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Real-time simulation of the struck piano string with geometrically exact nonlinearity
via a scalar quadratic energy method

Michele Ducceschi∗, Stefan Bilbao† and Craig J. Webb‡
∗Dipartimento di Ingegneria Industriale, University of Bologna, Italy

†Acoustics and Audio Group, University of Edinburgh, UK
‡ Physical Audio Ltd, London, UK

Summary. This work addresses the problem of the struck piano string. This system is highly nonlinear, and a sound representation
of the energy balance is therefore necessary in any time stepping routine used in simulation, in order to preserve stability. Many algo-
rithms have been developed in previous works. Among them, some present fully-implicit discretisations, which are only approachable
using iterative root finders such as Newton-Raphson. Others are linearly-implicit, but not quite suited for real-time rendering. Here, a
novel approach is presented, based on the idea of energy quadratisation. It will be shown that, when the nonlinearities are consolidated
into a scalar auxiliary state function, the time stepping scheme presents a fast inversion formula. A C++ implementation of the proposed
scheme yields indeed compute times below real-time, for typical strings.

Introduction

The dynamics of musical strings is often assumed to be linear. However, many perceptual phenomena cannot be explained
by linear theory alone, and inclusion of nonlinearities results therefore necessary [1]. This is certainly true for the piano,
where the appearance of “phantom partials” in the output spectra is often explained in terms of the nonlinear coupling
between the transverse and the longitudinal waves. Furthermore, the intermittent hammer-string interaction cannot be
modelled linearly [2]. At the simulation level, a sound representation of the energy balance of the hammer-string system
is necessary to preserve stability of the underlying time stepping scheme, and this can be accomplished via fully-implicit
discretisations [3, 4]. The finite element method, in particular, is preeminent here, see e.g. [5, 6], where the conservation
of a non-negative numerical energy allows to derive a stability condition involving the mesh size and the time step. Since
these methods are fully-implicit, they require the solution of a large nonlinear algebraic system at each time step, for
which existence and uniqueness of the solution must be proven, and which are only approachable using iterative routines
such as Newton-Raphson. Further complications arise in the choice of the tolerance thresholds and maximum number of
iterations of the routine [7, 8].
In recent years, a new class of schemes has emerged, based on the idea of “quadratisation”: when the nonlinear potential
energy is non-negative, it can be written as the square of an auxiliary function. This leads to schemes for which the update
is computable as the solution of a linear system, thus sidestepping the machinery of iterative root finders. Besides the
obvious computational advantage, existence and uniqueness of the computed solution are proven by inspection of the
update matrix alone. These methods have appeared in various guises, including applications in Port-Hamiltonian systems
[9, 10, 4, 11], nonlinear parabolic phase-field models [12, 13, 14], and others. This latter class of methods is often referred
to as “Invariant Energy Quadratisation” (IEQ) method, in that the auxiliary state function is treated as an independent
grid function to be solved for. This method has been applied successfully to the geometrically exact nonlinear string
[15, 16]. In this work, a different kind of quadratisation is proposed, where the auxiliary state function is not treated as
a distributed state variable, but as a scalar one. This idea shares some similarities with the “Scalar Auxiliary Variable”
(SAV) approach [17], but it also exploits the form of the update matrix to yield an extremely efficient algorithm. The
application of this method to Hamiltonian system is the subject of a companion paper [18]; here, the example of the
struck string is considered in detail. First, the problem is semi-discretised in space, resulting in a system of nonlinearly
coupled ordinary differential equations in time. Then, all the nonlinear components (i.e. the geometric nonlinearity of
the string, and the hammer-string nonlinear potential) are consolidated into a single, scalar state function. Then, it shown
that the update matrix is in the form of a rank-1 perturbation of a diagonal matrix, and thus invertible efficiently using
the Sherman-Morrison formula [19]. A computational test is then performed, showing that a sound implementation of
this method in C++ yields speedups of the order of 102, compared to Matlab implementations of previously available
methods. In particular, compute times for typical piano strings are below real-time. The introduction of a shift constant
in the nonlinear potential energy is also illustrated, aiding convergence of the quadratised numerical scheme.

