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Universality aids consistent understanding of physical properties. This includes understanding the
states of matter where a theory predicts how a property of a phase (solid, liquid, gas) changes with
temperature or pressure. Here, we show that the matter above the critical point has a remarkable
double universality not limited by pressure and temperature. The first universality is the transition
between the liquidlike and gaslike states seen in the crossover of the specific heat on the dynamical
length scale in deeply supercritical state and characterised by a fixed inversion point. The second
universality is the operation of this effect in many supercritical fluids, including N2, CO2, Pb, H20
and Ar. Despite the differences in structure and chemical bonding in these fluids, the transition
has the same fixed inversion point deep in the supercritical state. This provides new understanding
of the supercritical state previously considered to be a featureless area on the phase diagram and
a theoretical guide for improved and more efficient deployment of supercritical fluids in green and
environmental applications.

I. INTRODUCTION

Our view of the phase diagram of ordinary matter is
dominated by the three states of solid, liquid, and gas,
and the first order phase transition lines between them
which branch out from the triple point. Of these phase
transitions, two possess coexistence lines which are fi-
nite in length, including the solid-gas sublimation line
and the liquid-gas boiling line terminating at the critical
point. The matter above the critical point, the supercrit-
ical matter, was not thought of as a distinct state of mat-
ter, instead seen as a homogeneous state intermediate to
liquids and gases and lacking transitions. In particular,
distinction between liquidlike and gaslike states within
this region was thought to be impossible [1, 2]. Critical
anomalies such as the heat capacity maxima do not per-
sist far beyond the critical point and furthermore depend
on the path taken on the phase diagram [3, 4]. Under-
standing both the supercritical and liquid states involves
several fundamental problems related to dynamical disor-
der and strong inter-molecular interactions [1, 4–8]. Yet
such understanding is believed to enhance the deploy-
ment of supercritical fluids in important green and envi-
ronmental applications [2, 9–13].

The Frenkel line separates two qualitatively dynamical
regimes of particle motion: combined oscillatory and dif-
fusive motion below the line and purely diffusive above
the line [14]. Practically, the line is calculated from either
the dynamical criterion based on the minima of velocity
autocorrelation function or the thermodynamic criterion
based on the disappearance of transverse modes. This
separation of the supercritical state into two different
states involves a physical model. It is interesting to ask
whether this separation can also be done in a way which
is model-free? A related question is whether the separa-
tion involves universality across all supercritical systems
in terms of suitably identified physical parameters?

Here, we show that deeply supercritical state has
a clearly identifiable transition between liquidlike and
gaslike states seen in the dependence of the specific heat

cV on the dynamical length λd which is doubly-universal.
The first universality is a fixed path-independent inver-
sion point of the cV (λd) crossover, seen as the change
of the sign of the derivative of cV with respect to λd.
The second universality is that the location of the in-
version point is similar in all simulated fluids, includ-
ing supercritical N2, CO2, Pb, Ar and to some extent
in H2O. Supercritical water has an anomaly, displaying
similarities but also differences to the other systems in
which the universal transition is identified. The inversion
point therefore constitutes a system-independent, path-
independent, and an unambiguous separation between
two physically distinct supercritical states.

II. RESULTS AND DISCUSSION

A. Specific heat and dynamical length

Using molecular dynamics simulations (see the “Meth-
ods” section for detail), we have simulated several fluids
with different structure and chemical bonding in order
to ascertain the effect in a wide range of systems. We
simulate molecular (N2, CO2), metallic (Pb), hydrogen-
bonded network fluid (H2O) and noble Ar. Supercrit-
ical CO2 and H2O are particularly important from the
industrial point of view due to their deployment in ex-
tracting, cleaning, dissolving, environmental and green
energy applications [2, 11–13]. We simulate these flu-
ids along several isobars, isotherms, and isochores in the
deep supercritical state.

