novel biomaterials providing structural tissue 

mimics and instructive cues based on topography and protein chemistry; 3D tissue models 

grown in bioreactors or growth chambers presenting new ways for testing potential 

therapeutic strategies before implantation; optimising clinical choice and patient 

stratification using cell-based assays which aim to improve efficacy and long term outcomes 

in patients.; and finally, patient monitoring at cell resolution using MRI, PET and multi-

modal approaches which support efforts to move to clinical first in man and 1st stage trials4. 
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These broad challenges which aim to advance a new type of medicine have relied on 

multiple disciplines covering cell biology to material chemistry, enabling physics and clinical 

medicine. It is now being recognised that additional maths-based approaches may speed 

the advance of these therapies and enable them to reach the clinic faster. One example of 

such an approach is in silico modelling. This disruptive perspective can bring mathematicians 

into the pathway at many stages of the translation; mechanistic modelling studies enable 

acceleration of translational research by optimisation of protocols, new algorithms and 

statistics help to define our quantitative metrics and new data science and AI innovations 

expand our use of patient derived databases to optimise therapies. 

 

A key challenge in integrating mathematical approaches into the regenerative medicine 

pathway is to identify where mathematical modelling can make the most disruptive impact. 

Mathematical modelling approaches are much faster and cheaper than performing 

numerous time consuming and expensive laboratory experiments5. Embedding 

mathematics within regenerative medicine enables researchers to go beyond the usual trial-

and-error approach, be guided in their experimental design, and therefore accelerate 

advances in regenerative medicine6. Mathematical models provide mechanistic insight into 

complex biological systems exhibiting richly non-linear behaviour, and predictions from 

mathematical models can be used to optimise protocols both for the manufacture of 

regenerative medicine products as well as for treatment strategies, e.g. the delivery of cell 

therapies. Mathematical models that predict the dynamic behaviour of the regenerative 

product, e.g. tissue growth during in vitro culture, can potentially be used as online 

monitoring tools to ensure the reproducibility and safety of manufactured products, 

addressing challenges in product regulation. Finally, bespoke patient models may be built in 
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an individualised medicine approach and these models can be used to predict the efficacy of 

regenerative medicine strategies7.  

Mathematical models have traditionally been used to provide mechanistic insight into the 

many interactions between the biological components of a system, for example enabling 

quantitative assessment of the cellular microenvironment that can then be manipulated to 

guide cell behaviour during development or growth. By systematically varying the 

parameters of the models, or by the addition of new components, we can perturb the 

model leading to new predictions and insights that can be used to overcome bottlenecks. 

For example, understanding gained from in vitro systems can be translated to the in vivo 

scenario through the inclusion of an immune component in the in silico models8. Models 

can also be used to “bridge the gap” between sub-disciplines by integrating multiple 

quantitative data sources such as imaging and molecular or biomechanical data, for 

example9.  

A brief introduction to common modelling approaches 

Multicellular, multiscale biological systems can often be too complex to understand by 

interrogating experimental and clinical data with verbal thinking and linear reasoning alone, 

thus the addition of theoretical or in silico models, expressed in the precise and powerful 

language of mathematics, can provide new and deeper insights. The key steps in the 

development of mathematical models are model construction, calibration, prediction, and 

refinement. We discuss the choices to be made in model construction at greater length 

below. Briefly, theoretical models may be phenomenological or mechanistic and describe 

biological processes at different scales: on the whole patient, organ, tissue scale, single-cell-

level, and even the molecular level.  
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A key aspect in the development of biologically realistic, predictive mathematical models, is 

interfacing mathematical models with experimental data. The calibration of models through 

comparison of model outputs with experimental data poses additional formidable 

challenges because the available data are usually complex, high-dimensional, noisy, and 

often incompletely observed. Comparing models with data is vital for parameter inference, 

which is the inverse problem of determining which parameter values are most likely to 

produce the observed data. Another reason to compare models with data is for the purpose 

of model selection, i.e. determining the level of model complexity required to interrogate a 

given set of experimental data, or deciding which model out of several competing 

hypotheses is more likely to be true. Once calibrated, the theoretical models are validated 

via detailed comparison of mathematical model predictions with experimental data. The use 

of predictions, whether on existing and withheld data, or predictions that are to be tested by 

newly generated data, are a key aspect of any mathematical modelling process. Any 

discrepancies between model predictions and experimental data can then lead to further 

model refinement. An iterative cycle of predict-test-refine is fundamental to the 

development of all models (See Fig. 2). 

