
Shallow Neural Networks for Autonomous Robots

Mariela De Lucas Alvarez

Ocean Systems Laboratory

School of Engineering and Physical Sciences

Heriot-Watt University

A thesis submitted for the degree of

Doctor of Philosophy

June 2021

© The copyright in this thesis is owned by the author. Any quotation from the thesis or use of any

of the information contained in it must acknowledge this thesis as the source of the quotation or

information.

Abstract

The use of Neural Networks (NNs) in modern applications is already well established
thanks to the technological advancements in processing units and Deep Learning (DL), as
well as the availability of deployment frameworks and services. However, the embedding of
these methods in robotic systems is problematic when it comes to field operations. The use
of Graphics Processing Units (GPUs) for such networks requires high amounts of power
which would lead to shortened operational times. This is not desired since autonomous
robots already need to manage their power supply to accommodate the lengths of their
missions which can extend from hours to days. While external processing is possible,
real-time monitoring can become unfeasible where delays are present. This also applies to
autonomous robots that are deployed for underwater or space missions.

For these reasons, there is a requirement for shallow but robust NN-based solutions that
enhance the autonomy of a robot. This dissertation focuses on the design and meticulous
parametrization complemented by methods that explain hyper-parameter importance. This
is performed in the context of different settings and problems for autonomous robots in field
operations.

The contribution of this thesis comes in the form of autonomy augmentation for robots
through shallow NNs that can potentially be embedded in future systems carrying NN
processing units. This is done by implementing neural architectures that use sensor data
to extract representations for event identification and learn patterns for event anticipation.
This work harnesses Long Short-Term Memory networks (LSTMs) as the underpinning
framework for time series representation and interpretation. This has been tested in three
significant problems found in field operations: hardware malfunction classification, survey
trajectory classification and hazardous event forecast and detection.

i

In loving memory of my grandmother, Etelvina.

ii

Acknowledgments

I would like to first thank my supervisor Prof. David Lane for the opportunity to be part
of the Ocean Systems Lab at Heriot Watt University and his support into taking my own
research paths. I also would like to thank my advisors Prof. Keith Brown and Prof. Helen
Hastie. Special thanks go to Dr. Kelvin Hamilton from Seebyte for facilitating information
and platform on RECOVERY and to Dr. Xingkun Liu for his assistance using the REGIME
data. A word of gratitude to Mr. Len McLean for always providing help around the
laboratory.

I am grateful to Dr. Frank Kirchner for giving me the opportunity to be a guest
researcher at the Robotics Innovation Center at the German Research Center for Artificial
Intelligence and to Dr. Elsa Kirchner for welcoming me into her team during this period.
I also would like to thank Elmar Berghöfer for his encouragement and guidance. Special
thanks to Raúl Dominguez for his assistance in collecting the data for the AsguardIV rover.

Also to the friends and acquaintances I made at the Ocean Systems Lab, Robocademy
and RIC, thank you for your company and laughs we shared. It was these small moments
that made this academic period so memorable. Finally, to my parents and sister for their
constant encouragement and to my best friend Vic for his unconditional emotional support.

iii

Research Thesis Submission. Please note this form should be bound into the submitted thesis.

Name: Mariela De Lucas Alvarez

School: Engineering and Physical Sciences

Version: (i.e. First,
Resubmission, Final)

Final Degree Sought: PhD

Declaration

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. The thesis is the correct version for submission and is the same version as any electronic versions submitted*.
4. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian
may require

5. I understand that as a student of the University I am required to abide by the Regulations of the University and to
conform to its discipline.

6. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g.
Turnitin.

ONLY for submissions including published works
Please note you are only required to complete the Inclusion of Published Works Form (page 2) if your thesis contains
published works)

7. Where the thesis contains published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) these are accompanied
by a critical review which accurately describes my contribution to the research and, for multi-author outputs, a
signed declaration indicating the contribution of each author (complete)

8. Inclusion of published outputs under Regulation 6 (9.1.2) or Regulation 43 (9) shall not constitute plagiarism.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of
Candidate:

Date: 10.06.2021

Submission

Submitted By (name in capitals): Mariela De Lucas Alvarez

Signature of Individual Submitting:

Date Submitted:
10.06.2021

For Completion in the Student Service Centre (SSC)

Limited Access Requested Yes No Approved Yes No

E-thesis Submitted (mandatory for final
theses)

Received in the SSC by (name in capitals): Date:

Page 1 of 2
RDC Clerk/Apr 2019

Contents

1 Introduction 1
1.1 Motivation: Neural Network-Enabled Autonomy 1
1.2 Challenges . 4
1.3 Examined Scenarios . 5
1.4 Contributions . 6
1.5 Document Structure . 7
1.6 Publications . 9

2 Related Work 10
2.1 System Monitoring with Neural Networks 10
2.2 Autonomy Enhancement in RAS . 13
2.3 Trajectory Classification . 14
2.4 Anomaly Perception . 16

2.4.1 Underwater Robots . 16
2.4.2 Space and Ground Robots . 19

2.5 Summary . 21

3 Methodology 22
3.1 ML Standard Practices . 22

3.1.1 Evaluation Criteria . 22
3.1.2 Problem Framing for Sequences and Time-series 24
3.1.3 Cross-validating Time-series . 24
3.1.4 Hyper-parameter Tuning and Regularization 26

3.2 Hyper-parameter Importance . 30
3.2.1 Shapley Value . 30
3.2.2 Shapley Additive Explanations (SHAP) 31

3.3 Learning on Neural Networks . 33
3.4 Examined Architectures . 35

3.4.1 Long Short-Term Memory Networks 35
3.4.2 Convolutional Neural Networks 37
3.4.3 Fully Connected Network . 40
3.4.4 Encoder-Decoder Framework . 41

v

CONTENTS vi

3.5 Summary . 42

4 Hardware-Oriented Classification 43
4.1 Application: Thruster System Failure . 44
4.2 RECOVERY Test board Dataset . 45
4.3 Data Observation and Analysis . 46
4.4 Candidate Architectures . 50
4.5 Gaussian Mixture Hidden Markov Model 50

4.5.1 Current Sensor . 53
4.5.2 Thermal Drift Sensor . 53

4.6 1-D Convolutional Network . 53
4.7 Long Short-Term Memory Network . 54
4.8 Results . 55
4.9 Summary . 59

5 Task-Oriented Classification 61
5.1 Application: Navigational Trajectory Classification 62
5.2 REGIME Dataset . 63
5.3 Candidate Architectures . 64
5.4 Class Balancing . 66
5.5 Effect of Sequence Length & Dropout . 67

5.5.1 Sequence Length . 67
5.5.2 Dropout . 68

5.6 Effect of Balancing and Hyper-parameters 71
5.7 Results . 73
5.8 Model Selection with SHAP . 83

5.8.1 CNN-LSTM Explanations . 85
5.8.2 LSTM Explanations . 87

5.9 Summary . 90

6 Hazard-Oriented Forecast and Detection 92
6.1 Application: Mobility Hazard Prediction 93
6.2 AsguardIV Dataset . 94
6.3 Encoder-Decoder LSTM . 95
6.4 Model Selection . 97
6.5 Hazard Forecast . 101
6.6 Hazard Detection . 102

6.6.1 Detection with Mean Squared Error 105
6.6.2 Detection with Mean Absolute Error 105

6.7 Summary . 111

CONTENTS vii

7 Conclusion 112
7.1 Summary of Contributions . 112
7.2 Discussion and Learned Lessons . 114
7.3 Future Work . 115

A Figures 130
A.1 Chapter 5 . 131

A.1.1 Trajectory Segmentation Examples 131
A.1.2 Model Candidates Parametrizations 132
A.1.3 Network Performance Results . 133

A.2 Chapter 6 . 136
A.2.1 Performance by CV Sets . 136

List of Figures

1.1 AUV context awareness . 3
1.2 Document structure . 8

2.1 Sliding window . 12
2.2 Damage Types from Rae and Dunn 1994 16

3.1 Sequence classification input-output formats 24
3.2 Cross-validation methods . 25
3.3 Time-series sample generation with sliding-window 26
3.4 Dropout . 29
3.5 Neuron learning process . 35
3.6 Unrolled LSTM cell . 36
3.7 A 1-D CNN filter . 38
3.8 A 2-D CNN architecture for image classification 39
3.9 A Fully Connected Network (FCN) architecture 40
3.10 A NN Encoder-Decoder . 41

4.1 RECOVERY Testbed. 45
4.2 Sensor plots per class. 47
4.3 Pairwise relationships in the RECOVERY Testbed dataset. 48
4.4 Distribution of Current-Drift Pair. 49
4.5 Comparison of KDE and GMM . 52
4.6 HMM by Current (mix=9) . 54
4.7 HMM by Drift (mix=15) . 55
4.8 CNN . 56
4.9 LSTM . 57
4.10 Confusion Matrix HMM . 58

5.1 Survey mission trajectories . 63
5.2 Candidate LSTM architectures . 65
5.3 Trajectory sample percentage . 67
5.4 Survey mission examples . 69
5.5 LSTM CV Accuracies . 74

viii

LIST OF FIGURES ix

5.6 LSTM class metrics . 75
5.7 LSTM-FCN CV Accuracies . 76
5.8 LSTM-FCN class metrics . 77
5.9 LSTM+ CV Accuracies . 77
5.10 LSTM+ class metrics . 78
5.11 LSTM+-FCN CV Accuracies . 78
5.12 LSTM+-FCN class metrics . 80
5.13 CNN-LSTM CV Accuracies . 80
5.14 CNN-LSTM class metrics . 81
5.15 CNN-LSTM+ CV Accuracies . 82
5.16 CNN-LSTM+ class metrics . 82
5.17 CNN-LSTM+2 CV Accuracies . 83
5.18 CNN-LSTM+2 class metrics . 83
5.19 Candidates Balancing Evaluation . 84
5.20 SHAP Contribution Summary . 86
5.21 CNN-LSTM Individual Accuracy Explanation 0 87
5.22 CNN-LSTM Individual Accuracy Explanation 8 87
5.23 CNN-LSTM Individual Accuracy Explanation 2 88
5.24 LSTM-FCN Individual Accuracy Explanation 4 88
5.25 LSTM-FCN Individual Accuracy Explanation 5 89
5.26 LSTM Individual Accuracy Explanation 4 89
5.27 Partial Dependencies . 90

6.1 AsguardIV. 94
6.2 Two AsguardIV Trials. 96
6.3 Architecture of the Encoder-Decoder LSTM. 97
6.4 Best Test R2 score. 99
6.5 R2 by number of parameters . 100
6.6 Sequence input formatting . 101
6.7 Forecast results . 103
6.8 MSE loss distributions. 104
6.9 Hazard Detection with MSE . 106
6.10 Hazard Detection with MAE . 108
6.11 Hazard Detection Visual Evaluation . 110

A.1 Survey mission examples . 131
A.2 Best HBBO experiments . 136
A.3 Categorical boxplots for variable output experiments 137

List of Tables

4.1 Hardware Component Operation . 46
4.2 GMM-HMM Results . 57
4.3 CNN and LSTM Results . 59

5.1 Sample summary . 67
5.2 Hyper-parameters for LSTM networks with Dropout 68
5.3 Selecting time step length based on Test set accuracy rates. 68
5.4 Best Hyper-parameter values from Grid Search Cross-validation. 70
5.5 LSTM and baseline results . 70
5.6 Table showing the range of values chose for tuning the hyper-parameters. . 72
5.7 Best Candidates . 84

6.1 Configuration and Hyper-tuning Parameters 98
6.2 Selected Networks. 100
6.3 Selected Networks. 100
6.4 Selected loss thresholds. 102

A.1 LSTM networks parameters . 132
A.2 LSTM+ networks parameters . 132
A.3 CNN-LSTM networks parameters . 132
A.4 CNN-LSTM+ networks parameters . 133
A.5 CNN-LSTM+ networks (ver2) parameters 133
A.6 Non class-weighted results summary . 135

x

Glossary

AdaGrad Adaptive Gradient Algorithm
Adam Adaptive Moment Estimation
AGV Autonomous Ground Vehicle
AUV Autonomous Underwater Vehicle
AUC-ROC Area Under the Receiver Operating Characteristics
AI Artificial Intelligence
AIC Akaike Information Criterion
ASIC Application Specific Integrated Circuit
ANN Artificial Neural Network
BO Bayesian Optimization
BIC Bayesian Information Criterion
CNN Convolutional Neural Network
CV Cross-Validation
DL Deep Learning
DNN Deep Neural Network
DFKI German Research Center for Artificial Intelligence
EI Expected Improvement
EM Expectation Maximization
FCN Fully Connected Network
FDAS Fault Diagnosis and Accomodation System
GMM Gaussian Mixture Model
GP Gaussian Process
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
GPS Global Positioning System
HB Hyperband
HRI Human Robot Interaction
HBBO Hyperband Bayesian Optimization
HMM Hidden Markov Model
IC Information Criteria
IMU Inertial Measurement Unit
IMM Interactive Multiple Model

xi

LIST OF TABLES xii

KDE Kernel Density Estimator
LSTM Long Short-Term Memory Network
MAE Mean Absolute Error
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NN Neural Network
PID Proportional–Integral–Derivative
PR Precision-Recall
PCA Principal Component Analysis
RAS Robotics and Autonomous Systems
RBFN Radial Basis Function Network
ReLU Rectified Linear Unit
RIC Robotics Innovation Center
RNN Recurrent Neural Network
RMSProp Root Mean Square Propagation
ROC Receiver Operating Characteristic
SH Successive Halving
SHAP Shapley Additive Explanations
SM System Monitoring
SGD Stochastic Gradient Descent
SVM Support Vector Machine
SOM Self-Organizing Map
TPE Tree Parzen Estimator
TPU Tensor Processing Unit
XAI Explainable Artificial Intelligence

Chapter 1

Introduction

”Never send a human to do a machine’s job.”

-Agent Smith, The Matrix

Persistent autonomy is a requirement for robot mission execution in unknown or
dangerous environments. This concept refers to the goal of extending the capacity of an
autonomous robot to be uncontrolled for extended periods of time, i.e. without the need to
have a human interfering to solve an emergent complication that the robot cannot solve on
its own (Lane et al. 2012). Its implementation is hardly trivial and demands that an essential
consideration is taken into account from the very start - understanding or interpreting the
data before prescribing a methodology.

Firstly, the implications of the requirements to automate a certain action needs to be
understood. There are many ways to observe this based on the level of action that is needed,
e.g. operational, tactical or strategic. This at the same time determines the engineering
degree of the input to a specific algorithm when taking information from the environment
in order to maintain a constant updated knowledge of world and system so that the robot
can act upon it.

In this thesis, data analysis techniques in combination with neural networks are
employed to formulate solutions from problems that arise in the field of survey robotics
that require persistent autonomy. In the following sections the motivation for this work, the
challenges, scope and contributions are presented.

1.1 Motivation: Neural Network-Enabled Autonomy

This dissertation was done within the European training and research framework
Robocademy: European Academy for Marine and Underwater Robotics. The action line
that is followed here, Autonomy, called for the development of methods that extend or
support autonomous capabilities of unmanned vehicles.

How can the level of autonomy in exploration robots be extended? This scientific debate
has been expanded in a wide span of research fields. It has been fostered from the vast

1

CHAPTER 1. INTRODUCTION 2

tasks and applications in which robots are deployed and the need for easier, safer and, in
many cases, cost-effective mission execution. Presently, many tasks that are carried out
by exploration vehicles are significantly monitored and intervened by a human operator or
expert, i.e. conditionally automated. The concept of autonomy has been widely discussed
in the Artificial Intelligence community (Russell et al. 2014). As it pertains to robots, a
strong definition of autonomy is presented in Beer et al. 2014.

Autonomy The extent to which a robot can sense its environment, plan in accordance, and
act upon it with the purpose of completing some goal (either given to or created by
the robot) without external intervention.

The stride to increase autonomous capabilities has progressed with various perspectives
in monitoring of the environment and the vehicle itself. A taxonomy for degrees of
autonomous driving clearly defines the capability boundaries a vehicle must surpass to
achieve a rank (SAE International 2014). These have been originally established as
driving automation standards but can be easily applicable to unmanned vehicles from other
domains. The key features that contrast conditional from high to full automation lie in the
state monitoring and human involvement in contingency performance. These capabilities
on their own provide valuable enhancements but in conjunction with embedded planning
these qualities can be used for context-triggered adaptive behaviour to furthermore increase
the degree of autonomy.

One may talk about different subsystems that enable autonomous capabilities of a robot
to have controlled mobility, localization, perception of its environment, etc. Individually,
these capabilities can have their own assigned fields of study and their own unresolved
research questions. It is safe to say that all these capabilities provide a degree of autonomy
to an agent, however, the discussion of long-term autonomy in this thesis is rather geared
towards the enabling information processing components of an autonomous agent that
provide it with enough self introspection so that it may perform whatever task it has been
commended to do with the least possible aid from a human operator.

For autonomy to be exhibited, the robot or vehicle must have a prior knowledge of its
state in order for it to act upon it. Consequently, it can be fit to update or correct its current
state (Fig 1.1). How is this corrective action triggered? For this, the vehicle needs to have
context awareness.

Context is the set of environmental circumstances, both favorable and unfavorable, that
surround an event. In the examination of software/hardware performance, context
comprises the operational environment and its interactions with other systems or
elements.

While this is a definition that can generalize to any problem, in this thesis the contexts
will consist of tasks performed by autonomous survey robots and operational events present

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Some context awareness examples in an Autonomous Underwater Vehicle
(AUV).

during the execution of their tasks. To define context, data needs to be analyzed as a series of
consecutive instances in time and not as an isolated data snapshot, i.e. data streams contain
temporal dependencies that collectively represent specific behaviours or characteristics.

With the need for minimizing human intervention, autonomous robots need context
awareness to overcome the various unforeseen situations that arise every time they are
deployed into an uncontrolled environment. Three essential motives for identifying
contexts are identified:

1. System failures. Such can range from loss of communication of the vehicle to
hardware malfunction or deterioration.

2. Uncertainty. An inherent quality of dangerous, unknown or inaccessible
environments.

3. External exceptions. Are abnormal occurrences in the cell environment that may
cause execution failures.

This thesis examines neural network models for time series analysis concentrating in
state monitoring for detecting and forecasting. Through this, the vehicle is enabled with

CHAPTER 1. INTRODUCTION 4

introspection capacities that facilitate the implementation of adaptive behaviours such as
understanding the expected outcomes of a task, recognizing anomalies along the way and
diagnosing its status.

1.2 Challenges

From a deployment perspective, it is currently extremely restrictive to implement large
Deep Learning (DL) models due to a number of reasons. The processing power of the
specialized processing units (Graphics Processing Units (GPUs)) that train and evaluate
these models have high energy requirements. Such are not compatible with the power
efficiency targets on which most autonomous survey robots are designed and built. With
this in mind, two directions are available. Modern battery technology needs to progress
accordingly in order to embed DL with the robots or the implementation of shallow Neural
Networks (NNs), which integrate 1, 2, or 3 levels of non-linear operations (Bengio 2009),
needs to be explored to suit these needs. While the first option will result in many benefits
as a whole to field operations, the second is the challenge addressed in this work.

Another point of view to circumvent this matter is to transmit data on-line to a
centralized processing unit not embedded in the robot. While this is a possibility for some
applications, connectivity is subject to domain limitations where range and medium dictate
the communication mechanisms. This is a fundamental characteristic of underwater and
space exploration missions. If implementing a model that requires high processing power,
a feasible solution is to have the data processed off-line or transmitted on-line for processing
device to a control station.

This leads to other considerations from a technical perspective. Embedding the neural
network models on-board the vehicles could potentially be feasible if the models were
trained off-line and the architecture was small enough to allow for on-line processing
without significantly diminishing the robustness of diagnosing the problem at hand. This
forces us to be especially judicious with the manufacturing of the data.

When analyzing time-series within a supervised learning scheme, hand-crafting
samples is expensive in terms of time and effort especially if there are large amounts of
data. Data manufacturing, in this case, refers to the process of labeling and segmenting
data to best represent or describe the context of interest.

Hence, as in any machine learning problem, data inspection needs to come first.
Traditional statistical methods can provide us an initial perspective and bring insight into
the definition of the problem, e.g. are there trends manifesting? is there missing data? is
the data noisy? - and so on. Data selection is also very important, i.e. for not including
unnecessary or redundant data, as this could lead to potentially learning the wrong attribute,
take an unnecessary amount of time to train, etc. Then it must be defined if the problem is
to be a supervised or an unsupervised learning problem.

In supervised learning, there are known categories from the data and that way a ground

CHAPTER 1. INTRODUCTION 5

truth is available through direct observation. An unsupervised or semi-supervised learning
problem could arise from certain cases. One is the need to identify certain contexts that
arise in a sporadic or unexpected manner making examples hard to come by. A different
situation can present itself when the data manifests a similitude of statistical characteristics
within a set of distinct contexts.

The following section defines the examined scenarios and context definitions and their
interpretations within the field of persistent autonomy for survey robotics.

1.3 Examined Scenarios

Autonomous robots face different challenges according to their domain of deployment.
The underwater domain requires communication methods that are reliable in traversing
water instead of air. Trajectory execution and motion models need to account for uncertain
mobility patterns and unforeseen faults. On the ground domain communications can be
stifled in subterranean depths. Deployment and retrieval also pose a challenge as the
medium can be hazardous for the human operators in either domain. Two relevant examples
can be given for separate domains. In the marine area, the case of an AUV deployed in
Monterey Bay, California, where a white shark attacked the Tethys AUV within thirteen
minutes of deployment (Stanway et al. 2015).

Similar to underwater applications, the space and land domain also challenging to
human exploration and requires autonomous agents to undertake many tasks. Being a
remote domain, it shares all of the threats the underwater domain carries to an increased
level as deployment and retrieval of the autonomous vehicles cannot generally be performed
by humans. Therefore, they need to comprise autonomous capabilities to execute missions
successfully. Consider the Fukushima-Daiichi nuclear plant accident in 2011. Operators
based outside the building attempted to suppress the critical conditions occurring inside
the building. As a consequence, it was recognized that disaster unmanned ground robots
needed to be designed to replace human operators in hazardous circumstances (Kawatsuma
et al. 2012).

Regardless of the area of application, system and mission monitoring can also be
challenging in unknown and inaccessible environments. Faults and anomalies are hard
to simulate and are so varied in nature that when they do occur it is complex to generate
models that exhaustively classify them.

This work considers the emerging behaviours that arise when the autonomous vehicles
are deployed in survey missions in the marine and space domain. A range of behaviours
arise in these scenarios. These behaviours can take the form of:

• A set of execution characteristics.

• A set of tasks or events during execution.

CHAPTER 1. INTRODUCTION 6

• A set of properties characterizing an event that define a state or condition.

When deployed, autonomous systems and robots handle a wide range of information
either in quantity or variety for interpretation and actuation. The context therefore is subject
to the application and domain in which their functions occur. In this work, three categories
of context are explored:

1. Hardware-oriented context

2. Task-oriented context

3. Event-oriented context

Hardware-oriented context focuses on identifying functioning and malfunctioning
context-specific states of electronic components or systems. Much of the interest is focused
in observing the data to monitor adequate operation. While standard rule-based approaches
can provide basic reliable information, it can become a complex task to establish rules
as new states are identified with similar ranges of data values. This work focuses in the
monitoring and diagnosis of thruster malfunction in an AUV.

Task-oriented context focuses on identifying the state of a currently executed task.
While this can be generic and a task can take many forms, this work defines task as an
instruction an autonomous vehicle must execute, specifically navigational trajectories for
survey and inspection. The importance of understanding these actions as such is not only
to furnish the human operator with understandable information but to also set knowledge
foundations on which the robot can reason for instance on mission health and triggering
recovery actions. This work focuses on navigational trajectory classification for an AUV.

Event-oriented context differs from task-oriented in the nature of the categorization.
Events are defined as classes that fall out of the predefined procedures the robot has to
execute. They represent behaviours that in constitution are not malfunctions but diverge
from expected or normal behaviour that are circumstantial. Identifying events is valuable
for alerting systems of imminent or undesired outcomes. Consequently, event-oriented
context detection is geared towards safeguarding the integrity of the autonomous vehicle
and supporting the cohesion of the mission. This work focuses in mobility hazard forecast
and detection for a space rover.

1.4 Contributions

These three contexts all share high scientific relevance and their exploration and
development in this dissertation present the following contributions.

• High-performing shallow architectures. The design of shallow neural networks
that use relevant input to reduce training and processing time without compromising

CHAPTER 1. INTRODUCTION 7

robust performance for classification or prediction of states. This is achieved for three
different problems specific to autonomous robots in field operations.

1. Hardware-oriented classification. The proposed data-driven solution updates
the state-of-the-art in thruster failure categorization in AUVs (Ranganathan et
al. 2001). The approach presented in this work implements a Long Short-Term
Memory Network (LSTM). In addition this solution is compared against other
Machine Learning (ML) baselines. Data observation and analysis supports the
design of a shallow NN by identifying a single sensor output for thruster fault
classification.

2. Task-oriented classification. In the lightly explored topic of trajectory
classification for autonomous vehicles, the proposed method for navigational
trajectory categorization for mission monitoring establishes the state-of the art
with NNs architectures. This study emphasizes the development of shallow
architectures with rigorous hyper-parameter tuning experiments when dealing
with an unbalanced dataset.

3. Mobility hazard forecast and detection. In the field of risk assessment
for space rovers this work provides a valuable addition to the state-of-the-art
with a data-driven approach implementing a shallow NN for mobility hazard
detection and prediction. Compared to other recent approaches which combine
multi-modal data or rely heavily on visual cues that provide some knowledge of
the world. This work uses an unsupervised learning approach to analyze Inertial
Measurement Unit (IMU) sensor input and sense imminent risks in mobility
without any previous knowledge of the terrain.

• Hyper-parameter importance for model selection. In the field of Explainable
Artificial Intelligence (XAI), Shapley Additive Explanations (SHAP) are generally
used to explain a models feature learning. In this work is used in a different
context to assist in the selection of candidate models suited for deployment. In
addition, this application explains the performance of the model based on the tuned
hyper-parameters in order to boost the trustworthiness of the selected model given its
shallow configuration.

1.5 Document Structure

Separate chapters are dedicated to review relevant works in this field. The second chapter
of this work identifies the research opportunities for different specific fields of field
robotics based on the current state-of-the-art in autonomy. Particular attention is devoted to
Anomaly Perception as it is a fundamental component of autonomy. Works are organized
for Underwater and for space and ground robots.

CHAPTER 1. INTRODUCTION 8

Figure 1.2: Document structure and association.

The third chapter revises the fundamental theory and methodology that is implemented
throughout this work, focusing primarily in data handling practices and evaluation
techniques that are common in ML applications. In addition, the fundamentals of the
different NN architectures that have been implemented in this work are also discussed.

The fourth, fifth and sixth chapters address the described contributions. As shown in
figure 1.2, which illustrates a graphical flow of the content, each chapter will present a

CHAPTER 1. INTRODUCTION 9

problem described by a dataset. The RECOVERY and REGIME datasets are used for
supervised learning problems and thus, they are both labelled. These datasets describe
situations common in AUVs. The AsguardIV dataset is used to implement methods as an
unsupervised learning problem and hence, it is unlabelled. This dataset describes events
incurred in mission executed by a space rover.

The seventh and final chapter gives a summary of contributions. This chapter is also
dedicated to discuss learned lessons and future work.

1.6 Publications

As first author:

1. De Lucas Alvarez, M., & Lane, D. M. (2016). A Hidden Markov Model application

with Gaussian Mixture emissions for fault detection and diagnosis on a simulated

AUV platform. OCEANS 2016 MTS/IEEE Monterey,, 1–4.

2. De Lucas Alvarez, M., Hastie, H., & Lane, D. (2017). Navigation-Based learning

for survey trajectory classification in autonomous underwater vehicles. IEEE
International Workshop on Machine Learning for Signal Processing, (MLSP), 1–6.

3. De Lucas Alvarez, M. & Kirchner, F. (2021). Hazardous Mobility Forecast and

Detection in Space Rovers. Unpublished. Submitted to journal of Field Robotics.

As coauthor:

1. Vögele, T., Wehbe, B., Nascimento, S., Kirchner, F., Ferreira, F., Ferri, G., Machado,
D., Phillips, A. B., Salavasidis, G., & De Lucas Alvarez, M. (2016, June 3).
ROBOCADEMY - A European Initial Training Network for underwater robotics.

OCEANS 2016 - Shanghai.

2. Valdenegro-Toro, M., De Lucas Alvarez, M., Dmitrieva, M., Wehbe, B., Salavasidis,
G., Heshmati-Alamdari, S., Fuentes-Pérez, J. F., Yordanova, V., Istenič, K., &
Guerneve, T. (2019). Results from the Robocademy ITN: Autonomy, Disturbance

Rejection and Perception for Advanced Marine Robotics

Chapter 2

Related Work

”In the beginning, there was man. And for a time, it was good...