We zero in on the dependence of the specific heat cV
on the dynamical length λd = cτ , where τ is liquid relax-
ation time [15] (for details of calculation and interpreta-
tion of τ , see the Methods section) and c is the transverse
speed of sound. The specific heat, cV (heat capacity per
atom), is an obvious important choice of a thermody-
namic quantity because it reflects the degrees of freedom
in the system. The role of the dynamical length λd is
that it sets the upper range of wavelengths of transverse
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FIG. 1: Specific heat cV in the units of kB as a function
of the dynamical length λd in supercritical nitrogen across 7
phase diagram paths spanning the supercritical state up to
240 times the critical temperature and 3700 times the critical
pressure, showing the collapse onto the main sequence with
inversion point at cV ≈ 2.9 and λd = 1 Å. Here and elsewhere
kB = 1.

phonons in the liquidlike regime of supercritical dynamics
below the Frenkel line (FL) [14]. Details of this mech-
anism are given in the Methods section. In the gaslike
dynamics above the FL, λd corresponds to the particle
mean free path and sets the wavelength of the remaining
longitudinal mode. This way, λd governs the phase space
available to phonons in the system. Since the energy of
these phonons contributes to liquid cV [4–8], we predict
a unique universal relationship between cV and λd in the
supercritical state.

We show the calculated plots of cV on λd in nitrogen,
carbon dioxide, lead and water in Figs. 1-4. We set
kB = 1 everywhere in the paper. The variation of cV and
λd shown in these Figures corresponds to a very wide
range of pressure and temperature. To illustrate this,
we also plot several representative paths simulated on
the pressure and temperature phase diagram using the
argon data [16] in Fig. 5 and the corresponding plot cV
vs λd in Fig. 6.

The dependence of cV on λd across all simulated paths
nearly collapses onto a group of “c”-shaped curves, which
we refer to as the main sequence. The main sequence is
“c”-shaped and has an inversion point corresponding to
the change of the sign of the derivative of cv with respect
to λd.

The origin of the inversion point is as follows. The
dynamical length always has a minimum as a function
of temperature when crossing from liquidlike to gaslike
regimes of particle dynamics. Recall that this crossover
is related to the dynamical crossover at the Frenkel line
(FL) [14]. In the liquidlike regime below the FL, parti-
cle dynamics combines oscillatory motion around quasi-

FIG. 2: Specific heat cV as a function of the dynamical length
λd in supercritical carbon dioxide across 6 phase diagram
paths spanning the supercritical state up to 33 times the crit-
ical temperature and 550 times the critical pressure, showing
the collapse onto the main sequence with inversion inversion
point at cV ≈ 2.9 and λd = 1 Å.

FIG. 3: Specific heat cV as a function of dynamical length λd

in supercritical lead along 8 phase diagram paths spanning
the supercritical state up to 20 times the critical pressure and
3400 times the critical temperature, showing the collapse onto
the main sequence but with path dependence remaining. The
different paths exhibit the same qualitative behaviour and
share an inversion point of cV ≈ 2.0 and λd ≈ 1 Å.

equilibrium positions and flow-enabling diffusive jumps
between these positions [15]. In this regime, τ and
λd = cτ decrease with temperature. In the gaslike regime
above the FL, the oscillatory component of particle mo-
tion is lost, leaving the diffusive jumps only [14]. In this
regime, λd becomes the particle mean free path which
increases with temperature (see the Methods section for
more details). The inversion point is therefore related
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FIG. 4: Specific cV as a function of dynamical length λd in
supercritical water along 8 phase diagram paths spanning the
supercritical state up to 15 times the critical temperature and
500 times the critical pressure, showing significant differences
in behaviour between different phase diagram paths including
the location of the inversion point in cV and λd.
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FIG. 5: Paths on the phase diagram and simulated pressure
and temperature points for argon. Also labelled are the state
points where the transition at the inversion point takes place.
The triple point, the critical point, together with the boiling
and melting lines are shown.

to the transition between liquidlike and gaslike particle
dynamics.

The values of λd and cV at the inversion point are phys-
ically significant. The value of λd = 1 Å corresponds to
the ultraviolet cutoff, approximately equal to the short-
est length scale in the condensed matter system: the in-
teratomic separation set by the length of the chemical
bond. When λd matches this lengthscale, the fluid stops
supporting all transverse phonons simply because the
modes with shorter wavelength are non-existent. Con-

FIG. 6: Specific cV as a function of the dynamical length,
λd = cτ across 9 paths spanning the supercritical state of ar-
gon up to 300 times the critical temperature and 8000 times
the critical pressure. The data are from Ref. [16]. All these
paths collapse onto the main sequence curve, thereby un-
dergoing a unified dynamic-thermodynamic transition at the
path-independent inversion point cV ≈ 1.9 and λd = 1 Å.

comitantly, particle dynamics can be viewed as the mo-
tion with the particle mean free path approximately equal
to the interatomic separation.

