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ABSTRACT

Polyphonic sound event detection (SED) involves the pre-
diction of sound events present in an audio recording along
with their onset and offset times. Recently, Deep Neural Net-
works, specifically convolutional recurrent neural networks
(CRNN) have achieved impressive results for this task. The
convolution part of the architecture is used to extract trans-
lational invariant features from the input and the recurrent
part learns the underlying temporal relationship between au-
dio frames. Recent studies showed that the weight sharing
paradigm of recurrent networks might be a hindering factor
in certain kinds of time series data, specifically where there is
a temporal conditional shift, i.e. the conditional distribution
of a label changes across the temporal scale. This warrants
a relevant question - is there a similar phenomenon in poly-
phonic sound events due to dynamic polyphony level across
the temporal axis? In this work, we explore this question
and inquire if relaxed weight sharing improves performance
of a CRNN for polyphonic SED. We propose to use hyper-
networks to relax weight sharing in the recurrent part and
show that the CRNN’s performance is improved by ≈ 3%
across two datasets, thus paving the way for further explo-
ration of the existence of temporal conditional shift for poly-
phonic SED.

Index Terms— hypernetworks, sound event detection,
weight sharing, recurrent networks

1. INTRODUCTION

Environmental sounds carry a rich and complex mixture of
information, which is organised and categorized by the hu-
man auditory system into a distinct set of concepts known
as sound events (e.g. dog bark, door slam, car passing by).
The task of sound event detection (SED) deals with identi-
fication and temporal localisation of these sound events in
a given audio recording and can be broadly divided into two
categories - monophonic and polyphonic SED [1, 2, 3]. The
former deals with the presence of a single sound event at a
particular instance of time, regardless of the total number of
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sound events present in an audio recording; on the other hand,
the latter deals with more realistic scenarios where multiple
sounds may co-occur at any given point of time.

Multiple factors make polyphonic SED a challenging
task. First, each sound event has varied acoustic charac-
teristics and an overlap of multiple sound events results in a
spectral profile which is distinct from the individual instances.
Second, the polyphony at a given time point is unknown and
potentially large [4], which magnifies the challenge of design-
ing a robust SED system. Third, another significant challenge
that separates polyphonic sound events from music or speech
is the lack of definitive sequential structure as compared to the
temporal evolution structure of notes or phonemes. Hence,
traditional sequential machine learning methodologies such
as hidden Markov models are not so effective for polyphonic
SED as compared to music or speech processing [1].

The advent of recent approaches based on neural networks
have been quite successful for polyphonic SED, especially
convolutional recurrent neural networks (CRNNs) [5, 6]
and transformer based architectures [7, 8, 9]. In a recent
work [10], it was proposed that the hard weight sharing of
RNNs makes it difficult for the network to effectively model
certain time series data, specifically clinical data, where the
relationship between the input feature x and the label y varies
across the temporal scale. More formally, the task of an RNN
is to estimate the probabilities p (yt (k) |x1:t, θ) for event
classes k = 1, 2, ...,K in frame t, where θ denotes the clas-
sifier’s parameters and xt denotes the input feature at time
t [11]. In case of temporal conditional shift, the formula-
tion of the task changes to estimation of p (yt (k) |x1:t, t, θt)
where θ changes over time. The work in [10] explored this
phenomenon for clinical data and showed that relaxation of
weight sharing led to improvement in performance of stan-
dard recurrent cells.

