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Automatic error detection for speech therapy using ultrasound visual biofeedback. 
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sound tongue imaging is used to detect velar fronting and gliding of /r/. 

rienced therapists have high agreement when scoring velars, but not rhotics. 

els using ultrasound and audio outperform those using only ultrasound or audio. 

t ultrasound data improves results for typically developing speech. 
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automatic detection of speech articulation errors

Manuel Sam Ribeiroa,∗, Joanne Clelandb, Aciel Eshkya, Korin Richmonda, Steve Renalsa

aThe Centre for Speech Technology Research, University of Edinburgh, UK
bPsychological Sciences and Health, University of Strathclyde, UK

d disorders are a common communication impairment in childhood. Because speech disorders
the lives and the development of children, clinical intervention is often recommended. To h

d treatment, clinicians use instrumented methods such as spectrograms or ultrasound tongue im
ch articulations. Analysis with these methods can be laborious for clinicians, therefore there is
automation. In this paper, we investigate the contribution of ultrasound tongue imaging for the a

speech articulation errors. Our systems are trained on typically developing child speech and au
se of adult speech using audio and ultrasound. Evaluation on typically developing speech indic
n adult speech and jointly using ultrasound and audio gives the best results with an accuracy o

n disordered speech, we collect pronunciation scores from experienced speech and language thera
es of velar fronting and gliding of /r/. The scores show good inter-annotator agreement for velar
iding errors. For automatic velar fronting error detection, the best results are obtained when join
d audio. The best system correctly detects 86.6% of the errors identified by experienced clinicians
nts identified as errors by the best system, 73.2% match errors identified by clinicians. Results on a
tion are harder to interpret due to poor inter-annotator agreement, but appear promising. Overall
utomatic detection of speech articulation errors has potential to be integrated into ultrasound inte

automatically quantifying progress during speech therapy.

peech sound disorders, Speech error detection, Ultrasound tongue imaging, Child speech

ion

nd disorders (SSDs) are a common commu-
airment in childhood (Wren et al., 2016). If
, SSDs can have a negative impact on the

motional development of children and can
educational outcomes. For example, self-
disordered speech contributes to low confi-

al situations when children engage with their
ators. In turn, this introduces communication
lead to lower literacy levels (Johnson et al.,
et al., 2011; McCormack et al., 2011).
ated that SSDs affect between 2.3% and
ldren (Law et al., 2000; Wren et al., 2016).

ing author
esses: sam.ribeiro@ed.ac.uk (Manuel Sam
e.cleland@strath.ac.uk (Joanne Cleland),
.uk (Aciel Eshky), korin.richmond@ed.ac.uk
d), s.renals@ed.ac.uk (Steve Renals)

Speech and language therapy is often recommend
the majority of interventions heavily reliant on
feedback. That is, the speech and language
(SLT) relies on their perceptual skills to give t
verbal feedback during intervention; and in turn
relies on their perceptual skills to modify their
tions. This may also be accompanied by audit
describing where and how to place the articulator
duce the target sound. Interventions are often
ful, especially for younger children (McLeod et al
However, some children do not respond well and
becomes persistent. There is growing evidence
cluding visual biofeedback (VBF) during therapy
ficial for such children (Sugden et al., 2019). VB
the visualization of the vocal tract during the spe
duction process, enabling children to view articul
real-time.

With the widespread use of technology, there is

ted to Speech Communication Decembe
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ing interest in automatically processing speech therapy
tasks. This type of automation can be helpful to teachers
and parents,
the presence
rian, 2015; W
save time on
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strumented m
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In this pap
tection of sp
using ultraso
a tool for clin
trasound visu
sions. This
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who may use screening tools to determine
or absence of SSDs (Sadeghian & Zaho-
ard et al., 2016); and to clinicians, who can
these time-consuming tasks (Ribeiro et al.,
icians and researchers are trained to use in-
ethods such as spectrograms or ultrasound

ng to assist in the assessment, diagnosis, or
of treatment efficacy. These methods, how-

laborious and impractical in the speech ther-
they still rely on manual annotation by the

ther trained professionals. Typical tasks in-
ntification of utterances spoken by the child,
tion of boundaries of target words, or mea-
determine correctness of speech articula-

er, we are concerned with the automatic de-
eech articulation errors for speech therapy
und visual biofeedback. This is intended as
icians to automatically process data from ul-
al biofeedback assessment and therapy ses-
work provides the following contributions:
tion and analysis of pronunciation scores of
g and gliding of /r/ given by experienced
anguage therapists; 2) a method for the au-
tion of speech articulation errors to be used
when processing data collected after therapy
an investigation of the impact of ultrasound
ing for automatic error detection; and 4) an
e impact of out-of-domain adult speech data
error detection. Our method is evaluated on

eloping child speech and, more specifically,
velar fronting and gliding of /r/ in Scottish

speakers. These two errors are common in
SSDs and amenable to intervention with ul-
al biofeedback (Sugden et al., 2019).

provides background on speech disorders
idence on the benefits of ultrasound visual
as well as a review of recent literature on au-
h articulation error detection. The data used
is work is described in Section 3. Section 4

erceptual experiment where SLTs were asked
odness of pronunciation of phone instances,
und and audio data. Section 5 describes a set
ts for the automatic scoring of phone pronun-
g ultrasound tongue imaging. Finally, Sec-
provide an overall discussion and conclusion
, respectively.

Fronting Alveolars (/t,d/) replace velars (/k,g/) cookie
Backing Velars (/k,g/) replace alveolars (/t,d/) dog→
Gliding Glides (/w,j/ replace liquids (/r,l/) rabbit
Stopping Stops (/p, d/) replace fricatives (/f,s/) zoo→
Labialisation Labials (/p,b/) replace non-labials tie→

Table 1: Selected examples of substitutions. A phone
of phones is systematically replaced by another phone or
phones.