The value of cV of about 2 in monatomic argon and
lead is important too. cV = 2 corresponds to the loss
of the contributions from the two transverse phonon
branches, with only the kinetic part

(
cV = 3

2

)
and the

potential part of the longitudinal mode
(
cV = 1

2

)
remain-

ing. Since this loss corresponds to the disappearance of
the oscillatory component of particle motion, cV = 2 is
taken as a thermodynamic criterion of the FL [8, 14].
Phonon anharmonicity can change this result by a rela-
tively small amount [8], and the disappearance of trans-
verse modes corresponds to cV = 2 approximately. The
inversion point in nitrogen and carbon dioxide corre-
sponds to cV = 2.8−2.9 (in molecular systems, cV is heat
capacity per molecule) due to the additional rotational
term contributing 1 to cV . Subtracting 1 from calculated
cV , we arrive at cV = 1.8− 1.9 as in monatomic fluids.

We note that the c-plot is not limited in pressure and
temperature as long as the system remains chemically
unaltered (the same proviso as for the melting line), ex-
tending to the entire supercritical state of matter.

All phase diagram paths of different types in argon,
nitrogen and carbon dioxide collapse onto the main se-
quence curve. As discussed in the next section in more
detail, cV (λd) along different phase diagram paths fol-
lows the same “c”-shape of the main sequence in lead
but moderate path dependence remains far from the in-
version point. This could be related to the electronic
contribution (not accounted for in the theory based on
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phonons) represented by the many-body empirical po-
tential in classical MD simulations.

Water, however, shows a different behavior in Figure
4. This is not unexpected, given that water possesses
many anomalies which continue to inspire enquiry and
research [17, 18]. Water’s supercritical state is little un-
derstood despite extensive exploitation in industrial and
environmental applications [2, 11–13]. The specific heat
of liquid water at the melting point at atmospheric pres-
sure is almost twice as high as that of ice and is related
to large “configurational” contribution to the liquid heat
capacity. This contribution is related to water-specific
hydrogen-bonded network undergoing the coordination
change from 4 to 6, with the associated contribution to
entropy and specific heat [19]. This effect precludes the
description of water’s heat capacity using phonons only
as discussed earlier. Although different paths still result
in the c-shaped curves, we see significant path depen-
dence in Fig. 4. cV at the inversion point varies in the
range of about 5-6 per molecule. This higher cV can be
understood as a result of the additional configurational
term in water mentioned earlier as well as the rotational
term. Nevertheless, the inversion points corresponds to
λd close to 1 Å as in previous fluids.

B. Path dependence

The universality of the inversion point and “c”-shaped
main sequence curves observed in the previous section
is best taken in the context of the path dependence of
cV as a function of parameters other than the dynam-
ical length λd. In this study we performed simulations
along isobars, isotherms, and isochores. The dynamical
parameter τ , the relaxation time introduced in the main
article, provides a way to compare cV vs τ along differ-
ent paths. In Fig. 7 we observe substantial path depen-
dence of cV (τ) which manifests in several different ways.
The first is that different paths, particularly isochores,
have different shapes from one another. The second is
that these curves do not coincide at the values of cV or
τ . Third, there is no fixed inversion point. This is to
be contrasted to the main sequence curves seen in Fig-
ures 1-4 and 6, wherein all phase diagram paths share a
cross-system universal fixed inversion point at the min-
imal value of about λd = 1 Å and cV = 2 (cV = 2 in
monatomic fluids or appropriately modified cV in molec-
ular fluids).
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FIG. 7: cV of simulated Ar, N2, CO2 and Pb as a function of
relaxation time τ across different diagram paths.
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In summary, we see very different plots depending on
which path on the phase diagram is chosen: there is no
fixed inversion point, and all curves are far away from
each other. This variation is removed once we plot cV vs
λd = cτ as seen in Figures 1-4 and 6.

Similarly to λd, τ is a dynamical parameter. However
the stark path dependence of cV (τ) emphasises that the
c-transition is not a consequence of simply reducing cV
to dynamics, but that the introduction of the special new
dynamical parameter λd = cτ is necessary to achieve a
fixed inversion point, data collapse and observe double
universality discussed in the next section.