Then man made the machine in his own likeness.”
-The Instructor, The Animatrix

This Chapter presents the current state of the art on various topics relevant in this
dissertation. The works reviewed here fall within two topics. The first is the line of
works that are the groundwork for NN performance for anomaly detection across various
disciplines. This will help establish that it is one of the most common and sought
applications in autonomous robots. The second is the design and implementation of NNs in
relevant topics to autonomy enhancement for Robotics and Autonomous Systems (RAS) in
field operations. The two specific topics worked in this dissertation are addressed: trajectory
classification and anomaly perception.

The next section addressing the first topic will review the advancements of NNs are
highly relevant to this dissertation which have not necessarily have been implemented for
RAS. Since the resurgence of NNs (Hinton 1988), the advancement in technology has
enabled a leap in performance in diverse ML applications (Bishop 1995) and evolved the
field into DL (Schmidhuber 2015). These works will establish the fundamentals and the
performance to which a shallow NN should align. A brief introduction to the formalization
of autonomy as it pertains to RAS is first given.

These works not only present the diversity of challenging situations which autonomous
vehicles have to confront, but also show the incredible importance these are for industrial
and societal infrastructures (Wong et al. 2017). The applications are widely broad. This
is why this Chapter considers only the relevant topics and applications that align to the
problems presented in this dissertation.

2.1 System Monitoring with Neural Networks

The works reviewed in this section discuss NNs approaches to System Monitoring (SM)
in general. These mostly encompass fault detection and accommodation as the previous

10

CHAPTER 2. RELATED WORK 11

sections. However, these are not for applications concerning autonomous robots.
Early applications of neural networks into power plants showed the utility of these

methods for fault detection and diagnosis (Xu and Wesley Hines 1999; Simani et al.
1999; Gaura and Kraft 2002). Continuous sensor monitoring and calibration provided
useful information to operators to achieve unnecessary maintenance and reduce equipment
damage ultimately providing efficient operation of the power plants. Standard Radial Basis
Function Network (RBFN) and Multi-Layer Perceptron (MLP) implementations are used.

Solutions for fault detection in actuator systems such as motors or other types of
rotating machinery have also been implemented in Jack and Nandi 2002 and Selmic et al.
2006. More specific applications within this topic such as aircraft systems have also been
approached in Innocenti and Napolitano 2002. Fault detection in lower level components
such as sensors was also studied in Zhang, Bingham, et al. 2012. The authors used a
combined approach of Self-Organizing Map (SOM) neural networks for observing the
operation of industrial turbine systems monitored with an array of sensors.

The incorporation of temporal analysis in fault detection becomes relevant as the
complexity of the problems arise. The work of Jomeiri 2010 addresses the problem with
time-series and thus they employ Recurrent Neural Networks (RNNs). NNs have also been
implemented on the monitoring of software and network traffic. An interesting notion
from this work is that it establishes that a shallow RNN architecture performs well fault
identification problems. The work presented in Obst 2013 proposes a variant of RNNs
called Echo State Networks (ESNs) which are efficient in computational complexity. They
combine this method to create a spatio-temporal model to diagnose and detect faults in a
sensor array. They define their frameworks as Spatially Organized Distributed (SONs) to
learn correlations between different sensors that could be malfunctioning.

Time-characterization for sensor behaviour was also approached in Jager et al. 2014.
The authors use a Temporal-Delay Neural Network (TDNN) to detect different sensor
faults using different limit checking methods for the different fault classes. Their work
presents the implementation of a single neural network to detect four different fault types.
An interesting notion from this work is that, the network is quite successful at identifying
two distinct faulty behaviours. However, the remaining faults were not recognized by the
TDNN. This poses the question of whether the delay component in the framing of the
problem could be causing this behaviour. Instead of using the sensor inputs, the authors use
feature extraction based on mean, standard deviation, deviation, a correlation coefficient
and signal-to-noise ratio. For similar signal behaviours these features could consequently
yield similar feature scores, which could become complex for a NN to discriminate.

The work by Hussain et al. 2015 proposed another time-invariant approach with a
NN. The authors suggest a Fully Connected Cascade Neural Network (FCCNN) for fault
detection and identification of manually injected sensor faults applied to an aircraft sensor
suite. The sensor readings correspond to the rotational forces roll, pitch, yaw. Their
approach to design their networks was to take each of these sensor readings and construct

CHAPTER 2. RELATED WORK 12

Figure 2.1: Sliding window at time t from Hussain et al. 2015

a FCCNN for each. The evaluation of their frameworks consisted in reporting the average
detection time for each of the sensors. In comparison to the previous work, these features
are used as is. The fault categories are similar to the previous work as well and the authors
incorporate a delay in the form of a residual generated by a sliding window (Fig. 2.1).

By this time, works were starting to present implementations with LSTMs. In Juba et al.
2015 the authors implement Stacked LSTMs for anomaly detection in a number of types of
data: ECG, space shuttle, power demand and multi-sensor engine. Their approach focuses
in modeling nominal behaviour to detect deviations without defined context or processing.
The authors compare their results against a standard RNN and evaluate them with standard
accuracy and prediction metrics. Their results show that LSTMs outperform RNNs but still
have margin for improvement in the prediction metrics and depth.

LSTMs continue to be used for anomaly detection. The work of Medel and Savakis
2016 proposed Predictive Convolutional LSTM for anomaly detection in videos. This
is one of the works that introduce the combination of LSTMs with other NNs for
processing various types of information. The authors also subsume their architectures under
Encoder-Decoder frameworks split for present and future prediction. The authors evaluated
the anomaly detection using error metrics and show that their Encoder-Decoder performs
better than the Autoencoder model.

An interesting work by Cheng, Xu, et al. 2016 proposes a Multi-Scale LSTM for Border
Gateway Protocol traffic anomaly detection. They refer to Multi-Scale at their handling of
Internet traffic as a multi-dimensional time sequence. The authors empirically establish
lengths of time-windows and define their goal to match the high-performance obtained
from their literature review which is 99.5% accuracy and attempt to reduce the false rate.
Their data is labeled and preprocessed and thus framed as a classification problem. They
conclude their study by presenting close to their desired results, however they do no specify
the size or length of their network.

In the work by Erfani et al. 2016 the matter of scalability and computational efficiency
is addressed for solutions that integrate deep learning architectures. The authors propose
a hybrid solution that combines a Deep Belief Network (DBN) and a one-class Support
Vector Machine (SVM) trained with the features extracted form high-dimensional data by
the DBN. Their novel framework for anomaly detection shows that expensive non-linear
kernel machines can be replaced by linear when combined with DBNs. Their results reach

CHAPTER 2. RELATED WORK 13

the same accuracy as stat-of-the-art Autoencoder while considerably lowering its training
and testing time.

It is worth adding three more works to reinforce the versatility and flexibility of LSTMs.
Although NNs have been used to medical problems and data for at least 20 years, the
work by Lipton et al. 2016 is the first to address this in a medical application context by
implementing these networks for clinical diagnosis. The authors address data processing
with target replication by sliding time window and the regularization of RNNs establishing
that Dropout is only applied to the non-recurrent weights of the network. Their three-layer
networks show promising results that could benefit from more rigorous hyper-parameter
tuning.

In Hsu 2017 the authors model temporal correlations by combining RNNs and
variational inference. Their approach is applicable to the inspection of monitoring data from
various domains that handle a variety of high-dimensional data from different domains. The
work by Lu et al. 2017 addresses the problem of anomaly detection in image processing
using a variety of datasets from different fields ranging from military to education. They
focus on the issue of the effect noisy data can have on the performance of the models. They
implement an Autoencoder to capture the difference between anomalies and nominal data
and integrate that with RNNs for detection. The author approaches the training aspect using
a layer-wise procedure instead of maximum-likelihood estimation to simplify the process
and achieve scalable training. The authors present their results with standard accuracy
metrics as the ground truth and labels are available. However, they are presented as mean
metrics since they represent the evaluations across cross-validation and therefore omitted
model selection and re-training with the full data.

2.2 Autonomy Enhancement in RAS

Whether it is land, underwater or space missions, field operations are increasingly becoming
more challenging due to harsh environments. This wide range of applications for RAS and
their related environments have clearly established the urgent need to eliminate the presence
of human interaction (Endsley and Kaber 1999; Stubbs et al. 2007; Beer et al. 2014; Wong
et al. 2017). There is a consensus among these works that the study of Human Robot
Interaction (HRI) is required to reach certain levels of autonomy in robots. These works
agree in organizing autonomy into generally four tasks:

1. Monitoring for information acquisition.

2. Information analysis.

3. Decision selection.

4. Action implementation.

CHAPTER 2. RELATED WORK 14

In terms of robot autonomy these are condensed into four main actions:

1. Autonomous information acquisition and data transformation

2. Autonomous information analysis and interpretation.

3. Autonomous decision selection.

4. Autonomous action implementation.

Past and current works commonly integrate one or more of these actions. Furthermore,
the scope of autonomy actions can be bounded into different categories according to the
functions of autonomous robots. In field operations, robots are usually task-performing
vehicles that execute navigation, perception and management functions. It is common for
research and applications to cover more than one of such functions. The following section
reviews works which have served as inspiration and motivation to this dissertation and they
encompass the four principal autonomy actions into relevant problems and applications.

2.3 Trajectory Classification

Trajectory classification for mobile robots is a lightly explored research problem. This is
probably due to the lack of a critical underlying motivation. A section is uniquely dedicated
to this topic as it does not fit into the anomaly perception to field but it is relevant to the
discussion of task-oriented context categorization.

An early work (Sas et al. 2003) addressed the uses of navigational trajectories within
a virtual environment. The principal goal was to identify behaviours, procedures and
strategies that rule the way in which humans decide their movement paths. Interestingly,
the authors propose a clustering Artificial Neural Network (ANN) that uses visual data
with the focus of anomaly detection. While the primary interest in this study supports
the development of surveillance methods, it establishes the importance of replacing human
operators through autonomous systems.

The problem of trajectory classification on moving vehicles using ML appears soon
after starting with the work by Garcı́a et al. 2006. In the topic of air traffic control, the
authors classify segments of four different modes of flight: uniform motion, transversal,
longitudinal and combined maneuver. The ML method is based on a decision tree algorithm
that generates partial rules for classification (Quinlan 1993). The performances of this
classifier is compared to a traditional Interactive Multiple Model (IMM) tracking filter
that processes the data in a backward and forward manner over the data and then uses
an edge-detection algorithm that is plainly outperformed by the ML method.

More works also demonstrate the relevance of trajectory classification using diverse data
and approaches for various applications with moving agents. The authors in Lee, Han, Li, et
al. 2008 approach a feature extraction method that segments trajectories and subsequently

CHAPTER 2. RELATED WORK 15

generates two classifiers. The first, a high-level-feature cluster that categorizes trajectories
based in regions not taking into account movement patterns. The second, a low-level based
cluster that classifies trajectories based in navigational pattern.

Another work (Panagiotakis et al. 2009) integrates the temporal component to model
similarities among the trajectory segments and subsequently grouping similar line segments
into clusters. This work integrates methods and knowledge from Giannotti et al. 2007; Lee,
Han, and Whang 2007 and Lee, Han, Li, et al. 2008 where the usage of time is being used
as an informative feature for this application. Their experiments show how their approach
discovers sub-trajectories from real trajectory data.

Later works present a series of methodologies that extract features and patterns to
classify trajectories. However, these do not always focus on applications to moving
vehicles. The classes range from types of human movements (Li 2014) or moving
object (Biljecki 2012). While classifying movements a similar trend in the methods from
trajectory categories are present. Such are traditional ML methods like Decision Trees
Zheng, Chen, et al. 2010; Zheng, Liu, et al. 2008 and NNs in Byon et al. 2009. SVMs have
also been implemented in Dodge et al. 2009.

Hidden Markov Models (HMMs) have been popular addressing the classification of
trajectories. The work presented in Bashir and Khokhar 2007 compares the performance
of their main method, HMM, against Principal Component Analysis (PCA) extraction of
features coupled with a Gaussian Mixture Model (GMM) for trajectory density features.
The authors in Mlı́ch and Chmelar 2008 continue along the lines of security surveillance
by implementing a human path classifier in an underground station. Reddy et al. 2008
presented a prototype classification system that consisted of a decision tree followed by a
HMM.

Some works extended the HMM to more elaborated frameworks. For instance, the work
presented in Liao, Patterson, et al. 2006 and Liao, Fox, et al. 2007 used Hierarchical HMMs
to model movements of people by hierarchically dividing the activities into segments into
a graphical temporal representation. Nascimento et al. 2010 also extended to Switched
Dynamical HMMs for classification of pedestrian trajectories.

A digressing field of research Activity Learning could be said that has taken inspiration
from of the latter works as the popular HMM has also been used for trajectory learning for
robot activities. An example of such is the work by Osman et al. 2017 where the authors use
such a HMM for processing demonstrated trajectories into generalized trajectories for robot
learning. Along the same topic, the work of Lee and Ryoo 2017 now uses Convolutional
Neural Networks (CNNs) for predicting locations of human hands and objects to plan the
trajectories of a robot manipulator.

It is clear that trajectory classification has been mostly popular with topics of
surveillance and few are connected to the implementation of autonomous vehicles. The
narrow research in this problem opens the door to improvements in performance with NN
as it is evident how it can provide enhanced autonomy to unmanned robots.

CHAPTER 2. RELATED WORK 16

2.4 Anomaly Perception

Any perceived or anticipated action and event is subject to unforeseen factors. This is
due to a variety of aspects ranging from missing information, to non-deterministic events
inherent to the system or environment. This motivates the highly explored topic of anomaly
perception. This encompasses detection, isolation, anticipation and mitigation. This is a
well studied topic with thousands of works produced from various scopes and applications.
In the interest of bounding the relevant literature, this section reviews works specifically
dedicated to robotics in the fields of water, land and space.

2.4.1 Underwater Robots

An early work by Rae and Dunn 1994 introduced the concept of Intelligent Damage
Detection in AUVs based on existing literature at the time that documented failed AUV
missions due to simple system failures. The authors fundamentally addressed the problem
through level monitoring and failure categorization.

(a) Types of faults (b) Fault-Time characterization

Figure 2.2: Damage Types from Rae and Dunn 1994

This was meant to address the some issues that the solutions at that time were lacking,
which was finding the source and extent of the problem where the response of a system
controller is merely reactive. By monitoring the vehicle at various levels, they were able to
implement various signal gradient filters, each representing a category of the failure (Figure
2.2), they were able to provide multi-level coverage in the system under an Auto Regressive
model. This approach used an linear approximation of the dynamics of the vehicle.

Subsequent works started to directly incorporate dynamic models for the identification
of actuator faults in AUVs. The authors in Alessandri et al. 1998; Alessandri et al. 1999;
Bono et al. 1999 used a Proportional–Integral–Derivative (PID) controller based in an
open-loop surge thrust selection and a closed-loop steering controller. A bank of estimators
is used to calculate a fault hypothesis and this is then measured against residuals to detect
discrepancies in the predicted behaviour.

Detection of faulty behaviour was then complemented with fault accommodation
known as Fault Diagnosis and Accomodation System (FDAS). The work presented in

CHAPTER 2. RELATED WORK 17

Podder and Sarkar 2001, introduced a novel approach to the allocation of thruster in
redundant configuration to compensate for faults. This approach takes into account thruster
redundancy in terms of Cartesian space to resolve the compensation solution. Their
simulations results are presented in terms of viability.

A series of works followed where system fault detection, with particular focus for
thruster malfunction was approached by implementing sensing frameworks. The work by
Hamilton et al. 2001 proposed a concept of heterogeneous knowledge for fault diagnosis.
The concept of heterogeneous knowledge refers to the definition of knowledge spaces for
the detection and diagnosis of faults. Concretely, they defined three inter-related spaces:
fault, observation and diagnosis space. The observation space is characterized by the
number of sensors embedded in the vehicle. The fault and diagnoses space are sets of
possible outcomes that can occur on the vehicle that use the observation space. This
approach leans more into a semantic solution for determining the source of faults in a
system referred as Model-Based Diagnosis not to be confused with previous works that
integrated dynamical models.

The work by Omerdic and Roberts 2004 integrates both, in which the thruster dynamics
is necessary for the allocation process in the Fault Accommodation subsystem. A semantic
relationship is also established between the thruster fault states, types and remedial actions
similar to the work of Rae and Dunn 1994. Both the work by Omerdic and Roberts 2004
and Hamilton et al. 2001 have embedded the Fault Detection system in the vehicle.

The work by Ranganathan et al. 2001 proposes an intelligent system for failure detection
and control in AUVs. This work is relevant as they are interested in mission viability
in the event of minor failures in the sensors and control issues. Their proposed method
integrates a two-layer ANN with 16 input nodes and 32 hidden nodes for nine classes of
faults and a fuzzy rule-based expert system for inferencing the failures by observing the
various changing parameters on the dynamics of the vehicle.

The increasing complexity of FDAS led to more comprehensive monitoring of AUVs.
However, not all solutions could be embedded in the vehicle. The work of Wang, Wu, et
al. 2008 designed a broad monitoring system for an underwater vehicle that in addition
to sensing the dynamics controller, it also spanned the navigation and vision systems
both optical and acoustical. The fault categories were bounded to three categories that
characterized the behaviour of the signal instead of a semantic fault. Wavelet processing
was used for this purpose. The fault allocation is managed by threshold-based rules.

A solution presented in Wang, Zhao, et al. 2008 used RBFNs that managed the fault
compensation through signal restoration. RBFNs generated similar signal outputs to
compensate the controller faults. Similarly, Zhang, Wu, et al. 2009 performed simulation
experiments with RBFNs for thruster fault compensation. An alternative approach by
Corradini et al. 2011 proposed the reduction the of observed features from the controller
model for thruster failure compensation.

A series of works began to emphasize the relevance of time and managed their input

CHAPTER 2. RELATED WORK 18

as time-series or sequences. The work by Bian et al. 2009 implemented a Grey Model.
Fundamentally, this model describes the dynamic characteristic of the input by finding the
mathematical relations and law between factors based on the characteristic information.
Their method generates sequences based on the sensor data and generates residuals for the
parameters in the model to then predict if the sequence corresponds to a fault.

The author in Qin and Gu 2009 proposed an on-line method based on a Gray Model
to diagnose the sensor faults for AUVs. Their model describes the behaviour of an input
data sequence and predictions are derived and compared with the current measurements to
generate a prediction error sequence on four typical sensor fault modes.

This solution is extended by the Jia et al. 2013a; Jia et al. 2013b where they reiterate the
use of the Grey Model. The authors employed a Grey Correlation Analysis to determine the
similarity of the geometry factor change curve to decide the relevance between the factors.
Thus comparing the correlation degrees between the sequences to determine residuals. The
authors later incorporated a Second-order Taylor series dynamic prediction to compensate
for sparse and incomplete data. Chen et al. 2010 also implemented a method similar to
these, also consisting of signal construction, but rather instead of a Grey Model, the authors
used a Strong Tracking Filter (STF) to generate a predicted sequence. The solutions based
in sequence prediction for residual calculation all present results in simulations.

Graphical diagnosis model approaches have also been proposed. The work of Dearden
and Ernits 2013 suggested an automated fault diagnosis system for an AUV using a
Bayesian Network for estimating risk of vehicle loss in an under-ice mission. The network
was built the AUVs control nodes architecture and historical observed failure occurrences.
The authors in Raanan et al. 2016 also propose automated fault diagnosis in an underwater
vehicle using on-line topic models, which is a variant of a Bayesian non-parametric
model, the Latent Dirichlet Allocation (LDA). Commonly used to analyse texts, LDA
automatically infers the number of classes in the data. The authors used this method to
automatically characterize patterns in the vertical plane performance of the vehicle.

The work of Fagogenis et al. 2016 implemented a solution for modeling an occurring
thruster fault. A Bayesian filter to detect deviations from the normal operations of a thruster
system in an AUV. The authors use a nominal and an adaptive model, which is intended
to capture the motion of a vehicle after a fault as a Mixture of Gaussians distribution.
The divergences between these two models is capture determines whether the vehicle is
compensating for a fault without knowing the dynamics of the vehicle. The suggested this
approach is meant to improve nominal or adaptive control.

More recent work has incorporated a solution with a similar goal. In Wehbe and Krell
2017; Wehbe, Hildebrandt, et al. 2017 the author proposed a solution for motion model
identification using the thruster rotational features. In this case, the dynamics of the model
was incorporated and after a series of standard ML model comparisons they concluded that
kernel-based non-linear estimators outperformed NNs and Least-Squares estimators. In
Wehbe, Arriaga, et al. 2018, the author later extends his work to identify multiple contexts

CHAPTER 2. RELATED WORK 19

of an AUV. In this instance, a LSTM network is implemented which outperforms standard
ML.

2.4.2 Space and Ground Robots

Autonomous robots for ground applications often have human experts monitoring the
mission as generally it is often possible for humans to be in close proximity. However,
there are situations in which this may dangerous or just inaccessible to humans. Hence it is
obvious that anomaly detection methods are necessary for these applications.

The literature reviewed in this section addresses mostly fault detection in the
localization and navigation systems. Authors in Monteriù et al. 2007b defined a method for
determining signal residuals of wheel encoders, IMU and Global Positioning System (GPS)
sensors. In a following publication (Monteriù et al. 2007a) the authors were able to test the
proposed system on a mobile robot platform. Their results showed that the sensor faults
were detected, isolated and reported to the ground control station in all situations where a
single sensor fault. In the event of multiple sensor failures the detection was possible but
isolation was not always guaranteed.

Model-based reasoning has been often implemented in systems designed for space
applications (Ferrell et al. 2010; Bozzano et al. 2011). These are often on-board systems
that highly complex models that monitor high and low level subsystems that generate
and monitor mission plans. Such model-based approaches have also been discussed in
the previous section for underwater vehicles and therefore is not unusual to see similar
approaches across domains.

An early work (Inotsume et al. 2013) presented an analysis and evaluation of the effects
of rover reconfiguration on the its traveling performance on a lateral slope of loose soil. The
authors presented a model that represents the relationships among rover attitude, contact
forces, and slippage thus providing an understanding of rover behaviour on loose soil
that would lead to more effective mobility control strategies. While their approach only
considered lateral traversal, the authors recognize the need to extend their method to uphill
and downhill dynamics.

In the study by Köhler et al. 2013 evaluated different ML-based solutions for sensor
fault detection and compensation in autonomous space rovers. They compare two different
methods, a Neural Gas and a MLP for sensor sequence prediction. The evaluation of
fault types is modeled by considering sensor value behaviour. Similar to the work of Rae
and Dunn 1994 the authors consider characterization based on temporal behaviour and
synthesize three types of fault classes. The platform used was a four-wheel skid-steered
rover. Four sensor modalities taken from the IMU are used as input. The inclusion
of optical-flow supplied by a camera was integrated in two separate evaluations for
both models. The predictions from these are then compared to the sensor channels for
categorization based on absolute errors. The compensation is managed by a separate

CHAPTER 2. RELATED WORK 20

module that based on the error model, the vehicle is supplied with the expected sensor
readings generated by the prediction. Despite both models being successful, the authors
were not conclusive in determining which method was better.

Some interesting works in the field of hazardous event classification are relevant to
mention. In the work by Bouguelia et al. 2017 the authors introduce an unsupervised
method for classifying by clustering of a space rover slip events based on proprioceptive
sensors. The authors use a traditional method, Bayesian tracking, for updating and
improving the parameters of the models as new input data comes in. The authors report their
method outperforming a K-means solution with a score of 86% vs 80% accuracies. The
success of this works establishes that it is possible to design and implement unsupervised
models to detect unforeseen and unstructured events.

The following works introduce the importance of monitoring traction in planetary
exploration rovers as it can impact the mission by negatively impact navigation or
immobilizing a vehicle. The work by Gonzalez, Apostolopoulos, et al. 2018 also
addresses the issue of slippage. Their approach consists in evaluating two supervised
machine learning methods, SVMs and NNs, against two unsupervised learning approaches,
K-Means and SOM. Their physical experiments were performed on a single wheel
testbed with IMU sensors placed in a chassis location where the detection would be
maximized. The authors results show that a SOM-based algorithm balances the advantages
of supervised and unsupervised learning algorithms which are high success rate and low
storage requirements respectively.

The authors later extend their work in Gonzalez, Chandler, et al. 2019 by performing
rigorous tuning to evaluate their algorithms with 55 configurations. They also incorporate
other types of settings that they consider can influence the performance of the models.
Such are rover speed, type of terrain and type of tire. In a different publication (Kruger et
al. 2019) they increase settings evaluation like a sandy incline, more slip classes, different
rover velocities and sensor inputs. Their SOM solution still outperforms compared to other
algorithms.

An interesting work by Skonieczny et al. 2019 presents a data-driven approach
combining exteroceptive and proprioceptive inputs to measures mobility risk in a space
rover. This assessment categorizes the rover interaction with the surface into three risk
categories, thus assisting in the early detection of potentially hazardous changes in terrain
conditions.

More recent works address the problem of terrain identification for survey rovers. In
Banerjee et al. 2020 the authors developed a framework that models wheel-terrain dynamics
in a rover that is able to adapt rapidly to the change of terrain. The authors have done so
by capturing non-linear interactions in the dynamics of the controller and the terrain. The
linear model is augmented with new data learned with features learned from a NN with a
Bayesian regression algorithm.

The same problem is approached in Dimastrogiovanni et al. 2020 where a

CHAPTER 2. RELATED WORK 21

comprehensive set of proprioceptive sensors are used to classify terrain. Hazardous events
are subsumed under the classification as slippage is treated as a type of terrain that can
be detected by the classifier. The authors implement a SVM using class dataset they have
gathered from their own robot. The authors report robust results.

2.5 Summary

Monitoring for autonomous robots envelops many application studies for the enhanced
supervision of autonomous robots while they are carrying out tasks. It is clear from
this research that classification and prediction of sequences of sensory data for behaviour
detection are intrinsic components of perception that support an autonomous vehicle’s
functions. Collectively these works have all addressed the issue of behaviour or fault
detection some of which incorporate event accommodation.

The contribution these works have set in regards to fault detection are valuable to the
field. It has been shown that the usage of dynamical model is applicable but not required
to achieve good results. With regards to failure detection, the works have shown that often
there are specific faults that are of interest to model and that often it is in the thruster system
in which these applications are implemented.

Fault accommodation is also an important goal in some of these works, although they
are naturally a consequence of the identification of a malfunction and of systems that
carry redundant hardware or control systems capable of adapting to such events. Few
works address the matter of embedding the solutions in the vehicle. Thus, there exists
an opportunity for improving the deployability of equally robust or better implementations.

A common characteristic of these monitoring systems is that they are built to be
overseen by human experts, either on-line or off-line and few works approach this from a
embedding perspective. Another research opportunity that has been identified is that almost
none of these works discuss rigorous hyper-parameter tuning specially when implementing
NNs. This is due to the de facto usage of non-embedded processing units, therefore there
is no interest in optimizing the size of the model.

Regarding unsupervised methods for classification and detection, the data used in
almost all of the reviewed works is separated by classes therefore is possible to use
evaluation metrics used in supervised learning. These are important points that are
addressed throughout this dissertation.

Chapter 3

Methodology

”I’m super brain. That’s how they made me.”

-Goldfrapp, Lyrics to Utopia

This chapter reviews the Neural Network fundamental theory and methods that are used
throughout this dissertation. First, standard ML procedures and practices are addressed as
they are the starting point to the three problems discussed in this work. Such are the various
ways of evaluation, data handling and structuring which are relevant for sequential and
time series data. As with most machine learning problems. Also, three different strategies
of hyper-parameter tuning approaches were used and therefore discussed.

Afterwards, the fundamentals are discussed. The main methodology implemented
in this dissertation has been a type of NN specifically designed to process time series,
LSTMs. These networks have been pervasively implemented and successful at solving
problems with sequential data. Other support networks like CNNs and Dense Networks
are also employed and described in this Chapter as well. Combinations of LSTMs with
other frameworks have also been a approached. In this case the Encoder-Decoder and
Autoencoder structures.

3.1 ML Standard Practices

3.1.1 Evaluation Criteria

There are many standard criteria for evaluating the robustness of a ML algorithm
(Goodfellow et al. 2016). However, these metrics are not meant to be used indiscriminately.
There are two main groups of evaluation criteria which are suited either for classification
or regression assessment.

Firstly, some terminology needs to be clarified to approach classification metrics. In
the topic of predictive analytics, accuracy can be deconstructed as a table reporting number
of counts of hits and misses per class. These are denoted as True Positives (TP), True
Negatives (TN), False Positives (FP) and False Negatives (FN) to describe the count of

22

CHAPTER 3. METHODOLOGY 23

correct hits, correct rejections, false alarms, and misses respectively. This table, also known
as confusion matrix, will give a more detailed understanding of accuracy, particularly if a
dataset is unbalanced.