2. Background

2.1. Speech sound disorders

SSDs occur when children exhibit difficultie
production of speech sounds in their native langu
ganic speech sound disorders denote difficulties
associated with known causes. These causes
motor or neurological (e.g. childhood dysarthria
ated with cerebral palsy), structural (e.g. cleft
palate), or sensory (e.g. hearing impairments)
tional speech sound disorders are related to di
producing intelligible or acceptable speech with u
causes. These disorders may be associated wit
production (articulation or motor speech disorder
lated to predictable or rule-based errors (phonolog
orders) (ASHA, 2020).

Both types of SSDs can result in a variety o
patterns. Substitutions are a common pattern
phone or a group of phones is replaced by anoth
or group of phones. Table 1 summarises comm
stitutions. We highlight here the two processes
relevant to this work. Fronting occurs when pho
are produced towards back of the mouth (velars su
g/) are replaced with phones produced towards the
the mouth (alveolars such as /t, d/). This leads to
stances such as cookie → tootie or gate → date.
occurs when liquids (e.g. /r, l/) are replaced wi
(e.g. /w/), originating cases such as rabbit → w
leg →weg. Other examples of substitutions not
Table 1 are affrication, vowelization, depalataliz
alveolarization (McLeod & Baker, 2017).

Beyond substitutions, we may observe insert
deletions of phones in words (e.g. black →
spoon→ poon). Alternatively, assimilation deno
when specific sounds are transformed due to the i
of those around it. For example, the process of n
similation occurs when a non-nasal sound becom
due to the presence of a nasal sound in the wo
bunny→ nunny). Similarly, pre-vocalic voicing
when a voiceless phone becomes voiced when f
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by a vowel (e.g. comb → gomb). Additional phonologi-
cal patterns may be influenced by syllable structure. For
example, clu
reduced (pla
consonant at
syllable (bus
syllables in w
tortions may

Many of th
development
to be elimina
stance, the ty
around three
other hand, b
ing of this ph
five (McLeod
one or more
of eliminatio
apy.
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ster reduction, where a consonant cluster is
ne→ pane, clean → keen); the deletion of a
the beginning (bunny→ unny) or end of the
→ bu); or the deletion of weak or unstressed
ords (banana→ nana). Other phonetic dis-
also be observed (for example, a lateral /s/).
ese processes are typical stages in the speech
of children. They are, however, expected
ted as children reach a certain age. For in-
pical age of elimination of velar fronting is
years (McLeod & Crowe, 2018). On the

ecause /r/ in particular is late acquired, glid-
one is typically eliminated around the age of
& Crowe, 2018). Children that persist with

of these processes beyond their expected age
n usually require speech and language ther-

nd visual biofeedback

ntext of speech sound disorders, visual
involves the use of instrumented methods to
l information regarding the position, move-
e of intra-oral articulators during speech pro-
den et al., 2019). Common techniques to
time visual biofeedback for speech therapy
latography (EPG, Lee et al. (2009)), electro-
iculography (EMA, Katz et al. (2010)), and
ngue imaging (UTI, Sugden et al. (2019)).
artificial palate to measure the contact points
tongue and hard palate. However, the man-
ustom-made palates incurs additional costs
it the use of this technique to a few pa-
requires the placement of sensor coils on

nd other articulators to measure their posi-
e, which can be both expensive and intrusive
Ultrasound tongue imaging uses diagnostic

perating in B-mode to visualise the tongue
g the speech production process. A real-
ultrasound transducer is placed under the

n to generate a mid-saggital or coronal view
. This form of ultrasound is clinically safe,

, non-intrusive, portable, and relatively cheap
). Figure 1 provides examples of ultrasound
tongue for a typically developing speaker.
evidence shows that ultrasound VBF can be

r patients, therapists, and annotators (Bern-
2005; Cleland et al., 2019, 2020). U-VBF
when used in intervention for a range of

/g/ /t/

/r/ /w/

Figure 1: Ultrasound tongue images collected from a typic
oping speaker (female, aged 11). Each frame is the mid-p
phone showing a midsaggital view of the oral cavity with th
tongue facing right. Samples extracted from the Ultrasuite
(Eshky et al., 2018).

speech sound disorders, particularly if used in
tial stages of motor learning (Sugden et al., 201
lated work suggests that U-VBF can be used a
jective measure of progress in intervention (Cl
Scobbie, under revision), or to complement aud
back and contribute to positive reinforcement (R
et al., 2015). U-VBF can also assist annotator
identification of covert errors and increase inter-a
agreement scores (Cleland et al., 2020). Addition
VBF can contribute to the automatic processing o
therapy recordings. Recent work used ultrasound
develop tongue contour extractors (Fabre et al.
animate a tongue model (Fabre et al., 2017), a
cally synchronise therapy recordings (Eshky et al
and for speaker diarisation and alignment of ther
sions (Ribeiro et al., 2019b). There are, howev
eral challenges associated with the automatic pr
of ultrasound tongue images (Stone, 2005; Ribei
2019a). Ultrasound output tends to be noisy, w
lated high-contrast edges, speckle noise, or inter
of the tongue surface. Image quality may also be
by speaker characteristics (e.g. age and physio
session variability (e.g. incorrect or variable prob
ment).