We observe that although there is a moderate path
dependence of cV (λd) for lead in Figure 3, this path de-
pendence of cV (τ) in Figure 7 is much more profound.
Hence in cases where the cV (λd) plot does not achieve
the full data collapse, it brings the paths significantly
closer together.

C. Double universality

We now come to the main finding of this work related
to double universality of the c-transition. The first uni-
versality is that for each system, the c-transition plot
has an inversion point which is fixed and corresponds to
about λd = 1 Å and cV = 2 (cV = 2 for monatomic
systems or appropriately modified cV in molecular sys-
tems) for all paths on the phase diagram, including iso-
bars, isochores and isotherms, spanning orders of magni-
tude of temperature and pressure. This inversion point
provides an unambiguous, theory-independent and path-
independent, transition between liquidlike and gaslike
states in the sense discussed earlier. The second univer-
sality is that this behavior is generic on the supercritical
phase diagram and is the same for all fluids simulated.

We now analyse our four systems (which excludes wa-
ter) on the same set of axes. In order to compare,
we must remove the rotational degrees of freedom from
the heat capacity of nitrogen and carbon dioxide, which
amounts to subtracting 1 from cV as mentioned earlier.
This inter-system plot is presented in Fig. 8a.

The four fluids exhibit qualitatively similar main se-
quence curves: the “c”-shape is present in all curves, and
the divergent liquidlike branches converge into almost the
same gaslike branch. This plot exhibits what we are call-
ing “double universality”: the function cV (λd) across not
only different phase diagram paths but also across differ-
ent fluids converges at the universal inversion point of
cV ≈ 2, λd ≈ 1 Å. This inversion point therefore consti-
tutes a system independent, path independent, and un-
ambiguous model-free separation between liquidlike and
gaslike states in the supercritical state.

To draw the analogy with ordinary phase transitions,
we recall the behaviour of liquid and gas densities on the
coexistence line as the critical point is approached, de-
picted in Fig. 8b. The experimental relationship between
reduced density and reduced temperature of the coexist-

ing liquids and gases is system-independent for several
small noble and molecular elements near the critical point
[20]. In this plot, the specific microscopic details of dif-
ferent systems are often irrelevant to the qualitative be-
haviour near a phase transition, and the transition falls
into a universality class determined by system symme-
tries and dimensionality [21].

The plots in Fig. 8a depict the relationship between a
thermodynamic quantity, cV , and a dynamical quantity,
λd. It is in this sense that we consider the c-transition
to represent a dynamical-thermodynamic transition. The
system independence of the main sequence for simple flu-
ids is further suggestive of a universal transition oper-
ating in the supercritical state. The fixed point of this
dynamical-thermodynamic transition approximately cor-
responds to (λd = 1 Å, cV = 2).

We also note that the “c”-transition is not observed in
proximity to the critical point. The critical anomalies,
caused by diverging correlation lengths, present in this
region disrupt the relationship between the dynamical
length and the heat capacity in all systems studied here.
As mentioned earlier, the inversion point is far above the
critical.

Finally, the universal inversion point and the related
dynamical transition at the FL corresponds to the solu-
bility maxima (known as “ridges”) and optimal extract-
ing and dissolving abilities of supercritical fluids [14].
This importantly addresses the widely-held belief that
improved and more efficient deployment of supercritical
fluids will benefit from better theoretical understanding
of the supercritical state [2, 9, 10]. Our current results
therefore give a universal way to locate the inversion
point where the performance of a supercritical fluid is
optimised, improving the supercritical technologies.

III. CONCLUSIONS

We have shown that the supercritical state has a re-
markable double universality. First, the transition be-
tween the liquidlike and gaslike states is characterised by
fixed inversion point and near path-independence. Sec-
ond, this effect universally applies to many supercritical
fluids. This provides new understanding of the supercrit-
ical state of matter and a theoretical guide for improved
deployment of supercritical fluids in green and environ-
mental applications.