Accuracy is defined as the percentage of correctly classified instances by a model and
is expressed as,

Acc =
T P+T N

T P+FP+T N +FN
(3.1)

This metric is appropriate when True Positives and True Negatives counts are of more
interest. In the case of unbalanced datasets, there are two relevant metrics that are useful
for describing retrieval of relevant instances. One of which is Precision, also known as
Predictive Positive Value (PPV), and is defined as,

Precision =
T P

T P+FP
(3.2)

This describes the proportion of retrieved positives that were classified correctly. Recall,
also known as sensitivity or True Positive Rate (TPR), is defined as the harmonic mean of
precision and recall,

Recall =
T P

T P+FN
. (3.3)

This describes the proportion from real positives that were actually classified correctly.
Unbalanced class distribution exists in most real-life classification problems. Hence, using
the aforementioned measures, it is possible to evaluate the accuracy of a model on an
unbalanced dataset. The F1 score is used when the counts of FN and FP are most important.
The F1 score is defined as,

F1 = 2∗ Precision∗Recall
Precision+Recall

. (3.4)

In regression, these metrics are not useful, as the problem requires the evaluation of a
ML model’s output approximation to a specific functional behaviour. For this, the R2 score
can be used to measure the goodness of fit. It is defined as,

R2 = 1− ∑
N
i=0(yi− ŷi)

2

∑
N
i=0(yi− ȳ)2

= 1−
(

SSE
SST

)
(3.5)

where N is the total number of observations, SSE is the sum of squared error and SST is
the total sum of squares. The R2 score is good for evaluating the prediction of a continuous
variable and is the fraction of response variance that is captured by a specific model. If
R2 = 1, this means that the model fits the data perfectly. Hence, a high R2 is desired.

The metrics discussed in this section will be the default assessment methodologies that
will be used in the problems addressed in this dissertation.

CHAPTER 3. METHODOLOGY 24

Figure 3.1: Sequence classification input-output. The rectangles represent vectors and the
arrows are the matrix multiplication operations in the recurrent neural network. Input are
red, output vectors are blue and green vectors are the RNNs state. (one-to-one) Standard
mode of processing from fixed-sized input to fixed-sized output, e.g. single sequence
to single class. (one-to-many) Single sequence classified into multiple outputs or have
a sequence output. (many-to-one) Multiple sequence input classified into a single class.
(many-to-many) After a number of multiple sequence inputs, there is an output of multiple
sequences or class. (many-to-many) The synchronized case.

3.1.2 Problem Framing for Sequences and Time-series

While it is unmistakable that the use of LSTMs implies working with data expressed in
consecutive time, the manner of framing supervised and unsupervised problems requires
some sequence or sample engineering. One of the advantages of using LSTMs is that, when
modeling sequences, the inputs and outputs can be adjusted according to the requirements.
Some problems may require for us to use sequences as inputs, outputs or both. Figure 3.1
shows concrete examples of how these are formatted.

Sequence input and output organization is important for information extraction. For
this work and in the context of classification, the method applied is many-to-one using the
sliding window method. In the context of forecasting, the selected method is many-to-many
using the time series fold method.

3.1.3 Cross-validating Time-series

The applications explored in this dissertation involve implementing ML methods with time
series. The datasets used in this work come from sensor readings and the chronological
order in which they come is to be preserved for context extraction. When implementing
ML algorithms, it is recommended that cross-validation is used during the training process.
However, cross-validation can become problematic for pattern detection in ordered data,
such as time-series. Traditional cross-validation splits a set of data into n subsets or folds
taking away one subset for validation and using the rest for training.

This is not something that can be done for sequences. For this there is Forward
Chaining or Time-series Fold. These processes, unlike in standard cross-validation or
K-Fold, training sets are super-sets of those that come before them in order to maintain
the sequential ordering successive. Figure 3.2 illustrates a comparison of standard

CHAPTER 3. METHODOLOGY 25

(a) Time-series fold

(b) K-Fold

Figure 3.2: Cross-validation methods.

cross-validation and time-series fold.
Time-series cross-validation (Fig 3.2a) is usually implemented for prediction problems

while K-Fold is used for classification. In this case the full sequence needs to belong to a
single class for the validation folds to work.

Because in this work, the full sequences include more that one class, the data is first
processed into class segments. In the case of sequence prediction, instead of a time-series
fold, the data is folded into samples using a sliding-window to fit a supervised learning
problem. This is done to address two issues:

1. Preserving the same sample size, even though LSTMs are well able to do this at the
expense of excessive padding.

2. Increasing the amount of samples, as the datasets are already small.

Similarly for classification, this fold can also be used saving on each iteration one of
the windowed segments for validation. This is illustrated in Figure 3.3. Consider having a
sequence of length t, which is then split into a set of N pairs (X , X̂) that corresponds to train

and validation sets for classification, or in the case of prediction, into the St0−w→t0 input and
St0→t0+w with one step overlap.

CHAPTER 3. METHODOLOGY 26

Figure 3.3: The solid grey block represents the full sequence, SF . If this is a classification
problem, it is segmented into subsets that represent categories maintaining chronological
order. It is assumed that three categories if different context occur consecutively once,
SF =< SA,SB,SC >. A sliding window of size w is run through each set generating a set of
train and validation pairs if its classification or (X , X̂) if it is a prediction problem.

3.1.4 Hyper-parameter Tuning and Regularization

Hyper-parameter Search. This work implements several methodologies for
hyper-parameterizing LSTMs. In NNs, a parameter refers to typically the weight of
a node which is determined through the training process. In contrast, a hyper-parameter
is used to control the training process and are not derived through it, rather they affect
the speed and quality of the training process. Hyper-parameters would be considered the
elements that define the topology of the NN such as number of nodes and depth, or learning
specifications such as learning rate and batch size.

The most exhaustive of the hyper-parameter search approaches is the Grid Search. This
is because this search will output every possible combination given a range of values to
set for each element in a hyper-parameter set, λ . This can become very costly in terms of
computing power and time, specially if cross-validation is performed.‘’

On the other hand, Random Search has shown to be more efficient than the latter even
though it is not as costly. In Random Search, given a range of values, a random set of
combinations is yielded. In Bergstra and Bengio 2012 the authors show empirically and
theoretically how randomly chosen hyper-parameter sets are more efficient for optimization
than Grid Search.

Another method for hyper-parametrization used in this work is Hyperband Bayesian
Optimization (HBBO) (Falkner et al. 2018) in which Bayesian Optimization (Shahriari et
al. 2016) is combined with Hyperband (Li et al. 2018) to optimize progressively faster than
Random Search and Bayesian Optimization and Hyperband alone. Bayesian Optimization
(BO) models the objective function as, p(f |D) based on the already seen data points, D =

CHAPTER 3. METHODOLOGY 27

(x0,y0), ...,(xi−1,yi−1). An acquisition function a = X → R based on the current model
compensates between exploration and exploitation. Algorithm 1 shows this process.

Algorithm 1: Bayesian Optimization
Input: x ∈ X
Select the point that maximizes the retrieval function.
xnew = argmaxx∈X r(x)
Evaluate the objective function.
ynew = f (xnew)+ ε

Augment the data and refit.
D← D∪ (xnew,ynew)

Hyperband (HB) is a hyper-parameter optimization strategy that uses Successive
Halving (SH) (Jamieson and Talwalkar 2016) to identify the best n randomly sampled
configurations. This is achieved by evaluating approximate versions of the objective
function with a limited budget, f̃ (·,b) of f (·) with a budget b ∈ [bmin,bmax]. Successive
Halving evaluates the chosen configuration on the given budget and ranks them based on
their performance. It then takes the top η−1 on a η times larger budget. Algorithm 2 shows
this process.

Algorithm 2: Hyperband
Input: l: budgets bmin and bmax,η
Computes the geometrically spaced budget ∈ [bmin,bmax]
smax = [logn

bmin
bmax

]
Repeat until the maximum budget is reached
for s ∈ {smax,smax−1, ...,0} do

sample n = [smax+1
s+1 ·η

s] configurations
run SH with ηs ·bmax as initial budget

end

HB has shown that it can outperform random search and Bayesian optimization,
however it is limited when it comes to converging to the global optimum due to the
randomly chosen configurations even when large budgets are chosen. For this matter,
HBBO integrates HB and Bayesian Optimization through the Tree Parzen Estimator (TPE)
as it is simpler than standard Gaussian Process (GP)-BO as they tend to require complex
approximations. The TPE is Bayesian Optimization method (Bergstra, Bardenet, et al.
1994) that uses a kernel density estimator to model the densities over the input configuration
space rather than modeling the objective function f directly by p(f |D). The algorithm
produces a variety of densities over the configuration space X using different observations
x(1), ...,x(k) in the non-parametric densities. TPE defines p(x|y) with two densities,

p(x|y) =

l(x) if y < y∗

g(x) if y≥ y∗
(3.6)

CHAPTER 3. METHODOLOGY 28

where l(x) is the density formed by the observations x(i) such that resulting loss f (x(i))

is less than y∗ and g(x) is the density formed by the remaining observations. By not using
all observations HBBO is more computationally efficient for HB to carry many functions
evaluations at small budgets.

Concretely, HBBO chooses budgets as in HB including SH, but instead uses BO.
The Bayesian component of HBBO closely resembles TPE with the difference in that the
density estimation is done for a single multidimensional Kernel Density Estimator (KDE).
Algorithm 3 shows the sampling process.

Algorithm 3: Hyberband Bayesian Sampling
Input: : observations D
Input: : fractions of random runs ρ

Input: : percentile q
Input: : number of samples Ns
Input: : minimum number of points Nmin to build model
Input: : bandwith factor bw
Output: : next configuration to evaluate
if rand()< ρ then

return random configuration
end
b = argmax{Db : |Db| ≥ Nmin +2 }
if b = /0 then

return random configuration
end
Fit KDEs according to 3.6 and 3.7
Draw Ns samples according to l′(x)
return sample with highest ratio l(x)/g(x)

First, to maintain the theoretical guarantees of HBBO, a constant fraction ρ of the
configurations is uniformly sampled at random. This ensures that after m · (smax + 1)
runs (SH), on average ρ ·m · (smax + 1) random configurations have been evaluated on the
maximum budget, bmax. Since the goal is to optimize on the largest budget, HBBO always
uses the largest budget for which the largest number of observations are available. This
Nb = |Db|, with budget b, is large enough to satisfy q ·Nb ≥ Nmin.

To calculate the KDEs a minimum number of data points, Nmin, are required satisfying
the condition d + 1, where d is the number of hyper-parameters. However, instead of
waiting for Nb = |Db| to be satisfied, Nmin + 2 configurations are initialized and the best
and worst configurations are used to model the two densities:

Nb,l = max(Nmin,q ·Nb)

Nb,g = max(Nmin,Nb−Nb,l)
(3.7)

Finally, Expected Improvement (EI) (Jones 2001) is optimized by sampling Ns points
from l′(x), i.e. the approximation KDE of l(x) but with rather all bandwidths multiplied by
a factor of bw to support exploration on more promising configurations.

CHAPTER 3. METHODOLOGY 29

.

Figure 3.4: From Srivastava et al. 2014. a) A standard fully connected network with no
dropout. b) The same network with dropout.

Dropout. When working with neural networks, it is common that networks that are too
large for the available dataset can over-fit the training data. Dropout is a regularization
criterion that helps the model generalize better (Hinton et al. 2012; Srivastava et al. 2014).
For each sample, some layer units from the network have a likelihood of being omitted, or
dropped out, by a specified factor.

This has the effect of temporarily ’removing’, or dropping out, a specified percentage of
nodes randomly from the networks in each update. This in consequence causes the networks
to have a different layout of incoming and outgoing connections from the previous update.
Figure 3.4 shows how this works for a fully connected network. The principle works the
same way for LSTMs. This way each layer result is not bound or dependent to the outputs
of previous layers. This layer dependency, although beneficial, can sometimes tend to
over-correct the errors from previous units and cause over-fitting and non-generalization to
unseen data.

An additional advantage of using Dropout, is that it induces sparse representations. This
is caused by the dropout effect simulating a sparse activation in a layer. This is beneficial
where there is a need for models that yield sparse representations such as Autoencoder
models.

Dropout is implemented per layer in the network. However, it can be implemented
on any layer of the networks except the output layer. Because the dropout factor is a
likelihood, an additional hyper-parameter must be included in the tuning process which
specifies the probability at which the nodes are kept or discarded. Dropout has also the
effect of pruning the networks as it trains. For this reason it is recommended that the size

CHAPTER 3. METHODOLOGY 30

of the network is increased, i.e. increasing the number of nodes.

Having reviewed two important regularizing techniques relevant for this application, the
set of LSTM architectures have therefore been evaluated using Dropout in the LSTMs and
Class Balancing. The next section will detail the range of hyper-parameter values used in
the training process.

3.2 Hyper-parameter Importance

While neural networks have demonstrably provided advanced solutions in real-world
applications, they are still considered a black-box solution by some and their tuning
is considered an art to some experts. Existing methodologies for hyper-parameter
optimization can be time-consuming. Methods like Grid-Search and Random-Search for
finding optimal hyper-parameter values in neural networks can become inefficient and
stagnate fast development of neural networks. Faster methods like Bayesian optimization
has been shown to require less iterations than Random-Search and still achieve better
performance on the held out test set (Bergstra, Yamins, et al. 2013).

These techniques are important to know as it helps in the implementation of robust
networks effectively. The question of why it is that these chosen hyper-parameters perform
the better than the rest of candidates is still explored by many researchers. The abstraction
of explanations in ML is done to clarify and interpret the predictions of a model by relating
the feature values of an input sample to its output prediction in a way that a human expert
can understand. These methods or algorithms for explainability harness valuable properties
(Robnik-Šikonja and Bohanec 2018) that add trustworthiness to a model not just by its
accuracy metrics but by the transparency and reliability they provide when deploying a ML
learning model into the real world.

There is a selection of methods dedicated to analyse specific models and others that are
model-agnostic (Ribeiro et al. 2016). One relevant methodology is the finding of Shapley
values for the input features (Shapley 1953). A method inspired by game theory, its general
idea is to consider each feature as a ’player’ in a game and the prediction as the reward.
In game theory terminology, the Shapley value could be defined as the distribution of
the reward among the features. In ML the Shapley value is a method for calculating the
contributions of each input feature on single predictions for any ML model.

3.2.1 Shapley Value

The Shapley value of a single feature is the contribution to the reward and its calculated as
the average of the marginal contributions across all permutations,

CHAPTER 3. METHODOLOGY 31

φ j(val) = ∑
S⊆{x1,....,xp}/{x j}

|S|!(p−|S|−1)!
p!

(val(S∪{x j})− val(S)) (3.8)

where S is a subset of the input features used to train the model, x is the vector of output
values of the reward, i.e. the instance to be explained and p the number of total features. To
get the overall contribution of specific coalitions in a subset, i.e. the prediction of feature
values in S marginalized over features that are not included in S is,

valx(S) =
∫

f̂ (x1, ...,xp)dPx/∈S−EX(f̂ (X)) (3.9)

this is done for each feature not contained in S. All possible combinations of feature
values need to be evaluated with and without the j-th feature to calculate the exact
Shapley value. This requires considerable computing time. The authors in Štrumbelj
and Kononenko 2014 proposed an approximation with Monte-Carlo sampling as the more
features there are the more the possible combinations increases and the exact solution
becomes problematic. Author Molnar 2019 summarizes it so,

φ̂ j =
1
M

M

∑
m=1

(f̂ (xm
+ j)− f̂ (xm

− j)) (3.10)

where f̂ (xm
+ j) is the prediction for the vector of feature values in this case of z, which is

the random data point representing x, the feature values of the instance.
This still has to be repeated for each of the features to get all Shapley values. This also

means that it cannot be used if sparse explanations are required, i.e. only just a few features,
because Shapley explanations require all the features.

3.2.2 Shapley Additive Explanations (SHAP)

SHAP (Lundberg, Allen, and Lee 2017; Sundararajan and Najmi 2020) is a method derived
from Shapley value and other methods on model interpretability explanations that can
provide explanations for individual predictions with a few features. The SHAP method
also computes the Shapley values for explaining how the reward, or in this case prediction,
is distributed among the features. The innovation that SHAP introduces is that the Shapley
value is presented as an additive feature attribution method. SHAP defines the explanation
as,

g(z′) = φ0 +
M

∑
j=1

φ jz′j (3.11)

where g is the explanation model, z′ ∈ {0,1}M is the coalition or feature vector, M is
the maximum size of the vector and φ j ∈ R is the Shapley value for a feature j. Three
important feature of SHAP for model interpretability are:

CHAPTER 3. METHODOLOGY 32

Algorithm 4: Approximate Shapley Estimation
Input: N: Number of iterations
Input: x: Instance of interest.
Input: j: Feature index.
Input: X : Data matrix.
Input: f : Machine learning model.
Output: φ̂ j: Shapley value of the j-th feature.
for m =1,...,M do

Draw random instance z from the data matrix X
Choose random permutation o of the feature values
Order instance x:
xo = (z1, ...,x j, ...,xp)
Order instance z:
zo = (z1, ...,z j, ...,zp)
Construct two new instances, with feature j:
x+ j = (x1, ...,x j−1,x j,z j+1, ...,zp)
and without feature j:
x− j = (x1, ...,x j−1,x j,z j+1, ...,zp)
Compute marginal contribution:
φ m

j = f̂ (x+ j)− f̂ (x− j)

end
Compute Shapley value as the average:
φ j(x) = 1

M ∑
M
m=1 φ m

j

1. Global Interpretability. This refers to the collective SHAP values contributing to
the prediction. This shows the negative of positive influence of each feature on the
prediction.

2. Local Interpretability. This focuses in giving each observation or individual
instance its own set of SHAP values to explain why each individual case contributes
in a specific way to the prediction.

3. Model Agnostic. SHAP can explain the output of any machine learning model
using a Kernel explainer. It can also explain Tree-based modes, DL models and
Linear models.

The novelty in this dissertation involves the usage of SHAP for understanding the
hyper-parametrization of the models for model selection. The motivation is to explain why
the best candidates perform better given their hyper-parameter configuration and use this to
understand why these yield specific metrics. This is also expected to support the selection
of a model that will generalize better.

This is done by formulating the hyper-parametrization as a regression problem, where
the input features are based on the accuracy and scoring. The authors in Lundberg and Allen
2018 proposed a variant of SHAP, TreeSHAP, for tree-based machine learning models as

CHAPTER 3. METHODOLOGY 33

a fast, model-specific alternative. TreeSHAP defines the value function as the conditional
expectation instead of the marginal expectation to estimate the effects on the prediction,

EXS|XC(f (x)|xS) (3.12)

It is important to mention that the explanations from Tree-SHAP, or any other ML for
that matter, are not implying causality. Rather, by observing the correlations and patterns
in the hyper-parameter values, they aid they support the model selection process by finding
feature importance with feature effects and interaction among the SHAP values.

3.3 Learning on Neural Networks

While the used networks have different purpose and characteristics, their learning
methodology can be generalized to all of these architectures: Forward-Backward

Propagation.
As expressed in the name, Forward-Backward Propagation fundamentally consists of

two processes, forward propagation and back-propagation (Rumelhart et al. 1986), with the
goal of minimizing a gradient. The operations performed vary according to the respective
network type, e.g. convolution in a CNN or gate operation in a LSTM. In addition, some
functions within these two processes can also be tailored, i.e. the loss and optimization
functions.

Forward propagation. In a way, the process of forward propagation has already been
described for these architectures. It takes place with the target y propagating to the hidden
units in each layer until output ŷ is produced. Two important calculations occur here:Several
computations take place here:

• L(ŷ,y): Loss function depending on the output, ŷ, and target, y.

• J = L(ŷ,y)+ λΩ(θ): The total cost, obtained with the output loss and added to a
regularizer Ω(θ).

Algorithm 5 lists how these values are calculated in forward propagation.
When training a neural network, this stage is repeated for a number of epochs which

yields a total value from a cost function with respect to the parameters, J(θ) or loss.
Fundamentally, forward propagation requires computing an affine transformation at each
layer given the input from the previous layer and then apply an activation.

Back-propagation. Back-propagation takes the computed cost and propagates it
backward through the network to calculate its gradient. This algorithm is conformed by
two parts: the calculation of the gradient for the activations, ak, in each layer k and the

CHAPTER 3. METHODOLOGY 34

Algorithm 5: Forward propagation
Input: l: Network depth
Input: W i, i ∈ {1, ..., l}: the weight matrices.
Input: bi, i ∈ {1, ..., l}: the bias parameters.
Input: x: the feature input.
Input: y: the target output.
The input feature vector x is the layer0

h0 = x
for k = 1,...,l do

ak =W khk−1 +bk

hk = f (ak)
end
ŷ = hl

J = L(ŷ,y)+λΩ(θ)

learning process that uses this gradient to update the weight values in the neural network
with respect to the total calculated loss. The intuition behind these gradients is to asses how
the outputs of each layer need to change to diminish the error. From these gradients, also
the parameter gradient on each layer can be obtained.

Algorithm 6 lists how these gradients are calculated after forward propagation.

Algorithm 6: Back-propagation
g← ∇ŷJ = ∇ŷL(ŷ,y): output layer computation
for k=l,l-1,...,1 do

Converting output gradient into pre-nonlinearity activation
g← ∇akJ = g� f ′(ak)
Computing gradients on weights and biases
∇bkJ = g+λ∇bkΩ(θ)
∇W kJ = ghk−1>+λ∇W kΩ(θ)
Propagating gradients w.r.t the next lower-level hidden layer activation
g← ∇hk−1J =W k>g

end

Figure 3.5 summarizes in a single image the learning process of a neural network. This
is back-propagation in general terms and it can be applied to other tasks not just neural
network learning. In practice, these methods require more complicated implementations.
The naive version above, although straight-forward, only considers returning a single
output, whereas generally it would be required to have more output. In addition, the
memory management and consumption is also an important factor to take into account.

Modern implementations of this approach require the storing of data in tensors. A
tensor is a container used to contain data in multiple dimension, e.g. storing matrices. In
the simple approach, many tensors are computed separately and then added in a separate
stage. This generates a high computational congestion which is solved in with a memory
buffer that adds each value as it is calculated.

CHAPTER 3. METHODOLOGY 35

Figure 3.5: Visual summary of the learning process of one neuron in generalized stages.

NN-based solutions in field robotics require that these are embedded in the systems.
Non-integrated processing overthrows the goal of real-time autonomous response as
explained in previous chapters. It is for this reason that shallow and robust networks are
required to provide autonomy enhancement to robots. The following section reviews the
architectures that have been implemented throughout this work.

3.4 Examined Architectures

3.4.1 Long Short-Term Memory Networks

In the traditional RNN the learning methods that have a troublesome effect when
multiplying operations to compute gradients. The aftermath of this multiplication is that
the gradient can either decrease or increase exponentially. In Bengio, Frasconi, et al. 1994,
it was demonstrated how this effect is problematic for capturing long-term dependencies
by showing how the probability of training a robust RNN using Stochastic Gradient
Descent (SGD) rapidly reaches 0 for sequences with length as short as 10. As discussed
above, LSTMs have overcome this issue due to their internal mechanics summarize in these
fundamental points:

1. LSTMs have three layers, or gates, that interact with the state in each cell. Sometimes,
it is said there’s four layers because the state is included. RNNs have just one.

2. These three interacting gates manage of information on the state: the input, output,
and forget gates.

3. The state layer has a linear self-loop, in addition to the external recurrence of the
RNN, whose weight is controlled by the forget gate. This is a key element for
allowing the gradient to be maintained for longer.

4. These updates are performed in an additive manner, therefore the gradient practically
never fades or burst.

CHAPTER 3. METHODOLOGY 36

Figure 3.6: An unrolled LSTM cell with its four interacting layers. Credit: Olah 2015.

Figure 3.6 shows how the state Ct is computed by two point-wise operations from the
info coming from the gates below. Similarly, each gate is also a point-wise operation with
a sigmoid, σ , or a hyperbolic tangent function, tanh. The first operation decides if the state,
Ct , is to disregard any information. This is controlled by the forget gate:

f t
i = σ

(
b f

i +∑
j

U f
i, jx

(t)
j +∑

j
W f

i, jh
(t−1)
j

)
(3.13)

where xt is the current input vector and ht is the current hidden layer vector for time
step t and cell or neuron i. The matrices b, U and W are biases, input weights and recurrent
weights respectively for their corresponding gate as indicated by the superscript. Next, the
decision to store new information is controlled by the input gate, gt . This has two steps.
First, a sigmoid operation filters the information that will be updated:

gt
i = σ

(
bg

i +∑
j

Ug
i, jx

(t)
j +∑

j
W g

i, jh
(t−1)
j

)
(3.14)

Before updating this to the state, a tanh layer that creates a candidate vector, C̃, updated
to the state:

C̃t
i = tanh

(
bC

i +∑
j

UC
i, jx

(t)
j +∑

j
WC

i, jh
(t−1)
j

)
(3.15)

These two equations are then combined to update the old state Ct−1 into new state Ct

by:

Ct
i = f t

i ∗Ct−1
i +gt

i ∗C̃t
i (3.16)

Equation 3.16 multiplies the old state, Ct−1, with the output of the forget gate, f t
i and

adds the operation of the input gate. These are essentially values that have been scaled by
the sigmoid and hyperbolic tangent operations to decide how much and with what the state
value needs to be updated.

CHAPTER 3. METHODOLOGY 37

Finally, the output gate, ot takes these preliminary values and filters them also in two
steps. As before, the values are first filtered by a sigmoid operation.

ot
i = σ

(
bo

i +∑
j

Uo
i, jx

(t)
j +∑

j
W o

i, jh
(t−1)
j

)
(3.17)

Second, the cell state is passed through a hyperbolic tangent function to distribute the
values an a range between [−1,1]. Unlike the sigmoid activation, the tanh operation allows
for values to be positive and negative. This allows for state augmentation or reduction. This
is then multiplied by the previous filtered result of the sigmoid gate and the cell output, ht

i

is generated:

ht
i = ot

i ∗ tanh(Ct
i) (3.18)

Other variations of the standard, or commonly known vanilla LSTM, have emerged.
The authors in Greff et al. 2017 provide in their paper a survey on these adaptations. They
also offer a deeper introspection into the vanilla LSTM equations and its parametrization.

These variations essentially modify the internal connectivity of the cell by gate
adaptation and/or activation function modification. The most prominent variations include
the LSTM with peep-hole connections Gers and Schmidhuber 2000, which allow for all
gates to look at the cell state, Ct−1, and the Gated Recurrent Unit (GRU) LSTM Cho et al.
2014. It has been suggested (Greff et al. 2017; Jozefowicz and Zaremba 2015), that there
is no one variant that can surpass both the LSTM and GRU. In Goodfellow et al. 2016 it
is summarized how some authors have investigated how the most critical component in the
LSTM architecture is the forget gate (Greff et al. 2017) or how the LSTM can be boosted
by adding a bias to this gate (Jozefowicz and Zaremba 2015).

The LSTM adaptations described above are not implemented in this dissertation.
However, there are variations in terms of network architecture, where other types of neural
networks are used in conjunction with LSTMs. Such are CNNs, the FCN, or Dense, and the
more intricate Auto-Encoder. More detail on these variations is included in the Application
Chapters 5 and 6).

3.4.2 Convolutional Neural Networks

The use of CNNs appears in the implementation of multiple sequence input (see
many-to-one/many in Figure 3.1 from Section 3.1). CNNs are widely used for computer
vision applications because they act in the same manner as biological vision systems, in
which a group of cells, are tiled to cover the entire visual field and find spatial correlation
from the input image.

Because CNNs are mostly used for image classification, they are generally used
with 2-D data. However, there is a wide range of real-world applications in which
the configurations of the CNNs can be 1-D (Kiranyaz et al. 2019) and 3-D. Hence, in

CHAPTER 3. METHODOLOGY 38

Figure 3.7: A filter with kernel size 3, striding along an accelerometer time series.

this instance the 1-D configuration is relevant for the applications on autonomous robots
presented in this dissertation.

A time-series can be said to be 2-Dimensional, time being one dimension and the values
of the data as the second. In this case, a one dimension convolution in a CNN works by
sliding a filter along the time component. Hence, a CNN spatial extraction property works
for time series data processing. Figure 3.7 illustrates this concept.

The main characteristics that distinguish CNNs from other MLPs are:

1. Unlike in other neural networks, CNNs share weights through the convolution
operation.

2. This sharing of weights reduces the number of parameters and introduces sparsity.

3. Sparsity can be adjusted with the depth of the network, generating reduced feature
vectors.

4. The reduction of the representation is functionally performed by max-pooling (or
average pooling) where blocks of values are reduced to a single output.

The convolution operation is denoted as:

(I ∗K)i, j =
k1−1

∑
m=0

k2−1

∑
n=0

Km,nIi+m, j+n +b, (3.19)

where I is the input map or image, K the filter kernel of size k1xk2 and bias, b. Similarly
for a 1-D convolution, the operation can be denoted as:

(I ∗K)i =
k1−1

∑
m=0

KmIi+m +b (3.20)

CHAPTER 3. METHODOLOGY 39

Figure 3.8: CNN network used to classify cat and dog images.