 

The choice of modelling approach is guided by the biological question being asked, and the 

nature of the quantitative experimental data (see Table 2). Here we give a brief and broad 

categorization of commonly used types of mathematical modelling in biology and medicine. 

 

● Mechanistic models: Mechanistic models represent all the components of a 

hypothesis (cell-cell interactions, role of biomolecules on cell behaviour, etc.) 
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mathematically10. Mechanistic model development is often guided by analysis of 

experimental data, allowing hypotheses to be made for the causal mechanisms 

underlying a biological system5. For example, in describing the growth of a 

mechanosensitive tissue such as bone in a bioreactor, causal mechanisms include the 

response of the mechanosensitive cells to the applied mechanical load (fluid shear 

stress, hydrostatic pressure, substrate deformation etc). A key step is to identify the 

dependent variables of the system e.g. cell number, fluid velocity, substrate density, 

and their dependence on the independent variables of the system e.g. space and 

time.  

 

Mechanistic models can be multi-scale, incorporating processes on a range of spatial 

and temporal scales. The development of coarse-graining methods for models that 

contain disparate space and time scales is crucial to enable rigorous mathematical 

analysis, and for general classification of models according to their predicted 

emergent behaviours11,12. Efficient and accurate computational methods for 

simulation of multi-scale mathematical models13 are necessary to enable full 

investigation of potential model behaviours, parameter sensitivity analysis and data-

driven model calibration.  

 

The representation of a biological mechanism need not be reductionist and 

molecular, but can be phenomenological14. Phenomenological models aim to 

reproduce the experimental observations without the terms in the model equations 

necessarily corresponding to cellular or molecular processes directly. An example is a 

model of a homeostatic epithelium in which cell division always co-occurs with 
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another cell dying or migrating away15, so that the overall cell density stays constant 

(which is the important phenomenology to capture). Phenomenological models, 

despite what the name suggests, can still provide mechanistic understanding of a 

system’s function, for example what kind of regulatory interactions are important, 

even if the precise nature of the interactions and their molecular mediators remains 

obscure. In such cases, there may be many underlying molecular mechanisms that 

give rise to the same phenomenological models. Strictly speaking, all models are 

phenomenological at some level, as they simplify the underlying chemistry and 

physics considerably. The model development process for phenomenological models 

is largely the same as for other mechanistic models described above.  

 

Mechanistic modelling approaches include continuum16/discrete17, hybrid 18, and 

deterministic/stochastic19,20. 

 

o Discrete models treat cells as distinct entities and consider the behaviour of 

one or more individual cells, accounting for their interactions both with each 

other and with the surrounding microenvironment. Discrete cell models 

provide a natural framework for incorporating available quantitative 

experimental data at the cellular or subcellular scale. Often, discrete models 

are also stochastic models, meaning that the outcome is to some degree 

random, and only one of many possible realisations. Average model 

behaviours or a full distribution of predictions can be obtained by repeating 

stochastic model simulations many times17. 
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o Continuum models average the cell behaviour over a number of cells, for 

example describing the behaviour of the cell population in terms of its density 

that depends continuously on space and time. Continuum models are also 

used to describe the surrounding mechanical and chemical environment, with 

variables such as fluid velocity and pressure, solid deformation and solute 

concentration again depending continuously on space and time10. Hybrid 

discrete-continuum models refer to the integration of discrete cell-based 

models with continuum models for the surrounding cellular 

microenvironment, or the use of discrete (low cell numbers) and continuum 

(high cell numbers) models in different regions of the spatial domain as 

appropriate18. In a deterministic mathematical model, the spatiotemporal 

evolution of the dependent variables is completely determined by the model 

parameters and initial conditions - such a model will therefore always 

produce the same output for a given initial state. A natural formulation of 

continuum models is in the form of differential equations. 

