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A B S T R A C T

Accurate determination of fuel properties of complex mixtures over a wide
range of pressure and temperature conditions is essential to utilizing alter-
native fuels. The present work aims to construct cheap-to-compute machine
learning (ML) models to act as closure equations for predicting the physical
properties of alternative fuels. Those models can be trained using the database
from MD simulations and/or experimental measurements in a data-fusion-
fidelity approach. Here, Gaussian Process (GP) and probabilistic generative
models are adopted. GP is a popular non-parametric Bayesian approach to
build surrogate models mainly due to its capacity to handle the aleatory and
epistemic uncertainties. Generative models have shown the ability of deep
neural networks employed with the same intent. In this work, ML analysis is
focused on two particular properties, the fuel density and diffusion, but it can
also be extended to other physicochemical properties. This study explores the
versatility of the ML models to handle multi-fidelity data. The results show
that ML models can predict accurately the fuel properties of a wide range of
pressure and temperature conditions.

1. Introduction1

Fossil fuels have been playing a major role in energy supply and liquid fossil fuels have2

dominated the energy use in transport, which will continue to be so for many decades to3

come, especially for sectors that are difficult to decarbonise [1, 2]. With the pressing needs of4

decarbonisation and sustainable energy utilisation, renewable fuels and biofuels are becoming5
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Nomenclature

Abbreviations

ANN Artificial neural network

CFD Computational Dluid Dynamics

CN Cetane number

EMD Equilibrium Molecular Dynamics

EoS Equation of State

FAME Fatty acid methyl ester

GANs Generative Adversarial Networks

GP Gaussian Process

MD Molecular dynamics

ML Machine learning

MLPNNs Multilayer Perceptron Neural Net-
works

NARGP Nonlinear autoregressive multifidelity
Gaussian Process

NEMD Nonequilibrium Molecular Dynamics

NIST National Institute of Standards and Tech-
nology

OMEs Oxymethylene Dimethyl Ethers

TraPPE Transferable Potential for Phase Equi-
libria

VAE Variational auto-encoders

Greek letters

𝛽 Residual penalty parameter

𝜽 A vector of hyper-parameters

𝛾 A generic property

𝜆 Entropy regularization parameter

𝜇 Expected value

𝜙 A vector of parameters

𝜌 Density

𝜎 Standard deviation

𝜉 A potential noisy

Latin letters

𝐱, 𝐲 Input and output vectors

cv Coefficient of variation

𝐶 Number of atoms of carbon

𝐷 Diffusion coefficient

𝑓 Gaussian function

𝑔 Mapping function

𝐾 Covariance matrix

𝑘 A kernel function

𝑙 Correlation length

𝑛 Dimension of the input and output

𝑁𝑠 Number of samples

𝑃 Pressure

𝑝 Probability distribution

𝑃𝑐 Critical pressure

𝑇 Temperature

𝑡 Time

𝑇𝑐 Critical temperature

𝑧 Latent variable

increasingly important [3, 4]. For instance, synthetic fuels like Oxymethylene Dimethyl Ethers6

(OMEs) have shown high potential for low-carbon transport applications due to their capacity to7

avoid soot formation [5]. However, the physicochemical properties of these fuels must be known8

for their rapid integration into current infrastructures for storage, transport and direct injection9
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in combustion engines. This represents a significant challenge, due to the fact that practical10

fuels are often composed by complex mixtures and vary widely in their chemical compositions11

depending on the production source and process [3]. For example, petroleum diesel is a complex12

mixture involving molecules with carbon chains that typically contain between 9 and 25 carbon13

atoms per molecule. To simplify the complex chemical compositions of these fuels, surrogate14

models have been used to represent the chemical composition and combustion characteristics in15

practical applications [6, 7]. In addition, modern combustion engines have to operate at high16

pressure conditions in order to improve the energy conversion efficiency. Fuel properties at extreme17

conditions such as high pressure and high temperature conditions, are very difficult to measure and18

predict [5], leading to an additional challenge.19

Accurate determination of fuel properties of complex mixtures over a wide range of pressure20