Based on this result, we aim to explore if such a phe-
nomenon exists in polyphonic sound events as the fluctuation
in polyphony level and uncertain recurrence relations across
the temporal axis might induce a shift in the conditional distri-
bution. In such a scenario, weight sharing might not be the op-
timal choice to model sound events, i.e. the standard recurrent
units might not be adequately capturing the dynamic relation-
ship between features and labels across the temporal axis. To
the authors’ knowledge, the existence of such a phenomenon
has not been explored before for polyphonic SED. In this



work, we explore this idea and seek to answer the basic ques-
tion - does the introduction of relaxed weight sharing improve
the performance of CRNNs for polyphonic SED? We exploit
hypernetworks [12] to achieve relaxation of weight sharing.
Via the conducted experiments, we show that the proposed
hypernetwork-based CRNN consistently improved the seg-
ment based F-1 score of the CRNN baseline by ≈ 3 − 4%
across two synthetically generated datasets: TUT-SED Syn-
thetic 2016 [13] and Urban-SED dataset [14].

2. HYPERNETWORKS FOR SED

2.1. Dynamic hypernetworks

Hypernetworks is an approach where an auxiliary network
(called a “hypernetwork”) is used to generate the weights of
a primary network (called the “main” network) [12]. Two
kinds of hypernetworks were introduced in [12]: static and
dynamic hypernetworks. The static hypernetwork generates
the weights for each layer of a feedforward CNN while the
dynamic hypernetwork modifies the weights of an RNN or a
Long Short-Term Memory (LSTM) network [15] across the
time axis. In this work, we use the dynamic hypernetwork to
modify the weights of a CRNN architecture. For the rest of
this paper, we leave out the term dynamic and refer to the aux-
iliary LSTM as hypernetwork. The hypernetwork has its own
hidden units and its input sequence is constructed by concate-
nating the input vector xt at time t and hidden state vector
ht−1 at time t− 1 of the main LSTM network.

Adopting the formulation used in [12], a standard
LSTM [15] cell consists of a memory cell (c) and 4 gates:
input (i), output (o), forget (f), and transformation (g). The
transformation gate g is applied before updating the memory
cell c. Given an input xt, and the hidden state from previous
time step ht−1, the equation of an LSTM cell at time t is
given as

it =W i
hht−1 +W i

xxt + bi, (1)
gt =W g

hht−1 +W g
xxt + bg, (2)

ft =W f
h ht−1 +W f

x xt + bf , (3)
ot =W o

hht−1 +W o
xxt + bo, (4)

ct = σ(ft)� ct1 + σ(it)� φ(gt), (5)
ht = σ(ot)� φ(ct), (6)

where W y
x ∈ RNh×Nx and W y

h ∈ RNh×Nh are the matrices
of the input and hidden state, respectively. y refers to one
of {i, g, f, o}. by ∈ RNh denotes the bias whereas σ and φ
denote the sigmoid and tanh functions, respectively.

In the case of hypernetwork, the weights of the input, hid-
den state and bias of the main LSTM network are a func-
tion of embeddings zx, zh and zb, respectively. The embed-
dings are projected to the parameters of the main network us-
ing the matrices Wxz ∈RNh×Nx×Nz , Whz ∈RNh×Nh×Nz and
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Fig. 1. Block diagram for a dynamic hypernetwork. The dot-
ted circles represent a hypernetwork and the solid blocks rep-
resent the main LSTM. Input xt at time t and hidden state
ht−1 at time t − 1 of the main LSTM are concatenated and
fed to the hypernetwork, which computes the embeddings zx
and zh. These embeddings are used to modify the weights
Wx and Wh of the main LSTM.

Wbz∈RNh×Nz as shown in (7)-(9):

W y
x = 〈Wxzzx〉, (7)

W y
h = 〈Whzzh〉, (8)
by = 〈Wbzzb〉 (9)

The operation 〈W, z〉 here denotes a tensor dot product be-
tween W and z. As discussed earlier, at each time step, the
hypernetwork takes as input x̂t a concatenated vector of the
input xt and the hidden state ht−1 of the main LSTM cell:

x̂t =

(
ht−1

xt

)
. (10)