 

o Statistical models are another class of models which focus on prediction over 

mechanistic insight. Examples of statistical models are general linear models, 

logistic regression, and machine learning techniques such as artificial neural 

networks21,22. Statistical models aim to fit or learn the relationship of input 

variables, such as experimental parameters or biological variables, to output 

variables, such as experimental measurements. Through this, statistical 

models can be used to predict how the distribution of e.g. experimental 

measurements should change under a change in the input variables. In the 
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development of statistical models, data are typically divided into training, 

validation, and test data. Training data are used to train the model (i.e. fit its 

parameters), validation data are used to prevent overfitting, and test data are 

used to assess the model’s performance at prediction23. Unlike 

phenomenological models, in which individual model components implicitly 

represent biological processes, no such interpretability is offered a priori by 

statistical models. Interpretability is however possible by inspecting the 

model after training it on data, although the degree of interpretability varies 

depending on the statistical method used24.  

 

Mathematical models in regenerative medicine research 

Mathematical approaches have traditionally focused on the discovery science end of the 

spectrum of regenerative medicine research. This has stemmed from a strong research base 

in mathematical medicine and biology where there are existing successful interactions with 

biologists and medics. Major questions in developmental and stem cell biology have been 

investigated using experimental and theoretical approaches25–28. Another area that has 

received a lot of attention is modelling of tissue growth within bioreactors, as this draws on 

a long tradition of continuum mechanics and its applications to medicine and biology.  

 

Basic regeneration biology 

Models can be used to distinguish which cellular processes are important to the overall 

regenerative process. For example, models incorporating both cell proliferation and 

migration can be used to explore the contribution of each process to experimentally 
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observed regeneration. The balance of quiescence vs proliferation has been investigated in 

several studies. For example, the balance of quiescence and proliferation in neural stem 

cells has been modelled by a compartment-based differential equation approach (a 

continuum model) to investigate the change in regenerative capacity due to increased 

quiescence with age29. By modelling a simplified signalling network and using single-cell 

RNAseq data29 the authors were able to identify a potential niche signal that maintains 

quiescence, Wnt Antagonist sFRP5. Another study investigating the balance of quiescent 

and proliferative cells in regeneration in liver biliary epithelial cells found little 

interconversion (on shorter time-scales) based on dual labelling experiments, and used a 

discrete, stochastic model of symmetric and asymmetric cell divisions to explain distribution 

of clone sizes30. At the larger scale of cell population dynamics, axolotl spinal cord 

regeneration has been modelled with compartment-based differential equations to identify 

that acceleration of the cell cycle is a more important part of the regenerative response 

than cell influx and stem cell activation31. 

 

Mathematical modelling and data analysis approaches can be used to identify similarities 

between developmental and regenerative processes, i.e. can “developmental processes be 

reinstated and adapted or are there entirely new regenerative processes to be 

discovered?”32. A recent single-cell scale analysis33 investigated to what extent cells in 

axolotl limb regeneration are de-differentiating into multipotent states, and how similar 

these states are to their developmentally observed analogues. Another recent example 

using this approach of comparing cell states in single-cell sequencing data identified a 

“regeneration-organising cell” in Xenopus tails34. Another question underpinning 

regeneration and growth of tissues is why does regeneration occur in some animals but not 
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others35? One approach may be to compare regeneration and wound healing, and what 

factors affect successful healing vs scarring. Similarities in gene expression between 

regeneration and wound healing have been identified36, however the complexity of the 

involvement of the immune system has not been mapped. Modelling could provide a means 

to address these additional components before carrying out a large number of complex co-

culture approaches, thus guiding experiments towards the inclusion of essential 

components. One study37 used coupled differential equations to model cytokine signalling in 

microglia, and explained the pro- and anti-inflammatory effects of cytokine perturbations 

through differential kinetics in parallel negative feedback loops. This has implications for 

treatment e.g. of neuroinflammation/neurodegenerative associated conditions through 

application of cytokines. 

 

Another example which demonstrates the utility of mathematics in defining the role of cell 

interactions for successful regeneration is in hair regeneration. Spatial simulations using 

both continuum and discrete models have shown how a collective cell behaviour akin to 

bacterial quorum sensing causes hair follicle regeneration in mice to occur only when the 

injury is large enough38. Other studies from the same group of authors39,40 use spatial 

discrete and stochastic modelling to show how the coupling, i.e. the strength of 

communication, between hair follicles determines the pattern in which hairs regenerate, 

e.g. in spreading waves, and why regeneration may stop in human scalps where stem cell 

activities may be more independent and less coupled. Further work41 has investigated the 

morphogenesis of skin layers and hair follicles in vitro from dissociated mouse epidermal 

and dermal cells, and thus identified crucial physical and molecular events in the process. 