Sparsity. Generally, this term has a negative association due to its implications with
information, i.e. sparsity in data would mean there is missing information. However,
consider the case of a biological neural network. For every biological function, not all
neurons are fired at once, only a select specific ones which are activated by different signals.
This results in specialized and faster models that only process meaningful conditions of the
problem to solve and with less parameters to train.

This convolution is combined with an activation function, usually a Rectified Linear
Unit (ReLU) which is a non-saturating activation function

f (x) = max(0,x) (3.21)

thresholding at zero. This operation is performed between the convolution and the
pooling layer. Before obtaining a result, the last features need to be flattened as they hold
the shape of the pooling layer. A CNN us commonly combined with a FCN before the
output activation.

Figure 3.8 illustrates how a common CNN architecture and contains all the elements
and concepts just discussed.

For the goals described in this work, the time series used are multivariate, i.e. the
sensors used in autonomous robots generally record information, such as gyroscopes and
accelerometers record data in x,y and z axis. Figure 3.7 illustrates how a convolution kernel
would move in an time series of accelerometer data.

In this manner, although LSTMs so far surpass any other model for learning patterns
in sequential data, CNNs can improve the classifications of patterns by reducing the
feature size that goes as input into a LSTM network. Figure 3.8 shows examples of CNN
architectures for 3-D and 1-D input.

CHAPTER 3. METHODOLOGY 40

Figure 3.9: A representation of a FCN with one input layer, two hidden layers and a non
linear output.

3.4.3 Fully Connected Network

A FCN is otherwise known in ML jargon as Dense Network and is the standard architecture
for neural networks in which all neurons in one layer are connected to those in the next
layer. While a Convolutional layer operates within a delimited field to collect persistent
characteristics, this layer will obtain features from all the combinations of the features of
the previous layer.

The features of a FCN are quite simple:

1. While a CNNs are only connected to neurons that are spatially close to them, neurons
in a FCN will be connected to all neurons.

2. Like in a CNN, the FCN will also perform operations with activations functions and
the weights before the output activation.

Figure 3.9 illustrates an example of a three-layer FCN. Because every input is connected
to every output in a layer by weight, if the size and length of the network is large it can
become computationally expensive having WeightsTotal = ninputs ∗ nout puts. However as
support architectures, these are useful for flattening outputs from CNNs or LSTMs into
final model outputs.

CHAPTER 3. METHODOLOGY 41

Figure 3.10: A NN Encoder -Decoder. An encoder produces a transformed representation
of the input data formulating a latent space on which samples can be decoded into new
examples.

3.4.4 Encoder-Decoder Framework

The Encoder-Decoder framework is a signal processing paradigm under which many
models can be contained, including ML algorithms. This framework essentially has two
components. The first is the encoder, a function that encodes an input signal into a latent
or different space. The second is the the decoder, which takes the latent representation
generated by the encoder and transforms, or decodes, it into an output.

This frameworks has been most pervasively used as sequence-to-sequence solutions
in different applications. Any neural network can be used within an Encoder-Decoder
framework to learn an optimized blueprint for encoding and decoding input. Figure 3.10
illustrates this concept. The most common application is from the field of Natural Language
Processing (NLP) in machine translation problems (Sutskever et al. 2014; Cho et al. 2014).

For these applications, RNNs have been incorporated into Encoders-Decoders to yield
time-distributed latent representations. Their success naturally sets precedent for the usage
of LSTMs which have shown to be efficient learning time series, it has been explained in
Section 3.4.1 that LSTMs overcome the vanishing-exploding gradient problem Goodfellow
et al. 2016; Graves 2012. This is manifested when the propagation of the gradients through

CHAPTER 3. METHODOLOGY 42

stack layers causes the gradient to become imperceptible or inflate so much that it becomes
extremely difficult to adjust the weight appropriately causing the network to stop learning.

The application of an LSTM Encoder-Decoder in this work pertains to the problem
of sequence forecasting. The LSTM Encoder-Decoder acts as a predictive model for
input sequences so that it is possible to forecast sequences and anticipate events. The
implementation of this architecture is further described in Chapter 6.

3.5 Summary

This Chapter consisted in presenting the fundamental methodologies that have been used
throughout this dissertation. The first section goes through canonical practices when
implementing solutions with ML. Though these are standard well-established procedures,
they are fundamental processes that have been used in this work that provide strong support
in the design and selection shallow NNs across the three different applications presented.

In addition, the theory and fundamentals of a method that determines feature importance
in a model was also discussed. This method, Shapley Additive Explanations (SHAP) are
used in this work in a novel direction that explains which hyper-parameters affect the
robustness of the presented models.

Lastly, the theoretical foundations of NNs were explained. Particular focus was given
to LSTMs networks, a variation of RNNs, that specializes in the processing of time series
or sequential data. In addition, other frameworks and types of neural networks which can
be used in conjunction with LSTMs were also reviewed as they were also implemented in
this work.

Chapter 4

Hardware-Oriented Classification

”I collect information to use in my own way. All of that blends to

create a mixture that forms me and gives rise to my conscience.”
-Major Motoko Kusanagi, Ghost in the Shell

The categorization of hardware functionality is one elemental component of system
monitoring as the condition of a hardware component can jeopardize the performance
of the system. In the event of a malfunction, it is desired that such event does not go
unidentified as it can result in fatal loss of an autonomous vehicle. While this notion of
classification may seem apparent or trivial, it’s important to observe and understand the
data that determines these modalities. This problem can be approached as a supervised
learning problem provided that the knowledge about the hardware function modalities are
known. However, identifying malfunctioning signal patterns can be challenging in systems
with multiple data sensors as values can potentially be mistaken as nominal or belong to
more than one category.

Existing literature on the the topic of hardware monitoring has several contributions
specifically in the field of anomaly detection for autonomous robots. Thruster malfunction
identification is an application that is very popular in this topic. While many approaches
have offered solutions for detection and classification, very rarely have they approached
it from the DL perspective. In addition, thruster malfunction is rarely approached from
a data driven perspective in which different types of hardware faults can cause thruster
malfunction.

This Chapter presents a shallow NN-based solution to thruster malfunction
classification. This is approached in a data driven manner where a number of sensors
describe the nature of the thruster fault. The NN is based on a LSTM and is evaluated
against established ML methods for time series analysis.

43

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 44

4.1 Application: Thruster System Failure

As part of system monitoring, classification of hardware component output supports the
supervision and control of the hardware life-cycle or asset management. For AUVs that
are deployed for extended periods of time, it is vital that hardware components can be
monitored to protect the vehicle itself and the continuity of the mission. In this manner, the
following data analysis and experiments model the output of a thruster system as a set of
modes.

A formal representation of the data can provide insight into understanding the
behaviours or context that arise.

Context Thrusters in AUVs are vital hardware components which are prone to failure or
malfunction. These faults can be generated by environmental factors, e.g. stranded debris
can obstruct the thruster, or induced by internal hardware components due to deterioration
or end-of-life-cycle. These examples fall into both known and unknown categories.
Firstly, because environmental factors are unanticipated and secondly, deterioration
and decay of a component can be tracked. Therefore, it can become ambiguous at times
to determine the causes of hardware malfunction, but highly relevant for fault classification.

Consider an AUV gliding at determined depths in open sea when it suddenly deviates
from the specified course. Upon remote monitoring of the AUV experts determine that the
cause for the path deviation is due to malfunction of a thruster determined by the anomalous
voltage readings in the monitoring system. However, the exact nature of the fault requires
further observation of the equipment as the state of the thruster system voltages alone cannot
determine the exact cause. In addition, having this capability embedded as part of the AUVs
Artificial Intelligence (AI) will circumvent the need of suspending missions explicitly for
diagnosis.

This is a supervised classification problem in where the methods implemented are used
to model hardware output that can be categorized into multiple classes. The following
research additional questions are postulated for this Chapter:

1. How shallow can a Neural Network be to still outperform the classical ML methods?

2. Given the available different sensor outputs, i.e. features, in the dataset, which of
these is best to use for this classification problem?

The RECOVERY dataset presents these characteristics for causes of thruster system
failure. This dataset helps exemplify this clearly thanks to the fault-injecting capabilities
of a thruster testbed used to collect data. The RECOVERY dataset provides four different
sensor reading outputs: two motor voltages, current and thermal drift. While using all
of these together could provide a rich representation of the class, statistical techniques

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 45

Figure 4.1: RECOVERY Testbed.

implemented in this work suggest that this may not be the case. The following section
is dedicated to describe this dataset in more detail.

4.2 RECOVERY Test board Dataset

This dataset was collected to develop methods that diagnose faults which are intrinsic or
caused by external irregularities at a hardware level. The values describe voltages, current
and temperature measurements from a circuit testbed (Figure 4.1) originally designed for
demonstrating aspects of a Fault Diagnosis software RECOVERY (Hamilton et al. 2001).
The fault inducing capabilities of the testbed allowed to record nominal and four types of
faulty operation:

1. Cable 1 connection. Manually detaching the cable from the terminal.

2. Cable 2 connection. Manually detaching the cable from the terminal.

3. Thruster jamming. Manually induced in the motor shafts.

4. Over-current. Activated by a switch that increases the current in a node leading to
the motors.

The data was collected at approximately 10 Hz by manually inducing every class of fault
and recorded the outputs without any preprocessing using a LabJack card. The data was
also labeled in the same manner. All the features are numeric float values each representing
voltages supplied, over-current detected and the thermal drift of the voltage supply in the
circuit board, m1

v ,m
2
v ,ocv,dv, respectively. There is a total of four features and there are no

missing values. A preliminary statistical approach is used to understand the data and its
discussed in the next section.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 46

4.3 Data Observation and Analysis

A table was built to provide a qualitative assessment of component operation based on the
specifications on numerical healthy operation values. Similar to the work of Rae and Dunn
1994 and Köhler et al. 2013, Table 4.1 shows an assessment on operation values per sensor
in the testbed according to fault class. With this information a qualitative assessment of
component operations defines the numerical operation states of the sensors and a hypothesis
can be built for each to have distinct distribution attributes for normal and faulty variations
of hardware performance.

Fault Class m1
v m2

v cv dv
Normal nominal nominal nominal nominal
Cable 1 nominal nominal degradation nominal
Cable 2 surge surge instant degradation intermittent nominal

Thruster Jams nominal nominal intermittent surge intermittent degradation
Over-current intermittent surge intermittent degradation nominal nominal

Table 4.1: Qualitative assessment of hardware component operation.

The variable values from each sensor can be visualized for each fault class in Figure
4.2. These visuals can help in identifying which features will be the most useful. From
this graphical perspective it can be observed that the motor sensors, m1

v and m2
v , show stable

values without any outliers for the five categories of thruster system behaviours. The dv

and ocv features show to be the most relevant for the fault cases. Each class behaviour is
defined below for the current and drift sensor:

1. Cable 1. In this case, both features seem to reach their maximum and lowest values,
respectively.

2. Cable 2. The behaviours for both features in this case appear abnormal as well, with
the over-current, ocv, completely flat lining as in the previous case. Thermal drift, dv,
shows an increase in its normal operating value ranges.

3. Motor Jams. For this fault category, both features show a complete display
of abnormal behaviour where both sensor outputs jump out their normal ranges
intermittently caused by the external source blocking the motors.

4. Over-current. Similarly to the motor jam fault, this class shows how the values fall
out of their normal ranges.

A more exploratory analysis can aid in understanding the correlations between these
features. Figure 4.3 shows pairwise relationships in the data. The diagonal axes show the
histogram of the sensor in that column. Based on this study it is concluded that the data
does not represent the simplicity of the problem as the value ranges and distributions can
represent multiple categories.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 47

Figure 4.2: Sensor plots per class. Each row of plots show the collective sensor behaviour
for each fault class. Each sensor is assigned a color. Output for Motor 1 is blue, output for
Motor 2 is orange, Current is green, and Thermal Drift is red. The most descriptive sensor
readings correspond to Current and Thermal Drift.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 48

Figure 4.3: Pairwise relationships in the RECOVERY Testbed dataset. Densities and
multi-modalities of the data pair are shown to understand their correlation. The diagonal
plots in this figure are histograms for each sensor on the specific fault setting. The remaining
plots are scatter density plots for a sensor pair, defined by the row and column, in a specific
fault setting. The settings are expressed in colors as defined in the legend.

Figure 4.4 shows a closer look roughly estimating the densities and multi-modalities
of the data pair. A joint density plot in figures 4.4 with a kernel density estimator better
describes this correlation and shows in darker colors the densely populated areas with
more clarity than the scatter plot in Figure 4.3. This also includes the Pearson correlation
coefficient and the p-value.

The Pearson correlation coefficient varies between −1 and +1. The negative normal
correlation value for this pair, −.86, states that as current, the value of thermal drift
decreases. The p-value provides supplementary information to indicate the probability of
uncorrelated data. In this case the value is very small, shown as zero. This suggests that
either of these two readings could be on its own to avoid redundancy.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 49

(a) KDE Estimation - Histograms

(b) KDE Estimation - Joint Distribution

Figure 4.4: (a) Kernel density estimations Current and Drift pair with bins= 15 and (b) their
joint plot showing the correlation Pearson value of −0.86. The negative normal correlation
value for this pair states that as one value increases, the other decreases. The p-value
provides supplementary information to indicate the probability of uncorrelated data. In this
case the value is very small, shown as zero. So, this suggests that either of these two sensor
readings could be used on their own.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 50

4.4 Candidate Architectures

The analysis done above helped in defining a strategy by selecting the most relevant features
needed and identifying suitable methodologies. The problem of thruster system failure
classification is performed using three machine learning methodologies.

1. A Gaussian Mixture Hidden Markov Model

2. A 1-D CNN

3. A Long Short-Term Memory Network

These approaches have been chosen to consider the chronological nature of the data.
The Hidden Markov Model incorporates probabilistic strategies to infer internal states and
transitions in sequential data. The CNN, mostly used in Image Processing problems,
can also be utilized for time series. Similarly, The LSTM also models time series by
maintaining persistence in the information as it learns, that way it can remember previous
information about the short-term dependencies in the data. These methods are used to
categorize the data from the RECOVERY dataset and the procedures are described in the
following sections.

4.5 Gaussian Mixture Hidden Markov Model

The HMM is a variation of a Bayesian temporal model which is used for sequential analysis
and representation. Although it is most commonly used for speech recognition applications,
it is appropriate in this scenario where the motor behaviour classes are represented within
a state space. It’s formal definition according to Rabiner 1989 is a generative model that
yields sequences in the form of a first-order Markov chain with the following elements:

• A sequence of observable variables, x, generated by

• a sequence hidden states of the model z.

• Sequence z is defined by an initial state vector, π , and

• a transition probability matrix, A.

• The observable output, x, which follows a probability distribution with parameters,
θ , depending on the current state.

The analysis shown in previous section showed how the KDE yields multiple mixtures
for current and thermal drift readings. Following this line of analysis, a GMM is
defined as the probability density function for the HMM. A set of GMMs with different

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 51

parameterizations were generated. The best fit or the optimal number of mixtures for the
GMM-HMM is then chosen on the lowest Bayesian Information Criterion (BIC) score.

The BIC is an indicator used in model selection. The Akaike Information Criterion
(AIC) is used also for the same purpose. Both methods are closely related to one another.
As shown from the formulas below,

AIC = 2k−2ln(L̂) (4.1)

BIC = ln(n)k−2ln(L̂), (4.2)

where L̂ refers to the log-likelihood of the model on the training set, and k is the number
of parameters in the model. In the case of the AIC, the n refers to the number of samples in
the training set. Both are penalized-likelihood criteria for model estimators in a given set
of data but focused on achieving different goals:

1. Best prediction. Finding the model that provides the most accurate prediction,
assuming none of the models are correct.

2. True model. Assuming that one of the models is the true model.

Commonly, the AIC and cross-validation focus in 1 and BIC focuses in 2 by penalizing
more heavily. It has been shown that the AIC and cross-validation are asymptotically
equivalent in Stone 1977; Fang 2011. Both approaches will be used for the selection of
the model. The model will help in discovering the latent classes in the data. Because AIC
is more inclined to choosing a larger model regardless of the number of samples, there the
possibility that both Information Criteria (IC) could disagree.

AIC is better in situations when a false negative finding would be considered more
misleading than a false positive, and BIC is better in situations where, in classification, a
miss is more misleading than a false positive. On the other hand, BIC would be better in
situations where a false positive is as, or more misleading than, a miss. Generally speaking,
if BIC and AIC choose different size models it is recommended to select a range of models
with those number of sizes.

The comparison of density estimators shown in Figure 4.5 shows the optimal number
of GMMs components for each sensor. The GMM solution for the current sensor exhibits
similar densities to that of the KDE with 9 mixture components for both IC. In the case of
the thermal drift, the optimal number of parameters is large, 15, for both IC and suggests
over-fitting. Both configurations are tested on the RECOVERY dataset to help in establish
the elements that will define the HMM.

Recalling the HMMs elements from the definition by Rabiner at the beginning of
this section, the model is defined by π , A and θ . To find these, the HMM solves three
fundamental problems:

1. Given just the observed data, estimate the model parameters.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 52

(a) Density Estimators - Current

(b) Density Estimators - Drift

Figure 4.5: Comparison of a Kernel Density Estimator and a Gaussian Mixture Model for
(a) Current and (b) Thermal Drift sensors. These plots illustrate how the estimators are
better at estimating the distribution of the Current sensor versus Thermal Drift readings.

2. Given the model parameters and observed data, estimate the optimal sequence of
hidden states.

3. Given the model parameters and observed data, calculate the model likelihood.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 53

The first problem is solved by an iterative Expectation Maximization (EM) process
known as the Baum-Welch algorithm. The second and third problems are calculated
by the dynamic programming algorithms known as the Viterbi algorithm and the
Forward-Backward algorithm, respectively.

4.5.1 Current Sensor

The KDE corresponding to the current sensor readings determined that the best number of
mixture components for the HMM is 9. The number of hidden states suits the five thruster
system behaviour categories: cable 1 and cable 2 interruptions, motor jam, over-current and
normal.

The HMM is trained with 70% of the data and specified to have five hidden states with
nine Gaussian components. While this is done in an unsupervised manner, the HMM is
still manages to assign most of the categories correctly to its own hidden state. Figure 4.6
shows the test set, 30% of the RECOVERY dataset, assigned to five hidden states.

However, this HMM only achieved 79.35% accuracy. This is due to most of the
motor-jam samples being misclassified as over-current.

4.5.2 Thermal Drift Sensor

The number of mixture components selected by both the AIC and BIC is 15. Figure 4.7
shows how the classes were decoded. In this case it is harder to identify visually compared
to the current sensor HMM as the range of values distinctly corresponded to the true class.

4.6 1-D Convolutional Network

The CNN is used in combination with other types of NN layers in ML problems. Section
3.4.2 summarized how CNN filters scanned over a time series to create a feature map. It
is common, but not required, that after each Convolutional layer is succeeded by a Pooling
layer whose job is to down-sample the amount of features acquired to maintain the most
relevant information.

Subsequently, a sets or a single layer, or FCN, will then take the output of the previous
layers to flatten the information, i.e. formatting the data into a single vector for prediction.

The CNN architecture used for the following experiments consists of a single 1-D
Convolutional layer, an Average Pooling layer and a FCN to flatten and classify using a
softmax activation. The network was evaluated using both the current and thermal drift
sensor data separately.

Figure 4.8 illustrates the training process. Using categorical cross entropy, the analysis
of per epoch loss and cross validation accuracy is important as it gives an understanding

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 54

Figure 4.6: Hidden Markov Model trained by current sensor readings. The RECOVERY
test set is assigned to hidden states corresponding to thruster system behaviour categories.
Each row corresponds to a thruster behaviour and all correspond to the Current sensor as
expressed in the x axis.

of the network convergence, precision and robustness. A summary of the scoring for these
networks is listed in Table 4.2.

4.7 Long Short-Term Memory Network

The LSTM was evaluated in the same way as the CNN testing for two different sensor
readings individually. Unlike a CNN, the LSTM does not require additional layers like
Pooling, it does however requires at least one layer of a FCN for classification output using
a softmax activation.

Keeping the same practices from the CNN, figure 4.9 shows loss and accuracy for cross
validation per epoch. The next section discusses the performance of the three models on

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 55

Figure 4.7: Hidden Markov Model trained by thermal drift sensor readings. The
RECOVERY test set is assigned to hidden states corresponding to thruster system behaviour
categories. Each row corresponds to a thruster behaviour and all correspond to the thermal
drift sensor as expressed in the x axis.

the RECOVERY data.

4.8 Results

This section reviews the performance of the ML methods used for classifying thruster
system behaviours. In overview, the GMM-HMM performed poorly compared to the
NN-based results, however it was still able to model with some error the different categories
of the system.

While it is recommended that hyper-parametrization tuning is done when training NN
architecture, these were tuned with a series empirical tests. This was primarily due to the
initial statistical analysis which led to the discovery of important single sensor features that

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 56

(a) Current Sensor Loss (b) Current Sensor Acc

(c) Drift Sensor Loss (d) Drift Sensor Acc

Figure 4.8: CNN Loss and Accuracy per epoch.

described the behaviours.

GMM-HMM Having different number of mixtures by the information criteria prompts to
evaluate a range of mixtures with various number of sizes. Table 4.2 summarizes evaluation
scores for these models. In addition, Figure 4.10 illustrates confusion matrix plots for both
HMMs by current and thermal drift sensor readings.

These results suggest that the GMM-HMM is not very robust at decoding the data as a
sequence. While most categories show trend in values as specified in Table 4.1, this is not
the case for motor jam, and therefore it is often mistaken for over-current.

It is concluded from these results that choosing the current sensor is more representative
of thruster behaviour for categorizing the different known behaviours of a thruster system
function than thermal drift. The misclassification of motor jam is could be caused by the
overlapping distributions of the latter with over-current. Though it could be fundamentally
justified that it is an over-current fault due to a motor jam. Therefore it could potentially
improve the results if these these two categories were merged when modeling these
behaviours using a GMM-HMM.

While using the current sensor in this architecture proved to have the most representative
features needed for categorizing these faults, the thermal drift sensor could be useful for

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 57

(a) Current Sensor Loss (b) Current Sensor Acc

(c) Drift Sensor Loss (d) Drift Sensor Acc

Figure 4.9: LSTM Loss and Accuracy per epoch.

binary classification, given that the temperature representation in volts is more distinctive
between these two classes. However, this is not explored in this work as the main motivation
is to determine the cause or the faulty behaviour in the system.

Sensor No. Mix Accuracy Precision Recall
Current 9 79.35% 88.93% 87.60%

Thermal Drift 15 22.66% 33.66% 27.17%
Thermal Drift 12 19.88% 33.16% 23.84%
Thermal Drift 9 12.01% 30.76% 14.39%
Thermal Drift 5 20.29% 33.61% 24.33%
Thermal Drift 3 21.17% 33.53% 26.08%

Table 4.2: GMM-HMM Results

CNN and LSTM As stated above, these NNs were defined without
hyper-parametrization tuning, i.e. the settings of the networks were defined based
on the length of the sequence: 100 time steps, and empirical hyper-parameters. Training
with a total of 3,902 samples and validating on 976, a 80%-20% percent data split, it is

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 58

(a) Current

(b) Thermal Drift

Figure 4.10: Confusion Matrix for Current and Thermal Drift HMMs.

guaranteed that the number of parameters does not surpass the number of training samples,
which is a general recommendation to avoid model over-fitting.

As such, the kernel size for the CNN was set to 16 to accommodate at least 10% of the
sequence in the convolution, as well as the number of filters. The LSTM was also defined
to have 16 cells. In total, the CNN has a total number of parameters of 357 and the LSTM
1,237.

Table 4.3 shows the test scores for each sensor experiment. Each were run for 100

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 59

Network Sensor Accuracy Precision Recall
CNN Current 74.59% 66.19% 74.76%
CNN Thermal Drift 66.14% 54.86% 60.11%

LSTM Current 95.49% 95.62% 96.33%
LSTM Thermal Drift 85.16% 84.29% 85.14%

Table 4.3: CNN and LSTM Results

epochs as shown in the Loss and Accuracy plots. The convergence rate for both networks
also shows that, given these hyper-parameters, the number of epochs could be reduced by
half, as it appears to reach an acceptable validation accuracy around the 40th epoch.

The CNN shows average performance, similar to the HMM, however from the number
of parameters, gives margin for a larger and more robust network. The LSTM surpassed
both networks with impressive scores above 95%.

Despite the simple nature of the problem, the three ML models clearly showed their
capabilities. Undoubtedly, the CNN can be improved by standard hyper-parametrization
techniques. Nevertheless, the LSTM illustrated that for this very simple task, it
outperformed a well-established robust ML learning methodology: the HMM.

4.9 Summary

This chapter presented the implementation of three fundamental ML methods, the
GMM-HMM, the CNN and LSTM, in the context of a classification problem for the
RECOVERY dataset. This problem required these methods to robustly categorize the
different types of Thruster System behaviour. The main motivation is to enable an AUV
with enhanced autonomous capabilities, such as being able to detect hardware induced
anomalies.

The three methodologies are chosen based on their capability to handle time series and
sequential data. The assessment of their performance was based on the observation of
required initial data analysis where it was pertinent, convergence, precision and robustness
as well as the computational complexity of the NNs.

The contributions of this work update the state-of-the-art in the topic of sensor fault
characterization for thruster malfunction isolation. It was observed that due to the simple
nature and attributes of the data, that the NNs surpassed the HMM with very little
hyper-parameter tuning. The outcome of these experiments demonstrate that a shallow
1-layer LSTM network with 16 nodes, a total of 1,237 parameters, can outperform a
GMM-HMM classifier. While recent works implement NNs for other AUVs applications,
the results presented in this work outperform those described in the literature review for
sensor fault characterization for thruster malfunction literature. Namely, the works by Rae
and Dunn 1994; Qin and Gu 2009 by achieving robust results with documented metrics.

CHAPTER 4. HARDWARE-ORIENTED CLASSIFICATION 60

In addition, this work outperforms the work by Ranganathan et al. 2001 which proposed a
2-layer ANN with layer sizes L = {l1 : 16, l2 : 32} and a rule-based inference system that
yielded an average accuracy of 93%. This work proposes a single layer LSTM-based NN
of size L = {l1 : 16} achieving scores of 95.49% accuracy, 95.62% precision and 96.33%
recall.

Part of the work described in this Chapter was presented and included in the proceedings
of the 2016 OCEANS MTS/IEEE Conference, De Lucas Alvarez and Lane 2016.

Chapter 5

Task-Oriented Classification

”As I have evolved, so has my understanding of the Three Laws.”

-V.I.K.I, I Robot

The identification of events requires close examination of the robots processes as they
take place. Tasks, when executed by autonomous robots, are progressive conditions that
are composed of multiple consecutive time instances from a single or various sensors rather
from a sole time step. In contrast to hardware-oriented, task-oriented classification is based
on understanding the current state of the robot while its interacting with the environment or
executing its tasks rather than observing its internal functionalities. Nevertheless, it is the
obligation of the problem formulator to define the nature of a task.

Tasks can be described as sets of behaviours that vary in execution and procedure. This
requires that the method of modeling such tasks keeps the chronological dependencies
to maintain the meaning of the process. The previous chapter included an HMM for
component fault classification. While the problem may seem similar in essence to the one
postulated in this Chapter, there are important nuances that differentiate task-oriented from
the latter. As the name states, HMMs maintain Markovian assumptions in which current
state is dependent on past states, e.g. first order Markov assumption states the current state is
dependent only on the past time step. For one thing, this could provide us with a model with
more memory, but it would result in a more complex model and could potentially become
intractable. In addition, the state transitions are predefined in HMMs, i.e. the design of the
model becomes subject to human error if by some situation the expert overlooks some flow
of information and therefore the model becomes susceptible to misclassification in highly
complex problems.

LSTMs are better suited for task-oriented classification because they are not limited
to the above criteria. These networks are from the family of RNNs that have resolved the
concern for vanishing/exploding gradients (Bengio, Frasconi, et al. 1993; Bengio, Frasconi,
et al. 1994; Hochreiter 1991) which are responsible for maintaining long short-term
dependencies in time series data. Furthermore, LSTMs in theory can learn the patterns
in the input data that represent state transitions and thus it is unnecessary for these to be

61

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 62

defined beforehand. The applicability is delineated in the following section.

5.1 Application: Navigational Trajectory Classification

Considering that mission analysis in autonomous robots requires methods that are capable
of handling sequential information, this Chapter presents experiments where trajectory
classification plays a crucial role in a real world application. For autonomous vehicles, a
fundamental task is navigation which is vital for performing a survey or exploration in water
or ground. Working with autonomous vehicles requires techniques dedicated to efficiently
reporting health and status of a task or mission. Accurate provision of this information is a
vital component in field operations.

The following experiments use navigational data to interpret trajectory patterns and
classify them. The methods are focused on LSTMs to learn the most commonly used
survey trajectory patterns and contrast their performance against standard ML methods.