and temperature conditions is essential to adapt the system operation to alternative fuels. In21

recent years, molecular dynamics (MD) simulations have been used to predict the physicochemical22

properties of practical fuels including transport properties at supercritical conditions [8]. By using23

equilibrium molecular dynamics (EMD) and nonequilibrium molecular dynamics (NEMD), Yang24

et al [9, 10] predicted the viscosity and thermal conductivity of alkanes (n-decane, n-undecane25

and n-dodecane). Kondratyuk et al [11, 12, 13] performed a serial of MD simulation to study the26

viscosity of hydrocarbons (1-methylnaphthalene, methylcyclohexane and 2,2,4-trimethylhexane)27

in high pressure conditions up to 1000 MPa. Caleman et al [14] tested the capacity of existing28

force fields on prediction of properties (density, enthalpy of vaporization, surface tension and29

heat capacity etc) of organic liquids. Although MD simulations provide molecular details that can30

be potentially used to accurately predict fuel properties, they are generally expensive in terms31

of computational costs (CPU time and memory). In addition, MD predictions also need to be32

validated against experimental measurements, which can be even more costly especially at extreme33

conditions. Accordingly, it is not feasible to establish complete and detailed fuel property databases34

consisting of a wide range of pressure and temperature conditions using either MD simulations or35

experiments.36
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Machine learning has great potentials to discover the relation between inputs and outputs in37

a thermodynamic system directly from the data of complex systems [15] and for predicting the38

properties of materials based on their composition [16]. ML can be a powerful tool to predict39

fuel properties from chemical compositions of the fuel mixture and/or chemical structures of the40

fuel molecules. Several works have been devoted to designing ML models capable of predicting41

complex fuels properties from experimental data. In this regard, ML models obtained accurate42

predictions of cetane number (CN) compared to experimental data [17, 18, 19]. A satisfactory43

ML approach for modeling the CN of biodiesel based on four operating conditions given by44

iodine volume (IV), carbon number, double bounds, and saponification value was proposed [20].45

Recently, an artificial neural network (ANN) was applied to predict and identify the underlying46

links between the fuel properties and the octane number (ON) [21]. Moreover, ML models were47

tuned with evolutionary algorithms to predict the CN of biodiesel as a function of its fatty acid48

methyl ester (FAME) profile [22, 23]. The predictability, i.e. the ability to predict, of the ML49

approaches also can be improved by using different optimization algorithms for the training and/or50

hyperparameter search such as teaching-learning based optimization (TLBO), backpropagation,51

Quasi-Newton and particle swarm optimization (PSO) [24, 25, 26]. Also, ML models have been52

used for modeling the kinematic viscosity of diesel-derived fuels as a function of their FAMEs53

profiles [27, 28, 29]. In the last years, Multilayer Perceptron Neural Networks (MLPNNs) have54

been successfully built to estimate the physicochemical characteristics of biodiesel [30, 31, 32, 33]55

combining different parameters of model inputs. Furthermore, ML models based on state variables56

such as temperature and pressure showed high potential to obtain physicochemical properties of57

biodiesel/diesel fuels more accurately [34, 35, 36]. In particular, ML models have been developed58

to predict thermodynamic properties such as critical pressure and temperature, vapor pressures,59

and densities of pure fluids [37]. Moreover, approaches combining MD simulations and ML have60

been applied to modeling the diffusion of pure liquids [38, 39]. Following the same context, a ML61

approach based on support vector regression (SVR) was proposed by [40] for predicting the PVT62

properties of pure fluids (H2O, CO2, and H2) and their mixtures, where the training database is63
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provided by the National Institute of Standards and Technology (NIST) and MD simulations. Also,64

an ML approach was proposed to assess the macroscopic Engine Combustion Network (ECN)65

Spray-A characteristics and predictions of fluid properties for the thermodynamic states found in66

such conditions [41]. Yet, from our knowledge, little work has been dedicated towards exploring the67

thermodynamic properties of practical fuels combining MD simulations and ML models. ML can68

be a powerful tool to predict fundamental fuel properties directly from the chemical compositions of69

the fuel mixture by using databases from MD simulations or available experimental measurements.70