This led to a partial rescue of hair forming ability in these reconstituted skin samples when 
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formed from adult cells, through the timed application of growth factors, Wnts, and 

MMPs41.  

 

Bioreactors 

Mathematical modelling of tissue maintenance and growth within in vitro bioreactors is 

motivated by the desire to understand and control how the imposed experimental 

environment and operating conditions influences the time-dependent and spatial 

distribution of cells, nutrients, fluid flow and substrate deformation within the bioreactor. In 

vitro engineering of 3D tissues is characterised by a source of cells (autologous, allogeneic, 

xenogenic) which are seeded on a substrate or biomaterial scaffold which can be used to 

provide chemical, topographical and mechanical cues42. Scaffolds can be extremely varied 

materials – synthetic e.g. or natural (decellularised ECM) – and cell-seeded scaffolds are 

cultured within bioreactors. Significant tissue-engineering studies have progressed the field 

in bone tissue engineering43. Examples of bioreactors include perfusion, compression, 

hollow fibre, hydrostatic etc44,45.  

 

Mathematical models of bioreactors range from details of the fluid-tissue interaction at the 

pore scale within a cell-seeded scaffold46 to models of growing tissue constructs47,48. We do 

not present a comprehensive review of bioreactor modelling studies here, but instead 

highlight how mathematical modelling techniques have been applied to these systems. 

Recent work has shown that in addition to material scaffold properties such as surface 

roughness, elasticity and substrate chemistry, the macroscopic geometry of the substrate 

controls cell growth kinetics49. By using rapid prototyping to build artificial macro-pores of 
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different controlled geometries, Rumpler et al demonstrated that cells locally respond to 

high curvature through enhanced tissue growth50. Additionally, mechanosensitive cells 

respond to fluid shear stress, which is itself a function of the pore geometry. Sanaei et al46 

developed a continuum mathematical model for the fluid flow through an individual 

scaffold pore, coupled to the growth of cells on the pore walls, to determine how the 

interplay between substrate geometry and fluid shear stress enhances tissue growth. In a 

complementary approach, Guyot et al51 developed a 3D computational model using the 

level set method to capture the growth, again depending on curvature and fluid shear 

stress, at the scaffold level in a perfusion bioreactor. These models offer simple frameworks 

for testing the behaviour of different scaffold pore geometries, and facilitates the prediction 

of operating regimes (inlet fluid flux etc) in which the tissue growth may be enhanced.  

 

While computational approaches can be employed to scale-up mechanistic insights from the 

pore to the tissue scale, an alternative approach is to use mathematical homogenisation 

techniques to derive effective macroscale equations (construct level) that explicitly 

incorporate details of the structure and dynamics of the pore scale detail. Such coarse-

graining approaches rely on a disparity in length scales e.g. between the pore scale and 

scaffold scale. A recent experimental approach to engineer artificial cartilage involves 

seeding cells within a scaffold consisting of an interconnected 3D-printed lattice of polymer 

fibres combined with a cast or printed hydrogel, and subjecting the construct (cell-seeded 

scaffold) to an applied load in a bioreactor52. To understand how the applied load is 

distributed throughout the construct, Chen et al.53 employed mathematical homogenisation 

theory to derive the effective macroscale equations. The resulting model captured the 

orthotropic nature of the composite material, and can be exploited to determine how local 
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mechanical environment experienced by cells embedded within the construct53 depends on 

the composite material properties (e.g. fibre dimension and properties). In a 

complementary approach, Castilho et al.54 employed a finite element (FE) model to explore 

the reinforcement mechanisms of fibre-hydrogel constructs.  