2.3. Automatic speech error detection
Automatic speech error detection aims to ide

accurate productions of words or phones. These
ten described in terms of insertions, deletions, a
stitutions. Most studies adopt techniques from c
assisted pronunciation training, primarily devel
adult speakers using language learning systems (
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& Young (2000); Witt (2012); Hu et al. (2015)). This work
is often considered part of the broader area of Computer
Assisted Lan
children, spe
be used to as
Proença et al
puter Assiste
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-therapy
(several
sets, ul-
RP ma-
, Artic-

fps with
d frame
giving a
-sagittal
lustrated

use the
(2021)).
dio, and
ish. Ul-
rticulate
nts Ltd.,
ed a dif-
ata col-
the TaL
an lines

onuncia-
ren with
the eval-
escribed
e Thera-
eedback

Journal Pre-proof
guage Learning (CALL, Beatty (2013)). In
ech error, or mispronunciation, detection can
sess reading levels (e.g. Black et al. (2010),
. (2018)), or with disordered speech for Com-
d Speech Therapy (CAST, e.g. Saz et al.
andi et al. (2015); Ahmed et al. (2018)).
s are generally concerned with a global pro-

ore, which may or may not use the speaker’s
ge, while CAST systems aim to identify er-
nderlying phonological processes.
ciation detection systems often use speech
echniques to compute pronunciation scores.
for the acoustic models is L2 speech for lan-
g, or typically developing speech for therapy
Other sources, if available, may consist of

eech from the learners’ native language or
eech. In-domain data can be used to develop
rch lattices accepting non-canonical pronun-
atives (Harrison et al., 2009; Ward et al.,
t al., 2018). The trained acoustic models and
sducers then decode unseen utterances for
t is known. To provide pronunciation scores,
sed systems use the log-likelihoods gener-
odels. The Goodness of Pronunciation score
Young (2000)) is a widely-used method for

. In its simplest form, the GOP score is the
d ratio between a target phone and a compet-
ecently, Gaussian mixture models have been
eep neural networks, with GOP-like scores
neural network posteriors (Hu et al., 2015).
, classifier-based systems use model outputs
sed classifiers to determine error types or to

informed feedback. However, these meth-
upervised in-domain data (e.g. phone-level
ordered speech), which are costly to acquire.
otated in-domain data is not available, a pos-
ch is to learn distributions over canonical

ples, such as typically developing speech.
les can then be compared against those dis-
ahin et al. (2018) use one-class support vec-
to model the distribution of features describ-
nd place of articulation. Wang et al. (2019)
recurrent networks, with positive and nega-
drawn from typically developing speech. In
e adopt a similar strategy. Because we do not
ed disordered speech for training, the acous-
trained only on typically developing speech.
sed on a GOP-like score defined over neural

3. Data

We use data from the Ultrasuite repository1

et al., 2018), consisting of synchronised ultraso
audio data from child speech therapy sessions. U
currently contains three datasets of child speech
Typically Developing (UXTD) includes recordin
typically developing children. The remaining dat
clude recordings from children with speech so
orders collected over the course of assessment a
apy sessions: Ultrax Speech Sound Disorders (U
8 children) and Ultraphonix (UPX, 20 children).
ment sessions denote recordings at various stages
apy: baseline (before therapy), mid-therapy, post
(immediately after therapy), and maintenance
months after therapy). For the child speech data
trasound was recorded with an Ultrasonix Sonix
chine using Articulate Assistant Advanced (AAA
ulate Instruments Ltd. (2010)) software at ∼120
a 135° field of view. A single B-Mode ultrasoun
has 412 echo returns for each of 63 scan lines,
63 × 412 “raw” ultrasound frame capturing a mid
view of the tongue. Samples from this data are il
in Figure 1.

To complement the Ultrasuite repository, we
Tongue and Lips corpus2(TaL, Ribeiro et al.
TaL is a corpus of synchronised ultrasound, au
lip videos from 82 adult native speakers of Engl
trasound in the TaL corpus was recorded using A
Instruments’ Micro system (Articulate Instrume
2010) at ∼80fps with a 92° field of view. TaL us
ferent transducer than the one in the Ultrasuite d
lection. Because of this, an ultrasound frame of
corpus contains 842 echo returns for each of 64 sc
(64 × 842 “raw” ultrasound frame).

4. Expert speech error detection

In this section, our goal is the collection of pr
tion scores for speech segments produced by child
speech sound disorders. This data is to be used in
uation of the automatic error detection systems d
in Section 5. We recruited Speech and Languag
pists with experience using ultrasound visual biof

1https://www.ultrax-speech.org/ultrasuite
2Available via the Ultrasuite Repository, see footnote 1.
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and who routinely work with Scottish English-speaking
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cess therapists undergo after collecting data
therapy sessions. We are interested in the

velar fronting and gliding of /r/, therefore we
roductions of /k, g/ (velars) and pre-vocalic

e expected SLTs to be able to identify cor-
rrect productions of velars and rhotics with
ity.

eparation

ata from the eight children available in Ul-
SSD dataset. Children in this dataset were
elar fronting, therefore we expected to ob-
easing number of correct velar productions
ssessment sessions. Children’s response to
is reported in Cleland et al. (2015). Because
for these children did not focus on correcting
tions, this led to an imbalanced set of correct
rhotic samples. We pre-selected words con-
rget velar and rhotic phones and occurring
ts of type “A” (single words) in assessment

eline, mid-therapy, post-therapy, and mainte-
iscarded words that contained more than one
target phone (e.g. “cake”) or corrupted word
. overlapping or unintelligible speech, other
oise, etc). From the pre-selected word list,
sampled 96 word instances per child. Sam-

anced across assessment sessions and across
otics. For each child, an assessment session
word instances (12 velars and 12 rhotics).

ble, samples were also balanced for the po-
target phone in the word (initial, medial, or
nal set of samples consisted of a total of 768
es with a vocabulary of 148 words, which we
main set.
ted a set of additional samples from one of
available in Ultrasuite’s UPX dataset. We
ker 04M, treated for velar fronting and re-
e good improvement after intervention (Cle-
019). As the speakers in the main set, this
also not treated for gliding. The sampling
repeated and a total of 24 word instances
(12 velars and 12 rhotics), balanced across

essions. We denote this set of samples the

e the word instances, we recruited 8 annota-
otators were SLTs with more than 4 years of