The aim of the study was to demonstrate and validate a ML-MD methodology to predict71

fundamental properties of liquid fuels. In this approach, the ML models are built from data provided72

by MD simulations, while a combination of MD and NIST data is used for model assessment and73

validation. This study is the first attempt of using ML models with Gaussian process regression74

[42] and probabilistic conditional generative learning [43, 44] for the property predictions of75

single-compounds. The ML analysis is focused on fuel density in this study as one of fundamental76

properties of liquid fuels, though it can easily be extended to other physicochemical properties77

of relevance for practical applications like diffusion coefficient, viscosity, conductivity or surface78

tension.79

The rest of the paper is organized as follows. Section 2 presents the ML models and the80

molecular dynamics simulation methodology. Section 3 describes the ML results for typical fuel81

surrogates of diesel. Finally, Section 4 concludes the study with recommendation for further82

investigations.83

2. Methodology: Building Machine Learning Models to Describe Physicochemial Properties84

In order to reduce energy consumption and pollutant formation, supercritical combustion85

has been increasingly explored in the context of high pressure internal combustion engines and86

rocket engines [45]. Specifically, in supercritical conditions, the devices operate with pressures87

and temperatures higher than the critical values, which implies that physicochemical properties88

of fluids are quite different from those at liquid conditions [46]. In such scenarios, the design of89
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devices become more complex, specially due to limitations of replicating flow and combustion in90

controlled laboratory environments. In order to cope with these challenges, computational models91

can provide adequate tools for obtaining more accurate predictions of state variables and increase92

cycle performance in transcritical conditions.93

From a computational fluid dynamics (CFD) perspective, combustion models are built upon94

the combination of solid and reliable physico/chemical principles with closure models, typically95

describing physicochemical properties of the fuels and their mixtures using approaches that nor-96

mally entail uncertainties. The use of numerical simulations for practical applications encompass a97

wide range of conditions, resulting in different fundamental problems depending on the nozzle98

geometry, engine architecture or thermodynamic conditions. A good example is the database99

from the Engine Combustion Network [47] for which different sprays for diesel- and gasoline-like100

conditions are investigated. For instance, pressure can go from sub-atmospheric to 2,000 bar, and101

temperatures from cold to highly preheated conditions. In that context, having accurate values for102

macroscopic fuel characteristics and properties over such wide variety of spatial and time scales103

is one of the main challenges for physically-driven methods. That is particularly more dramatic104

for modern compounds depicting complex chemical compositions, and simplified surrogate fuels105

[48] are employed to estimate the properties of the original compounds. That allows the systematic106

use of controlled experiments and, also, Molecular Dynamics simulations [49, 50]. Indeed, here107

our focus lies on using ML models to leverage such type of simulations when obtaining liquid108

fuel physicochemical properties. Those properties are generally expressed as functions of local109

thermodynamic conditions like pressure and temperature, which motivate to refer to closure models110

such as the Equations of State (EoS). In general, the EoS is embedded in complex CFD simulations111

resulting in divergence or numerical oscillations when used with traditional methods based on112

tabular and interpolation schemes [51]. It is worth to remark that we are seeking for models capable113

of describing physicochemical properties over a wide range of flow conditions and we expected to114

observe abrupt changes around critical conditions.115
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We built two different ML models, namely Gaussian Processes (GP) [42] and a probabilistic116

conditional generative approach [44]. We train both in a supervised learning fashion using data117

produced with expensive MD simulations. Therefore, we rely on their ability to learn from a118

small amount of data and their capacity of extrapolation. Moreover, we also want to take into119

consideration the unavoidable uncertainties arising from limited information (epistemic) and from120

noisy data (aleatoric).121

GPs have become popular due to its success on being a proxy for physics-based high-fidelity122

models in different applications [52, 53, 54, 55, 56, 57]. Another well proved ML approach are the123

so called generative models that explore existing low-dimensional structures capable of explaining124

high-dimensional data introducing probabilistic latent variables.125

In the remainder of this chapter, we present a brief description of both ML models for a generic126

property 𝛾(𝑃 , 𝑇 ) function of pressure and temperature, along with the corresponding training127

algorithms. For the training of the models, we assume the availability of, potentially expensive,128

dataset comprising input/output pairs {(𝑃 , 𝑇 )𝑖, 𝛾𝑖 𝑖 = 1, ..., 𝑛} generated by an implicit mapping129