Context In marine robotics, AUVs are frequently required to survey a large underwater
perimeter with objectives. The most common tasks during these missions is to search
for objects of potential interest or construct a map of the ocean floor using its imaging
payload. Two characteristic navigational trajectory patterns for these tasks are the Spiral

and Lawnmower respectively. Mission monitors can easily determine the current status
of the mission as the trajectories can be viewed as it unfolds. However the AUV simply
executes the way points it receives with no knowledge of its current task. Embedding this
ML based AI to the vehicle would give valuable information in mission failure detection
where access and resources are limited. It is essential for enabling successful missions and
for maintaining the health of an AUV that is most of the time, if not all, submerged and out
of sight.

Solving this problem entails that the chronological dependencies of each advancing
position are kept in order for each position sequence to be categorized. The observed
trajectory or task is defined as the category since the trajectory pattern is specific to the
function the AUV is executing. Keeping the central goals present, this chapter addresses
these research questions:

1. How deep does the network need to be to robustly categorize each trajectory?

2. Given that the models can take in variable lengths of input, how short can the
sequences be and keep a robust model?

While the problem can be approached in an unsupervised way, the available
knowledge from a specific mission or routine can enable sample engineering and labeling.
The REGIME dataset helps to exemplify these types of navigational trajectories and

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 63

demonstrates the benefits of trajectory classification for self-monitoring by navigational
behaviours during mission execution. The following section is dedicated to describe in
detail this dataset.

5.2 REGIME Dataset

The dataset is a collection of navigational data from two AUVs, IVER and REMUS,
executing a series of survey missions in Loch Earn, Scotland. The data was obtained
using the Neptune operating system from software company SeeByte and totals 23 hours of
operation. Although the mission logs contain varied recordings from different systems, only
the navigational data is being used. Each log comprises a full survey scan of a predefined
area of the Loch which contains various sensor readings. From these readings six numerical
features have been selected to construct a sequence s = {Lat,Lon,Depth,Attx,Atty,Attz}.
These are position measurements in latitude, longitude and depth, and vehicle attitude in
three axis. There is no missing data, i.e. there are no dropouts or unavailability of the the
sensors.

The dataset was used to extract basic or commonly known path trajectories for surveying
large areas of seabed for task monitoring and prediction. The dataset contains two classes
of path trajectories:

1. Spiral. A path that is executed by an AUV when inspecting an object of potential
interest. The AUV fixes its heading to the location of the object and navigates
sideways, creating a spiral pattern.

2. Lawnmower. A path that is executed by the AUV when scanning over a wide are in
the attempt to cover its totality.

(a) Vertical Lawnmower (b) Diagonal Lawnmower

Figure 5.1: Two survey missions are illustrated here where the AUV performs two different
survey missions. The AUV mainly executes two trajectories: Lawnmower and Spiral.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 64

These classes are exemplified in Figure 5.1 where two different missions illustrate these
two classes. An important attribute to note is that the Lawnmower pattern can be executed
at different orientations. In Fig 5.1 two cases are shown where (a) is executed in a vertical
fashion and (b) is done diagonally. Some spiral trajectories are shown as well.

The learning problems associated with dataset pertain to the task rather than the vehicle.
There is also no mission failure information available. More details into how the learning
problems were formulated and number of samples per class will come in the following
sections.

5.3 Candidate Architectures

The trajectory classification was evaluated on six different LSTM architectures. These were
designed and parametrized to observe how the robustness adjusts with different criteria.
Figure 5.2 shows the construction of these illustrating the concatenation of some smaller
architectures. This yields in total six network architectures that are used repeatedly to
perform experiments with variations in class weight. The list below provides more details
into the construction and design of each architecture.

1. LSTM. A single input LSTM layer and one single Dense layer with a sigmoid output.

2. LSTM+. A 2-layer LSTM network with a sigmoid output.

3. FCN. A Fully Connected Network (FCN) of 3 ReLU-activated layers with a sigmoid
output. This network is also used to stack the LSTM and LSTM+ generating
LSTM-FCN and LSTM+-FCN respectively.

4. CNN-LSTM. A 1-layer CNN connected to the described LSTM network.

5. CNN-LSTM+. A 1-layer CNN connected to the described LSTM+ network.

For Figure 5.2a shows the LSTM, LSTM+ as blocks that can be connected to the FCN
to generate a new network, as illustrated but the dotted lines. The sigmoid output are hence
removed from the LSTM and LSTM+ blocks and take the inherit the sigmoid output of the
FCN. Recalling Chapter 3, sigmoid activations apply when working with binary classifiers.

The combinations of certain networks are motivated to evaluate the differences between
networks that have one or more Dense layers, a dropout regularizer, and class balancing.
Figures 5.2b and 5.2c show the stacking of CNN and LSTM networks. The CNNs are
comprised of 2 layers 1-Dimensional Convolutional operations. The citation to sequence
classification architectures mentioned in Section 3.1 (one-to-one, one-to-many, etc.) only
concern to RNNs. CNNs learn spatial information, ergo this characteristic does not exist.
However, this is motivated by the CNNs ability to effectively represent spatial information.
In the context of time-series, the 1-Dimensional convolution allows for the parameters to

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 65

(a) LSTM, LSTM+ & FCN (b) CNN-LSTM (c) CNN-LSTM+

Figure 5.2: LSTM architectures. (a) LSTM, LSTM+ and FCN architectures shown as as
stackable blocks. (b) A 1-D CNN stacked with a LSTM block. (c) A 1-D CNN stacked
with a LSTM+ block.

be shared across time. This sharing of parameters outputs a time line to denote at what
moments certain features emerge at the input. These networks have a one input CNN and
one hidden CNN layer. The stacking allows for a lower dimensional feature map be used as
input for the LSTM network variants which all have Dense sigmoid output for binary class
prediction.

The implementation of regularization techniques repeats the number of evaluations of
our architectures. For instance in the case of Class Balancing, an initial experiment is
performed to demonstrate the effect of training the most simple model, the LSTM, when the
class weights are not adjusted. Differences in performance is also assessed with including
Dropout layers to some of our networks. Both Class Balancing and Dropout are explained

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 66

in more detail in the following sections.

5.4 Class Balancing

It is often the case in real world problems were there are very few examples of a particular
class. Several methods exist to mitigate classification errors caused by class imbalance.
While some techniques focus on misclassification problems, some are also aimed at dealing
with identifying minority classes. As with any ML methodology, performance metrics are
important. However, in the case class imbalance it is important to not exclusively rely on
accuracy and observe other metrics such as the confusion matrix, precision and recall. Other
model specifications can be derived from these such as Area Under the Receiver Operating
Characteristics (AUC-ROC), sensitivity, specificity and F1 score.

The size of the sequence defines the total number of samples in the dataset. Having
shorter trajectory segments yields more examples. However, lawnmower trajectories are
usually executed in larger survey areas than spiral. Recall the chosen segment length of 50
time steps. Figure 5.3 shows the class percentage.

This motivates the use of metrics other than accuracy when tuning the parameters for
training. In addition, class balancing through setting class weights to each sample. This
allows for performing unbiased training without losing training data. Naturally, this can be
implemented when working with LSTMs. In this manner, the training process is balanced
by setting higher importances to underrepresented classes.

The heuristic used for setting balanced class weights is based on the work presented in
King et al. 2001 and is given by:

Wc = St/Ct ∗Sc (5.1)

Where Sa is the total number of samples in the dataset, Ct is the total number of
classes and Sc is the number of samples for class c. A second heuristic procedure for
assigning proportional class weights is simply to weight up the class with fewer samples
proportionally to its underrepresentation:

Wcs = Scg/Scs (5.2)

Where Wcs is the weight for the smaller class, Scg is the total number of samples for
the greater class and similarly for the smaller class, Scs . Table 5.1 summarizes the total
number of samples for this sequence length. It is expected that the model without any
weight specification will have a harder time classifying spiral trajectories.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 67

Figure 5.3: Sample percentage per trajectory type in the dataset.

Class All samples Train samples Balanced weight Proportional weight

Lawnmower 1114 746 0.58 1.0
Spiral 173 116 3.72 6.43
Total 1287 862

Table 5.1: Number of samples per class in the REGIME dataset for sequences with length
of 50 time steps. This information is used to calculated two sets of weights. Balanced
weight is based on the heuristic by King et al. 2001. Proportional weight is defined by
setting proportional importance values

5.5 Effect of Sequence Length & Dropout

The effects of sequence length and dropout are evaluated initially to asses if these
parameters should be incorporated into the main experiments.

5.5.1 Sequence Length

The first criterion that was assessed was the length of the sequence. The trajectory of the
vehicle is given as a set of navigation messages x0, ...,xT . When using LSTMs, variable
lengths of sequences can be used, i.e the time step index ranges from 1 to T . Experiments
were conducted to evaluate the effect that segmentation produces because, indistinctly of
the category, the trajectories in the REGIME dataset vary in lengths.

First, a sequence is defined as the time series array representing a a trajectory segment
of the original trajectory of size t time steps for any given type. The length of the sequence
is constructed by sub sampling the full mission sample with different non-overlapping
window widths: 100t, 50t, 20t, 15t, 10t. These were evaluated in three different
LSTM architectures. This choice of window size is selected to take into account small
long-time variation effects in the sequences. This sequence formatting accommodates
the Multiple-Input Single-Output or Many-To-One format of classification discussed in
Section 3.1, as the predictor naturally needs multiple steps or inputs to classify the trajectory

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 68

Search Domain

Fixed Settings

LSTM Layer size 100
Class Balancing Proportional

Searched Settings

optimizers [rmsprop, adam]
epochs [50, 100, 150, 200]
batches [28, 32, 64]
init [glorot uniform, normal, uniform]
dropout w [0.2, 0.25, 0.3, 0.5]
filters [28, 32, 64]
filter lengths [3, 5]

Table 5.2: Hyper-parameters for LSTM networks with Dropout

Model 100t 50t 20t 15t 10t

LSTM 95.92% 96.38% 94.57% 95.85% 96.49%
LSTM-FCN 87.76% 94.83% 93.52% 91.62% 92.92%
CNN-LSTM 91.33% 97.16% 95.51% 95.54% 96.28%

Acc Means 91.67% 96.12% 94.53% 94.33% 95.23%

Table 5.3: Selecting time step length based on Test set accuracy rates.

segment.
The Figures 5.4 show examples of how the segmentations with the different sequence

lengths look like, taking as example two missions that show both types of navigation
patterns. More trajectory examples can be found in Annex A.1.

Three candidates are evaluated to observe the effect of the sequence length: LSTM,
LSTM-FCN, and a CNN-LSTM. Table 5.2 shows the fixed and searched settings. Some
parameters were not included in the search array and are set to fixed values like input layer
size and class balancing.

The sequence length assessment was evaluated by training the Grid Search output for
the specified window sizes. Table 5.3 shows the classifiers accuracy. The sequence length
of 50 time steps recorded the highest accuracy.

5.5.2 Dropout

Recommendations have been established in Srivastava et al. 2014 for setting the dropout
unit percentage, where the classical range for Dropout units in Dense layers is to have a
value that is closer to 1.0 in the input layer as to retain the most values for input and 0.5 for
the hidden layers. In this case, the dropout is applied to the LSTM layer. The same range
of parameters from Table 5.2 are applied in these experiments.

The performance of the LSTM networks are compared with four baseline classifiers.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 69

(a) 10t (b) 10t

(c) 20t (d) 20t

(e) 50t (f) 50t

Figure 5.4: Example of two survey missions with different sequence lengths depicting both
types of trajectory patterns: Lawnmower and Spiral. The survey patterns have been isolated
from the rest of the mission and are highlighted in different colors.

The selection of these was based on the literature referenced in Chapter 2. Such are
a Gaussian HMMs and Linear SVMs based on their usage in Nascimento et al. 2010;

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 70

Mlı́ch and Chmelar 2008 and Biljecki 2012. Random Forests and Decision Trees were
also included to take into account the clustering and data structure classification methods
discussed in Lee, Han, Li, et al. 2008; Panagiotakis et al. 2009.

Small adjustments needed to be made to the data for the evaluation with the baseline
classifiers. The input format is required to be in 2D and the REGIME dataset was formatted
as 3D for the LSTMs. The data was simple unrolled the into 1D arrays to keep the sequential
nature of the samples. This maintained the number of examples used but increased the
feature space. The Gaussian HMM did not require this reformatting as it is capable of
handling sequences. In the same manner, a 10-fold cross validation training was done for
each of the baseline models.

The same class weight proportion was used for the baselines except the Gaussian HMM
as individual classifiers were trained for each class. Table 5.5 shows the metrics obtained
from test set evaluation. The F1 score and test set accuracy of the best LSTM is closely
comparable with the Random Forest model.

It was observed that by introducing a Dropout layer of to the LSTMs showed a reduction
of approximately 32% against the other combinations. Adding the Convolutional layers,
however, roughly improves the accuracy. Reduced accuracy in the LSTM with dropout
was unexpected as it is meant to prevent over-fitting, but later confirmed previous research
findings that dropout is usually not recommended for time series as it suggests that relevant
data is lost during learning (Lipton et al. 2016).

Model Initializer Optimizer Epochs Dropout Batch Filters Kernel

LSTM glorot Uniform rmsprop 150 - 64 - -
LSTM w/Dropout normal rmsprop 150 0.5 32 - -
CNN-LSMT uniform rmsprop 150 - 28 32 3

Table 5.4: Best Hyper-parameter values from Grid Search Cross-validation.

Networks Test Acc. Precision Recall F1

LSTM 0.974 0.970 0.970 0.970
LSTM w/Drop 0.591 0.900 0.590 0.650
CNN-LSTM 0.925 0.920 0.920 0.920

Baselines Test Acc. Precision Recall F1

G-HMM 0.909 0.900 0.910 0.900
L-SVM 0.870 0.930 0.870 0.890
DT 0.945 0.960 0.950 0.950
RF 0.987 0.990 0.990 0.990

Table 5.5: Results of Accuracy, Precision, Recall, and F1 score on the test set for the
LSTMs and baseline methods. Baselines are: Gaussian HMM, Linear SVM, Decision
Tree, and Random Forest.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 71

5.6 Effect of Balancing and Hyper-parameters

For these experiments Randomized Search was used for more efficient parametrization
search. As with all parameter search methods, rather than speculating what values
might work best for the networks, the parameter search makes it possible to try different
combinations of values within a specified range for different types of parameters, thus
generating a set of candidate networks with different characteristics.

The fixed settings in these experiments differ from the last because the effect of the
balancing method needs to be observed. Additionally, the initialization was also removed
from the parameter search and fixed to a Glorot uniform distribution.

The initialization of the weight also plays an important part in the design of neural
networks. In Glorot and Bengio 2010 the authors show the effects of the activation
function behaviour with different distributions for weight initialization. While their
experiments were on Dense connected networks and tested in image classification, this
paper has supported the Machine Learning community in reaching a consensus as to which
initialization-activation pairs work better together.

Generally, when using tanh-activated LSTMs, using Glorot initialization is
recommended as expressed in Eq. 5.3.

W ∼U

[
−

√
6

√
n j +n j+1

,

√
6

√
n j +n j+1

]
(5.3)

This demonstrated an improved performance versus networks initialized with uniformly
distributed weights and a sigmoid activation,

W ∼U
[
− 1√

n
,

1√
n

]
(5.4)

which shows slow and poor convergence. A different experiment in Glorot and Bengio
2010 using softsign activation,

x
1+ |x|

, also showed that although the gradient propagation

through the layers is characteristically non-linear, it tended to saturate considerably less
than the hyperbolic tangent and the gradients flow would result to be more robust.

Since it is a binary classification problem, binary cross-entropy, or log loss, is used as
the loss function for all networks. This measures the performance of the model by assigning
a probability value output between 0 and 1 when calculating error rates. This is calculated
in the following manner:

loss =−
C

∑
c=1

yo,c log(po,c), (5.5)

where C refers to the number of classes, y is the true label for the observed, o, sample
and P is the predicted label likelihood. The loss for each class is calculated separately and
then summed. In the case for binary classification, the cross-entropy can be calculated as:

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 72

Search Domain

Fixed Settings

Init glorot uniform
Epochs 100
Dense Layers FCN [64,32,16]

Searched Settings

Input Layer (LSTM & LSTM+ ver2) [4,8,16,32,64]
Hidden Layer (LSTM+ ver2) [4,8,16,32,64]
Input Layer (LSTM+) [4,8]
Hidden Layer (LSTM+) [2,3]
Filters (CNN) [32,64,128,256]
Kernel (CNN) [32,64,128,256]
Batch Size [16, 32, 64]
Optimizers [rmsprop, adam]

Table 5.6: Table showing the range of values chose for tuning the hyper-parameters.

loss =−(y log(p)+(1− y) log(1− p)) (5.6)

It’s important to pay attention to the optimizers for the following reason. In many cases,
the Adaptive Moment Estimation (Adam) algorithm (Kingma and Ba 2015) is a preferred
optimizer given that it achieves better and faster results than its counterparts Root Mean
Square Propagation (RMSProp) and Adaptive Gradient Algorithm (AdaGrad). In Li et al.
2018, visualization of the loss sketch has been said to help clarify how neural networks
generalize. The authors also reference works (Chaudhari et al. 2016; Shirish Keskar et al.
2016; Hochreiter and Schmidhuber 1997a) which state that flat minimizers produced with
small-batch training generalize better than sharp or spiking minimizers produced by large
batch sizes. However, it is mentioned that this is argued against in works (Hoffer et al.
2017; Goyal et al. 2017; Hardt and Ma 2016) which state that generalization is not directly
correlated to the curvature of the losses. Regardless, the work by authors Li et al. 2018 on
Wide-ResNets shows how flatter losses result in lower error values as opposed to sharp or
spiking losses.

A Randomized search on a set of hyper-parameters was performed in where a fixed
number of parameter setting combinations are samples from the defined domain ranges.
The randomized search is done over number of input nodes, training optimizer and training
batch size. Having established a fixed sequence size, the parameter search is run for a
generation of 10 models using a 5-fold cross validation training. This means that 5 sets of
metrics and statistics are obtained per model to evaluate its performance.

Table 5.6 shows a summary of the fixed set and randomly searched parameters along
with the domain range. The randomized sample output for each network set can be found
in Annex A.1.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 73

5.7 Results

While the number of options for parameters to tune does not generate an exhaustive
combination of options like in Grid Parameter Search, the Random Search it provides an
ample range for the selection of optimal values. The parametrization effects on accuracy
and metrics are observed. These hyper-parameter configurations are referred to as Search

n, n being the value combination identifier yielded by the Random Search. Setting a fixed
seed allows for reproducible results and allows for the same combination of parameters
to be used for the architectures to make a fair observation of the effects. The train and
validation loss convergence plots are also observed and are included in the Annex.

The analysis consists in comparing the classification statistics of the candidate models,
i.e. the ten different parameter combinations, accuracies, F1, Precision and Recall scores
per class across the validation folds. The Precision of a model is its the ability of the model
to classify all positive samples correctly. Recall is the ability of the model to catch all the
positive samples without misclassification. The F1 score is the weighted harmonic mean of
the Precision and Recall, where the best value is at 1 and worst score at 0.

The candidates are selected by studying their performance in the different class
balancing settings,i.e. balanced, proportional or no weight settings, across the cross
validations. The models with the most stability, i.e. those with small variability or spread
and high median accuracy and high or acceptable scores, are considered good candidates.

LSTM. The first evaluation is done on the most simple network. The boxplot in Figure
5.5 show the performance accuracy in the 5-fold cross-validated training for this network.
It is observed that not using a balancing setting for these experiments consistently achieve
good performance. The balancing settings have difficulty achieving good performance and
have wide spread of accuracies across the cross validation folds.

In the case of the balanced-weighted experiment, three candidates standout, Search

4, 5 and Search 8 as their medians all reach above 80% accuracy in at least two of the
three balancing experiments. The other metrics, however, are quite poor. From Figure
5.6, the most stable metrics also point to the no weights balancing setting. The model that
qualitatively showed the least spread across all balancing settings is model was Search 5.
Its for this reason that in these experiments is important to observe the class F1, Precision
and Recall scores. For instance in Search 4, where F1 score for the spiral class, despite
having a high accuracy of 86.11% it does not achieve as good performance on the class
specific metrics. Search 3, 4, and 5 achieved metrics with the least variability above 90%.

LSTM-FCN. The next set of architectures are then evaluated to further continue with the
evaluation and selection of the network. This stacked network is evaluated next in the same
manner. In this experiment, the addition of FCN showed improvement in Cross-Validation
(CV) accuracies particularly in the no weights balancing setting. These all reach accuracy

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 74

Figure 5.5: Comparison of Random Search experiments in LSTM network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

scores above 90% in this setting as shown in Figure 5.7. For the other settings, Search

6 and Search 9 are the only models whose has median accuracies are above 80% in all
settings. There are other possible candidates are that also could qualify based on their
accuracy medians. Upon revision, only configurations 0, 5, and 9 show stable results across
all classes in the other metrics. These results are shown in Figure 5.8.

LSTM+. For this network architecture, the addition of the LSTM layer requires an
additional parameter in the Random Search. Table A.2 shows the parameters for each
candidate model. Figure 5.9 shows how the same balancing setting maintains higher
accuracy scores across all configurations. Only configurations Search 0, Search 4 and
Search 6 through Search 9 were only able to achieve > 90% accuracy. Figure 5.10 shows,
however, that most of these showed large variance in the other metrics. Search 4 and Search

6 present stable class-specific CV scores across in the no weights settings. The scores of
other candidates are included in Annex 5.10.

LSTM+-FCN. The additional Dense layers these networks showed little improvement
and wider accuracy variances although this could be attributed to the number of nodes in
the LSTM networks since the layer size sampling domain is small-valued compared to the
1-layer LSTM sets. This can be supported by observing the classification reports where,
even for the non-weighted, the scores are not promising. Only experiment Search 2 has two

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 75

(a) Search 3

(b) Search 4

(c) Search 5

Figure 5.6: Class metrics for class balancing settings on weighted and non-weighed training
in LSTM network best candidate searches: (a) Search 3, (b) Search 4 and (c) Search 5.
These plots display cross-validation scores categorized by class and class average. Each
score is displayed according to class balancing setting.

balancing settings that achieve accuracy medians above 80% accuracy, however, their other
metrics have large variability. Experiments Search 4, Search 6 and Search 7 achieve the
most stable statistics. However, they present very low scoring in one CV fold.

Its interesting how the lack of class balancing does not deter the model from obtaining
acceptable results. So it might be that in this case, where the predominant class surpasses by
630 samples or 73%, is not critical and class balancing might just be required for problems
where the lack of samples for a particular is astronomic. Furthermore, the increment
of dense layers to the architectures also exhibited no improvement in the models. The
following network sets are composed of stacked LSTMs with CNNs networks that will not
include the additional Dense layers. The selection of the candidates will continue along the

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 76

Figure 5.7: Comparison of Random Search experiments in LSTM-FCN network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

(a) Search 0

Figure 5.8: Class metrics for class balancing settings on weighted and non-weighed training
in LSTM-FCN network best candidate searches: (a) Search 0, (b) Search 5 and (c) Search
9. These plots display cross-validation scores categorized by class and class average. Each
score is displayed according to class balancing setting. (cont.)

same praxis.

CNN-LSTM. The 1-D pooling does not significantly improves the accuracy results
compared to the previous LSTM networks. The balancing settings appear consistent here,
with the no weights balancing setting outperforming the other two settings. Observing the
classification report statistics for models with accuracy spreads above or near 90%, only
Search 2, 6 and 7 achieve stable metrics.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 77

(b) Search 5

(c) Search 9

Figure 5.8: Class metrics for class balancing settings on weighted and non-weighed training
in the LSTM network.

Figure 5.9: Comparison of Random Search experiments in LSTM+ network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

CNN-LSTM+. In this experiment, the additional LSTM layer seemed to reduce the
accuracy variability for the no weight balancing setting. Like in the previous example,

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 78

(a) Search 4

(b) Search 6

Figure 5.10: Class metrics for class balancing settings on weighted and non-weighed
training in the LSTM+ network best candidate searches: (a) Search 4 and (b) Search 6.
These plots display cross-validation scores categorized by class and class average. Each
score is displayed according to class balancing setting.

Figure 5.11: Comparison of Random Search experiments in LSTM+-FCN network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 79

(a) Search 4

(b) Search 6

Figure 5.12: Class metrics for class balancing settings on weighted and non-weighed
training in the LSTM+-FCN network best candidate searches: (a) Search 4, (b) Search
6 and (c) Search 7. These plots display cross-validation scores categorized by class and
class average. Each score is displayed according to class balancing setting. (cont.)

the configurations whose spreads achieved above or near 90% accuracy were observed.
These were Search 0, 1, 5 and Search 6. From these, only Search 5 showed the most stable
classification metrics.

Because the sampling search domain for the Random Search in the CNN-LSTM+
was narrowed, a second version of the CNN-LSTM+ was evaluated with the same search
domain wherein the layer size domain range is set as in the CNN-LSTM. The reason for this
domain search cutback was to compensate for the increase in number of training parameters
given the additional hidden layer in the LSTM. The insight that comes with these last results
from the CNN-LSTM is that perhaps the search domain is too narrow to yield contrasting
results. The next experiment is therefore identified as version 2 of CNN-LSTM.

CNN-LSTM+ ver2. The increase in search space indeed yielded more configurations
with better accuracies. Candidates with accuracy spreads above or close to 90% are selected
for evaluation on classification metrics. Search 0, 2, 4, 5, 7, 8 and 9 achieve this, however
only candidate 4 has the most stable spread.

From these experiments it was observed that the addition of Dense layers as a FCN
network did not necessarily increase the performance on the networks overall apart from

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 80

(c) Search 7

Figure 5.12: Class metrics for class balancing settings on weighted and non-weighed
training in the LSTM+-FCN network.

Figure 5.13: Comparison of Random Search experiments in CNN-LSTM network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

the LSTM-FCN. The same can be said about CNN layers. The stacked FCNs in the first
experiments by definition disqualify these networks from being shallow, it was deemed
relevant to include these evaluations and show that deep is not always conducive to good
performance, particularly when dealing with small datasets. The one aspect that did show
to convincingly determine good performance was avoiding setting any class balancing. An
interesting observation is that Search 4 was the configuration that was most present in the
LSTM experiments. The CNN candidates did not share a common configuration for good
scores.

These candidates are subsequently trained without cross-validation sets in all balancing
configurations to assert that in fact not setting balancing weights yields the best scores.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 81

(a) Search 2

(b) Search 6

(c) Search 7

Figure 5.14: Class metrics for class balancing settings on weighted and non-weighed
training in the CNN-LSTM network best candidate searches: (a) Search 2, (b) Search 6
and (c) Search 7. These plots display cross-validation scores categorized by class and class
average. Each score is displayed according to class balancing setting.

Their performance is recorded and displayed by F1 score pertaining to the underrepresented
spiral trajectory class, F1 c1, and Test accuracy. Figure 5.19 shows the performance
relationship where it can be observed which candidates are both accurate and robust to
class sensitivity.

It is observed that the majority of non-weighted models achieve higher than 90%
accuracy. No candidates achieve an F1 score higher than 0.8. Only non-weighted
candidates surpass the .7 mark with the exception of three other experiments with different
balancing settings. Table 5.7 summarizes the configuration hyper-parameter values for the
network candidates that satisfy the class sensitivity robustness and accuracy thresholds.

The balanced and proportional weighted models are comparable the lowest performing
model with no class balancing. The best performing candidate corresponds to a

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 82

Figure 5.15: Comparison of Random Search experiments in CNN-LSTM+ network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

Figure 5.16: Class metrics for class balancing settings on weighted and non-weighed
training in the CNN-LSTM+ network best candidate search: Search 5. This plot displays
cross-validation scores categorized by class and class average. Each score is displayed
according to class balancing setting.

CNN-LSTM network. Based on this summary, the discriminative process based on
cross-validation variance stability overlooked important high performance candidates as
observed by the non-cross validation evaluation.

To further understand how the hyper-parametrization, the following section approaches
the explainability capacities of SHAP to understand what fundamentals elements in the
parametrization play an important part in the model ability to accurately predict a navigation
trajectory. It is hoped that with this explanation the model selection will be done
in a more informed and trustworthy manner where the assessment of each model and
its hyper-parameters is evaluated from another perspective, in addition to the essential

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 83

Figure 5.17: Comparison of Random Search experiments in CNN-LSTM+2 network.
Cross-validation test accuracies are displayed for each candidate search for each class
balancing setting.

Figure 5.18: Class metrics for class balancing settings on weighted and non-weighed
training in the CNN-LSTM+2 network best candidate: Search 4. This plot displays
cross-validation scores categorized by class and class average. Each score is displayed
according to class balancing setting.

performance metrics.

5.8 Model Selection with SHAP

In the interest of understanding how the hyper-parametrization yields specific results and to
trust in the selection of a robust model for this problem, this section presents an additional
stage of evaluation of all the models trained without cross-validation sets.

Recalling Section 3.2, Shapley values are used to calculate the contributions of the input
features to the models output. SHAP are a consolidation of Shapley values adapted with

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 84

Figure 5.19: Candidates Balancing Evaluation performance in Test Accuracy and F1 score
in the underrepresented spiral trajectory class. Differences in balancing settings are noted
in blue for no balancing setting, orange for balanced weights, and green for proportional
weights.