A Continuous Struck String Model

Piano strings are known to vibrate in a nonlinear regime as a consequence of the large strains originating during motion
[1, 20]. The striking mechanism is also nonlinear, due to the intermittent contact between the string and the hammer
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[2, 21]. A suitable mathematical model incorporating these effects may be given as follows:

(ρA∂2
t − Lu)u(x, t) = ∂x

(
∂ϕs

∂(∂xu)

)
+ δ(x− xc)

dϕc

dη
, (1a)

(ρA∂2
t − Lv)v(x, t) = ∂x

(
∂ϕs

∂(∂xv)

)
, (1b)

Mh
d2U(t)

dt2
= −dϕc

dη
, (1c)

η(t) = U(t)−
∫ L

0

δ(x− xc)u(x, t) dx. (1d)

Above, constants appear as: ρ, the string’s volume density; A the area of the string’s cross section; Mh, the mass of the
hammer. The notation ∂p

s denotes the p-th partial derivative with respect to s. u = u(x, t) : [0, L] × R+
0 → R is the

transverse displacement of the string, and v = v(x, t) : [0, L] × R+
0 → R is the longitudinal displacement, where L

is the string length; Lu, Lv are linear differential operators (to be specified shortly) including the tension, stiffness and
loss components for the two displacements; ϕs : ϕs(∂xu, ∂xv) : R × R → R+

0 is the nonlinear potential density due to
the string’s large stretching; ϕc : ϕc(η) : R → R+

0 is the collision potential modelling the hammer-string interaction;
U = U(t) : R+

0 → R is the hammer’s displacement; η = η(t) : R+
0 → R defines the compression of the hammer felt,

expressed as the difference between the hammer and string displacements at the contact point xc.
The linear operators Lu, Lv are given as:

Lu = T0∂
2
x − EI∂4

x − 2ρA(σ0 − σ1∂
2
x)∂t; Lv = T0∂

2
x − 2ρAσl∂t. (2)

Lu includes tension and stiffness terms, the latter borrowed from the Euler-Bernoulli beam theory (this is largely sufficient
for musical strings, see e.g. [22, 23]). T0 is the applied tension, E is Young’s modulus, I is the area moment of inertia.
Losses in the transverse direction are modelled via the terms proportional to the coefficients (σ0, σ1) ≥ 0, yielding a
quadratic loss profile in the frequency domain. Inclusion of more refined loss profiles, such as the one proposed by Cuesta
and Vallette [24], is possible, but this will be neglected here for simplicity. Lv includes a tension term, and a simple loss
model proportional to σl ≥ 0.
The forms of the potentials are given here as:

ϕs(∂xu, ∂xv) =
EA− T0

2

(√
(1 + ∂xv)2 + (∂xu)2 − 1

)2
, ϕc(η) =

B

α+ 1
[η]α+1

+ . (3)

Here, B is the stiffness coefficient of the hammer felt, α ≥ 1 is an exponent: these values can be determined experimen-
tally [25]. The notation [·]+ stands for “positive part”, that is [η]+ ≜ 0.5(η + |η|). Note that ϕc = 0 whenever η ≤ 0,
that is, the collision model is one-sided, and note that this model is consistent only when the hammer strikes from below.
Note as well that ϕs ≥ 0 when EA ≥ T0, a condition that is always verified for musical strings. In view of the numerical
application shown below, it is convenient to lump the nonlinear potentials into one single scalar function ϕ, as

ϕ(∂xu, ∂xv, η) =

∫ L

0

ϕs(∂xu, ∂xv) dx+ ϕc(η) +
p0
2
, (4)

where p0 ≥ 0 is a constant shifting the zero-point of the potential, but not affecting the equations of motion. This constant
will prove useful in the numerical scheme presented below.
Equation (1c) must be completed by two initial conditions, setting the hammer in motion. These can be given as U0 ≜
U(t = 0) and V0 ≜ dU/dt(t = 0). Furthermore, the string’s boundary conditions are given as: u(0, t) = u(L, t) =
∂2
xu(0, t) = ∂2

xu(L, t) = v(0, t) = v(L, t) = 0. These define an energy conserving set of boundary conditions; in
particular, the string is simply-supported transversely and fixed longitudinally. Under such conditions, system (1) is
energy-passive. A proof may be obtained by taking an l2 inner product (i.e. an integral over the domain) of (1a) with ∂tu,
of (1b) with ∂tv, and a product of (1c) with dU/dt, and summing the three equations. After suitable integrations by parts
[16], one gets the following energy balance

dH

dt
= −2ρA

(∫ L

0

(
σ0(∂tu)