𝑔 characterizing the macroscopic thermodynamic relation between the property and the state130

variables:131

𝛾 = 𝑔(𝑃 , 𝑇 ; 𝝃). (1)

The role of 𝑔 here is played by upscaling MD simulations or, to a less extent, by experimental132

available data. The vector 𝝃 denotes potential noisy and is often considered a random. In order133

to keep a compact notation, we refer to the above dataset as  = (𝐱, 𝐲), with 𝐱 ∈ ℝ2𝑛 and134

𝐲 ∈ ℝ𝑛 vectors containing inputs and outputs. We intentionally do not use the word surrogate to135

designate any of the two ML models to avoid misleadings. In the combustion technical literature,136

it is employed to refer to compounds with simpler compositions to replace complex fuels in137

experimental or numerical analysis.138
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2.1. Gaussian process regression139

A GP is an infinite collection of random variables, in which any finite number of such variables140

depict a joint Gaussian distribution [42]. In line with Bayesian estimation, to approximate 𝑔 we141

assign a GP zero mean prior 𝑓 (𝐱) , i.e., 𝑓 ∼ 𝐺𝑃 (𝑓 |𝟎, 𝑘(𝐱, 𝐱′;𝜽)), where 𝑘 is a kernel parametrized142

by a vector of hyper-parameters 𝜽 to be learned from and engenders a symmetric positive-definite143

𝑛× 𝑛 covariance matrix 𝐾𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗;𝜽). Instead of choosing the squared exponential form of the144

kernel as usual [42], here, we test some forms of covariance matrix belonging to the Matern family.145

More specifically, we employ the Mayern 3/2 covariance matrix given as146

𝑘(𝐫) = 𝜎2
(

1 +
√

6
|𝑟|
𝑙

)

exp
(

−
√

6
|𝑟|
𝑙

)

(2)

with 𝐫 = 𝐱 − 𝐱′ denoting the distance between different inputs. The hyper-parameters are the147

standard deviation 𝜎, and the correlation lengths 𝐥 = {𝑙1, 𝑙2,… , 𝑙𝑛𝑘}, and 𝑛𝑘 denotes the dimension148

of input 𝐫. Hence, the hyper-parameters vector reduces to 𝜽 = {𝐥,𝝈}.149

We do not follow a fully Bayesian approach, and obtain the vector of hyper-parameters 𝜽 by150

maximizing the marginal log-likelihood of the model, i.e.151

log𝑝(𝛾|𝐱,𝜽) = −1
2

log|𝐊| − 1
2
𝛾𝑇𝐊−1𝛾 − 𝑛

2
log2𝜋. (3)

using a conjugate gradient descend method.152

The final goal of the regression is obtaining a predictive model for 𝛾 , which means to compute153

its value for an untested state 𝐱∗ [53]154

𝜇∗(𝐱∗) = 𝑘∗𝑛𝐊−1𝐲 (4)

and155

𝜎2
∗(𝐱∗) = 𝑘∗∗ − 𝑘∗𝑛𝐊−1𝑘𝑇

∗𝑛 (5)
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where 𝑘∗𝑛 = [𝑘(𝐱∗, 𝐱1),… , 𝑘(𝐱∗, 𝐱𝑛)] and 𝑘∗∗ = 𝑘(𝐱∗, 𝐱∗). The predictions are computed using the156

posterior mean 𝜇∗, and the uncertainty associated with that predictions is quantified through the157

posterior variance 𝜎2
∗ . It is worth to mention that in absence of noisy in the training data, the later158

represents epistemic uncertainty due to lack of data.159

2.2. Probabilistic conditional generative model160

Now, we explore a probabilistic conditional generative approach [43, 44], that integrates161