2.01
Time (s)

0

2000Hz

Figure 2: Video frame for the word “tiger” produced by spe
in a post-therapy assessment session. The annotator is re
score the target phone /g/ in a word medial position. The v
line in the spectrogram indicates the current position of the

experience and who routinely work with childre
ing Scottish English. Additionally, the annotator
least 3 years of experience with ultrasound visual
back, with two annotators having more than 10
experience. Each annotator was assigned 96 wo
the main set and the 24 words from the control se
taken from the main set were selected such that th
produced by a single child. Therefore, each SL
tated data from two children (one main and one
For intra-annotator agreement, 20% of the words
ples) were repeated in the annotation list. Of t
were taken from the control set and 12 from the m
Each SLT annotated a total of 144 word instances

Results were collected via a web interface di
a video of each word sample separately. The vid
tained the spectrogram, ultrasound images of the
and the audio for each word. Figure 2 illustrates o
frame extracted from one of the samples. Annotat
allowed to play videos at normal, half, or quarter
to a maximum of 6 total playbacks.

Annotators were instructed to rate the target ph
5-point Likert scale, where 1 indicates wrong pro
tion and 5 indicates perfect pronunciation. The fi
tion requested a score for the target phone (e.g.
rate the velar /k/ in the sample”). This score is den
primary score. If the annotator scored 3 or low
primary score, we requested a secondary score.
ondary score asked the annotator to rate the targ
with respect to an expected substitution. (e.g. “Pl
the target phone for alveolar substitution” or “Pl
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Velars

  50   25    0   25   50   75
Percent

Rhotics

1 2 3 4 5

malised distribution of primary scores for Velars and
d chronologically (bottom up) by assessment session:
mid-therapy (Mid), post-therapy (Post), and mainte-

one for gliding substitution”). An optional
annotators to provide a short comment for

primary score sp and the secondary score
ine a combined score sc defined as sc =

(ss). Because we did not request a secondary
erfect pronunciation was rated for the target
sumed a value of 1 for ss when computing
score. The score sc is positive if there is a

r the primary class (e.g. velars or rhotics)
if there is a preference for the secondary

lveolars or glide). If the annotator gave the
and secondary scores, then this uncertainty
in sc with 0. This preference can be further

produce a binary score sb. For each sample,
es of the combined scores are treated as cor-
ons of the primary class and negative or zero
orrect productions.

hows the normalised distribution of the pri-
r all annotated samples, ordered chronolog-

sion. The number of incorrect velars across
essions decreases over time, while the dis-
rhotics is more or less stable. This is ex-

intervention for these children focused on ve-
nd production of /r/ was not addressed.
ows the frequency of primary and secondary

elars and rhotics in the main set. We re-
ate samples used for intra-annotator agree-

1 2 3 4 5
Primary score

1

2

3

4

5

Se
co

nd
ar

y 
sc

or
e

6 6 13 71 177

3 3 2 0 0

3 3 2 0 0

25 3 1 0 0

66 0 0 0 0

1 2 3 4 5
Primary score

1

2

3

4

5

30 3 1 100 2

14 5 6 0 0

9 4 26 0 0

34 48 11 0 0

70 1 0 0 0

Figure 4: Frequency of primary and secondary scores giv
notators for Velars and Rhotics in the main set with duplic
removed, where 1 indicates wrong pronunciation and 5 ind
fect pronunciation.

ment, keeping the score of the first sample to b
For this work, we are primarily interested in the
production of velars and rhotics and clear cases o
tutions (fronting and gliding). Cases of correct p
ations for the expected class are identified by a h
mary score (4 or 5). Cases of velar fronting or
are identified by a low primary score (1 or 2) an
secondary score (4 or 5). We observe from Figu
342 out of the 384 velar samples (89.06%) fall u
of these two cases. Of these samples, 248 are co
lars and 94 are alveolar substitutions. Rhotics i
smaller number of correct productions or gliding
of 384 samples, 71.61%). Of these, 122 are mar
correct production of /r/, while 153 denote cases
ing.

Some annotators used the optional comment
elaborate on their score, particularly for incorre
that were not instances of velar fronting or glid
velars, some of the cases were reported to be
palatal, or postalveolar realisations, or omitted
For rhotics, most of the non-typical scores indica
tion of /r/ with some cases reporting a distortion
a labiodental approximant.

4.4. Annotator agreement

We compute inter-annotator agreement using
trol set of samples, rated by all annotators. Du
are removed by choosing the first rating and di
the second. Intra-annotator agreement is compute
20% duplicate samples, half from the main set
from the control set.

To measure global agreement, we use Krippen
(Krippendorff, 2004), which computes annotato
ment for multiple annotators and supports sever
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2 3 4 5 6 7 8
Annotator

0.714 1.000 0.800 0.769 0.800 0.800 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 2 3 4 5 6 7 8
Annotator

1

2

3

4

5

6

7

8

1.000 0.158 -0.960 -0.154 0.000 0.125 0.118 -0.412

0.158 1.000 0.000 -0.333 0.000 1.000 0.571 0.385

-0.960 0.000 1.000 0.000 0.000 0.000 0.000 0.696

-0.154 -0.333 0.000 1.000 0.000 -0.364 0.167 0.167

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.125 1.000 0.000 -0.364 0.000 1.000 1.000 0.588

0.118 0.571 0.000 0.167 0.000 1.000 1.000 1.000

-0.412 0.385 0.696 0.167 0.000 0.588 1.000 0.400

ise Cohen’s κ for the binary score, excluding cases not rated as correct productions or clear substitutions. Diagonal valu
tor agreement, while off-diagonal shows pairwise inter-annotator agreement. Each cell is colour-coded according to th
osed by Landis & Koch (1977, pp 164-165).