 

While the studies of Chen et al53 and Castilho et al54, focused on the material properties of 

the scaffold, techniques of mathematical homogenisation can also be employed to derive 

systems of homogenised partial differential equations describing tissue growth within 

biomaterial scaffolds11,55,56. Alternative routes to describing an evolving biological tissue, in 

which the volume fraction of the constituents/phases – cells, ECM, interstitial fluid etc - 

change over time utilize multiphase mixture theory, based on the principles of mass and 

momentum conservation with specified constitutive laws describing the interactions 

between the phases57. Such a multiphase framework has been employed in a multiscale 

setting to describe the properties of a tissue growing on a rigid porous scaffold: again, 

mathematical homogenisation techniques can used to derive effective macroscale 

equations that describe the effective properties of the construct, and retain explicit 

dependence on both the microscale scaffold structure and the multiphase tissue 

dynamics58. When considering cell-seeded construct growth within bioreactors, these 

bioactive multiphase models must be coupled to surrounding single phase fluid through 

specification of the appropriate boundary conditions59.  

 

Mathematical models and computational approaches describing bioreactor processes 

enable identification of optimal process conditions leading to robust and economically 

viable products60. Taking a mechanistic model for the growth of neotissue in a perfusion 
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bioreactor, Mehrian et al61 applied model reduction techniques to extract a set of ordinary 

differential equations from the original set of partial differential equations. The simpler 

reduced system enabled rapid simulation, allowing the application of rigorous optimisation 

techniques. Bayesian optimisation was applied to find the medium refreshment regime in 

terms of frequency and percentage of medium replaced that would maximise neotissue 

growth kinetics during 21 days of culture. The simulation results indicated that maximum 

neotissue growth will occur for a high frequency and medium replacement percentage, 

supporting existing reports in the literature61. 

 

Clinical Translation 

Mathematical models can also be used to ask “what if…?” questions (hypothesis testing), 

allowing us, for example, to generate experimentally testable predictions for the way cells 

or engineered tissues behave after implantation. A recent theoretical study using continuum 

models62 of homeostatic hematopoeisis put forward a novel interaction between 

hematopoeitic stem cells (HSCs) and niche cells, namely that niche cells could be 

quiescence-inducing, while the HSC in turn promote the survival of the niche cells. This 

mechanism would have the advantage that a large excess of niche cells can compensate 

large fluctuations in HSC number, unlike proliferation-inducing niche interactions. The 

differential equation model based on this premise was able to explain why there is a delay 

in HSC recovery after near-complete ablation, but not after irradiation (which kills a smaller 

fraction of cells). Such insights stemming from the basic regenerative biology can be 

exploited to make sense of the dynamics of recovery after cell transplantation, and how the 
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ratio of niche to stem cells affects the performance of cell therapy or tissue engineering 

approaches.  

 

Mathematical models can also be used for clinical optimisation of a regenerative therapy 

e.g. to optimise RM treatment strategies by understanding the trade-offs involved. One 

such trade-off is between quick repair and risk of fibrosis in ischemia, which has been 

investigated using a combination of mouse experiments in a kidney injury model and a 

differential equation model of cell-cell communications63. In the model, Wnt overexpression 

would decrease the risk of death but increase fibrosis, while Wnt down-regulation would 

decrease fibrosis but increase risk of death. This led to an optimal treatment prediction of 

sequentially applying Wnt Agonist and Antagonist which ultimately could lead to increased 

survival and decrease fibrosis risk. 

 

Mathematical models can assist at the end of the translational pathway, for example we can 

use models to gain a deeper understanding of the efficacy of treatments. In liver 

regeneration, mesenchymal stem/stromal cells are directed to sites of injury by SDF-1, 

which has potential for cell-based therapies. A differential equation model has recapitulated 

the in vivo response to treatment of liver injury for different SDF-1 concentrations and 

doses of transplanted cells64, including the beneficial effect of hypoxia-preconditioning to 

increase the CXCR4 receptor concentration. 

 

Mathematical modelling can also give confidence to enable new protocols for RM to reach 

the clinic. Using clinical retrospective data, modelling can predict the importance of 

contributions of aspects of the protocol to the eventual outcome of the treatment. One 
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example is theoretical modelling work for Autologous Chondrocyte implantation (ACI) which 

is an effective treatment for cartilage defects65,66. From clinical and animal studies it was 

unclear whether the type or number of implanted cells is important. To determine the 

effect of the number and type of implanted cells on cartilage repair, Campbell et al.65,66 

formulated a reaction-diffusion model for repair after implanting chondrocytes or 

mesenchymal stem cells (MSCs). The model captured cell migration, proliferation and 