variational auto-encoders (VAE) [58] and generative adversarial networks (GANs) [59]. Moreover,162

it employs a probabilistic perspective that enables to take into consideration noisy and limited data163

from the beginning. It is also capable of dealing with high-dimensionality of inputs and outputs,164

what is not explored here due to the specific aspects of our needs.165

The final goal is to build probabilistic neural networks that follow a conditional probability166

density function 𝑝(𝛾|(𝑃 , 𝑇 ),) learnt from the data. So, the surrogate model can deploy accurate167

values for the property 𝛾 by estimating the expectation 𝔼(𝛾|(𝑃 , 𝑇 ),), and also, to quantify the168

uncertainty associated with that prediction in CFD calculations.169

The main ingredient for this approach is the introduction of a vector of latent random variables170

aiming at seeking for a hidden low dimensional structure for explaining the data structure. In a171

formal abstract perspective, such latent variables allow us to express the conditional probability172

associate to the data , not included in the expression to keep the notion clear, 𝑝(𝛾|𝑃 , 𝑇 ), as an173

infinite mixture model through174

𝑝(𝛾|𝑃 , 𝑇 ) = ∫ 𝑝(𝛾, 𝐳|𝑃 , 𝑇 ) 𝑑𝐳 = ∫ 𝑝(𝛾|𝑃 , 𝑇 , 𝐳) 𝑝(𝐳|𝑃 , 𝑇 ) 𝑑𝐳 (6)

where 𝑝(𝐳|𝑝, 𝑇 ) is a prior distribution on the latent variables. The above hierarchical mathematical175

ansatz, despite being very elegant and rigorous, has to be approximated [44], where a regularized176

adversarial inference framework is proposed and detailed. The final result is a generator model177

𝛾 = 𝑓𝜙(𝑝, 𝑇 , 𝐳) parametrized by vector 𝜙, like trained deep neural networks. In conjunction178

with 𝑝(𝐳), the statistics of 𝛾 can be characterized. More specifically, we can compute its low179
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order statistics via Monte Carlo sampling. It is important to remark that the predictions with the180

identified probabilistic generator, that, in present context, plays the role of a proxy for obtaining181

macroscopic thermodynamic properties of mixtures for pressures and temperatures not contained182

in , is negligible when compared to MD simulations. The mean and variance of the predictive183

distribution at a new point (𝑝∗, 𝑇 ∗) are computed as184

𝜇𝛾(𝑃 ∗, 𝑇 ∗) = 𝔼[𝛾|𝑃 ∗, 𝑇 ∗, 𝐳] ≈ 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

[

𝑓𝜙(𝑃 ∗, 𝑇 ∗, 𝐳𝑖)
]

(7)

185

𝜎2
𝛾 (𝑃

∗, 𝑇 ∗) = 𝕍ar[𝛾|𝑃 ∗, 𝑇 ∗, 𝐳] ≈ 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

[

𝑓𝜙(𝑃 ∗, 𝑇 ∗, 𝐳𝑖) − 𝜇𝐲(𝑃 ∗, 𝑇 ∗)
]2 , (8)

where 𝐳𝑖 ∼ 𝑝(𝐳), 𝑖 = 1,… , 𝑁𝑠, and 𝑁𝑠 corresponds to the total number of samples.186

At this point, it is important to clarify that the predictive uncertainty encoded in 𝐳 is due to187

noise in the Molecular Dynamics computations originated by numerical approximations and to the188

potential small amount of data employed in the training process. Therefore, it encapsulates aleatoric189

and epistemic uncertainties.190

Later, we explore the versatility of the probabilistic ML model employing the fusion of data191

produced by MD with experimental data obtained for supercritical behavior of the mixture.192

2.3. Physicochemical properties prediction in EMD simulation193

In this study, all MD simulations are performed in Gromacs package [60] with Transferable194