Network Conf ID Weights AccTest(%) F1w F1 Lwn F1 Spr

LSTM 3 none 91.53 0.9204 0.9497 0.7313
LSTM 5 prop 91.06 0.9169 0.9466 0.7246

LSTM+ 6 none 91.53 0.9186 0.9503 0.7143

LSTM-FCN 0 none 92.47 0.9272 0.9559 0.7419
LSTM-FCN 5 none 92.47 0.9268 0.956 0.7377
LSTM-FCN 9 none 90.35 0.9101 0.9425 0.7007

LSTM+-FCN 7 none 92.71 0.9256 0.9582 0.7156

CNN-LSTM 2 none 93.65 0.9392 0.9627 0.7874
CNN-LSTM 6 none 91.53 0.9171 0.9507 0.7
CNN-LSTM 7 bal 91.29 0.9196 0.9478 0.7376
CNN-LSTM 7 prop 91.76 0.922 0.9513 0.7328

CNN-LSTM+ 5 none 92.24 0.9215 0.9553 0.7027

Table 5.7: Best candidates summary of performance metrics.

an additive attribution property. The sum of the SHAP values of all the input features
in a sample equals the true prediction (See Eq. 3.11). Hence, it is useful for explaining
individual predictions. This method is generally used for interpreting any machine learning
model prediction. In this case, the parametrization features and desired scoring outputs are
subsumed into their own model to better interpret how the values of such parameters can
lead to better model selection.

First a dataset is constructed based on the results obtained from all the experiments in
the no class weights balancing setting to train a neural network explainer model. In this
dataset the input features will be composed by the hyper-parametrization values. These are

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 85

LSTM units at the first and second layer, if it exists, number of Dense layers, Batch Size,
number of CNN kernels and size of CNN filter if it exists, Test accuracy and F1 for the
spiral class. These last two features are defined as the output and the rest are defined as
input. While Batch Size is not used for on-line evaluation or on the test set, it is included as
a feature in this problem to determine how it could affect the performance of the network,
in particular with the LSTMs, since these are not stateful, i.e. the state is reset after each
batch iteration.

The NN explainer model will learn the hyper-parametrization values of a candidate
network and predict the real accuracy and F1 score corresponding to the spiral class. This
model will be used to explain why it makes different predictions for different candidates
paying specific attention to the candidate robustness and classification bias. The candidate
is deemed robust if a test accuracy of ≥ 90% is obtained. The candidate is deemed class
impartial if it can achieve a score of ≥ 0.7 in the under-represented class.

The Neural Network is framed as a regressor with two Dense layers of with sizes, M =

l1 : 8, l2 : 2, using ReLU activation and Mean Squared Error (MSE) loss. One subset of the
data is used to train the model for each target output, SHAP values are calculated to find
global and local explanations for the hyper-parameters. To understand the contributions of
the input features on each output feature, plots in Figure 5.20 displays these for each of
the output features. This summary of SHAP values shows similar results for each output
feature which means that the features contribute almost in an equal manner to each feature
of the output. When the feature values are low it can be observed that they negatively
impact the output. Inversely when the features adopt higher values. The hyper-parameters
that contribute more significantly to the output are the number of LSTM units in the first
layer and the number of CNN filters.

To observe the contribution of hyper-parameter values to the Test accuracy and F1 score
in the spiral trajectory class. A few experiments are selected to observe hyper-parameter
value contributions to good and bad candidates.

5.8.1 CNN-LSTM Explanations

Starting by contrasting a bad performing CNN-LSTM experiment with a good one,
Figure 5.21 shows the single prediction explanation for a CNN-LSTM models with low
performing metrics of CNN − LST M0 = Acc : 89.65,F1cl1 : .4211. From this plot the
search hyper-parametrization values are displayed for Search 0.

Observe the output and base values f (x) and E[f (x)] . The base value E[f (x)] according
to Lundberg, Allen, and Lee 2017 is the explainer model output, i.e. the regressor model,
if there is no knowledge of any features for the current output, in other words, the mean
prediction. The different hyper-parameter values is what pushes the explainer model to
the actual result f (x). From these observations its shown how a larger number of filters
and kernel size contributes to a higher accuracy prediction. The numbers ofCNN filters,

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 86

(a) Test Accuracy

(b) F1 - Spiral Class

Figure 5.20: SHAP values contribution summary for each of the output features. This
summary shows that the feature values affect almost identically each feature of the output.
When the feature values are low it can be observed that they negatively impact the output.
Inversely when the features adopt higher values. The hyper-parameters that contribute more
significantly to the output are the number of nodes in the first LSTM layer, the size of the
CNN kernel and number of CNN filters.

size of the CNN kernel and Batch size play an important role in the outcome by positive
contributions to a bad performing model.

Let us consider now the same network on configuration Search 8 and Search 2 as shown
in Figures 5.22 and 5.23 both good performing models. Here it is observed how a smaller
batch size negatively contributes to the result, but the similar outcomes are achieved with
different number of LSTM units and size of CNN kernel.

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 87

Figure 5.21: CNN-LSTM individual explanations for one example of bad performance
metrics. This corresponds to model CNN − LST M0 = Acc : 89.65,F1cl1 : 0.4211. Bars
in red represent positive contributions and bars in blue negative contributions to the final
output in the model.

Figure 5.22: CNN-LSTM individual explanations for one example of good performance
metrics. This corresponds to model CNN − LST M8 = Acc : 93.88,F1cl1 : 0.7833. Bars
in red represent positive contributions and bars in blue negative contributions to the final
output in the model.

5.8.2 LSTM Explanations

There were also good potential candidates within the LSTM range of experiments. Take
for example LSTM-FCN candidates with configurations Search 4 and Search 5 with almost
equal scores. In the absence of feature extraction CNN layers, the larger number of LSTM

units and the stacked FCN in Search 4 (Figure 5.26) pushes the output to a good result. In
the case of Search 5 (Figure 5.25) a larger Batch size jointly contributes positively with a
reduced number of LSTM units.

Consider now Figure 5.26 corresponding to LST M4, which is parametrized in the same
manner as LST M−FCN4 except it is not stacked with a FCN network, the lack of which

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 88

Figure 5.23: CNN-LSTM individual explanations for one example of good performance
metrics. This corresponds to model CNN − LST M2 = Acc : 93.64,F1cl1 : 0.7874. Bars
in red represent positive contributions and bars in blue negative contributions to the final
output in the model.

Figure 5.24: LSTM-FCN individual explanations for one example of good performance
metrics. This corresponds to model LST M− FCN4 = Acc : 92.47,F1cl1 : 0.7333. Bars
in red represent positive contributions and bars in blue negative contributions to the final
output in the model.

exhibits a lower performance.
From this analysis it was observed that the correlation of the most influential

hyper-parameters, CNN kernel and LSTM units 1 interact the most with Batch size in
where, depending on the large or low values of the influential parameter, the model seems
to compensate for a good result or deteriorate in a bad results with Batch size. A partial
dependency can be obtained and have this effect observed more clearly as shown in Figure
5.27. Partial dependencies show the marginal effect of specific features have on the
predicted outcome in a model and would show the type of relationship the target and input
features have. Though there are few examples, the relationship shown appears to be positive

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 89

Figure 5.25: LSTM-FCN individual explanations for one example of good performance
metrics. This corresponds to model LST M− FCN5 = Acc : 92.47,F1cl1 : 0.7377. Bars
in red represent positive contributions and bars in blue negative contributions to the final
output in the model.

Figure 5.26: LSTM individual explanations for one example of bad performance metrics.
This corresponds to model LST M4 = Acc : 79.76,F1cl1 : 0.5376. Bars in red represent
positive contributions and bars in blue negative contributions to the final output in the
model.

linear.
It is important to point out the SHAP values do not provide causality, however, they

are relevant because help explain specific models. By constructing a regression problem
scores and hyper-parameters helps understand what drives the candidate outputs to certain
values. In this case, they support model selection where there is a need to implement high
performing networks with shallow configurations. The individual explanations are useful
for model selection as they help understand why each candidate gives a certain prediction
accuracy and under-represented class F1 score. In addition, they compare and contrast the
impact of each hyper-parameter, especially if transparency in the selection of a shallow
network is desired. For this trajectory classification problem both LST M−FCN candidates

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 90

(a) Partial Dependency - CNN kernel

(b) Partial Dependency - LSTM units 1

Figure 5.27: Partial dependencies of the highest contributing features with batch size, which
is the feature variable they interact the most with. Plot (a) illustrates the partial dependency
of CNN kernel and Batch size pair. Plot (b) illustrates the partial dependency of LSTM units
1 and Batch size pair.

in configurations Search 4 and Search 5 and the high scoring CNN − LST M models are
suitable candidates for deployment.

5.9 Summary

This chapter presented a series of experiments for trajectory classification on AUVs. The
purpose of these experiments was to compare shallow network candidates and identify

CHAPTER 5. TASK-ORIENTED CLASSIFICATION 91

the best model parameters. The performance of LSTMs for classifying trajectory patterns
executed by autonomous underwater vehicles was evaluated in two manners. The first, by
observing the effect of changing the trajectory sequence length and by introducing dropout
to the LSTM layers. It was concluded that for this application it might be best to not use
Dropout on LSTMs as it decreased the classification accuracy. In addition, the sequence
length did not influence greatly the robustness of the model but a fixed window size was
selected based on the best performance on the Test set.

The second evaluation was done to observe the effect of class balancing method
and hyper-parameter configurations. This analysis entailed explanation assessments for
candidate configuration to provide a clear understanding of why the target outputs were
achieved and a more informed and transparent selection of deployment models. These
conclusions were possible through SHAP explanations, a method for evaluating input
feature contributions to target outputs in a specific model.

The implementation of LSTM trajectory classifiers as part of an AUVs AI would be
valuable in the setting of field operations as these models are capable of handling raw data
and multivariate time-series. Three networks were designed and evaluated against four
baseline classifiers: Gaussian HMM, Linear SVM, Decision Tree and Random Forest. An
interesting notion arises from this evaluation. It was observed that the the Random Forest
outperformed the the best performing NN by 0.02% in F1 and 0.01% in test accuracy. This
is not to say that the Random Forest is a better choice of model for this application.

In essence, Random Forests and NNs approach problems by deconstructing them
hierarchically or instead of searching for a boundary that splits a specific dataset, like a
SVM for instance. However, the Random Forest will split a feature space in a deterministic
way whereas the NN will evaluate a feature space and emit a probabilistic observation. This
is the main motivation to opting for a NN in this application, since Random Forests are best
used when the data is tabular or modeled in ones and zeros. NNs would be best where the
data has many intermediate values. In addition, a LSTM maintains the intrinsic sequential
nature of the data. Hence, because of the nature of the data NNs is the best choice for this
application.

The narrow existing research in trajectory classification for autonomous robots permits
the work presented to be a valuable contribution in this field. In addition to producing
shallow and robust NNs applied to this problem, an important goal of this work was
to demonstrate how this application can support the autonomous monitoring of survey
missions. This problem could be further extended to other trajectories such as transitional
movements from task to task and sensor data from other subsystems. Part of the work
described in this Chapter was presented and included in the proceedings of the 2017
Workshop on Machine Learning for Signal Processing, De Lucas Alvarez, Hastie, et al.
2017.

Chapter 6

Hazard-Oriented Forecast and Detection

”I sense injuries. The data could be called ’pain’.”

-T-800, The Terminator 2

Time series forecasting is a complex problem in machine learning. Behaviour forecast
for autonomous robots behaviours is equally challenging since there are external factors
that cannot be accounted for in time series processing and therefore more difficult to model.
There are some advantages such as the stationarity of sensor data, where in other real world
problems where seasonality and trends are present and the data needs to be made stationary.

Having said that, the occurrence of hazards is an ever present situation for autonomous
robots, particularly when deployed in unknown environments. While an exhaustive
compendium of the possible dangers an autonomous robot might face is unfeasible, it is
possible to equip the system with preventive forecasting routines to best execute its tasks in
line with their purpose.

Naturally, the identification of hazards rely on the perception of the robot.
Hazard-oriented forecast is different from the two previous problems examined in chapters
4 and 5 where the framing of the problem is defined as a sequence-to-sequence problem and
not sequence-to-label. However, LSTMs are versatile and can also be used in time series
forecasting.

The approaches explored in this chapter will integrate architectures which combine
LSTMs and the Encoder-Decoder concept. The encoding and decoding of time series
works by compressing the data via an encoding function and a decoding function for
reconstructing the compressed representation. These encoders and decoders are essentially
parametric functions that can be trained to minimize the reconstruction loss. In this manner,
the Encoder-Decoder model provides a form for any neural network architecture. In the
case of the LSTM, the encoder-decoder model provides a pattern for using LSTMs to tackle
difficult sequence-to-sequence forecasting problems.

92

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 93

6.1 Application: Mobility Hazard Prediction

Autonomous robots consistently encounter unforeseen dangerous situations during mission
execution. Anticipating such events is of utter importance as it can trigger preemptive
or preventive actions that minimize damage to the system or any endangerment to the
accomplishment of a task. This chapter examines how such hazardous events can be
inferred from data. Similar to task modeling, such events are mostly characterized by the
sensing mechanisms available.

Time series analysis is certainly relevant for this task. As the rover advances into an area
where the condition of the terrain may cause it to slip or tip over the orientation sensors will
register signal overshoot. The goal is to forecast the hazard by detecting the behaviour that
leads to this overshoot. Like in Chapter 5, time-dependent analysis of the data is required
to assess the status of a system and therefore LSTMs are great candidates for capturing the
dependencies in time among a series of data streams Hochreiter and Schmidhuber 1997b.

Context During planetary survey missions, exploration rovers need to overcome
challenging situations during mobility. Unknown terrain can often pose a threat to the
completion of a mission. Steep slopes and loose soil can cause the vehicle to become
slip and flip over. Commonly planetary exploration rovers execute trajectories at a
conservative pace ingeniously designed to traverse uneven terrain. However, in the event
of an unexpected hazard to the rover, the mission can become compromised. Therefore,
timely preemptive approaches are crucial for ensuring the integrity of the robot and the
success of a mission.

This chapter keeps the general research questions in effect and, in addition, postulates
context-specific questions. Having set the context of interest for the Autonomous Vehicle,
two goals arise from this problem.

1. How early can the trajectory of the Autonomous Ground Vehicle (AGV) be forecast
accurately?

2. How accurately can a mobility hazard be anticipated?

The first question deals with determining the number of input time steps that best predict
the next n time steps taking into account the frame rate of the sensors. This is referred from
here on as the input and output sequence lengths used to train the model. The second
question deals fundamentally with an anomaly detection problem, wherein the output of
the learned model is used to detect imminent mobility hazards.

The AsguardIV dataset, used in this chapter, consists of orientation sensor data from
an AGV and applied for mobility hazards in uneven terrain in a lunar analog setting. The
following section describes in detail this dataset.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 94

6.2 AsguardIV Dataset

The name of this dataset comes from the survey rover AsguardIV designed and built at
the Robotics Innovation Center (RIC)-German Research Center for Artificial Intelligence
(DFKI). This is a collection of survey missions as part of the Environment Modeling and
Navigation for Robotic Space-Exploration (Entern) project (Domı́nguez et al. 2018). The
data was collected from the rover performing autonomous and manual navigation in a moon
crater analog environment. The crater analog was constructed based on real moon images
taken by Apollo missions and multiple of the challenges of the real environment are present,
e.g. slopes with different inclinations, rocks and boulders. The rover traverses over surfaces
with inclinations between 15◦ and 35◦.

Figure 6.1: The AsguardIV rover in a lunar analog.

The data is a collection of sensor readings from a series of 10 trials that total
approximately 250,000 samples. The readings come from the calibrated sensors module
of the rover which transmits acceleration and orientation in three axis (x,y,z) of the Inertial
Measurement Unit at approximately 100Hz. The data is in log format containing other
types of information other than the sensor readings, and thus, it required extraction of the
messages that contained only the navigational data. The most relevant message to identity
the goal behaviour in this case is the IMU data. This includes calibrated sensor readings
conforming a total number of six features:

1. Accelerometer Values in numerical float format:Accx,Accy,Accz.

2. Gyroscope Values in numerical float format: Gyrx,Gyry,Gyrz.

Similar to the REGIME dataset, this is a collection of survey missions recorded at the
RIC-DFKI space hall where a Lunar surface analog is set up (Figure 6.1). However the
application of this dataset is different. The logs are short survey missions in which the
AsguardIV rover traverses up and down from a rocky construction analog to lunar soil.
The main objective of these recordings was to register hazardous mobility functions such

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 95

as the rover tipping over while traversing uneven terrain. As such, each trial may or may
not contain such anomaly readings and are unlabeled for unsupervised learning. Upon
recording these trials, however the following mobility conditions arose:

1. Normal. No hazardous motions while traversing terrain.

2. Tip-over. When the rover flips over due to uneven and/or steep terrain.

3. Skid. When the rover slides in its moving or still tracks due to the uneven and/or
steep terrain.

Because the vehicle was being observed on-site it was possible to note for each trial if
any of these conditions took place. However if the vehicle is out of sight, the characteristic
signal patterns of the rover wheels will not easily characterize all conditions and if so, it is
not easy to differentiate by mere visual analysis what kind of hazard it is. An example of is
illustrated in Figure 6.2 where one shows a tip-over motion that required a manual stop to
avoid damage to the rover. The other could be mistaken as a hazard containing experiment,
however there was no actual hazard, but the rover descending too fast for a moment.

The robotic platform is a four star-like wheels skid rover. The star-like wheels are
conceived to help the rover traverse challenging surfaces where round wheels would have
too much slippage. The particular shape of the wheels produce an undulating profile on
the height of the robot even on flat surfaces. The design aims to facilitate navigation
in unstructured environments, like craters or caves in other planets or moons. The total
collection of sensor readings are from 10 trials from which half was taken for training and
the remaining half for evaluation.

The learning problems that will be tackled using this dataset are of forecasting and
anomaly detection. This is a very relevant topic in general in ML but is particularly
interesting and valuable for NN-enabled Autonomy for AGVs. The following section
presents how the candidate architecture is used for this purpose in more detail.

6.3 Encoder-Decoder LSTM

While LSTMs can be used for time series forecasting, there are some considerations to be
made beforehand. A LSTMs alone can be used to model one-step forecasting problems.
However, this problem requires for multi-step forecasts, that is, the forecast horizon
requires more than one time step. For this the LSTM needs to be contained within the
encoder-decoder model. The justification on using this approach concerns the interpretation
of the output. If using a standard LSTM network the number of nodes in the output layer
needs to match the number of output time steps. This could be done with an LSTM by
having the number of nodes in the output be of size n ∗m for m number of samples with
n time steps, but the time steps of each sample would be flattened in the structure of the

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 96

(a) Hazard

(b) No Hazard

Figure 6.2: Examples of the AsguardIV performing two missions. These illustrate sensor
plots across all axis for the accelerometer and gyroscopes. Figure (a) contains a mobility
hazard across all sensors (marked in red). Figure (b) shows a mission with no hazard but
some readings of the accelerometer in y could be confused as one (marked in green).

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 97

Figure 6.3: Architecture of the Encoder-Decoder LSTM. Combining the Encoder-Decoder
model with an LSTMs supports the learning of temporal structures to forecast sequences.

LSTM and each output needs to describe a specific time step for a specific sequence. This
is not optimal.

Sequence forecasting is what is fundamentally known as a sequence-to-sequence
problem. With a Encoder-Decoder model, it is possible to address this sequence prediction
problem by harnessing the time series processing capabilities of the LSTM. As reviewed in
Chapter 3 the model is comprised of two integral parts as its name states: the encoder and
the decoder. The first learns the relationship between the time steps in the input sequence.
LSTMs layers are used for this purpose wherein the output of the encoder is the learned
representation of these correlations.

Figure 6.3 shows the general architecture of the Encoder-Decoder LSTM. For this
problem hyper-parameter tuning was performed using the HBBO approach. The number of
optimal layers was also optimized. An additional factor also included lag in data. This lag
could represent any potential jumps in sensor data or intermittent sensor failures.

The sensor readings are transformed into a format that can be used for the forecasting
problem. The requirement is that for a given past sequence of readings Xt−n, ...,Xt−1

the current n time steps Xt , ...,Xt+n can be predicted. This can be framed into a
sequence-to-sequence problem where the first sequence is given as input into a model that
learns the second sequence as output.

The input-output sequences are a multivariate vector of six features:

Xt = {accelx
t ,accely

t ,accelz
t ,gyrox

t ,gyroy
t ,gyroz

t}, (6.1)

This example applies for all time steps. The superscript being the axis id of each sensor.
These experiments were done with time series cross-validation.

6.4 Model Selection

The configuration space for the HBBO optimizer was specified as the number of cells or
units in each LSTM layer with a lower boundary of 4 units and an upper boundary of 64
units. Other settings for experimentation outside the HBBO were used for experimentation
such as the network depth and sequence length. Table 6.1 list these settings.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 98

HBBO Hyper-parameter Values

Cells {4,64}
Maximum budget (Epochs) 100

Configuration Settings Values

LSTM Depth {1,2,3}
Sequence Length (in ts) {25,50,100}
Lag {0,10}
Dropout 20%

Fixed parameters Value

Loss MSE
Batches 16
Optimizer Adam

Table 6.1: Configuration and Hyper-tuning Parameters

The set of parameters yield a set of three HBBO hyper-parameter tuning experiments for
a defined network length for each sequence input-output length. This is repeated for three
settings: no lag, no lag with dropout and lag of 10 time steps. The readings come from the
calibrated sensors module at approximately 100Hz. The input-output length of 100, 50 and
25 therefore represent that the networks are forecasting sequences into 1 second, 500 and
250 milliseconds respectively. This totals to 27 experiments.

Some settings remained fixed for all the experiments. The loss metric was set to MSE
over Mean Absolute Error (MAE). Even though both metrics can be used for problems
that involve continuous random variables, MSE pays better attention at detecting extreme
values. All the networks used the efficient version stochastic gradient descent, ADAM, as
optimizer.

As previously explained, the Hyperband will increase budget on configurations that
show increased improvement at each stage of it. Naturally, these candidates have all been
trained on full budget. The results are organized categorically by non-hyper parameter
settings. The coefficient of determination, or R2 score, was used for selecting these
candidates. The train, validation and test scores are plotted side by side to observe the
learning behaviour of the networks.

At a global level, the most notable observation is that the data fit of the networks is most
stable for the lagged input of 100ms showing less variance, or less sensitivity, to the data in
all sets than the other settings. At a local level, it is relevant to note that some over-fitting
occurs the most in the 3-layer LSTM Encoder-Decoder candidates.

By isolating only the R2 scores for the test set in Figure 6.4 the global behaviour is more
noticeable. In addition, more variance is observed for networks with more than one layer in
the case of inputs with no lag. These networks consistently show outlier scores in the CV.
The time series CV is done by using 70% of one trial and the remaining 30% is used for
validation. This is to be expected as the data contains few examples of the rover exhibiting

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 99

Figure 6.4: Categorical Boxplots showing only R2 scores for the test set for each
Encoder-Decoder depth for a specific non-HBBO setting.

dangerous motions, like sliding or tipping over while ascending or descending. in addition,
only half of the data was used for training. Thus, some train sets may not contain hazardous
motions.

Some important attributes are noticeable from these preliminary results:

1. Generally, the fewer the layers of an LSTM Encoder-Decoder the best chance it will
have of it achieving a score of at least 90%

2. However, using a 10ms input lag achieves more stable scores than other settings in
smaller networks

3. A 10ms input lag consistently outperforms other settings tests in any network depth.

These evaluations struggle to reach above a .9 R2 score, but training with 70% can
improve the CV scores. The choice of using only 50% initially is solely to accelerate
accelerate the training time and set up a guideline for the parametrization. With this in
mind, all of these networks were re-trained using 70% of the data without time series CV
to validate these points.

These scores of the retrained networks are now observed in Figure 6.5. Figure 6.5a
shows the scores for all the candidates. This figure shows how an input of 250ms with a
100ms lag input consistently performs better than its counterparts in any layer depth. This
is relevant since it may be the case where a particular network may have fewer trainable
parameters than another one with a fewer number of layers. Ideally, when embedding these
networks in autonomous robots a small robust network with the least amount of trainable
parameters possible is desired for energy efficiency purposes.

Because there is no known threshold for ideal energy consumption, all the networks
that have achieved higher than a .9 R2 score are selected for comparison. A total of seven
networks qualify and they are summarized in Table 6.2. The common setting for these

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 100

(a) For all candidates (b) For variable output

Figure 6.5: Figure (a) R2 by number of parameters illustrates the hyper-parametrization
behaviour for the candidate networks according to different settings: number of layers,
input-output sequence length (IO), presence of dropout, lagged output or no lag. Similarly
figure (b) shows the same scoring for variable input-output experiments.

Setting IO (ts) Layers Cells Params Test R2

lag:100ms 25 1 [6] 666 0.925
lag:100ms 25 2 [40, 12] 19990 0.929
lag:100ms 25 3 [18, 5, 5] 4782 0.923
lag:100ms 50 1 [5] 496 0.915
lag:100ms 50 2 [14, 37] 22974 0.903
lag:100ms 100 1 [15] 3276 0.909
lag:100ms 100 2 [21, 11] 7720 0.905

Table 6.2: Settings of selected networks and their test score.

Setting In (ts) Out (ts) Layers Cells Params Test R2

lag:100ms 25 10 1 [4] 350 0.942
lag:100ms 25 5 1 [19] 5060 0.969

no lag 25 5 1 [48] 29478 0.937
no lag 25 10 1 [49] 30680 0.913

Table 6.3: Settings of selected networks and their test score.

networks is a 100ms lag input. There appears to be no improvement in score despite the
varying number of cells and layers among the networks. However, the best performing
models have input and output lengths of 250ms.

Having defined this, a second set of experiments that have a shorter output sequence
of 5 time steps but maintaining the 25 time step input was performed. Figure 6.6
illustrates the sliding window for data formatting for this setting. Figure 6.5b shows the
results the performance results and are summarized in table 6.3. The same initialization
parameters from Table 6.1 are used but this time the network depth was added to the HBBO
optimization to expedite the process.

This evaluation showed improvement of the first HBBO evaluation by 4%. Some
important notions that are taken from these findings help in selecting the deployment

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 101

Figure 6.6: Sequence input formatting for best model.

models which also respond to the first question postulated at the beginning of the Chapter:
How early can the trajectory of the AGV be forecast accurately?. Initially it was speculated
that it could be possible for some networks to forecast up to 1 second in advance. However
it was observed that the particular motion of the AGV fluctuates substantially due to the
wheel design. The models showed that the robustness could be improved by reducing the
length of the forecast sensor signal precisely with 50ms ahead of time with a 250ms input.

6.5 Hazard Forecast

The selection of the model now allows to evaluate qualitatively the robustness of the
forecast. The hazardous conditions that occur in the trials include tip-over and skidding
motions. The selected is able to accurately forecast AsguardIV’s motions along the lunar
analog. Figures in 6.7 illustrate this for each of the test trials. Recall the best network R2

score of 0.969 with all the training data.
The motion sequences for each of the test trials develop in the following manner. For

the first test trial, a goal point was set near the middle of the slope and an autonomous
mission solution was generated. Mission started and the first goal point was reached. On
the way back, the rover descended hardly and almost rolled down by tipping over. This
event can be observed in figure 6.7(a) a bit before ts = 6,000. At this point the mission was
stopped and the robot was taken down in remote operation mode.

The second test sequence presented no dangerous motions but does include a skidding
motion. This sequence was planned as a forward ascent and backward ascent. On the way
down, the rover lightly skidded in a crater and finished a smooth backward climb descent.
This can be observed near ts = 3,500.

The third test sequence repeats the same plan starting from a different location. On
descent one wheel twisted upwards and almost tipped over. This is observed in near ts =

3,250.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 102

(a) Test trial 1

Figure 6.7: Forecasts results for three test trials. Cont.

6.6 Hazard Detection

To evaluate hazard detection for the model the test loss is calculated for the predicted output.
Fundamentally, anomalies are rare and is fortuitous if they can be observed in the data or in
its distribution. However, it is usually assumed that these occur at the end of the distribution
spectrum. Using the train data distribution, a set of thresholds are selected to establish if
the predicted data corresponds to an anomaly. Figure 6.8 show these losses for each sensor
reading.

Based on these distribution plots, a set of thresholds are defined for each sensor for each
loss type. Table 6.4 shows these selections. The prediction loss is calculated for MSE and
MAE as shown in equations 6.2 and 6.3.