2 + σl(∂tv)
2 + σ1(∂t∂xu)

2
)
dx

)
≤ 0, (5)

where the energy is

H(t) =

∫ L

0

(
ρA

2

(
(∂tu)

2 + (∂tv)
2
)
+

T0

2

(
(∂xu)

2 + (∂xv)
2
)
+

EI

2
(∂2

xu)
2

)
dx+

Mh(dU/dt)
2

2
+ ϕ ≥ 0 (6)

Equation (5) represents the energy balance of the hammer-string, encoding passivity (i.e. the total energy is positive, and
decays over time).
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Semi-discretisation

System (1) may be semi-discretised in a number of ways, yielding a system of coupled nonlinear ordinary differential
equations in time. Here, a finite difference approach will be adopted, but the numerical method described below applies
equally to any other suitable semi-discrete problem, obtained for instance via Galerkin-type methods (modal methods,
finite elements, etc.). For the finite difference method, the continuous domain of length L is divided into segments of
length h, the grid spacing. Let the total number of subintervals be M , that is, the grid is composed of M + 1 grid points,
including the boundary points. Then, the continuous displacements u(x, t), v(x, t) are approximated by grid functions
u(t), v(t), which may be taken as column vectors of length M − 1: here, the end points need not be stored or updated,
since the boundary conditions are of fixed type. Difference matrices are now introduced, starting from the definition of
the backward difference matrix acting on the column vector u:

D−u =
1

h
([u⊺, 0]− [0,u⊺]). (7)

Note that this is a rectangular matrix of size M ×M − 1. From this, one may define the forward difference matrix, the
Laplace operator and the biharmonic operator, as

D+ = −(D−)⊺, D2 = D+D−, D4 = (D2)2, (8)

and note that these matrices are consistent with the prescribed boundary conditions in the transverse and longitudinal
directions. Note as well that the Laplace and biharmonic operators are of size M−1×M−1. Owing to these definitions,
semi-discretisation of the linear operators Lu, Lv in (2) is obtained as

lu = T0D
2 − EID4 − 2ρA(σ0 − σ1D

2)
d

dt
; lv = T0D

2 − 2ρAσl
d

dt
. (9)

The Dirac delta function is here approximated using a linear Lagrange interpolant, that is, via the column vector J of
length M − 1. This is an all-zero vector, except at the grid points mc ≜ floor(xc/h) and mc + 1, for which

Jmc = (1− α)/h, Jmc+1 = α/h, where α = xc/h−mc. (10)

Using this definition, a semi-discrete version of (1d) is obtained as:

η(t) = U(t)− hJ⊺ u(t). (11)

Note that the letter η is used here in a different fashion than in (1d) (in this section, the semi-discrete definition (11) is
adopted). It is now convenient to define two interleaved grid functions, q and r, which are column vectors of length M
defined as:

q = D−u, r = D−v. (12)

Owing to these, a semi-discrete version of the nonlinear potential ϕ in (4) is obtained as:

Φ = h

M∑
i=1

Φi
s(qi, ri) + Φc(η) +

p0
2
; where Φi

s =
EA− T0

2

(√
(1 + ri)2 + q2i − 1

)2

, Φc =
B

α+ 1
[η]α+1

+ . (13)

Note that here Φ = Φ(q, r, η) : RM × RM × R → R+
0 , and it will be necessary to compute partial derivatives according

to q, r, η. These are denoted as

(∇qΦ)i ≜
∂Φi

s

∂qi
, (∇rΦ)i ≜

∂Φi
s

∂ri
, (∇ηΦ) ≜

dΦc

dη
, i = 1, ...,M. (14)