Let ĥt denote the hidden state of the hypernetwork at time t.
It is computed as

ĥt = φ(Wĥĥt−1 +Wx̂x̂t + b̂), (11)

zh =Wĥhĥt−1 + bĥh, (12)

zx =Wĥxĥt−1 + bĥx, (13)

zb =Wĥbĥt−1, (14)

where Wx̂ ∈ RNĥ×(Nh+Nz) and Wĥ ∈ R
Nĥ×Nĥ are the input

and the hidden state matrices of the hypernetwork. The pro-
jection matrices Wĥh,Wĥx ∈ R

Nz×Nĥ and Wĥb ∈ R
Nz are

used for computing zh, zx and zb, respectively. The opera-
tion of the hypernetwork is quite similar to a squeeze-and-
excitation network [16], where each output feature map from
a convolutional layer is reduced to a single value through
pooling operation, resulting in a vector of size n, where n is
the number of channels. This vector is passed through a small
network which produces an embedding that is projected to a
vector of size n. This vector is then used for scaling the fea-
ture maps.

In practice, equations (7) and (8) are not feasible because
memory usage becomes too large for realistic computation.



Hence, the original work proposed an intermediate hidden
vector d(z) ∈ RNh which is used to linearly scale each row
of the main LSTM weight matrices as

W y
h =Wh (d (z)) =

 d0(z)W0

. . .
dNh

(z)WNh

 . (15)

A similar formulation is applied for W y
x . d(z) is calculated

as a linear projection of the hypernetwork embedding zk,
where k refers to any of {x, h, b}. Using an intermediate
vector in this way sacrifices the ability of constructing the en-
tire weight matrix but an adaptive linear scaling of the main
LSTM weight matrix at each time step is achieved.

2.2. Model architectures for SED
Starting with a CRNN architecture, we use the presented hy-
pernetwork to modify the weights of a CRNN architecture to
introduce weight sharing relaxation to the recurrent part of
the network. The CRNN model consists of 4 CNN blocks,
followed by either a uni-directional or bi-directional LSTM
block and a fully connected layer with sigmoid activation.
Each CNN block comprises typical convolution operations
with filter size 3 × 3, rectified linear activation operations,
batch normalization and pooling operation with kernel size
of 2 × 2. The number of channels increases across the CNN
blocks in the sequence (64, 128, 256, 512) and the input to the
LSTM unit is a 512-dimensional tensor. The output is a tensor
of size 256 in case of unidirectional LSTM and 512 in case of
bidirectional LSTM.

The hidden-state size of hypernetworks ĥ was varied be-
tween {64, 128} but the size of output embedding zk was
fixed to a value of 8. For simplicity, we address the CRNN
with hypernetwork as HCRNN and the original CRNN net-
work as simply CRNN. Based on the hidden-state size of the
hypernetwork, we identify the HCRNN with hidden size 64 as
HCRNN-64 and similarly the hypernetwork with hidden size
128 is assigned the name HCRNN-128. A visual depiction of
the hypernetwork is shown in Fig. 1.

To showcase the advantage of the proposed HCRNN, we
use the original CRNN as the baseline in our experiments de-
picted in Section 3. The architecture of the CNN block for the
CRNN baseline is identical to that of the HCRNN. The dif-
ference in the two networks was in the LSTM block. For the
HCRNN, the main network consisted of a single LSTM layer
with an input size of 512 and the hidden-state size of 256. The
LSTM block of the CRNN baseline was varied between bidi-
rectional (hidden-state size of 512) and unidirectional mode
(hidden-state size of 256).

3. EXPERIMENTS

3.1. Datasets
We employed two datasets for our experiments: TUT-SED
Synthetic 2016 [13] and Urban-SED [14]. TUT-SED Syn-

thetic 2016 consists of 100 recordings synthesized using iso-
lated instances of 16 sound event classes, namely alarms&sirens,
baby crying, bird singing, bus, cat meowing, crowd applause,
crowd cheering, dog barking, footsteps, glass smash, gun
shot, horse walk, mixer, motorcycle, rain and thunder. The
total duration of the dataset is 566 minutes. 60% of the dataset
was used as training set, 20% as validation set and remaining
20% as test set. The dataset has strong annotations, implying
that annotation of every audio recording consists of the sound
event labels along with their onset and offset timestamps. The
maximum polyphony of the dataset is 5. Of note, the dataset
is not balanced with respect to the number of instances and
the total duration of each event class.