Primary Combined Binary

ll 0.601 0.578 0.579
lars 0.883 0.868 0.946
tics 0.210 0.117 0.050

ndorf’s α for primary score sp, combined score sc, and
computed for all annotators across all, velar, and rhotic
ment for binary score excludes samples not rated as
ons or clear substitutions.

ents. We compute α using a difference func-
al data for the primary score, a function for
for the combined score, and a function for
for the binary score (Krippendorff, 2011).
Krippendorff (2004, pp 241-243), α > 0.8

iable data, while 0.667 6 α 6 0.8 indi-
tely reliable data. When α < 0.667, the data
nsidered unreliable. Table 2 shows α values
combined, and binary scores. For the binary
clude samples not rated as correct produc-
substitutions. Overall annotator agreement

e very good for velar samples and poor for
s.

re pairwise agreement using Cohen’s κ (Co-
hich measures agreement between two raters
l data. The kappa statistic is a standardised
κ ∈ [−1, 1], with κ = 0 denoting chance

d κ = 1 denoting perfect agreement. Tra-

ditionally, Cohen’s κ is discussed according to
agreement levels suggested by Landis & Koch (1
164-165). These group values of κ into: poor (κ
slight (0.0 < κ 6 0.2), fair (0.2 < κ 6 0.40),
ate (0.40 < κ 6 0.60), substantial (0.60 < κ 6
and almost perfect (0.80 < κ 6 1.0) agreeme
ure 5 visualises pairwise annotator agreement fo
nary score. Off-diagonal values denote pairwi
annotator agreement on the control set, whereas
values denote intra-annotator agreement on the d
samples.

According to Figure 5, scores provided for
lar samples are very consistent and reliable, with
agreement across most raters. This is observed
ter and intra-annotator scores. Annotator 1 has
tial agreement with some of the other raters, but
fect. Excluding samples rated by annotator 1
improved global inter-annotator agreement for ve
ples on the combined score (α = 0.922). Result
rhotic samples, however, indicate a substantial d
ment between annotators. We observe a perfec
ment for intra-annotator scores across all annota
cept annotator 8. Rhotic agreement between an
6, 7, and 8 is higher than other raters, with pe
moderate agreement. However, considering on
three raters, global agreement on the combined
still lower than the moderate reliability threshold f
pendorf’s α (α = 0.631). There are various reas
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81 81193 Adult out-of-domain train data
D 5 534 Child in-domain validation data
D 13 901 Typically developing evaluation set
D 8 768 Disordered speech evaluation set

ts used for automatic speech error detection. All sets
from all places of articulation, except the disordered
n set, which contains the velar (384) and rhotic (384)

y annotators in Section 4.

n the agreement discrepancy between velar
mples. We provide further insights into these
tion 6. However, these results indicate that

e rhotic scores carefully when evaluating au-
detection systems in the next section.

c speech error detection

tion we investigate the automatic detection
rors in typically developing and disordered
lish child speech. The proposed system is
a tool to be used by Speech and Language

data collected from speech therapy and as-
sions. Therefore, we evaluate model scores
rt scores for velar fronting and gliding of /r/
therapists in Section 4. Our goal is to in-
proposed system’s ability to simulate expert
the detection of substitution errors. Addi-
im to analyse the contribution of ultrasound
ng and out-of-domain adult data on the au-
h error detection.

eparation

ng data, we use Ultrax Typically Develop-
, which collected data from 58 child speak-
cludes a subset of utterances with manually-
rd boundaries for 13 speakers. We save data
peakers for evaluation. From the remaining
we randomly select 40 speakers for training
rs for validation. The TaL corpus of adult
d as an additional source of training data. We
0 dataset, containing data from 81 speakers.
tion data, we use an evaluation set of dis-

ch samples and an evaluation set of typically
peech samples. The disordered speech sam-
of the main set rated by expert SLTs, de-
ction 4. This is a set of 768 word instances
SSD dataset. The typically developing sam-
cted from the UXTD dataset, which includes
s with manually annotated word boundaries.

step anchor frame step

Figure 6: Sample build process. A sample is constructed
anchor frame, typically the mid-point of a phone instance
windows are fixed at 100ms. Step is set such that 5 context
extracted for audio and 4 context frames for ultrasound.

These utterances are produced by 13 speakers,
from those in the training and validation sets. A
processing, the typically developing evaluation
sists of 901 phone instances extracted from 86
with a vocabulary of 153 words.

Because output classes are unbalanced, we co
number of samples per class for the training da
classes that are under-represented, we retrieve ad
examples. This is done by perturbing the ancho
by up to 40ms for under-represented classes. Fo
that are over-represented, we randomly sample 1
10000 examples for the UXTD and TaL sets, resp
After balancing and pre-processing, we have a
8302 for the UXTD training data. The TaL corpus
than UXTD and has a total of 81193 samples.
shows the datasets used in this section, and their
tive number of speakers and number of samples.

The Kaldi speech recognition toolkit (Pove
2011) is used to force-align all datasets at the pho
using the reference audio. For the evaluation data,
strain the phone alignment to the manually verifi
boundaries. The phone set is a Scottish accent v
the Combilex lexicon (Richmond et al., 2010, 20
discard silence segments and vowels from the p
and map the remaining phones onto one of nine
corresponding to place of articulation: alveolar
labial, labiovelar, lateral, palatal, postalveolar
and velar. From the training data, we exclude p
stances that do not have parallel audio and ult
These instances occurred when audio started r
before the ultrasound. For the UXTD data, the
91 segments excluded due to early start.