The chain rule gives

dΦ

dt
= (∇qΦ)

⊺ dq

dt
+ (∇rΦ)

⊺ dr

dt
+ (∇ηΦ)

dη

dt
= [−

(
D+∇qΦ

)⊺ − h∇ηΦJ
⊺,−

(
D+∇rΦ

)⊺
,∇ηΦ]︸ ︷︷ ︸

g⊺
Φ

dw

dt
, (15)

where w ≜ [u⊺,v⊺, U ]⊺ is the state vector, lumping the longitudinal and transverse string grid functions, and the ham-
mer’s displacement. Note that the second equality in (15) is obtained using the transposition property of the forward and
backward difference matrices in (8), and the definition of η in (11). Owing to these definitions, the semi-discrete equations
can be written in compact form, as:

M
d2w(t)

dt2
+C

dw(t)

dt
+Kw(t) = −SgΦ, (16)
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where M ≜ diag([ρAI, ρAI,Mh]), K ≜ diag([−T0D
2+EID4,−T0D

2, 0]), C ≜ diag([2ρA(σ0I−σ1D
2), 2ρAσlI, 0]),

S ≜ diag([I/h, I/h, 1]). Here, the operator “diag” produces a block-diagonal matrix, with blocks given as components
separated by commas. The matrix I is here the M − 1×M − 1 identity matrix.
In (16), the left-hand side includes all the linear components (the mass, stiffness and loss matrices), and the nonlinearities
are now lumped in the vector gΦ as defined in (15). From here, it is now easy to see that system (16) is energy-passive: it
is sufficient to multiply both sides of the equation on the left by

(
S−1 dw

dt

)⊺
. This gives

dh

dt
= −dw⊺

dt
C̃
dw

dt
≤ 0, with h =

1

2

dw⊺

dt
M̃

dw

dt
+

1

2
w⊺K̃w +Φ ≥ 0, (17)

where the “tilde” notation indicates the rescaled matrices M̃ = S−1M, K̃ = S−1K, C̃ = S−1C (the scaling by the
factor h is needed here to restore units of Joules in the transverse and longitudinal string components). Note that the
“tilde” matrices are all non-negative, hence the inequalities in (17) ensue.

Quadratisation
The expression for the semi-discrete energy h in (17) includes a linear part, given by the sum of quadratic forms cor-
responding to the kinetic and linear potential energy components, plus the nonlinear potential Φ. It results therefore
convenient to “quadratise” the nonlinear potential via the transformation

Ψ =
√
2Φ, (18)

for the function Ψ = Ψ(q, r, η) : RM × RM × R → R+
0 . This transformation is always well-defined since Φ is

non-negative. This transformation yields a semi-discrete system entirely equivalent to (16), but expressed in terms of Ψ
as:

M
d2w(t)

dt2
+C

dw(t)

dt
+Kw(t) = −Ψ(t)SgΨ, (19)

where
gΨ = [−

(
D+∇qΨ

)⊺ − h∇ηΨJ⊺,−
(
D+∇rΨ

)⊺
,∇ηΨ], (20)

and note that the partial derivatives of Ψ are easily obtained from (14), since e.g. ∇qΨ = ∇qΦ/Ψ. Division by Ψ in the
expression of the partial derivatives may be ill defined when the shift constant p0 in (13) is set to zero, and it will therefore
be necessary to shift the potential energy by a finite amount. Application of the chain rule gives

dΨ

dt
= g⊺

Ψ

dw

dt
. (21)

The energy balance now reads:

dh

dt
= −dw⊺

dt
C̃
dw

dt
≤ 0, where h =

1

2

dw⊺

dt
M̃

dw

dt
+

1

2
w⊺K̃w +

Ψ2

2
≥ 0, (22)

and the expression for the energy only contains quadratic terms. Note that the nonlinear energy components are now
lumped in the single scalar function Ψ. The “quadratised” expression for the nonlinear energy is convenient since it can
be exploited in a time-stepping integrator yielding a non-negative nonlinear numerical energy, as detailed below. Note
that this type of quadratisation is fundamentally different from the one proposed in [15, 16], in that here the auxiliary state
function is a scalar, and not a distributed quantity. Applications of this method to Hamiltonian systems are presented in
the companion paper [18].