IV. METHODS

A. Simulation details

We use DL POLY molecular dynamics simulations
package [22]. For argon and nitrogen, we use the
Lennard-Jones potential fitted to their properties. For
nitrogen, we use a rigid two-site Lennard-Jones poten-
tial [23]. The potential for carbon dioxide is a rigid-body
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FIG. 8: (a) cV as a function of the dynamical length, λd across
different phase diagram paths and across four different fluids
(Ar, CO2, N2 and Pb), showing the system-independent uni-
versal inversion point of cV ≈ 2, λd = 1 Å (molecular CO2

and N2 have rotational degrees of freedom removed from its
cV ); (b) (reproduced from Ref. [20]) the reduced density (ρc
is the critical concentration) of coexisting liquids and gases
at the boiling line at temperatures close to the critical tem-
perature, Tc, in a variety of different systems, with all curves
coinciding into the same shape.

non-polarisable potential based on a quantum chemistry
calculation, with the partial charges derived using the
distributed multipole analysis method [24]. The poten-
tial was derived and tuned using a large suite of energies
from ab initio density functional theory calculations of
different molecular clusters and validated against various
sets of experimental data including phonon dispersion
curves and PV T data. These data included solid, liquid
and gas states, gas-liquid coexistence lines and extended
to high-pressure and high-temperature conditions [24].
The potential used for water was TIP4P/2005 potential,
which is optimised for high pressure and temperature
conditions [25]. A careful analysis [26, 27] assigned this
potential the highest score in terms of the extent to which
the results agree with different experimental properties,

including the equation of state, high pressure and tem-
perature behaviour, and structure. The electrostatic in-
teractions were evaluated using the smooth particle mesh
Ewald method in the MD simulations of carbon dioxide
and water. The potentials for water and carbon dioxide
are rigid body potentials. Simulations of lead were per-
formed using an embedded atom model (EAM) potential
[28], which has been used to calculate the properties of
molten lead at temperatures up to 25000 K and 280 GPa,
which include the range discussed here.

Systems are simulated along several isobars, isotherms,
and isochores in the deep supercritical state, with all
paths but named exceptions being far from the critical
point and Widom line [3] of their respective phase dia-
grams. Equilibration was performed in the NPT ensem-
ble with the Langevin thermostat in order to generate
the mean densities along the isobars and isotherms. For
argon, system sizes between 500 and 108000 atoms were
used with no discrepancy in calculated quantities, consis-
tent with the earlier ascertained insensitivity of viscosity
to system size [29]. System sizes of 512 molecules were
used for water, nitrogen and carbon dioxide simulations,
and 5120 atoms for lead. The timestep used was 1 fs for
water and carbon dioxide and 0.5 fs for lead, which con-
served total energy under the Velocity-Verlet integrator
in the NVE ensemble to one part in 105. Configurations
at the target densities on all paths were then generated,
which were then equilibrated with the NVT ensemble
for 50 ps. Following this equilibration, we generated 20
independent initial conditions for each state point us-
ing seeded velocities, and each of these initial conditions
were run for 1 ns in the NVE ensemble during which all
properties were calculated. We calculated cV in the NVE
ensemble as [30]:

〈K2〉 − 〈K〉2 =
f

2
NT 2

(
1− f

2cV

)
(1)

with K the kinetic energy, and f the number of transla-
tional and rotational degrees of freedom available to the
molecule in question.

The shear modulus at high frequency and shear viscos-
ity were calculated using the molecular stress autocorre-
lation function, from Green-Kubo theory [31, 32]:

G∞ =
V

T
〈σxy(0)2〉 (2)

η =
V

T

∫ ∞

0

dt 〈σxy(t)σxy(0)〉 (3)

with σxy an off-diagonal component of the microscopic
stress tensor. The integration of the long-time tails
of autocorrelation functions was implemented using the
Green-Kubo formulae [33]. The 20 independent initial
conditions were used to average the autocorrelation func-
tion 〈σxy(t)σxy(0)〉 over these initial conditions. The end
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result for viscosity was insensitive to adding more initial
conditions.

The dynamical length λd was calculated as λd = cτ ,
where τ = η

G∞
, c2 = G∞

ρ and ρ is density.

B. Theory: specific heat and dynamical length

In this section, we explain the physical origin of the
inter-relationship between the specific heat and the dy-
namical length in the supercritical state. The specific
heat, cV , is an obvious important choice of a thermody-
namic quantity because it reflects the degrees of freedom
in the system. The dynamical length and its role are
discussed below.