We use Kaldi to extract Mel-frequency cepstra
cients (MFCCs) for the audio signal. MFCCs a
monly used for speech recognition, with good re
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5x5

maxpool
2x2

ReLU

Batch
Norm

fully
connected

{256}

fully
connected
{256,128}

ReLU

fully
connected

{9}

softmax

olutional neural network architecture for classifier us-
nd audio (MFCCs) inputs.

ild speech recognition (Shivakumar et al.,
forms are downsampled to 16KHz and fea-
ed every 10ms over 25ms windows. We keep
oefficients and append their respective first
erivatives for a total of 60 features. A high
pstral coefficients is helpful for child speech
i & Russell, 2001). Ultrasound frames are

reshaped to 63 × 103 using bi-linear interpo-
gle sample consists of an anchor frame and
xt frames. The anchor frame is fixed at the
each phone instance and the set of context

xtracted over a fixed sized window of 100
ft and right of the anchor frame. Because
nt frame rates, the number of frames in the
ow is different for the ultrasound and audio
the audio, each context window corresponds
. For ultrasound, the context window corre-
frames for Ultrasuite data and to 8 frames for
er each context window, we extract 5 MFCC
ultrasound frames, with the step size set sep-
ount for the respective frame rates. Figure 6
sample build process.

rchitecture and training

ed model architecture, illustrated in Figure
llows that of earlier work (Ribeiro et al.,
he ultrasound stream is processed by two
l layers. These layers use 5 × 5 kernels
64 filters, respectively, and ReLU activation
ach convolutional layer is followed by max-
a 2 × 2 kernel. The sequence of frames for
eam is flattened and processed by a fully-
yer with rectified linear units. When using
d and audio streams, the features are con-
his stage. The batch normalized features are
d by two fully-connected layers with ReLU

Models are optimized via Stochastic Gradient
with minibatches of 128 samples and an L2 reg
with weight 0.1. We train models on the UXTD d
the pooled TaL and UXTD data. When using the
training data, systems are optimized for 200 epoch
learning rate of 0.1. With the pooled dataset, sys
optimized for 50 epochs with an identical learnin
0.1. After each epoch, the model is evaluated on
dation data and we keep the best model across all
We fine-tune systems trained on the pooled dat
UXTD data. Models that are fine-tuned reduce th
ing rate to 0.001 and are optimized for 100 epoch

5.3. Scoring
The output of the classifier is a probability dis

over the nine places of articulation. To score
phone instance x, we consider an expected class
competing class c. The model score sm is then c
as

sm = log(p(y|x)) − log(p(c|x))

The expected class may be the canonical phone cla
as a velar or a rhotic. The competing class is a
substitution, such as an alveolar or a labiovelar
mant. If no competing class is given, we can es
and compute the phone score with

c = arg max
q∈Q−{y}

p(q|x)

where Q is the set of places of articulation consi
the model. This method is related to the Goodnes
nunciation score (Witt & Young, 2000; Hu et al
As with the combined expert score sc (Section
magnitude of the model score encodes certainty,
the sign encodes preference. A positive score i
preference for the expected class, while a negati
indicates preference for the competing class.
plify model and combined expert scores onto a bin
rect/incorrect label b(s) for error detection accord

b(s) =


0 if s > k
1 if s ≤ k

where s is either sc or sm and k is a configurable th
Unless otherwise stated, results presented in th
use k = 0, which treats uncertainty in the mod
(sm = 0) as an error. For the purposes of this
uncertainty is not applicable to the combined exp
because we retain only cases that are correct or c
stitutions.
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XTD 72.36% 46.77% 64.00% 52.5% 84.85% 64.52% 68.66% 85.44% 75.62% 70.81%
oint 70.56% 35.14% 67.21% 52.11% 74.02% 50.00% 71.64% 88.64% 70.25% 65.93%
fine-tuning) 75.49% 39.73% 66.67% 59.42% 80.56% 66.67% 70.59% 85.71% 77.65% 72.03%

Ultrasound

XTD 78.32% 53.62% 59.21% 74.42% 78.95% 25.93% 50.67% 67.57% 88.27% 69.48%
oint 79.38% 60.34% 47.11% 67.35% 84.38% 22.22% 41.00% 73.13% 92.52% 68.37%
fine-tuning) 84.05% 61.11% 60.82% 76.00% 84.91% 38.89% 48.81% 79.26% 94.89% 76.14%

Audio+Ultrasound

XTD 80.10% 81.08% 83.87% 82.61% 90.18% 65.52% 58.33% 74.83% 89.58% 80.47%
oint 83.25% 76.74% 83.33% 63.08% 73.19% 66.67% 76.19% 91.59% 93.45% 81.80%
fine-tuning) 87.94% 76.47% 87.78% 72.31% 91.82% 58.82% 75.38% 94.34% 95.58% 86.90%

of samples 196 37 62 46 112 29 84 143 192 901

acy for the typically developing evaluation set across all places of articulation. Global accuracy is an average of all
ighted by the number of samples for each class. The Joint training data denotes the pooled UXTD and TaL data. H
ndicate best overall performance.

ata Precision Recall F1-Score Accuracy
Audio

0.384 0.524 0.443 64.1%
0.417 0.585 0.487 66.5%

uning) 0.393 0.537 0.454 64.9%

Ultrasound

0.670 0.842 0.746 84.4%
0.702 0.805 0.750 85.4%

uning) 0.677 0.768 0.720 83.7%

Audio+Ultrasound

0.732 0.866 0.793 87.7%
0.704 0.695 0.699 83.7%

uning) 0.681 0.756 0.717 83.7%

s for velar fronting error detection using the UXSSD
ated by all annotators, except annotator 1. Scores are

“velar” and “alveolar” as expected and competing
ely.

te model performance on the typically de-
Table 4 shows accuracy results, which are

ross examples of all output classes. Systems
e joint UXTD and TaL data underperform
red with systems trained only on the UXTD
ough there is more training data available.
e-tuning the pre-trained joint model on the
eads to the best performance.

systems using only one modality, accuracy
tter for ultrasound when using additional TaL
ected, systems using both audio and ultra-
e the best results. Observing accuracy sep-
ach class, we observe that labial, palatal,
or rhotic speech sounds have better results

when using only audio compared to using only ult
The remaining speech sounds have better results
trasound tongue imaging. Such differences are e
due to the individual characteristics of speech sou
example, labial sounds do not rely on tongue mo
so they are not expected to benefit much from ul
tongue imaging alone. On the other hand, velar a
olar sounds have well-defined tongue shapes on
saggital plane, so we would expect ultrasound d
the primary contributor when identifying them.
observe that accuracy improves across all class
using both modalities as input. These results m
expectations that ultrasound and audio complem
other well and that additional out-of-domain train
is beneficial. Similar findings were reported on
tasks, such as speaker diarisation and word align
speech therapy sessions (Ribeiro et al., 2019b).