Time Stepping Procedure

(19) defines a system of nonlinearly coupled ordinary differential equations in time. Integration is now performed using
finite differences. To that end, the continuous state vector w(t) is approximated at the time tn = kn by a vector time
series wn, where n ∈ N is the time index, and k = 1/fs is the time step, defined as the multiplicative inverse of the
sample rate fs. The basic operators in discrete time are the identity and shift operators, defined as:

1wn = wn, e+w
n = wn+1, e−w

n = wn−1. (23)

From these, the time difference operators can be defined as:

δ+ =
e+ − 1

k
, δ− =

1− e−
k

, δ· =
e+ − e−

2k
. (24)

These are the forward, backward and centred operators respectively. The second-difference operator is obtained by com-
bining the the operators above:

δ2 = δ+δ− . (25)
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Finally, averaging operators can be written as:

µ+ =
e+ + 1

2
, µ− =

1 + e−
2

, µ· =
e+ + e−

2
. (26)

The auxiliary state function is discretised on an interleaved time grid, so that Ψ(t) → Ψn−1/2. The definitions of
the difference operators are formally unchanged when applied to an interleaved time series, so that e.g. δ+Ψ

n−1/2 =
(Ψn+1/2 −Ψn−1/2)/k, etc. Note that Ψn−1/2 will be treated here as an independent scalar time series, to be updated at
each time step. To that end, it is necessary to discretise (19) along with the time derivative of Ψ in (21). One possible such
discretisation is given here as

M δ2w
n +C δ−w

n +Kwn = −µ+Ψ
n−1/2 Sgn

Ψ, δ+Ψ
n−1/2 = (gn

Ψ)
⊺δ·w

n. (27)

This defines a three-step scheme, in which the updates wn+1, Ψn+1/2 are obtained from the previous state values
wn,wn−1, Ψn−1/2. Note as well that gn

Ψ is known, and computed from (20) at the time step n, using the analytic
expressions for the derivatives of the continuous function Ψ.
System (27) is completed by initial conditions on w and Ψ. At the initial time n = 0, it is assumed that the string is at rest,
with the hammer moving according the initial conditions given above. The time series Ψ must be initialised accordingly,
using definition (18) and the expression of Φ from (13). Thus

w0 = [0⊺,0⊺, U0]
⊺, w1 = [0⊺,0⊺, kV0 + U0]

⊺, Ψ1/2 =
√
p0. (28)

Scheme (27) is energy-conserving. A proof is obtained by multiplying on left by (S−1δ·w
n)⊺, and using various identities

(not shown here for brevity; see e.g. [20]). One gets

δ+h
n−1/2 = −(δ·w

n)⊺ C̃ δ·w
n ≤ 0, (29)

where

hn−1/2 =
1

2
(δ+w

n)⊺
(
M̃− k

2
C̃

)
δ+w

n +
1

2
(wn)⊺ K̃ e−w

n +
(Ψn−1/2)2

2
. (30)

This expresses the fully-discrete energy balance. It is worth noting that the expression for the fully discrete energy (30)
is not positive semi-definite in all cases (as opposed to the semi-discrete energy in (22), which is always non-negative).
However, conditions on non-negativity can be obtained by inspection of the linear part alone, since the nonlinear energy
is here clearly non-negative, and expressed via the square of Ψ. It is possible to show (see e.g. [20, 16]) that, when the
loss coefficients are small (as is the case for all musical strings), a sufficient condition for the non-negativity of the total
discrete energy is

h ≥
√
E/ρ k. (31)

When this condition is enforced, the discrete energy is non-negative, and hence stability of the time stepping scheme
follows. Note that (31) is the CFL condition associated with the longitudinal motion, and it is expressed as a lower bound
on h: this is much larger than the natural bound for the transverse waves (which is of the order of

√
T0/ρAk for thin

strings). Thus, enforcing condition (31) has consequences in the choice of the sample rate fs, which has to be chosen
much larger than typical audio rates (such as e.g. 44.1 kHz) to get enough resolution within the audio band.
Note as well that in (27) the operator δ− was used to approximate the time derivative of the losses. This formally produces
a first-order convergent scheme in time. However, it also allows for a fast update, as detailed below. Since losses are small,
and since the time step k has to be chosen in the 10−5 − 10−6 range, this approximation does not introduce significant
errors compared to a second-order accurate discretisation of the same derivative.