differentiation, nutrient diffusion and depletion, and cartilage matrix synthesis and 

degradation at the defect site, both spatially and temporally. They identified that the 

number of implanted cells had only a marginal effect on the defect fill time or the 

maturation time, and that the implantation of MSCs vs chondrocytes did not affect 

maturation time but did affect the nature of the maturation. Chondrocyte implantation 

gave the most mature cartilage towards the bottom of the defect, but MSC implantation 

gave the most mature cartilage towards the surface of the defect. The small effect of cell 

number in this study may explain why both clinical and animal studies have been 

inconclusive in defining dosing of cells. This result gave the clinical team’s MHRA-licensed 

cell manufacturing facility confidence to implement wide cell release criteria with respect to 

cell numbers. The small maturation difference between chondrocytes and bone marrow 

derived MSCs agrees with experimental studies65,66. Chen et al.67 also considered a reaction-

diffusion model for identifying optimal strategies for chondrogenesis in tissue engineering 

applications. Experimentally, a hydrogel is seeded with a layer of MSCs lying below a layer of 

chondrocytes, and the MSCs are stimulated from above with exogenous TGF-beta, and then 

cultured in vitro. Through mathematical modelling, Chen et al.67 identified how the initial 

concentration of TGF-beta, the initial densities of the MSCs and chondrocytes, and the 
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relative depths of the two layers influence the long time composition of the tissue 

construct61,67. 

 

These examples above demonstrate how mathematics has been used to model regenerative 

biology at multiple stages of the translational pathway but there are clearly further areas 

where the input of theoretical and computational approaches would benefit the speed of 

progress towards the clinic. Below is a table identifying stages in the process where help is 

needed to define the appropriate clinical regenerative protocol more rapidly and 

reproducibly. This table is intended to establish the potential for the mathematical 

community to contribute at each step of the translational process. Each part of the table 

underpins some basic biological and/or engineering question where mathematical 

modelling could potentially add value. 

 

Table 1. Key challenges for RM where new approaches can make a major shift in 

translation 

 

For many biomedical and clinical researchers, the concept of how to approach the 

relationship with mathematicians can be daunting. This review is a first step to try and 

provide a reference which illustrates previous work and signposts where to go for future 

studies. To help researchers to identify possible areas for collaboration, Table 2 below 

identifies areas which can be modelled and specific approaches which may be or have been 

used in the literature. What is needed are interactive workshops, training pathways and 

defining some common languages to support this interaction. 
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Table 2 : Next steps for future links to mathematical teams 
 

Conclusion 

In this review, we have highlighted the enormous potential for embedding 

mathematical and computational approaches within the regenerative medicine 

pipeline. To successfully achieve this however requires a number of challenges to be 

overcome. For example, theoretical model development often lags behind 

experimental approaches in the earlier stages of the research, prohibiting their early 

use as predictive tools to guide and inform experimental design. Another challenge 

arises when model parameterisation is hindered by a lack of experimental data (or 

the right kind of experimental data). Addressing issues of structural and practical 

identifiability of mathematical models is key, and, in simple terms, means to check to 

what extent (groupings of) parameters can be determined by statistical fitting of 

observable data in principle or in practice. Issues of non-identifiability can then drive 

further model reduction and/or additional experiments.  

 

To overcome these potential bottlenecks it is essential to have mechanisms in place 

to allow integrated mathematical and experimental research programmes to be 

designed and implemented, including interactive workshops, combined and 

reciprocal training pathways for wet and dry scientists, and funding schemes to 

engage interdisciplinary teams of mathematicians, regenerative medicine scientists 

and clinicians (see also75).  
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In conclusion, the opportunity to engage mathematics within a growing regenerative 

medicine community has the potential to enable more rapid translation of cell-based 

approaches to the clinic. In contrast to laboratory experiments which are often time 

consuming and expensive, mathematical modelling approaches are much faster and 

cheaper. Embedding mathematics within regenerative medicine enables researchers to go 

beyond the usual trial-and-error approach, be guided in their experimental design, and 

therefore accelerate advances in regenerative medicine. In silico approaches can provide 

added value in understanding complex regeneration events in tissues in vivo and in growth 

environments in vitro. This review highlights the wealth of opportunities for collaboration 

between mathematicians and regenerative medicine scientists, and to identify where 

modelling approaches can contribute to the many stages of the regenerative medicine 

pipeline to address key challenges in translation.  
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Figure legends 

 

Figure 1 – A New Era of Symbiosis between Regenerative Medicine and Maths - Diagram 

which highlights the many opportunities for utilising mathematical and computational 

approaches within regenerative medicine. This figure was created for the authors by the 

University of Edinburgh’s graphic design service team. 