Loss accelx accely accelz gyrox gyroy gyroz

MSE 0.04 0.04 0.04 0.02 0.05 0.04
MAE 0.25 0.25 0.25 0.25 0.25 0.25

Table 6.4: Selected thresholds for each loss type.

lossMSE =
1
n

n

∑
j=1

(y j− ŷ)2 (6.2)

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 103

(b) Test trial 2

(c) Test trial 3

Figure 6.7: Forecasts results for three test trials.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 104

(a) MSE loss distributions

(b) MAE loss distributions

Figure 6.8: MSE loss distribution for the selected model.

lossMAE =
1
n

n

∑
j=1
|y j− ŷ|2 (6.3)

The anomaly detection is activated when the test loss passes the defined loss thresholds.
The results obtained show interesting differences on the usage of the two losses. It is
observed that each detect different nuances of anomalies. MSE penalizes errors more
heavily than MAE. This is becomes influential to the solution of this problem for the
following reasons. It is observed that the sensor readings for some axis overshoot when
a motion that leads to the rover tipping over occurs and are therefore easily recognized by
a human expert. For skidding or sliding motions however, this is a different story because
these can be confused by the natural signatures the star-shaped wheels generate.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 105

6.6.1 Detection with Mean Squared Error

Figures in 6.9 illustrate how the MSE-based detector is more sensitive to abrupt mobility
changes in the AsguardIV rover. As previously described, the rover ascends and descends
a slope. While it does this, the detector notices some minor issues while traversing the
slopes furnished with obstacles and craters. In addition, it detects the important hazardous
motions of interest in each of the test trials as well as the skid present in Test Trial 2. It is
also noted that the the most abrupt behaviours are detected in the same time stamps across
all sensor axis. This is most notable in Test trial 1.

(a) Test trial 1

Figure 6.9: Hazard detection using MSE threshold values. Cont.

6.6.2 Detection with Mean Absolute Error

In contrast, Figure 6.10 illustrates how the MAE-based detector detects less minor abrupt
motions but accurately detects hazardous movements leading to tip-over including the
skidding event in Test trial no.2.

It is observed that detection is almost always registered consistently in the same time
steps on all sensor axis. What this establishes is that the network has learned to detect these
nuances for each sensor feature where it is relevant, i.e. for each feature. The comparison
on the usage of MSE and MAE also demonstrate that both are useful depending on to the
degree of hazard one would consider more important to characterize.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 106

(b) Test trial 2

(c) Test trial 3

Figure 6.9: Hazard detection using MSE threshold values for three test trials.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 107

(a) Test trial 1

(b) Test trial 2

Figure 6.10: Hazard detection using MAE threshold values. Cont.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 108

(c) Test trial 3

Figure 6.10: Hazard detection using MAE threshold values.

The performance of the detector needs to be subsumed under the evaluation of the
forecast model. Some evaluation of anomaly detection methods suggest that in the absence
of labels, these should be manufactured by the data user. In the case of this dataset, it is
not required since it is visually possible to determine where the sensor jumps are located.
These correspond to the sharp tip-over motions of the rover. However, in the case of the
small bumping motions or skidding is not possible to determine in this dataset as they are
not visually recognizable.

The author in Goix 2016 proposes an abnormality scoring function with which to
evaluate the quality of unsupervised anomaly detection algorithms. While it has shown
to often agree with known methods that require labels such as Receiver Operating
Characteristic (ROC) and Precision-Recall (PR), the underlying assumption is that the data
used corresponds to the normal or non-anomaly class. Naturally, this does not apply for this
particular dataset. Doing so would require changing the framing of the problem altogether.

However, it is possible to perform a visual evaluation by creating histograms of the
distribution of the sensor values and the detections to observe where they are located in the
distribution. Plots shown in Figure 6.11 illustrates when in the distribution the detections
are located. The distribution and histogram plots, like in all the plots before, show the
values for each sensor axis separately. It is evident how the MAE-based thresholds detect
hazards that fall generally in the tails of the distribution more than the MSE-based detector.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 109

(a) Test trial 1

Figure 6.11: Hazard Detection Visual Evaluation. The figure illustrates the location in
the distribution of the hazards detected by the MSE and MAE detectors, red and green
respectively as shown in the legend. Cont.

The latter detects hazards that are not limited to the tail of the distribution. It is important
to keep in mind, however, that the data is composed of examples of all classes.

This shows that MSE picks up minor hazards related to the ascent and descent obstacles
in the lunar analog and that the MAE does indeed picks up the less present more important
hazards such as imminent tip-over. This demonstrates that the model itself is robust both
in forecast and detection and reiterates the initial statement about the choice of loss in the
detector depending on what types of hazards are of interest.

At the moment of deployment, the usage of equations 6.3 and 6.2 require an adjustment
of the input data due to the argument that information about the future, i.e time step t, is
not available. At the moment of evaluation on the test set, the loss equations require past
information to yield a forecast sequence, but the loss equations require the current time
step t to detect a hazard. This would simply not be possible. In practice, a 10ms would
be required in advance to be able to forecast a mobility hazard. So, effectively the forecast
would be performed with a 1 time step delay.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 110

(b) Test trial 2

(c) Test trial 3

Figure 6.11: Hazard Detection Visual Evaluation. The figure illustrates the location in
the distribution of the hazards detected by the MSE and MAE detectors, red and green
respectively as shown in the legend.

CHAPTER 6. HAZARD-ORIENTED FORECAST AND DETECTION 111

6.7 Summary

This chapter presented a solution for hazardous motion forecast and detection for an AGV,
the DFKIs AsguardIV rover. The motivation of this works stems from the need of enhanced
autonomy modules for space rovers to overcome the challenges of distanced monitoring.
For this unsupervised learning application, the goal is to forecast mobility behaviours and
detect imminent hazards, e.g. instances in where the vehicle can potentially tip-over.
The proposed solution is based on the combination of a LSTM-based Encoder-Decoder
framework. The networks learn the traversing motions while traversing a reproduction of a
lunar slope furnished with obstacles and craters with the objective of anticipating hazardous
events.

The collected data corresponds to traverses on a moon crater analog environment where
multiple challenges that match the real environment are present, e.g. slopes with different
inclinations, rocks and boulders. In the evaluated data samples, the traverses cover surfaces
with inclinations between 15◦ and 35◦. Hence, the scope of these experiments are bounded
to mobility actions of ascent and descent of a rocky slope. This data was split into training
and test sets.

A crucial challenge for this application was that the data is unlabeled and multiple
motion behaviours are present in the samples. While some of which can be identifiable,
minor mobilization hazards are not and therefore the data was kept whole and
undivided. The proposed solution reaches a robust r2 score of 0.969 under a one
layer Encoder-Decoder LSTM framework of 5,060 total parameters. In this manner,
accomplishing the set goals of depth and robustness. While in the previous Chapter an
important process for model selection was the use of SHAP values, this experiment had
parameters independent of the BO sampling and it was easier to observe the effects of
hyper-parametrization options by categorizing the results using the independent parameters.
Thus, facilitating the model selection.

This application is an example on how hazard forecast and detection would be an
invaluable attribute in an AI-enabled autonomy in space robotics for autonomous navigation
scenarios and delivers a valuable contribution to the field of risk assessment for space
rovers. This work has been submitted to the journal of Field Robotics as De Lucas Alvarez
and Kirchner 2021 and is currently under review.

Chapter 7

Conclusion

”I am putting myself to the fullest possible use, which is all I think that

any conscious entity can ever hope to do.”
-HAL 9000, 2001: A Space Odyssey

The autonomy of a robot depends greatly on the embedded routines that enable it
to sense its status and its environment. Such ability has been explored from various
perspectives in the scientific community. With the recent advancements in DL, many
relevant problems in AI have been addressed with NNs and stand now as state-of-the-art
solutions that have surpassed traditional ML methodologies.

The power consumption of such methods make their embedding into an autonomous
vehicle prohibitive. However, the advent of processing units designed to equip mobile
units, such as wearable devices and mobile robots, set a promising outlook for NN-enabled
autonomous robots in the nearing future. This work is motivated by this observation and
has focused on known and common situations encountered by autonomous robots during
field operations.

7.1 Summary of Contributions

The main objective of this work was to develop solutions to known problems that
are encountered during field operations by autonomous robots. Supported by standard
analytical ML practices, these solutions are based on LSTMs, a type of NN specific for
handling time series and sequences. A primary goal was to satisfy robustness and depth in
the frameworks to support the opportunity of these solutions to be embedded in the vehicles.
As the technology in processing units advances, it is undeniable that in the near future
autonomous robots will supported by NN-enabled AI that optimizes power consumption
without compromising accuracy.

The contributions of this work are high-performing NNs for important problems in field
robotics achieving a number of goals, specifically:

• High-performing shallow architectures. The design of shallow neural networks

112

CHAPTER 7. CONCLUSION 113

that use relevant input to reduce training and processing time without compromising
robust classification of states or tasks. Network depth requirements was fulfilled in
all the problems presented in this work. This goal was accomplished for the three
main field operation problems which had different levels of complexity:

1. Hardware Failure Classification. In the topic of sensor damage type
identification in AUV thrusters, Chapter 4 proposes a shallow LSTM-based NN
that outperforms the current stat-of-the-art in network depth and performance.
A performance comparison of different methods that identify known thruster
hardware failures from an AUV-emulating platform. This work presented
feature selection by GMM modeling to reduce the input to the network
and isolation through a HMM. The performance of these standard ML
methodologies were used as baselines. In addition, a comparison of feature
input effect on the performance was also presented. While previous works
implemented (Ranganathan et al. 2001) rule-based solutions with different
component terminals to infer the source or cause of sensor malfunction, this
solution was capable of identifying the type of fault with a single sensor output
in a shallow NN.

2. Task Status Classification. In the topic of trajectory classification for
autonomous robots, Chapter 5 presents a performance comparison on different
LSTM-based networks that classify real navigational trajectories in a AUV
performing survey missions. In addition, the performance of the methods was
evaluated based on sequence length, different balancing methods and parameter
tuning. The latter involved the use of a method commonly used to explain
learning of models, SHAP Values, but in this case, it was harnessed to observed
the effect of network depth and size to choose the best model. This provided
a more educated introspection into the selection of the networks based on its
parameter values. This establishes a new state-of-the art for this lightly explored
topic, where there is a need for shallow NN architectures that can be embedded
in an autonomous vehicle for mission monitoring.

3. Mobility Hazard Forecast and Detection. In the field risk assessment for
space rovers, Chapter 6 presents a performance comparison of different sizes
and depths of LSTM Encoder-Decoder networks to forecast mobility actions of
a space rover. The contribution to the state-of the-art comes in a model that does
not require exteroceptive information to provide a hazard or risk prediction as
a supervised learning problem (Skonieczny et al. 2019). The proposed LSTM
Encoder uses only proprioceptive information from an IMU as an unsupervised
learning problem. The NN is capable of anticipating a hazardous motion in time
for possible prevention using up to 350ms of input data counting a lag input of
100ms. This would ensure that any programmed mobility action that threatens

CHAPTER 7. CONCLUSION 114

the integrity of the mission or vehicle can be stopped in time. The detection
component involves the performance analysis of two detectors based on MAE
and MSE losses showed how they are successful at detecting different levels of
hazards successfully.

• Parameter importance for model selection. The use of SHAP values is generally
to explain a models feature learning. In this work, it is used in a different
context to assist in the selection of models based on the tuned parameters. This
methodology was developed in the conditions where hyper-parameter search was
comprehensive and the execution of experiments relevant to class imbalance support
the hyper-parameter search, as shown in Chapter 5. The adoption of this method
assisted in selecting suitable models candidates for deployment supported by
explainability methods.

7.2 Discussion and Learned Lessons

For the most part, the work presented in this dissertation demonstrates the viability
of shallow NNs to support AI-enhanced autonomy in Autonomous Robots. As the
three applications progressively increase in problem and methodology complexity some
important points were identified to take into account in future work.

The constitution of the data can define the framing of the problem. The data specific
to each problem also was influential in the way the research questions were approached.
The compilation of the data is not always gathered by oneself and thus, depending on the
nature of th problem

For instance, in the hardware failure application (Chapter 4), dealt with discrete outputs
from a printed circuit board, where in a real thruster system output the signals could be
continuous, while this may not always be the case for all systems. Despite this difference,
it was still possible to model the data into a distribution to fit into the baseline ML methods.
The manner of data collection also facilitated the classification as the RECOVERY dataset
was designed so that each sample contained only one class.

For the task classification (Chapter 5) this was not the case, as the REGIME dataset
was a collection of real missions which involved different AUV performing different
trajectories. The nature of dataset made it possible to visually asses the data and segment
it into classes, making supervised learning possible. In the third application (Chapter 6, the
AsguardIV dataset increased the complexity of the problem. Even though this was also a
collection of missions, each sample contains multiple known and unknown classes which
are difficult to visually categorize. For this reason, unsupervised learning may still require
some labeling for performance evaluation. Alternatively if the dataset allows, the samples
could be used to train class specific models and build an ensemble solution.

CHAPTER 7. CONCLUSION 115

Model tuning is not an art, but a methodical selective process. The
hyper-parametrization tuning process progressed throughout the three applications
from exhaustive to more optimized parameter selection methods. This choice increasingly
accelerated training time and selection of good candidate networks. In addition, the
combination of parameter tuning with resource allocation is also the best option for
expediting the training, e.g. the use of HBBO (Chapter 6).

However not all tuning methods work the same for all frameworks. Regularization
methods should be consistently in DL, the most common of such being Dropout. In the
work presented in this dissertation Dropout showed to consistently worsen the performance
of the LSTM networks. In the future it would be best to refrain from using Dropout with
a shallow LSTMs as the network capacity is already small and therefore it can deteriorate
performance. Other forms of regularization might be better suited when implementing
LSTMs or CNNs, such as batch normalization.

Determining depth. While there are varied opinions regarding the performance of
shallow vs. deep networks (Ba and Caruana 2013,Pascanu et al. 2014), the goal of this
work was to demonstrate robust, shallow designs for these specific problems, where data is
limited. As per the definition by Bengio 2009 the depth of a network refers to the number of
levels of non-linear operations it performs. Shallow architectures are those which integrate
1, 2, or 3 levels. By this definition, the networks presented in this work comply with this
characterization.

The design and implementation of these networks was not solely constrained to the
depth but to rigorous and methodical tuning in order to minimize the number of parameters
for each application without compromising performance metrics and in the future become
potential energy efficient solutions for embedded ML-based AI in autonomous vehicles.

The design and optimization process of the networks presented here started off by
assuming that the latter would already be shallow by limiting the search scope to such
depths and sizes. Recent advances in Application Specific Integrated Circuits (ASICs) and
Tensor Processing Units (TPUs) (Jouppi et al. 2017) have opened a research into that while
highly relevant to this work lies a bit outside of scope as there were no such processing units
embedded available in the mentioned autonomous robots. It does, however, pose relevant
research questions for future work.

7.3 Future Work

This work can be further evaluated by implementing these solutions as part of the software
suite embedded in an autonomous robot. Some recent works support the shift to data-centric
solutions, where the ML algorithm runs where the data is originated, where NNs can be
implemented in small integrated circuits, (Ando et al. 2017; Bankman et al. 2018). While
recent work on the combination of dynamic control information to enrich the information

CHAPTER 7. CONCLUSION 116

supplied to the NN (Wehbe and Krell 2017; Wehbe, Arriaga, et al. 2018), it would require
an optimization study to asses the viability of such solutions to be distilled and compressed
into more shallow networks. There has been some work in this field of strategies for pruning
and compressing are used for Deep Neural Networks (DNNs) (Cheng, Wang, et al. 2020;
Liu et al. 2020).

It is also of interest to further study the integration of forecast, classification and
detection into a single framework. As shown in Chapter 6, the forecast model output was
used to synthesize a straight-forward hazard detector. In this manner, the depth of the
network is not compromised. A comprehensive solution such as this would certainly need
to also be optimized to preserve the desired depth.

Being these meant to be data-centric solutions, the integration of continual learning for
their performance enhancement would also benefit the work in this dissertation. Recent
work in developmental systems based in NNs (Parisi et al. 2019) show the relevance for
RAS to update over time their knowledge as they interact with their environment. For
example, such methods could benefit from learning unknown anomalous or non-anomalous
navigational trajectories (Chapters 4, 5) or unexpected mobility hazards (Chapter 6), as not
all possible events can be accounted for.

Bibliography

Alessandri, A., M. Caccia, and G. Veruggio (1998). “Model-based approach to fault
diagnosis in unmanned underwater vehicles”. In: Oceans Conference Record (IEEE).
Vol. 2. IEEE, pp. 825–827.

Alessandri, A., M. Caccia, and G. Veruggio (1999). “Fault detection of actuator faults in
unmanned underwater vehicles”. In: Control Engineering Practice 7.3, pp. 357–368.

Ando, Kota et al. (2017). “BRein memory: A 13-layer 4.2 K neuron/0.8 M synapse
binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm
CMOS”. In: IEEE Symposium on VLSI Circuits, Digest of Technical Papers. Institute
of Electrical and Electronics Engineers Inc., pp. C24–C25.

Ba, Lei Jimmy and Rich Caruana (2013). “Do Deep Nets Really Need to be Deep?” In:
Advances in Neural Information Processing Systems 3.January, pp. 2654–2662.

Banerjee, S., J. Harrison, P. M. Furlong, and M. Pavone (2020). Adaptive Meta-Learning

for Identification of Rover-Terrain Dynamics. Tech. rep.

Bankman, Daniel, Lita Yang, Bert Moons, Marian Verhelst, and Boris Murmann (2018).
“An always-on 3.8µJ/86% CIFAR-10 mixed-signal binary CNN processor with all
memory on chip in 28nm CMOS”. In: Digest of Technical Papers - IEEE International

Solid-State Circuits Conference. Vol. 61. Institute of Electrical and Electronics
Engineers Inc., pp. 222–224.

Bashir, Faisal I. and Ashfaq A. Khokhar (2007). “Object Trajectory-Based Activity
Classification and Recognition using Hidden Markov Models”. In: IEEE Transactions

on Image Processing, pp. 1912–1919.

Beer, Jenay M, Arthur D Fisk, and Wendy A Rogers (2014). “Toward a framework for levels
of robot autonomy in human-robot interaction.” In: Journal of human-robot interaction

3.2, pp. 74–99.

Bengio, Y., P. Frasconi, and P. Simard (1993). “The problem of learning long-term
dependencies in recurrent networks”. In: IEEE International Conference on Neural

Networks. IEEE, pp. 1183–1188.

Bengio, Yoshua (2009). Learning Deep Architectures for AI. now Publishers Inc.

117

BIBLIOGRAPHY 118

Bengio, Yoshua, Paolo Frasconi, and Patrice Simard (1994). “Learning Long-Term
Depencencies with Gradien Descent is Difficult”. In: IEE International Conferece on

Neural Networks. San Francisco: IEEE Press, pp. 1183–1195.

Bergstra, J., D. Yamins, and D. Cox (2013). Making a Science of Model Search:

Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures.
Tech. rep.

Bergstra, James, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl (1994). Algorithms for

Hyper-Parameter Optimization. Tech. rep.

Bergstra, James and Yoshua Bengio (2012). “Random Search for Hyper-Parameter
Optimization”. In: Journal of Machine Learning Research. Vol. 13, pp. 281–305.

Bian, Xinqian, Tao Chen, Zheping Yan, Dehui Zhao, and Guang Yu (2009). “Fault diagnosis
based on grey dynamic prediction for AUV sensor”. In: Proceedings of the IEEE

International Conference on Industrial Technology, pp. 1–6.

Biljecki, Filip (2012). Automatic segmentation and classification of movement trajectories

for transportation modes.

Bishop, Christopher M. (1995). Neural Networks for Pattern Recognition. New York, NY,
USA: Oxford University Press, Inc.

Bono, R., Ga Bruzzone, Gi Bruzzone, and M. Caccia (1999). “ROV actuator fault
diagnosis through servo-amplifiers’ monitoring: an operational experience”. In: Oceans

Conference Record (IEEE). Vol. 3. IEEE, pp. 1318–1324.

Bouguelia, Mohamed Rafik, Ramon Gonzalez, Karl Iagnemma, and Stefan Byttner (2017).
“Unsupervised classification of slip events for planetary exploration rovers”. In: Journal

of Terramechanics 73, pp. 95–106.

Bozzano, M, A Cimatti, M Roveri, A Tchaltsev Fondazione, and Bruno Kessler (2011).
“A Comprehensive Approach to On-Board Autonomy Verification and Validation”.
In: International Joint Conference on Artificial Intelligence A. IJCAI’11. AAAI Press,
pp. 2398–2403.

Byon, Young-Ji, Baher Abdulhai, and Amer Shalaby (2009). “Real-Time Transportation
Mode Detection via Tracking Global Positioning System Mobile Devices”. In: Journal

of Intelligent Transportation Systems 13.4, pp. 161–170.

Chaudhari, Pratik et al. (2016). “Entropy-SGD: Biasing Gradient Descent Into Wide
Valleys”. In: CoRR.

Chen, Xiaolong, Yuru Xu, Lei Wan, and Ye Li (2010). “Sensor fault diagnosis for
autonomous underwater vehicle”. In: Proceedings - 2010 7th International Conference

on Fuzzy Systems and Knowledge Discovery, FSKD 2010. Vol. 6, pp. 2918–2923.

BIBLIOGRAPHY 119

Cheng, Min, Qian Xu, et al. (2016). “MS-LSTM: A multi-scale LSTM model for BGP
anomaly detection”. In: Proceedings - International Conference on Network Protocols,

ICNP. NetworkML, pp. 1–6.

Cheng, Yu, Duo Wang, Pan Zhou, and Tao Zhang (2020). A Survey of Model Compression

and Acceleration for Deep Neural Networks. Tech. rep.

Cho, Kyunghyun et al. (2014). Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation. Tech. rep.

Corradini, M. L., A. Monteriu, G. Orlando, and S. Pettinari (2011). “An actuator failure
tolerant robust control approach for an underwater Remotely Operated Vehicle”. In:
Proceedings of the IEEE Conference on Decision and Control, pp. 3934–3939.

De Lucas Alvarez, Mariela, Helen Hastie, and David Lane (2017). “Navigation-Based
learning for survey trajectory classification in autonomous underwater vehicles”. In:
IEEE International Workshop on Machine Learning for Signal Processing, MLSP,
pp. 1–6.

De Lucas Alvarez, Mariela and Frank Kirchner (2021). “Hazardous Mobility Forecast and
Detection in Space Rovers”. Unpublished.

De Lucas Alvarez, Mariela and David Lane (2016). “A Hidden Markov Model application
with Gaussian Mixture emissions for fault detection and diagnosis on a simulated AUV
platform”. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–4.

Dearden, Richard and Juhan Ernits (2013). “Automated fault diagnosis for an autonomous
underwater vehicle”. In: IEEE Journal of Oceanic Engineering. Vol. 38. 3, pp. 484–499.

Dimastrogiovanni, Mauro, Florian Cordes, and Giulio Reina (2020). “Terrain estimation
for planetary exploration robots”. In: Applied Sciences (Switzerland) 10.17, p. 6044.

Dodge, Somayeh, Robert Weibel, and Ehsan Forootan (2009). “Revealing the physics of
movement: Comparing the similarity of movement characteristics of different types of
moving objects”. In: Computers, Environment and Urban Systems 33.6, pp. 419–434.

Domı́nguez, Raúl, Sascha Arnold, Christoph Hertzberg, and Arne Böckmann (2018).
“Internal Simulation for Autonomous Robot Exploration of Lava Tubes”. In:
In Proceedings of the 15th International Conference on Informatics in Control,

Automation and Robotics - Volume 1:, Porto, Portugal, pp. 144–155.

Endsley, Mica R. and David B. Kaber (1999). “Level of automation effects on performance,
situation awareness and workload in a dynamic control task”. In: Ergonomics 42.3,
pp. 462–492.

BIBLIOGRAPHY 120

Erfani, Sarah M, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher Leckie
(2016). “High-dimensional and large-scale anomaly detection using a linear one-class
SVM with deep learning”. In: Pattern Recognition. Vol. 58, pp. 121–134.

Fagogenis, Georgios, Valerio De Carolis, and David M. Lane (2016). “Online fault
detection and model adaptation for Underwater Vehicles in the case of thruster failures”.
In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
pp. 2625–2630.

Falkner, Stefan, Aaron Klein, and Frank Hutter (2018). “BOHB: Robust and Efficient
Hyperparameter Optimization at Scale”. In: 35th International Conference on Machine

Learning, ICML 2018. Vol. 4, pp. 2323–2341.

Fang, Yixin (2011). “Asymptotic Equivalence between Cross-Validations and Akaike
Information Criteria in Mixed-Effects Models”. In: Journal of Data Science 9,
pp. 15–21.

Ferrell, Bob et al. (2010). “Usage of Fault Detection Isolation & Recovery (FDIR) in
Constellation (CxP) Launch Operations”. In: SpaceOps 2010 Conference, pp. 1–28.

Garcı́a, Jesus, Oscar Pérez Concha, José M. Molina, and Gonzalo De Miguel (2006).
“Trajectory classification based on machine-learning techniques over tracking data”.
In: 2006 9th International Conference on Information Fusion, FUSION, pp. 1–8.

Gaura, E. and M. Kraft (2002). “Are neural network techniques the solution to measurement
validation, monitoring and automatic diagnosis of sensor faults?” In: 41st SICE

Annual Conference (SICE). Institute of Electrical and Electronics Engineers (IEEE),
pp. 2052–2057.

Gers, F.A. and J. Schmidhuber (2000). “Recurrent nets that time and count”. In:
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the

New Millennium. IEEE, 189–194 vol.3.

Giannotti, Fosca, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi (2007). “Trajectory
pattern mining”. In: Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 330–339.

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: 13th International Conference on Artificial

Intelligence and Statistics (AISTATS). Vol. 9. Proceedings of Machine Learning
Research, pp. 249–256.

Goix, Nicolas (2016). How to Evaluate the Quality of Unsupervised Anomaly Detection

Algorithms? Tech. rep.

BIBLIOGRAPHY 121

Gonzalez, Ramon, Dimi Apostolopoulos, and Karl Iagnemma (Mar. 2018). “Slippage and
immobilization detection for planetary exploration rovers via machine learning and
proprioceptive sensing”. In: Journal of Field Robotics 35.2, pp. 231–247.

Gonzalez, Ramon, Samuel Chandler, and Dimi Apostolopoulos (2019). “Characterization
of machine learning algorithms for slippage estimation in planetary exploration rovers”.
In: Journal of Terramechanics 82, pp. 23–34.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.

Goyal, Priya et al. (2017). “Accurate, Large Minibatch SGD: Training ImageNet in 1
Hour”. In: CoRR.

Graves, Alex (2012). Supervised Sequence Labelling with Recurrent Neural Networks.
Vol. 385. Studies in Computational Intelligence. Springer.

Greff, Klaus, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen
Schmidhuber (2017). “LSTM: A Search Space Odyssey”. In: IEEE Transactions on

Neural Networks and Learning Systems 28.10, pp. 2222–2232.

Hamilton, Kelvin, Dave Lane, Nick Taylor, and Keith Brown (2001). “Fault
diagnosis on autonomous robotic vehicles with RECOVERY: An integrated
heterogeneous-knowledge approach”. In: Proceedings - IEEE International Conference

on Robotics and Automation 4, pp. 3232–3237.

Hardt, Moritz and Tengyu Ma (2016). “Identity Matters in Deep Learning”. In: CoRR.

Hinton, G E, N Srivastava, A Krizhevsky, I Sutskever, and R R Salakhutdinov (2012).
Improving neural networks by preventing co-adaptation of feature detectors. Tech. rep.

Hinton, Geoffrey (1988). Neural Network Architectures for Artificial Intelligence. USA:
American Association for Artificial Intelligence.

Hochreiter, Sepp (1991). DIPLOMARBEIT IM FACH INFORMATIK Untersuchungen zu

dynamischen neuronalen Netzen. Tech. rep.

Hochreiter, Sepp and Jürgen Schmidhuber (1997a). “Flat Minima”. In: Neural Computation

9.1, pp. 1–42.

Hochreiter, Sepp and Jürgen Schmidhuber (1997b). “Long Short-Term Memory”. In:
Neural Comput. 9.8, pp. 1735–1780.

Hoffer, Elad, Itay Hubara, and Daniel Soudry (2017). “Train longer, generalize better:
closing the generalization gap in large batch training of neural networks”. In: Advances

in Neural Information Processing Systems 30, pages 1729–1739.

Hsu, Daniel (2017). Anomaly Detection on Graph Time Series. Tech. rep.

BIBLIOGRAPHY 122

Hussain, Saed, Maizura Mokhtar, and Joe M. Howe (2015). “Sensor failure detection,
identification, and accommodation using fully connected cascade neural network”. In:
IEEE Transactions on Industrial Electronics. Vol. 62. 3. Institute of Electrical and
Electronics Engineers Inc., pp. 1683–1692.

Innocenti, M and Marcello Napolitano (2002). “Neural Networks and other Techniques
for Fault Identification and Isolation of Aircraft Systems”. In: Aerospace Engineering.
May, pp. 13–17.