Table 5 shows results for velar fronting erro
tion. These are computed over samples identifie
notators as correct velar productions or alveolar
tions (see Figure 4). We exclude samples rated by
tor 1, due to less than perfect agreement with oth
tators. Results are computed on b(s) using the c
expert score sc and the model score sm with an e
velar class and a competing alveolar class.

We observe that ultrasound is more suited tha
to discriminate between velar and alveolar prod
although systems using both data streams have
results. There are no performance improvemen
systems using the joint dataset and fine-tuning wh
pared to the system using only typically developi
data. This is an interesting observation, as resul
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typically developing dataset indicate that using additional
training data and fine-tuning is beneficial. On the typi-
cally develop
and alveolar
Considering
and compari
accuracy inc
lar accuracy
crepancy obs
and velar fro
challenges as
formance can
ultrasound d
tion can be fu
tween model
speakers. Us
pert scores ha
3 (κ > 0.8),
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speakers 2 an

In Section
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low inter-ann
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However, int
sistent for al
Therefore, w
detection sep

We note f
rhotics and l
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dio (85.71%
class, on the
using only ul
(59.42%). J
accuracy for
(72.31%). Th
when using u
only on the U
when jointly
improves wh
These results
evaluation se
not transfer i
less, we selec
and audio to
detection.

Speaker N Precision Recall F1-Score Accuracy Cohen’s κ

1 41 0.778 0.467 0.583 75.6% 0.426
0.074
0.404
0.820
0.045
0.000
0.656
0.123

using the
or gliding
del binary
g both au-
“labiove-

error de-
sion ma-
pert an-

ost sam-
s gliding
number
of Co-

ccuracy
ples by
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ed. Be-
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ing data, the individual accuracy for the velar
classes increases with more data and training.
the system using both audio and ultrasound
ng the UXTD and fine-tuned systems, velar
reases from 89.58% to 95.58% and alveo-
increases from 80.10% to 87.94%. The dis-
erved between the typically developing set
nting error detection could be attributed to
sociated with speaker’s data. Speaker per-
vary substantially, particularly when using

ata (Ribeiro et al., 2019a). This observa-
rther supported by measuring agreement be-
and expert binary scores for each of the eight
ing Cohen’s κ (Cohen, 1960), models and ex-
ve near perfect agreement for speakers 1 and
substantial agreement for speakers 4 and 7
8), moderate agreement for speakers 5 and 6
.6), and no or slight agreement (κ ≤ 0.2) for
d 8.
4.4, we reported intra- and inter-annotator
r the scoring of rhotic productions. Unlike
t scores for rhotics were shown to have very
otator agreement. For this reason, results for
r detection should be interpreted carefully.
ra-annotator agreement was reliable and con-
l annotators except annotator 8 (Figure 5).
e opt to analyse the results for gliding error
arately for each speaker.
rom Table 4 that classification accuracy for
abiovelars is good across all classifiers on
developing evaluation set. We observe that
of rhotic instances benefits more from au-

) than ultrasound (79.26%). The labiovelar
other hand, achieves higher accuracy when

trasound (76.0%) than when using only audio
ointly using audio and ultrasound improves

rhotics (94.34%) but not for labiovelars
e average accuracy for rhotic and labiovelars
ltrasound and audio is 78.72% when training
XTD data. This accuracy slightly decreases
training on the TaL corpus (77.34%), but

en fine-tuning on the UXTD data (83.33%).
, however, relate to the typically developing
t. As observed with the velar case, they may
n the same way to error detection. Neverthe-
t the fine-tuned system using both ultrasound
analyse speaker-wise results for gliding error

2 29 1.000 0.071 0.133 55.2%
3 36 0.900 0.474 0.621 69.4%
4 11 0.833 1.000 0.909 90.9%
5 42 0.964 0.675 0.794 66.7%
6 36 1.000 0.639 0.780 63.9%
7 45 0.500 1.000 0.667 97.8%
8 35 0.692 0.783 0.735 62.9%

Table 6: Speaker-wise results for gliding error detection
UXSSD rhotic samples identified as correct productions
substitutions. Cohen’s κ is calculated on expert and mo
scores. Results are generated by the fine-tuned system usin
dio and ultrasound, with scores computed using “rhotic” and
lar” as expected and competing classes, respectively.

Table 6 shows speaker-wise results for gliding
tection and Figure 8 shows their respective confu
trices. We observe that the scores given by the ex
notators can vary per speaker. For example, m
ples produced by speakers 5 and 6 were marked a
cases by their respective annotators. The limited
of correct productions influences the calculation
hen’s κ, leading to poor agreement even though a
and F1 are high. On the other hand, most sam
speaker 7 were marked as correct instances. Th
fier appears to behave similarly with data from
2 and 7, with most samples classified as correct r
stances. This behaviour is in agreement with th
for speaker 7, but not for speaker 2. Most errors p
by the model are Type II errors (false negative
might be due to the lower performance of the co
labiovelar class, as observed on the typically de
set. Because the classifier is more confident when
rhotics, there is a limited number of Type I erro
positives). Due to the low inter-annotator agree
is not clear whether these differences are due to th
provided by the annotators or due to challenges as
with speaker or recording variability.