Potentials for Phase Equilibria (TraPPE) force field [61]. United-atom molecular description is used195

in order to reduce the computational cost. Before simulation, 1000 molecules are distributed in a196

box with relatively large edge length of 14 nm to avoid atom’s overlap. After energy minimisation,197

a 2 ns simulation is performed with time setup of 1fs in isobaric-isothermal NPT (fix the number198

of atoms, pressure and temperature of the system) ensemble by using Parrinello-Rahman method199

[62] to maintain the pressure. Then 1ns NVT (fix the number of atoms, volume and temperature200

of the system) simulation is followed for production run. The temperature is controlled by velocity201
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Figure 1: Effect of the system size on density prediction.

rescale. The fixed bond length in TraPPE force field is achieved by using LINCS algorithm [63].202

The density and diffusion is calculated in NVT simulation.203

The diffusion coefficient (𝐷) can be obtained from the linear fittings of mean square displace-204

ment (𝑀𝑆𝐷) of molecules:205

𝑀𝑆𝐷(𝑡) = ⟨|𝐫𝑖(𝑡) − 𝐫𝑖(0)|2⟩ (9)

𝐷(𝑡) = 1
6
𝑑
𝑑𝑡

⟨|𝐫𝑖(𝑡) − 𝐫𝑖(0)|2⟩ (10)

where 𝐫𝑖(𝑡) is the position of the 𝑖𝑡ℎ particle at time 𝑡, angle bracket indicates the ensemble average206

over all the particles in the system.207

The number of fuel molecules and simulation time in our simulation is setup according to208

previous studies. For example, Yang et al. [64] used 250 molecules with 2ns simulation time in209

transport property prediction of n-alkanes, and Kondratyuk et al. [65] used 1000 molecules in210

modelling branched alkanes running in EMD simulation of 1 ns. Figure 1 depicts the effect of the211

system size on the n-dodecane density prediction. As we can see 1000 molecules are sufficient to212

achieve convergence of the density prediction at an affordable computational cost.213

3. Results and discussion214
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Here, we demonstrate the performance of the proposed methodology. Despite alternative215

fuels can be very complex mixtures consisting of hundreds of compounds, we consider single-216

component alkanes C𝑛H2𝑛+2, so reliable data for model assessment and validation can be used.217

In general, realistic fuels are usually described by surrogate models [8] because of availability of218

validated chemical mechanisms and experimental measurements. The data to train our ML models219

consist of properties of a family of alkanes, ranging from normal to supercritical conditions. More220

specifically, we construct ML models to characterize density dependency on some operational221

conditions in which data is not available. As mentioned before, in order to take into consideration222

unavoidable uncertainties, we approximate the conditional probability 𝑝(𝛾|𝐱,𝜽), with 𝐱 being the223

input vector with components pressure 𝑝, temperature 𝑇 and chemical composition. Moreover,224

it is worth mentioning here that for simplicity we consider as the input that characterizes the225

chemical compositions the number of atoms of carbon 𝐶 in the molecule of the pure compounds, a226

categorical variable. However, parameters from the EMD used to characterize the physicochemical227

properties of the fuel molecule can be used. Also, for the GP learning model, the hyper-parameters228

vector reduces to 𝜽 = {𝐥,𝝈}, and for the generative model 𝜽 represents the vector of parameters of229

the deep neural networks 𝜙 . The latent variable 𝑧 is embedded in the input vector 𝐱. We employ a230

one-dimensional latent space with a standard normal prior, 𝑝(𝑧) ∼  (0, 1).231

The pure compounds considered are n-octane, n-nonane, n-decane, n-dodecane, and n-232

hexadecane, operating from high-pressure nozzle to supercritical chamber environment conditions.233

The dataset used to build the ML models consists of 1200 density values. Specifically, the there are234

240 values of the density for each compound, computed at a regular temperature grid within 𝑇 ∈235

[320, 900] K, varying by 20K, and at the specific pressures values: 𝑃 = {3, 4, 6, 8, 10, 20, 100, 150}236