The choice of the dynamical parameter is informed by
the Maxwell-Frenkel viscoelastic theory [15, 34]. A liquid
has a combined response to shear stress:

ds

dt
=
σ

η
+

1

G∞

dσ

dt
(4)

where s is the shear strain, σ is the shear stress, η is the
shear viscosity and G∞ is the high-frequency shear mod-
ulus. When the external perturbation stops, the internal
stress relaxes according to:

σ(t) = σ0 exp

(
− t
τ

)
(5)

having introduced the Maxwell relaxation time τ :

τ =
η

G∞
(6)

Frenkel related this time to the average time between
molecular rearrangements. This relationship is backed up
by experiments and modelling [35, 36] and has become
an accepted view [37].

Using Eq. (4), the Navier-Stokes equation can be gen-
eralised to include the elastic response of the liquid, yield-
ing [8]:

c2
∂2v

∂x2
=
∂2v

∂t2
+

1

τ

∂v

∂t
(7)

where v is the transverse velocity field, c is the transverse
speed of sound c =

√
G∞/ρ and ρ the density.

Seeking the solution of Eq. (7) in the form v =
v0 exp (i (ωt− kx)) gives

ω = − i

2τ
±
√
c2k2 − 1

4τ2
(8)

For k ≤ 1
2cτ , ω has no real solutions. For larger k, the

plane waves decay according to the decay time τ . We
therefore define kg as

kg =
1

2cτ
(9)

which sets the shortest wavevector for propagating trans-
verse phonons and corresponds to the gap in the phonon
momentum space [38].

Here, we work in terms of the “dynamical length” fea-
turing in Eq. (9), λd:

λd = cτ (10)

λd sets the propagation range, or mean free path of
transverse phonons, in the liquidlike regime below the
FL [14]. This is seen from Eq. (8) which gives the decay
factor exp

(
− t

2τ

)
. Since τ sets the time over which the

shear stress decays in the liquid as discussed earlier or,
in other words, the lifetime of transverse phonons, cτ is a
measure of their mean free path. This implies no phonons
with wavelengths longer than the propagation range and
is consistent with Eq. (9).

In the gaslike regime of particle dynamics above the
FL [14], λd corresponds to the mean free path of particle
motion, lFP [15]. Indeed, the shear modulus in a fluid
with no interactions is G∞ = nT [31], where n is the
concentration. Meanwhile, the gaslike viscosity is [39]
η = 1

3ρvthlFP, where vth is the thermal velocity and lFP
is the particle mean free path. Noting that 1

2ρv
2
th = 3

2nT ,

we find τ = η
G∞

= lFP

vth
. The dynamical length in the

gaslike state is λd = cτ = vthτ (since the speed of sound
in the liquidlike state below the FL, c, approximately
becomes thermal velocity of particles in the gaslike state
above the FL, vth), and λd = lFP.

We can now see the role played by the dynamical length
in the liquidlike and gaslike regimes of the supercritical
state. kg in Eq. (9) increases with temperature because
τ decreases, and the dynamical length in (10) becomes
shorter. This reduces the phase space available for trans-
verse phonons [8]. When τ approaches its shortest value
comparable to the Debye vibration period τD, kg ap-
proaches the Brillouin zone boundary because cτD = a,
where a is the interatomic separation. At this point,
all transverse modes disappear, corresponding to cV = 2
(this value is equal to the kinetic term 3

2 and the potential

energy of the remaining longitudinal mode 1
2 [8]). On fur-

ther temperature increase, the system crosses over to the
gaslike regime where the phonon phase space continues
to reduce, albeit now for longitudinal phonons. In partic-
ular, the longitudinal phonons with wavelengths shorter
than lFP disappear because lFP sets the shortest wave-
length in the system. The associated potential energy of
the longitudinal phonons reduces, eventually resulting in
cv = 3

2 as in the ideal gas [8]. Since the phonon energy
contributes to liquid cV [4–8], we see that λd directly
affects cV because it governs the phonon states in the
system.



8

V. ACKNOWLEDGEMENTS

We are grateful to V. V. Brazhkin and J. Proctor for
discussions.

Author contributions: the authors have contributed
equally to this paper.

Competing interests: The authors declare that they
have no competing interests.

Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the
paper and references. Additional data related to this
paper may be requested from the authors.

[1] L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, vol. 5. Statistical Physics, part 1. (Pergamon
Press, 1970).

[2] E. Kiran, P. G. Debenedetti, and C. J. Peters, Super-
critical Fluids: Fundamentals and Applications (Kluwer,
2000).