Inotsume, Hiroaki, Masataku Sutoh, Kenji Nagaoka, Keiji Nagatani, and Kazuya Yoshida
(2013). “Modeling, Analysis, and Control of an Actively Reconfigurable Planetary
Rover for Traversing Slopes Covered with Loose Soil”. In: Journal of Field Robotics

30.6, pp. 875–896.

Jack, L. B. and A. K. Nandi (2002). “Fault detection using support vector machines and
artificial neural networks, augmented by genetic algorithms”. In: Mechanical Systems

and Signal Processing 16.2-3, pp. 373–390.

Jager, Georg et al. (2014). “Assessing neural networks for sensor fault detection”.
In: CIVEMSA 2014 - 2014 IEEE Conference on Computational Intelligence and

Virtual Environments for Measurement Systems and Applications, Proceedings. IEEE
Computer Society, pp. 70–75.

Jamieson, Kevin and Ameet Talwalkar (2016). Non-stochastic Best Arm Identification and

Hyperparameter Optimization. Tech. rep.

Jia, Qilong, Jinxue Xu, and Guofeng Wang (2013a). “Fault diagnosis based on grey
correlation analysis for autonomous underwater vehicle sensor”. In: Proceedings - 2013

Chinese Automation Congress, CAC 2013. IEEE Computer Society, pp. 656–659.

Jia, Qilong, Jinxue Xu, and Guofeng Wang (2013b). “Fault diagnosis based on second-order
Taylor series dynamic prediction for autonomous underwater vehicle sensor”. In:
Proceedings - 2013 Chinese Automation Congress, CAC 2013. IEEE Computer Society,
pp. 651–655.

Jomeiri, Alireza (2010). “Software fault detection for reliability using recurrent neural
network modeling”. In: ICSTE 2010 - 2010 2nd International Conference on Software

Technology and Engineering, Proceedings. Vol. 2, pp. 149–152.

Jones, Donald R (2001). “A Taxonomy of Global Optimization Methods Based on
Response Surfaces”. In: Journal of Global Optimization. Vol. 21, pp. 345–383.

Jouppi, Norman P et al. (2017). “In-Datacenter Performance Analysis of a Tensor
Processing Unit”. In: Proceedings of the 44th Annual International Symposium on

Computer Architecture. ISCA ’17. Toronto, ON, Canada: Association for Computing
Machinery, pp. 1–12.

BIBLIOGRAPHY 123

Jozefowicz, Rafal and Wojciech Zaremba (2015). An Empirical Exploration of Recurrent

Network Architectures. Tech. rep.

Juba, Brendan, Christopher Musco, Fan Long, Stelios Sidiroglou-Douskos, and Martin
Rinard (2015). “Long Short Term Memory Networks for Anomaly Detection in Time
Series”. In: Proceedings 2015 Network and Distributed System Security Symposium.
April, pp. 22–24.

Kawatsuma, Shinji, Mineo Fukushima, and Takashi Okada (2012). “Emergency response
by robots to Fukushima-Daiichi accident: summary and lessons learned”. In: Industrial

Robot: An International Journal 39.5, pp. 428–435.

King, Gary et al. (2001). Logistic Regression in Rare Events Data. Tech. rep.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representations, ICLR,

Conference Track Proceedings, pp. 1–15.

Kiranyaz, Serkan et al. (2019). “1D Convolutional Neural Networks and Applications: A
Survey”. In: Mechanical Systems and Signal Processing. Vol. 151, pp. 1–21.

Köhler, Tim, Elmar Berghöfer, Christian Rauch, and Frank Kirchner (2013). “Sensor Fault
Detection and Compensation in Lunar/Planetary Robot Missions Using Time-Series
Prediction Based on Machine Learning”. In: Acta Futura: AI in Space Workshop at

IJCAI. Vol. 9, pp. 9–20.

Kruger, Justin, Arno Rogg, and Ramon Gonzalez (2019). “Estimating Wheel Slip of a
Planetary Exploration Rover via Unsupervised Machine Learning”. In: IEEE Aerospace

Conference Proceedings. Vol. 2019-March. IEEE Computer Society, pp. 1–8.

Lane, David M. et al. (2012). “Persistent autonomy: The challenges of the PANDORA
project”. In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 9. PART 1. IFAC
Secretariat, pp. 268–273.

Lee, Jae-Gil, Jiawei Han, Xiaolei Li, and Hector Gonzalez (2008). “TraClass: Trajectory
Classification Using Hierarchical Region-Based and Trajectory-Based Clustering”. In:
Proceedings of the VLDB Endowment. Vol. 1. 1. VLDB Endowment, pp. 1081–1094.

Lee, Jae-Gil, Jiawei Han, and Kyu-Young Whang (2007). Trajectory Clustering:

A Partition-and-Group Framework. SIGMOD ’07. Association for Computing
Machinery, pp. 593–604.

Lee, Jangwon and Michael S. Ryoo (2017). “Learning Robot Activities from First-Person
Human Videos Using Convolutional Future Regression”. In: 2017 IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 472–473.

BIBLIOGRAPHY 124

Li, Lisha, Kevin Jamieson, Afshin Rostamizadeh, and Ameet Talwalkar (2018).
“Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization”. In:
Journal of Machine Learning Research. Vol. 18, pp. 1–52.

Li, Xun (2014). “Using Complexity Measures of Movement for Automatically Detecting
Movement Types of Unknown GPS Trajectories”. In: American Journal of Geographic

Information System 2.3, pp. 63–74.

Liao, Lin, Dieter Fox, and Henry Kautz (2007). Learning and Inferring Transportation

Routines. Tech. rep.

Liao, Lin, Donald J Patterson, Dieter Fox, and Henry Kautz (2006). Building Personal Maps

from GPS Data. Tech. rep.

Lipton, Zachary C., David C. Kale, Charles Elkan, and Randall Wetzel (2016). “Learning to
diagnose with LSTM recurrent neural networks”. In: 4th International Conference on

Learning Representations, ICLR 2016 - Conference Track Proceedings. International
Conference on Learning Representations, ICLR, pp. 1–18.

Liu, Jiayi, Samarth Tripathi, Unmesh Kurup, and Mohak Shah (2020). Pruning Algorithms

to Accelerate Convolutional Neural Networks for Edge Applications: A Survey. Tech.
rep.

Lu, Weining et al. (2017). “Unsupervised Sequential Outlier Detection with Deep
Architectures”. In: IEEE Transactions on Image Processing 26.9, pp. 4321–4330.

Lundberg, Scott M and Paul G Allen (2018). Consistent feature attribution for tree

ensembles. Tech. rep.

Lundberg, Scott M, Paul G Allen, and Su-In Lee (2017). “A Unified Approach to
Interpreting Model Predictions”. In: 31st Conference on Neural Information Processing

Systems. Long Beach, CA, USA, pp. 4768–4777.

Medel, Jefferson Ryan and Andreas Savakis (2016). Anomaly Detection Using Predictive

Convolutional Long Short-Term Memory Units. Tech. rep.

Mlı́ch, Jozef and Petr Chmelar (2008). “Trajectory classification based on hidden markov
models”. In: Proceedings of 18th International Conference on Computer Graphics and

Vision, pp. 101–105.

Molnar, Christoph (2019). Interpretable Machine Learning. A Guide for Making Black Box

Models Explainable.

Monteriù, Andrea, Prateek Asthan, Kimon Valavanis, and Sauro Longhi (2007a).
“Model-based sensor fault detection and isolation system for unmanned ground
vehicles: Experimental validation (part II)”. In: Proceedings - IEEE International

Conference on Robotics and Automation, pp. 2744–2751.

BIBLIOGRAPHY 125

Monteriù, Andrea, Prateek Asthan, Kimon Valavanis, and Sauro Longhi (2007b).
“Model-based sensor fault detection and isolation system for unmanned ground
vehicles: Theoretical aspects (part I)”. In: Proceedings - IEEE International Conference

on Robotics and Automation, pp. 2736–2743.

Nascimento, Jacinto C., Mário A.T. Figueiredo, and Jorge S. Marques (2010). “Trajectory
classification using switched dynamical hidden markov models”. In: IEEE Transactions

on Image Processing 19.5, pp. 1338–1348.

Obst, Oliver (2013). “Distributed Fault Detection in Sensor Networks using a Recurrent
Neural Network”. In: Neural Processing Letters. Vol. 40. 3. Kluwer Academic
Publishers, pp. 261–273.

Olah, C. (2015). Understanding LSTM Networks.

Omerdic, Edin and Geoff Roberts (2004). “Thruster fault diagnosis and accommodation for
open-frame underwater vehicles”. In: Control Engineering Practice 12.12 SPEC. ISS.
Pp. 1575–1598.

Osman, Asmaa A.E., Reda A. El-Khoribi, Mahmoud E. Shoman, and M. A. Wahby Shalaby
(2017). “Trajectory learning using posterior hidden Markov model state distribution
Posterior Hidden Markov Model State Distribution”. In: Egyptian Informatics Journal

18.3, pp. 171–180.

Panagiotakis, Costas, Nikos Pelekis, and Ioannis Kopanakis (2009). “Trajectory voting
and classification based on spatiotemporal similarity in moving object databases”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). Vol. 5772 LCNS. Springer, Berlin,
Heidelberg, pp. 131–142.

Parisi, German I., Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter
(2019). “Continual lifelong learning with neural networks: A review”. In: Neural

Networks. Vol. 113. Elsevier Ltd, pp. 54–71.

Pascanu, Razvan, Guido Montúfar, Mont´ Montúfar, and Yoshua Bengio (2014). On

the number of response regions of deep feedforward networks with piecewise linear

activations. Tech. rep.

Podder, Tarun Kanti and Nilanjan Sarkar (2001). “Fault-tolerant control of an autonomous
underwater vehicle under thruster redundancy”. In: Robotics and Autonomous Systems

34.1, pp. 39–52.

Qin, Z. and J. Gu (2009). “Sensor Fault Detection and Identification Based on Gray model
for Autonomous Underwater Vehicle”. In: The Mediterranean Journal of Measurement

and Control. Vol. 5. 2, pp. 71–77.

BIBLIOGRAPHY 126

Quinlan, J. Ross (1993). C4.5: Programs for Machine Learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Raanan, Ben Yair et al. (2016). “Automatic fault diagnosis for autonomous underwater
vehicles using online topic models”. In: OCEANS 2016 MTS/IEEE Monterey, OCE

2016. Institute of Electrical and Electronics Engineers Inc., pp. 1–6.

Rabiner, Lawrence R. (1989). “A tutorial on hidden Markov models and selected
applications in speech recognition”. In: Proceedings of the IEEE, pp. 257–286.

Rae, Graeme J.S. and Stan E. Dunn (1994). “On-line damage detection for autonomous
underwater vehicles”. In: IEEE Sympsium on Autonomous Underwater Vehicle

Technology. IEEE, pp. 383–392.

Ranganathan, N., Minesh I. Patel, and R. Sathyamurthy (2001). An intelligent system for

failure detection and control in an autonomous underwater vehicle.

Reddy, Sasank, Jeff Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava (2008).
“Determining transportation mode on mobile phones”. In: Proceedings - International

Symposium on Wearable Computers, ISWC, pp. 25–28.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). ”Why Should I Trust

You?”: Explaining the Predictions of Any Classifier. Tech. rep.

Robnik-Šikonja, Marko and Marko Bohanec (2018). “Perturbation-Based Explanations
of Prediction Models”. In: Human and Machine Learning: Visible, Explainable,

Trustworthy and Transparent. Springer International Publishing, pp. 159–175.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning
representations by back-propagating errors”. In: Nature 323.6088, pp. 533–536.

Russell, Stuart J., Peter Norvig, and John. Canny (2014). Artificial intelligence : a modern

approach, p. 1091.

SAE International (2014). Summary of SAE International’s Levels of Driving Automation

for On-Road Vehicles. Tech. rep. SAE International, p. 12.

Sas, Corina, Gregory O’Hare, and Ronan Reilly (2003). “Online trajectory classification”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics) 2659, pp. 1035–1044.

Schmidhuber, Jürgen (2015). “Deep Learning in Neural Networks: An overview”. In:
Neural Networks. Vol. 61. Elsevier Ltd, pp. 85–117.

Selmic, Rastko R., Marios M. Polycarpou, and Thomas Parisini (2006). “Actuator fault
detection in nonlinear uncertain systems using neural on-line approximation models”.

BIBLIOGRAPHY 127

In: Proceedings of the American Control Conference. Vol. 2006. Institute of Electrical
and Electronics Engineers Inc., pp. 5123–5128.

Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas
(2016). Taking the Human Out of the Loop: A Review of Bayesian Optimization. Tech.
rep.

Shapley, Lloyd S. (1953). “A value for n-person games”. In: Contributions to the Theory of

Games 2.28, pp. 307–3.

Shirish Keskar, Nitish et al. (2016). On large-batch training for deep learning:

generalization gap and sharp minima. Tech. rep.

Simani, S., F. Marangon, and C. Fantuzzi (1999). “Fault diagnosis in a power plant using
artificial neural networks: Analysis and comparison”. In: European Control Conference,

ECC 1999 - Conference Proceedings. Institute of Electrical and Electronics Engineers
Inc., pp. 2270–2275.

Skonieczny, Krzysztof, Dhara K. Shukla, Michele Faragalli, Matthew Cole, and Karl
D. Iagnemma (2019). “Data-driven mobility risk prediction for planetary rovers”. In:
Journal of Field Robotics 36.2, pp. 475–491.

Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, and Ruslan Salakhutdinov (2014).
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of

Machine Learning Research. Vol. 15, pp. 1929–1958.

Stanway, M. Jordan et al. (2015). “White shark strike on a long-range AUV in Monterey
Bay”. In: MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy

for a New World. Institute of Electrical and Electronics Engineers Inc.

Stone, M. (1977). “An Asymptotic Equivalence of Choice of Model by Cross-Validation
and Akaike’s Criterion”. In: Journal of the Royal Statistical Society. Series B

(Methodological). Vol. 39. WileyRoyal Statistical Society, pp. 44–47.

Štrumbelj, Erik and Igor Kononenko (2014). “Explaining prediction models and individual
predictions with feature contributions”. In: Knowl Inf Syst 41, pp. 647–665.

Stubbs, Kristen, Pamela J. Hinds, and David Wettergreen (2007). “Autonomy and Common
Ground in Human-Robot Interaction: A Field Study”. In: IEEE Intelligent Systems 22.2,
pp. 42–50.

Sundararajan, Mukund and Amir Najmi (2020). “The Many Shapley Values for
Model Explanation”. In: Proceedings of the 37th International Conference on

Machine Learning. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 9269–9278.

BIBLIOGRAPHY 128

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). Sequence to Sequence Learning with

Neural Networks. Tech. rep.

Wang, Jianguo, Gongxing Wu, and Lei Wan (2008). “Sensor fault diagnosis for underwater
robots”. In: Proceedings of the World Congress on Intelligent Control and Automation

(WCICA), pp. 254–259.

Wang, Yujia, Jie Zhao, and Mingjun Zhang (2008). “Research on the Sensors Condition
Monitoring Method for AUV”. In: Proceedings of the First International Conference on

Intelligent Robotics and Applications: Part I. Vol. 5314. ICIRA ’08. Springer-Verlag,
pp. 427–436.

Wehbe, Bilal, Octavio Arriaga, Mario Michael Krell, and Frank Kirchner (2018). “Learning
of Multi-Context Models for Autonomous Underwater Vehicles”. In: AUV 2018 -

2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings. Institute of
Electrical and Electronics Engineers Inc., pp. 1–6.

Wehbe, Bilal, Marc Hildebrandt, and Frank Kirchner (2017). “Experimental evaluation of
various machine learning regression methods for model identification of autonomous
underwater vehicles”. In: Proceedings - IEEE International Conference on Robotics

and Automation. Vol. 0. Institute of Electrical and Electronics Engineers Inc.,
pp. 4885–4890.

Wehbe, Bilal and Mario Michael Krell (2017). “Learning coupled dynamic models of
underwater vehicles using Support Vector Regression”. In: OCEANS 2017 - Aberdeen.
Vol. 2017-Octob. Institute of Electrical and Electronics Engineers Inc., pp. 1–7.

Wong, Cuebong, Erfu Yang, Xiu Tian Yan, and Dongbing Gu (2017). “An overview of
robotics and autonomous systems for harsh environments”. In: ICAC 2017 - 2017

23rd IEEE International Conference on Automation and Computing: Addressing Global

Challenges through Automation and Computing. Institute of Electrical and Electronics
Engineers Inc., pp. 1–6.

Xu, Xiao and J Wesley Hines (1999). “Sensor Validation and Fault Detection Using Neural
Networks”. In: Proc. Maintenance and Reliability Conference (MARCON 99), pp. 1–9.

Zhang, Mingjun, Juan Wu, and Yujia Wang (2009). “Sensor soft fault detection method
of autonomous underwater vehicle”. In: 2009 IEEE International Conference on

Mechatronics and Automation, ICMA 2009, pp. 4839–4844.

Zhang, Yu, Chris Bingham, Zhijing Yang, Michael Gallimore, and Paul Stewart (2012).
“Applied Sensor Fault Detection and Identification Using Hierarchical Clustering and
SOMNNs, with Faulted-Signal Reconstruction”. In: Proceedings of 15th International

Conference MECHATRONIKA, pp. 1–7.

BIBLIOGRAPHY 129

Zheng, Yu, Yukun Chen, Quannan Li, Xing Xie, and Wei-Ying Ma (2010). “Understanding
transportation modes based on GPS data for Web applications”. In: ACM Transactions

on The Web. Vol. 4. 1, pp. 247–256.

Zheng, Yu, Like Liu, Longhao Wang, and Xing Xie (2008). “Learning Transportation Mode
from Raw GPS Data for Geographic Applications on the Web”. In: Proceedings of

the 17th International Conference on World Wide Web. Beijing, China: Association for
Computing Machinery, pp. 247–256.

130

APPENDIX A. FIGURES 131

Appendix A

Figures

A.1 Chapter 5

A.1.1 Trajectory Segmentation Examples

(a) 15t (b) 15t

(c) 100t (d) 100t

Figure A.1: Example of two survey missions depicting both types of trajectory patterns:
Lawnmower and Spiral.

APPENDIX A. FIGURES 132

A.1.2 Model Candidates Parametrizations

Input Layer Batch Size Optimizer

Search 0 32 16 adam
Search 1 64 64 adam
Search 2 16 16 adam
Search 3 32 64 rmsprop
Search 4 64 16 rmsprop
Search 5 32 64 adam
Search 6 8 32 rmsprop
Search 7 4 64 adam
Search 8 4 32 adam
Search 9 8 64 adam

Table A.1: Table lists output parameters from the random search for the LSTM networks.

Input Layer Hidden Layer Batch Size Optimizer

Search 0 32 16 adam
Search 1 64 64 adam
Search 2 16 16 adam
Search 3 32 64 rmsprop
Search 4 64 16 rmsprop
Search 5 32 64 adam
Search 6 8 32 rmsprop
Search 7 4 64 adam
Search 8 4 32 adam
Search 9 8 64 adam

Table A.2: Table lists output parameters from the random search for the LSTM+ networks.

Kernel Filters Input Layer Batch Size Optimizer

Search 0 128 128 8 64 rmsprop
Search 1 256 128 64 32 adam
Search 2 32 32 16 16 adam
Search 3 64 256 64 32 adam
Search 4 256 64 64 64 rmsprop
Search 5 64 32 4 16 adam
Search 6 128 128 8 64 adam
Search 7 256 64 32 32 adam
Search 8 256 32 16 16 rmsprop
Search 9 256 32 32 16 rmsprop

Table A.3: Table lists output parameters from the random search for the CNN-LSTM
networks.

APPENDIX A. FIGURES 133

Kernel Filters Input Layer Hidden Layer Batch Size Optimizer

Search 0 32 64 8 3 32 rmsprop
Search 1 256 256 8 2 32 adam
Search 2 64 64 8 2 32 rmsprop
Search 3 128 32 4 2 64 adam
Search 4 256 256 4 3 64 rmsprop
Search 5 32 64 4 2 16 adam
Search 6 64 256 4 3 32 rmsprop
Search 7 32 32 8 2 64 rmsprop
Search 8 64 32 4 2 64 rmsprop
Search 9 32 128 4 2 64 adam

Table A.4: Table lists output parameters from the random search for the CNN-LSTM+
networks.

Kernel Filters Input Layer Hidden Layer Batch Size Optimizer

Search 0 64 128 32 32 32 rmsprop
Search 1 64 64 4 32 32 rmsprop
Search 2 256 32 4 64 64 rmsprop
Search 3 64 128 64 32 64 rmsprop
Search 4 64 64 32 32 32 adam
Search 5 32 256 64 64 32 adam
Search 6 32 32 4 64 64 adam
Search 7 32 32 16 16 16 rmsprop
Search 8 32 128 4 64 64 adam
Search 9 256 32 4 8 16 adam

Table A.5: Table lists output parameters from the random search for the CNN-LSTM+
networks (ver2).

A.1.3 Network Performance Results

Search Accuracy(%) F1 Score(w) F1 Score(cl0) F1 Score(cl1) Total Params

LSTM 0 nweights 92.94 0.9289 0.9593 0.7321
LSTM 1 nweights 92.47 0.9201 0.9573 0.68
LSTM 2 nweights 93.88 0.9393 0.9646 0.7759
LSTM 3 nweights 91.53 0.9204 0.9497 0.7313
LSTM 4 nweights 79.76 0.8258 0.8705 0.5376
LSTM 5 nweights 86.12 0.8013 0.9254 0.0
LSTM 6 nweights 86.82 0.8816 0.9195 0.6364
LSTM 7 nweights 86.59 0.8036 0.9281 0.0
LSTM 8 nweights 86.59 0.8036 0.9281 0.0
LSTM 9 nweights 91.06 0.9141 0.9475 0.6984

LSTM+ 0 nweights 85.88 0.827 0.9225 0.2105

APPENDIX A. FIGURES 134

LSTM+ 1 nweights 86.59 0.8036 0.9281 0.0
LSTM+ 2 nweights 86.59 0.8036 0.9281 0.0
LSTM+ 3 nweights 89.41 0.9008 0.9371 0.6667
LSTM+ 4 nweights 88.0 0.8385 0.935 0.2154
LSTM+ 5 nweights 86.59 0.8036 0.9281 0.0
LSTM+ 6 nweights 91.53 0.9186 0.9503 0.7143
LSTM+ 7 nweights 86.59 0.8036 0.9281 0.0
LSTM+ 8 nweights 86.59 0.8036 0.9281 0.0
LSTM+ 9 nweights 91.06 0.9169 0.9466 0.7246

LSTM+-FCN 0 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 1 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 2 nweights 90.59 0.9011 0.9465 0.6078
LSTM+-FCN 3 nweights 90.82 0.9086 0.9469 0.6609
LSTM+-FCN 4 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 5 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 6 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 7 nweights 92.71 0.9256 0.9582 0.7156
LSTM+-FCN 8 nweights 86.59 0.8036 0.9281 0.0
LSTM+-FCN 9 nweights 88.24 0.884 0.9317 0.5763

LSTM-FCN 0 nweights 92.47 0.9272 0.9559 0.7419
LSTM-FCN 1 nweights 90.82 0.9031 0.9479 0.6139
LSTM-FCN 2 nweights 90.82 0.9086 0.9469 0.6609
LSTM-FCN 3 nweights 90.59 0.8923 0.9476 0.5349
LSTM-FCN 4 nweights 92.47 0.9263 0.9562 0.7333
LSTM-FCN 5 nweights 92.47 0.9268 0.956 0.7377
LSTM-FCN 6 nweights 92.24 0.9252 0.9545 0.736
LSTM-FCN 7 nweights 83.76 0.7894 0.9117 0.0
LSTM-FCN 8 nweights 86.35 0.8245 0.9256 0.1714
LSTM-FCN 9 nweights 90.35 0.9101 0.9425 0.7007

CNN-LSTM 0 nweights 89.65 0.8731 0.9432 0.4211
CNN-LSTM 1 nweights 92.0 0.9125 0.955 0.6383
CNN-LSTM 2 nweights 93.65 0.9392 0.9627 0.7874
CNN-LSTM 3 nweights 94.12 0.9405 0.9662 0.7748
CNN-LSTM 4 nweights 90.82 0.898 0.9486 0.5714
CNN-LSTM 5 nweights 91.29 0.9043 0.9511 0.6022
CNN-LSTM 6 nweights 91.53 0.9171 0.9507 0.7
CNN-LSTM 7 nweights 91.29 0.9126 0.9498 0.6726
CNN-LSTM 8 nweights 93.88 0.9401 0.9644 0.7833

APPENDIX A. FIGURES 135

CNN-LSTM 9 nweights 91.53 0.9212 0.9494 0.7391

CNN-LSTM+ 0 nweights 88.24 0.8926 0.929 0.6575
CNN-LSTM+ 1 nweights 92.0 0.9194 0.9539 0.6964
CNN-LSTM+ 2 nweights 91.76 0.916 0.9528 0.6789
CNN-LSTM+ 3 nweights 91.53 0.92 0.9499 0.7273
CNN-LSTM+ 4 nweights 89.18 0.8693 0.9404 0.4103
CNN-LSTM+ 5 nweights 92.24 0.9215 0.9553 0.7027
CNN-LSTM+ 6 nweights 92.24 0.9164 0.9562 0.6598
CNN-LSTM+ 7 nweights 91.76 0.9139 0.9531 0.6602
CNN-LSTM+ 8 nweights 89.18 0.8918 0.9375 0.5965
CNN-LSTM+ 9 nweights 89.65 0.8784 0.9427 0.4634

CNN-LSTM+2 0 nweights 92.71 0.9256 0.9582 0.7156
CNN-LSTM+2 1 nweights 92.47 0.9216 0.9571 0.6923
CNN-LSTM+2 2 nweights 88.0 0.8385 0.935 0.2154
CNN-LSTM+2 3 nweights 87.53 0.8353 0.9323 0.209
CNN-LSTM+2 4 nweights 88.24 0.8487 0.9359 0.2857
CNN-LSTM+2 5 nweights 89.41 0.8997 0.9374 0.6565
CNN-LSTM+2 6 nweights 90.59 0.9101 0.9446 0.6875
CNN-LSTM+2 7 nweights 94.59 0.9453 0.9689 0.7928
CNN-LSTM+2 8 nweights 91.06 0.9077 0.9489 0.6415
CNN-LSTM+2 9 nweights 92.0 0.9231 0.953 0.7302

Table A.6: Non class-weighted results summary.

APPENDIX A. FIGURES 136

A.2 Chapter 6

A.2.1 Performance by CV Sets

(a) IO Sequence Length = 25ts/250ms

(b) IO Sequence Length = 50ts/500ms

(c) IO Sequence Length = 100ts/1s

Figure A.2: Categorical Boxplots of the best HBBO tuned networks. Each individual plot
shows the R2 score across the Cross-validation sets for each Encoder-Decoder depth for a
specific non-HBBO setting.

APPENDIX A. FIGURES 137

Figure A.3: Categorical boxplots for variable output experiments showing scores in the CV
process

	Introduction
	Motivation: Neural Network-Enabled Autonomy
	Challenges
	Examined Scenarios
	Contributions
	Document Structure
	Publications

	Related Work
	System Monitoring with Neural Networks
	Autonomy Enhancement in RAS
	Trajectory Classification
	Anomaly Perception
	Underwater Robots
	Space and Ground Robots

	Summary

	Methodology
	ML Standard Practices
	Evaluation Criteria
	Problem Framing for Sequences and Time-series
	Cross-validating Time-series
	Hyper-parameter Tuning and Regularization

	Hyper-parameter Importance
	Shapley Value
	Shapley Additive Explanations (SHAP)

	Learning on Neural Networks
	Examined Architectures
	Long Short-Term Memory Networks
	Convolutional Neural Networks
	Fully Connected Network
	Encoder-Decoder Framework

	Summary

	Hardware-Oriented Classification
	Application: Thruster System Failure
	RECOVERY Test board Dataset
	Data Observation and Analysis
	Candidate Architectures
	Gaussian Mixture Hidden Markov Model
	Current Sensor
	Thermal Drift Sensor

	1-D Convolutional Network
	Long Short-Term Memory Network
	Results
	Summary

	Task-Oriented Classification
	Application: Navigational Trajectory Classification
	REGIME Dataset
	Candidate Architectures
	Class Balancing
	Effect of Sequence Length & Dropout
	Sequence Length
	Dropout

	Effect of Balancing and Hyper-parameters
	Results
	Model Selection with SHAP
	CNN-LSTM Explanations
	LSTM Explanations

	Summary

	Hazard-Oriented Forecast and Detection
	Application: Mobility Hazard Prediction
	AsguardIV Dataset
	Encoder-Decoder LSTM
	Model Selection
	Hazard Forecast
	Hazard Detection
	Detection with Mean Squared Error
	Detection with Mean Absolute Error

	Summary

	Conclusion
	Summary of Contributions
	Discussion and Learned Lessons
	Future Work

	Figures
	Chapter 5
	Trajectory Segmentation Examples
	Model Candidates Parametrizations
	Network Performance Results

	Chapter 6
	Performance by CV Sets