6. Discussion

Considering the scores provided by the exper
and Language Therapists, we observed that result
lar samples are consistent and reliable, meeting o
expectations. The high inter-annotator agreement
ing rater 1, for the combined score (α = 0.922)
that the data provided by the experienced SLTs
used for the evaluation of automatic methods. Th
provided on the rhotic samples, however, were l
sistent and did not meet our original expectation
are various reasons why this might have occurr
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7 2

8 24

1 0

13 15

9 1

10 16

Speaker 3

5 1

0 5

Speaker 4

27 1

13 1

Speaker 5

23 0

13 0

Speaker 6

1 0
Expert

1 1

0 43

Speaker 7

1 0
Expert

18 8

5 4

Speaker 8

usion matrices for gliding error detection produced by
ystem using audio and ultrasound for all 8 speakers in
luation set. Correct rhotic productions are denoted by
bstitutions are denoted by 1.

n from the Ultrasuite repository were not
e production of rhotics, correct and incor-
were unbalanced in the annotation list. This
ected the judgements made by the annota-
ected to encounter some correct productions
ing samples from typically developing chil-
ave mitigated this issue and helped anchor
correct productions. Additionally, /r/ is a less
et for intervention in the UK (Wren et al.,
ight have affected the behaviour of the expe-

, who, although able to discriminate between
incorrect productions, have less experience
ting this particular speech sound clinically.
is observation, there is a wide range of so-
ble productions of /r/ in the United Kingdom

which have a relatively consistent tongue shape
speakers, rhotics can be produced with a wide v
tongue shapes (Boyce, 2015), potentially making
difficult to judge acceptability using ultrasound.
count for the wide range of acceptable productio
annotators could browse through a set of sample
from typically developing children.

With respect to automatic scoring of speech
tion errors, our results indicate that expert behav
be simulated with an acceptable level of accuracy
fronting error detection. The best performing sys
rectly detected 86.6% of all errors identified by SL
of all the segments identified as errors, 73.2% of t
correct. When evaluating systems, we assumed a
old k = 0 to compute the final score according to E
3. The threshold k is a parameter configured by
allowing some control over precision and recall.
illustrates model scores and the impact of k on p
and recall. As expected, most of the uncertainty
spect to the true label occurs around k = 0. For th
in Figure 9, the F1 score improves from 0.793
when k = −0.4.

Even though changing k might result in slight i
ments, the ranking of the systems across all condi
mains the same. Ultrasound tongue imaging has a
contribution to the overall accuracy of the mode
used by itself or together with audio features. Con
out-of-domain data, results show that model perf
can be improved when pre-trained on adult spee
Overall performance increases further when fin
models on in-domain data. This is observed when
ing on typically developing speech, but not when
ing errors on disordered speech data. This disc
could be caused by differences in the two datas
typically developing set (UXTD) and disordered
set (UXSSD) were collected separately, with diffe
poses and conditions (Eshky et al., 2018). This m
to domain mismatches between training (UXTD)
(UXSSD) data. Although the model achieves bet
racy on typically developing data, it may not gene
the different disordered speech domain. Differe
tween the two datasets include speaker characteri
trasound probe placement, or acoustic variabilit
room conditions or hardware used for data collec

Results for gliding error detection are harder
pret due to low inter-annotator agreement. We do
reasonable accuracy for some speakers in the ev
set. However, further work should investigate p
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r fronting error detection with Audio and Ultrasound system trained on UXTD data. The figure on the left shows mo
veolar classes with diagonal lines indicating possible thresholds. Each sample is coloured according to its true label, a
rs, using k = 0. On the right, precision, recall, and F1 score as a function of the threshold k.

used by annotators to score the samples.

rk for automatic error detection should ex-
rocesses beyond substitutions, such as inser-
tions. These cases could be detected using
ilar to those used for mispronunciation detec-
ge learning (e.g. Witt & Young (2000); Witt

t al. (2015)). There are various child speech
h could complement this type of analyses,
gh the addition of out-of-domain acoustic
t study has identified probe placement vari-

Ultrasuite data (Csapó & Xu, 2020). Variable
ent could be limiting the performance of an
n classifier. Future work could leverage the
oposed by Csapó & Xu (2020) to account for
ity at training and test time. This could also
rovide real-time probe placement feedback
and minimise misalignment errors. Alterna-
uce domain mismatch between training and
upervised domain adversarial training (Ganin

could be helpful, as well as the applica-
main data augmentation techniques Shorten
taar (2019). A different direction for future
ould leverage the the temporal dependency
ssions. In this longitudinal online learning

ranasou et al., 2015), the SLT provides feed-
sessions (e.g. baseline assessment session)

scores given by the model. Those verified la-
used to improve model scores on subsequent
mid-therapy or post-therapy). This scenario

ccount for annotator preferences, as well as

variability due to speaker characteristics or hardw
figuration.

7. Conclusion

We investigated the use of ultrasound tongue
for the detection of velar fronting and gliding
Scottish English child speakers. For this task, resu
cate that experienced speech and language therap
near perfect agreement when annotating the corre
velar speech sounds, but agreement on the correc
rhotic speech sounds is low.

For automatic error detection, out-of-domain a
improves results on typically developing speech,
less useful when evaluating on disordered speech
indicate that velar fronting error detection benefi
from ultrasound than audio, but we observe the
formance when using both modalities. In terms o
error detection, results are harder to interpret du
inter-annotator agreement.

Future research should explore techniques to
for speaker, session, and equipment variability
trasound equipment, as well as annotation prefer
speech and language therapists. Nonetheless, t
all performance of the classifier is promising, par
for velar fronting error detection, with good ag
with experienced speech and language therapis
evidence suggests there is potential for systems to
grated into ultrasound intervention software for a
cally quantifying progress during speech therapy.
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