 

Figure 2. Methodology - An illustrative diagram showing the quantitative regenerative 

medicine pipeline with stages of the modelling process and types of modelling involved. 
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Table 1. Key challenges for RM where new approaches can make a major shift in 
translation 

  Engineering cells 
and tissues 
 

 

Validation in 
vitro and in 
vivo 

 

Manufacture 
and 
Validation 
 

 

Define 
Measure 
and 
Control 
  

Clinical 
cohorts and 
optimisation 
 
  

Enabling 
science,  
technology 
 
 
 
 
 

 

Mechano- 
biology; cell 
differentiation,
co-cultures; cell 
substrate niche 
interactions; 
biomaterial 
development 

3D models, 
bioreactors, 
animal 
models of 
disease, ex 
vivo models, 

Bioreactors, 
processing , 
scale up, 
scale out, 
cell 
separation 
and delivery 
tools 

Non-
invasive 
imaging, 
sensor 
design, 
Biomarker 
Analysis    

Trial design, 
Defining 
patient 
groups, 
Feedback 
maths 
analysis, Data 
analytics 

Product 
development 
 
 
 
 

 

Stem cell 
control 
systems/ 
biomaterial 
delivery 

Advanced 
Therapy 
Medicinal 
Products, 
Cell free 
implants, 
regenerative 
factors, 

Autologous 
cell therapy 
scale up, 
Regenerative 
products 

Novel 
sensors, 
Metrology 
  

Trial design 
tools, Patient 
data handling 

Clinical 
relevance 
and 
translation 
 
 
 

 

Iterative first in 
man, 
Trials in 
identified 
cohorts 

Optimised 
therapies, 
Human Cell 
sources, 
Regulatory 
confidence 

Minimally 
invasive, 
delivery 
devices, 
validation 
models 

Tracking 
of 
implanted 
cells, new 
outcome 
measures 

Criteria for 
adoption, 
health 
economics, 
patient and 
public 
involvement 
(PPI) 
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Table 2 : Next steps for future links to mathematical teams 
 

 I want to model ... My data are ... Consider this kind of 
maths 

example refs

basic 
regenerative 
biology 

gene regulation & 
transcriptional 
control 

transcriptomics, 
time-course of 
gene/protein expression, 
live imaging of 
gene/protein expression 

differential equations 
for e.g. concentration 
of mRNA, stochastic 
models for control of 
gene expression by 
proteins 

68–70 

 cell migration cell tracking, 
population snapshot, time-
course of population 

cell-based, 
differential equations, 
statistical  

17,18,26,27 
 

 cell-cell signalling cell counts, 
time-course of cell number, 
signalling molecule 
concentration 

differential equations, 
hybrid models 

37–40,62,64 

relevant to 
bioreactors 

lineage choice, 
differentiation, 
cell 
reprogramming 

clonal tracking,
live imaging of cell 
phenotype, 
transcriptomics, 
epigenomics 
metabolic activity 

stochastic and 
deterministic 
differential equation 
models of cell division 
& differentiation 
 

relevant models 
from different 
applications: 
19,28–30,71 

 pattern formation, 
growth 

high-content microscopy 
images/movies 

cell-based, 
differential equations 

9,11,14,31,32,41,46–

48,50,51,53–58,72

 bioreactor 
optimisation 

flow rates; 
inlet and outlet solute 
concentrations; 
cell distributions 

differential equations 10,51,59,61,73 

clinical/ 
translational  

manufacturing online monitoring 
label-free 
impedance (electrical) 
 

differential equations  60,73 
 

 trial optimisation 
 

in silico pre-clinical 
patient-based 
clinical cohorts 

statistical 
machine-learning 
optimal control 
theory 

21,22,61,63,67 

 efficacy and safety toxicity
immunogenicity 

differential equations, 
statistical 

64–66,74
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