The Urban-SED dataset is also a synthetic dataset consist-
ing of 10,000 soundscapes with sound event annotations gen-
erated using Scaper [14], an open-source library for sound-
scape synthesis and augmentation. All recordings are of equal
length (10 seconds) and were sampled at 44.1kHz. Similar to
TUT-SED synthetic 2016, this dataset is also strongly labelled
with each audio recording consisting of minimum 1 and max-
imum 9 sound events classes from the list: air conditioner, car
horn, children playing, dog bark, drilling, engine idling, gun
shot, jackhammer, siren and street music with Brownian noise
as the background sound. The Brownian noise is the same for
all the audio recordings.

3.2. Metrics
In all experiments, we used the segment-wise F-score [17]
for evaluation of the SED models. The segment-wise metrics
compare the system output and ground truth in short time seg-
ments (1 second in our case) as opposed to frame-wise metrics
where the prediction of each frame is compared to the ground
truth to calculate the metric score. The class-wise F-score was
computed on the segment level.

3.3. Feature extraction
Each audio file was transformed to a 96-band log-mel spec-
trogram with a window size of 1024 samples and hop length
of 256 samples at a sampling rate of 22.5 kHz. The frequency
range for the log-mel spectrogram was 50-11,025 Hz. All
data samples were z-score normalized across the entire time-
frequency representation using the mean and standard devia-
tion of the training set. To deal with variable lengths of the
input, the spectrograms were split into fixed-size chunks us-
ing a window length of 2 seconds and hop length of 0.5 sec-
onds. We used the training/validation/test splits provided in
the meta files of the datasets discussed in Section 3.1.

3.4. Experimental settings
All the network models described in Section 2.2 were trained
under the same settings, including a maximum of 250 epochs
with a batch size of 64, a learning rate of 4e−5 and early stop-
ping with a patience of 10 epochs. Adam [18] with default
parameters was used as optimizer for all the experiments.



Table 1. Class-wise and overall segment-wise F1 scores (%)
obtained on the TUT-SED Synthetic 2016 dataset.

Category
Avg.

dur. per
event (s)

Total
dur. (s)

Bi-
baseline

Uni-
baseline

HCRNN-
128

HCRNN-
64

Horsewalk 6.4 1,614 57.1 50.4 64.9 67.4
Rain 8.2 3,975 64.3 73.4 60.4 74.8
Bird singing 6.1 2,298 71.8 64.7 71.7 52.9
Gunshot 1.7 534 78.2 64.0 71.8 67.8
Alarms&sirens 8.2 4,405 84.4 87.2 80.1 94.6
Crowd cheering 8.1 4,825 63.2 61.9 67.4 67.0
Motorcycle 7.0 3,691 56.5 38.2 51.8 42.6
Mixer 7.9 4,020 77.3 47.5 97.7 91.0
Baby crying 6.9 2,007 40.6 56.8 58.8 27.4
Footsteps 7.1 1,173 56.3 84.5 85.3 74.2
Crowd applause 7.3 3,278 61.9 55.9 74.4 68.1
Dog barking 5.0 716 72.5 23.9 65.6 91.3
Bus 7.8 3,464 41.4 49.7 50.7 38.1
Cat meowing 2.1 941 31.5 39.7 34.7 23.9
Thunder 5.9 3,007 45.6 50.1 44.1 44.3
Glass smash 1.2 621 72.1 73.1 59.1 68.4
Average - - 60.9 57.6 64.9 62.1
Overall - - 58.4 54.0 62.7 60.9