Scheme Update
Scheme (27) yields an efficient update equation. To show this, first use the identity µ+ = (k/2)δ+ +1 in order to express
the right-hand side of the first equation in (27) in terms of δ·wn from the second equation. Then, one rearranges the terms
to get(

M

k2
+

1

4
Sgn

Ψ (gn
Ψ)

⊺

)
wn+1 =

(
2M

k2
− C

k
−K

)
wn +

(
−M

k2
+

C

k
+

1

4
Sgn

Ψ (gn
Ψ)

⊺

)
wn−1 −Ψn−1/2Sgn

Ψ, (32)

and note that the update matrix is now composed of the diagonal matrix M/k2 plus the rank-1 perturbation 1
4Sgn

Ψ (gn
Ψ)

⊺.
This is invertible in O(M) operations using the Sherman-Morrison formula [19, 18]. Once wn+1 is known, one may
compute Ψn+1/2 using the second equation in (27).
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Figure 1: Snapshots of the hammer-string interaction. Here, the hammer and the string parameters are taken from [25], for the C2
string. The hammer initial velocity is 2 m/s. The sample rate used is 12 ·48000 Hz, resulting in a state size 2M−1 = 547 components.
The times indicated are in ms.

Numerical Experiments

Scheme (27) is now tested in a number of numerical experiments. Figure 1 shows snapshots of the hammer-string dy-
namics, for the C2 piano string (the string and hammer parameters are taken from [25]). As expected, the hammer strikes
the string intermittently. Here, the string’s largest displacement is of the order of 4 mm, large enough to entail nonlinear
effects.
The energetic behaviour of scheme (27) is checked in Figure 2, where the same C2 string is simulated in the absence of
losses (that is, the matrix C is the zero matrix here). The discrete energy (30) is indeed conserved, with the error in the
range of 10−14. Note that here the kinetic energy includes that of the string and the hammer; the linear potential energy
includes the string’s alone, and the nonlinear energy includes the contributions of both the string’s large displacement and
the hammer-string collision. Note that the shift constant p0 was set to a finite amount, to avoid division by zero in the
computation of the derivatives of Ψ.
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H
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J
)

Ek
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En

H
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-1e-14

0

 H

(a) (b)

Figure 2: (a) Energy components and (b) energy error for the same case as Figure 1. In (a), Ek is the kinetic energy (comprising
the string and the hammer), Ep is the linear potential energy of the string, En is the nonlinear potential energy including the string’s
nonlinear energy and the hammer-string collision potential, H is the total energy. In (b), ∆H is defined as 1− hn−1/2/h1/2, where the
expression for the discrete energy h is as per (30). In this simulation, the shift constant p0 is set to 10−15.

A quick convergence test is presented in Figure 3. Here, the time domain solutions at one output point are plotted, for
a number of sample rate values. As mentioned above, significant oversampling factors are needed, compared to audio
rate, since the number of grid points is now set according to bound (31), yielding a large grid spacing compared to typical
wavelengths in the transverse direction. For high enough sample rates (OF ⪆ 12), the computed solutions are very close,
but discrepancies are evident for low-sampled waveforms. Various tests were run (not shown here), indicating that an
oversampling factor of at least 12 is usually required for good resolution within the audio band. Some audio files are
available on the companion webpage1.
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Figure 3: Convergence test under various oversampling factors for a base sample rate fs0 = 48 kHz, indicated in the legend. (a):
transverse displacement. (b): longitudinal displacement. Here xout = 0.32L, and the string’s parameters are the same as in Figure 1.

Figure 4 presents the output spectra of the longitudinal displacement under three different hammer initial velocities. Note
the change in brightness as the velocity increases, as well as the appearance of phantom partials.