[3] L. Xu, P. Kumar, S. V. Buldyrev, S. H. Chen, P. H.
Poole, F. Sciortino, and H. E. Stanley, PNAS 102, 16558
(2005).

[4] J. E. Proctor and H. E. Maynard-Casely, The Liquid and
Supercritical Fluid States of Matter (CRC Press, 2020).

[5] J. Proctor, Phys. Fluids 32, 107105 (2020).
[6] D. C. Wallace, Phys. Rev. E 57, 1717 (1998).
[7] G. Chen, Journal of Heat Transfer 144, 010801 (2022).
[8] K. Trachenko and V. V. Brazhkin, Reports on Progress

in Physics 79, 016502 (2016).
[9] C. A. Eckert, B. L. Knutson, and P. G. Debenedetti,

Nature 383, 313 (1996).
[10] T. Sarbu, T. Styranec, and E. J. Beckman, Nature 405,

165 (2000).
[11] N. Akiya and P. E. Savage, Chemical Reviews 102, 2725

(2002).
[12] P. E. Savage, Chemical Reviews 99, 603 (1999).
[13] C. M. Huelsman and P. E. Savage, The Journal of Su-

percritical Fluids 81, 200 (2013).
[14] C. Cockrell, V. V. Brazhkin, and K. Trachenko, Physics

Reports 941, 1 (2021).
[15] J. Frenkel, Kinetic Theory of Liquids (Oxford University

Press, New York, 1955).
[16] C. Cockrell, V. V. Brazhkin, and K. Trachenko, Physical

Review E 104, 034108 (2021).
[17] P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley,

Nature 360, 324 (1992).
[18] P. Gallo et al., Chemical Reviews 116, 7463 (2016).
[19] D. S. Eisenberg and W. Kauzmann, The structure and

properties of water (Clarendon Press, 2005).
[20] E. A. Guggenheim, The Journal of Chemical Physics 13,

253 (1945).
[21] J. Sethna, Entropy, Order Parameters, and Complexity

(Oxford University Press, 2006).
[22] I. T. Todorov, W. Smith, K. Trachenko, and M. T. Dove,

Journal of Materials Chemistry 16, 1911 (2006).
[23] J. G. Powles and K. E. Gubbins, Chemical Physics Let-

ters 38, 405 (1976).
[24] M. Gao, A. J. Misquitta, C. Yang, I. T. Todorov, A. Mut-

ter, and M. T. Dove, Molecular Systems Design & En-
gineering 2, 457 (2017).

[25] J. L. F. Abascal and C. Vega, The Journal of Chemical
Physics 123, 234505 (2005).

[26] C. Vega, J. L. F. Abascal, M. M. Conde, and J. L.
Aragones, Faraday Discuss. 141, 251 (2009).

[27] C. Vega and J. L. F. Abascal, Physical Chemistry Chem-
ical Physics 13, 19663 (2011).

[28] D. K. Belashchenko, High Temperature 55, 370 (2017).
[29] I.-C. Yeh and H. Gerhard, Journal of Physical Chemistry

B 108, 15873 (2004).
[30] M. P. Allen and D. J. Tildesley, Computer Simulation of

Liquids., Vol. 57 (Clarendon Press, 1991).
[31] R. Zwanzig and R. D. Mountain, The Journal of Chemi-

cal Physics 43, 4464 (1965).
[32] U. U. Balucani and M. Zoppi, Dynamics of the liquid

state (Clarendon Press, 1994) p. 336.
[33] Y. Zhang, A. Otani, and E. J. Maginn, Journal of Chem-

ical Theory and Computation 11, 3537 (2015).
[34] J. C. Maxwell, Philosophical Transactions of the Royal

Society of London 157, 49 (1867).
[35] B. Jakobsen, T. Hecksher, T. Christensen, N. B. Olsen,

J. C. Dyre, and K. Niss, Journal of Chemical Physics
136, 081102 (2012).

[36] T. Iwashita, D. M. Nicholson, and T. Egami, Physical
Review Letters 110, 205504 (2013).

[37] J. C. Dyre, Reviews of Modern Physics 78, 953 (2006).
[38] M. Baggioli, M. Vasin, V. Brazhkin, and K. Trachenko,

Physics Reports 865, 1 (2020).
[39] S. Blundell and K. M. Blundell, Concepts in thermal

physics (Oxford University Press, 2010).