Table 2. Class-wise and overall segment-wise F1 scores (%)
obtained on the Urban-SED dataset.
Category Bi-baseline Uni-baseline HCRNN-128 HCRNN-64
Air conditioner 48.9 48.8 49.3 44.9
Car horn 75.2 70.5 77.2 64.1
Children playing 52.5 49.3 63.8 61.6
Dog bark 59.5 54.2 49.2 63.4
Drilling 66.5 54.3 55.1 61.1
Engine idling 58.9 56.4 71.6 63.9
Gun shot 64.2 67.1 68.2 70.6
Jackhammer 59.5 65.9 66.9 58.1
Siren 66.3 64.6 71.0 62.7
Street music 61.9 54.1 58.5 62.2
Average 61.5 58.5 63.1 61.7
Overall 60.9 57.8 62.3 61.2

The trained models were evaluated on the test sets across 10
epochs and the mean of the results across the epochs was
reported as the final score.

4. RESULTS AND DISCUSSION

Evaluation results across the test sets of TUT-SED-Synthetic
2016 and URBAN-SED datasets are presented in Tables 1
and 2, respectively. In the tables, Uni-baseline and Bi-
baseline represent the unidirectional and bidirectional base-
line, respectively. As can be seen, HCRNN-128 consistently
outperforms the baselines across the selected datasets. A pre-
liminary investigation of the results from Table 1 shows that
HCRNN-128 achieved a significant improvement over the
baseline for classes such as Horsewalk, crowd cheering,crowd
applause and Mixer. A common thread across these classes
is relatively long average duration per event occurrence and
also the presence of a large number of samples as compared

to other classes. In case of event classes with short average
duration per occurrence (e.g., gunshot, glass smash and cat
meowing), the performance of the HCRNN-128 deteriorates
as compared to the baselines. Since the dataset is highly
imbalanced in terms of duration, a definitive trend of model
performance cannot be confirmed across classes, although
employing hypernetworks does improve the overall class-
wise and overall segment-wise F-scores of the baselines.

In case of a class and duration balanced dataset like
Urban-SED, HCRNN-128 improves upon the performance
of the baseline networks across the majority of the classes
as shown in Table 2. HCRNN-128 shows consistent im-
provement across all classes except Dog bark over the uni-
directional baseline and also across majority of classes in
case of the bi-directional baseline, considering the fact that
the bidirectional baseline has more trainable parameters as
compared to HCRNN-128 and it also takes into account fu-
ture information as opposed to the HCRNN-128, which is
unidirectional.

The improvement in performance of the HCRNN due
to the increase in the hidden state size from 64 to 128 is
consistent across datasets and in line with the observation
from [12], where increasing the hypernetwork hidden state
size improved the results on different natural language pro-
cessing tasks. One potential reason for this could be that
since the concatenated input and the hidden vector of the
main LSTM network are linearly projected to a lower dimen-
sion, an aggressive compression might lead to loss of critical
information.

5. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel line of investigation into
CRNN models for polyphonic SED. Through our preliminary
experiments, we observed that a relaxed weight sharing mech-
anism led to an overall improvement in the performance of the
baseline models, thus indicating that there might be a shift in
the functional relationship between features and labels across
the temporal axis.

While theoretically temporal conditional shift should
be more common for short duration events, factors like
polyphony level (which is high in the TUT-SED Synthetic
2016 database) and background noise, which are more promi-
nent in longer duration events could also lead to temporal con-
ditional shift. We would need to conduct more experiments to
empirically ascertain the nature of temporal conditional shift
in future work. One methodology to explore the presence
of conditional shift could be enforcing an LSTM network to
have different parameters for each time step. Although hy-
pernetworks have the flexibility of modifying the weights of
an LSTM, it is not confirmed that they use a different scaling
vector for each time step, hence enforcing a condition to have
a different scaling vector for each time step might provide
more insights on the impact of hard weight sharing on the
performance of a CRNN model.
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