1https://mdphys.org/ENOC_2022.html

https://mdphys.org/ENOC_2022.html
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Figure 4: Output spectra for the D2 string, with initial hammer velocities as indicated. Output is extracted at xout = 0.32L

Table 1 presents a computational testing comparing various schemes, and implementations. Two schemes, called ICA_IT
and ICA_NIT, are taken from [15]. ICA_IT is a finite difference iterative scheme, obtained via a fully-implicit con-
servative discretisation of the gradient in a fashion similar to that used in many works, see e.g. [3, 4, 5, 26]; ICA_NIT
is a non-iterative finite difference scheme obtained via quadratisation, in a fashion similar to the scheme presented here,
but where the nonlinear auxiliary variable Ψ is approximated via a grid function, and not as a single scalar variable as
here (that is, it is not possible to update ICA_NIT using the fast Sherman-Morrison formula, though the scheme’s update
is in a form of a linear system). LU_NIT, presented in [16], is also a non-iterative scheme, where the transverse waves
are simulated using finite differences, and the longitudinal waves are approximated using a modal approach. The system
is again in “quadratised” form, and a block LUD decomposition is adopted to compute the update. All these schemes
were coded in Matlab. Finally, SM_MTL and SM_C++ present the compute times for the fast Sherman-Morrison formula

OF M Mlong ICA_IT ICA_NIT LU_NIT SM_MTL SM_C++

1 10 2 14.6 8.73 7.59 14.1 0.008
2 21 4 24.7 19.8 16.1 16.4 0.029
4 42 7 53.4 41.4 22.5 19.1 0.108
8 85 14 145 102 87.0 26.6 0.362

12 128 21 267 191 173 37.8 0.756
16 170 28 453 324 279 58.3 1.15

Table 1: Compute time / real time ratios, using various schemes and implementations, for the D3 piano string from [25]. Here,
ICA_IT and ICA_NIT are, respectively, the finite difference iterative and non-iterative schemes presented in [15]; LU_NIT is the
non-iterative mixed finite difference-modal method described in [16] (where the transverse displacement is approximated using finite
differences, and the longitudinal displacement using a modal approach); SM_MTL is the Sherman-Morrison implementation presented
here, using Matlab; SM_C++ is the same scheme implemented in C++. In the table, OF indicates the oversampling factor for a base
sample rate fs0 = 48 kHz. M is the number of grid points; Mlong is the number of longitudinal modes used in LU_NIT. In this test,
for simplicity, the hammer was not considered, and the string was initialised in its first mode of vibration in the transverse direction,
i.e. u0(x) = 0.01 sin(πx/L). The size of the state vector, for all schemes, is then 2M − 2, with the exception of LU_NIT for which
the size is M − 1 +Mlong . Below-real-time simulations are highlighted. All simulations were run on a 2016 Macbook Pro, equipped
with a 2.9 GHz Intel i7 processor. Matlab simulations were run in MatlabR2020.

given here, using both Matlab and C++ implementations. A few aspects are worth commenting. First, note that the rate
of growth of the compute times for the two SM schemes is much lower than for the other schemes, since, as remarked
previously, the Sherman-Morrison formula is solvable in O(M) operations. Second, note how the C++ implementation
yields considerable speedups compared to Matlab. Here, all the matrix operations were “unrolled”, avoiding the need for
sparse matrix libraries. Update (32) is remarkably fast, yielding under-real-time compute times for systems with over 250
nonlinearly coupled degrees-of-freedom. Compared to typical fully-implicit discretisations, such as ICA_IT coded in
Matlab, SM_C++ is about 350 times faster at OF = 12.

Concluding Remarks

The piano string was modelled using a nonlinear, geometrically exact model, and including the hammer-string interaction.
The model was first discretised in space using the finite difference method, and then “quadratised” via a scalar auxiliary
state function. The resulting system was then integrated in time. It was shown that the update matrix lends itself to a
fast inversion via the Sherman-Morrison formula. A C++ implementation of the proposed scheme was given, yielding
speedups of a few orders of magnitude compared to Matlab realisations of previously available schemes. In particular,
real-time simulations of typical piano strings are now available. The proposed schemes are part of a larger class of
schemes of recent development, based on the idea of quadratisation.
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