MPa. It is worth remarking that in this dataset we included density values for supercritical regions,237

more specifically values above the critical temperature (𝑇𝑐) of the compounds, being the critical238

values for n-octane (𝑇𝑐 = 569.32𝐾), n-nonane (𝑇𝑐 = 594.55𝐾), n-decane (𝑇𝑐 = 617.7𝐾), n-239

dodecane (𝑇𝑐 = 658.1𝐾), and n-hexadecane (𝑇𝑐 = 722𝐾), which replicate engine-like conditions240

.241

R. S. M. Freitas et al.: Preprint submitted to Elsevier Page 12 of 35



R. S. M. Freitas, Á. P. F. Lima, C. Chen, F. A. Rochinha, D. Mira & X. Jiang / Preprint submitted to

In the learning process, 80% of the data points are selected randomly to training the ML models.242

The remaining 20% are used to validating them. Moreover, the training data set is organized in three243

subsets with 10%, 50%, and 100% of data available to train the models. The aim here is to evaluate244

the convergence and impacts of constructing the ML models in a small data regime. Accuracy is245

measured using the distance between the expected values predicted with the ML models and the246

predictions computed with the MD simulations. We check this accuracy computing the 𝐿2 mean247

relative error (𝐿2−𝑀𝑅𝐸)248

𝐿2−𝑀𝑅𝐸 = 1
𝑁

𝑁
∑

𝑖=1

(

𝜌𝑖 − �̂�𝑖
𝜌𝑖

)2

(11)

where 𝜌𝑖 is the density computed with MD simulations, �̂�𝑖 is the expected ML output and 𝑁 is the249

number of test samples. Also, we compute the coefficient of determination (𝑅2-score) metric [66]250

𝑅2 = 1 −
∑𝑁

𝑖=1 ∥ 𝜌𝑖 − �̂�𝑖 ∥22
∑𝑁

𝑖=1 ∥ 𝜌𝑖 − 𝜌 ∥22
(12)

where 𝜌 = 1
𝑁

∑𝑁
𝑖=1 𝜌𝑖 is the mean density of test samples. The 𝑅2-score metric represents the251

normalized error, allowing the comparison between ML models trained by different data sets, with252

values close to 1 corresponding to the ML models best accuracy, while𝐿2−𝑀𝑅𝐸 is a common metric253

used to check the accuracy of ML models during the optimization process.254

We obtain the GP regression model of Eq. (1) via maximizing the marginal log-likelihood255

of Eq. (3) using the Mattern 3/2 kernel function, as that shown in Eq. (2). Also, we have used256

the gradient descend optimizer L-BFGS [67] using randomized restarts to ensure convergence257

to a global optimum. The GP learning model was implemented in GPy: Gaussian Process (GP)258

framework written in python [68].259

On the other hand, to construct the generative learning model, we departed from the architecture260

proposed and validated by Yang and Perdikaris [44]. More specifically, the conditional generative261

model is constructed using fully connected feed-forward architectures for the encoder and generator262

networks with 4 hidden layers and 100 neurons per layer, while the discriminator architecture263
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Figure 2: Schematic view of the conditional generative model.

has 2 hidden layers with 100 neurons per layer. A schematic view of the conditional generative264

model is depicted in Figure 2. The neural networks are constructed by combining try-and-error265

and Hyperopt algorithm [69] to search for the hyperparameters that give the lowest 𝐿2−𝑀𝑅𝐸 . All266

activation uses a hyperbolic tangent non-linearity. The models are trained for 50,000 stochastic267

gradient descent steps using the Adam optimizer [70] with a learning rate of 10−4, while fixing a268

two-to-one ratio for the discriminator versus generator updates. Furthermore, we have also fixed the269

entropy regularization and the residual penalty parameters to 𝜆 = 1.5 and 𝛽 = 0.5, respectively. The270

proposed model was implemented in TensorFlow v2.1.0 [71], and computations were performed271

in single precision arithmetic on a single NVIDIA GeForce RTX 2060 GPU card.272

We also explore some alternatives versions of the above described ML models by proposing273

fusion with experimental data and the use of multi-fidelity formulations.274

3.1. ML results for typical fuel surrogates275
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Table 1
Gaussian Process training accuracy.

Train data 𝐿2−𝑀𝑅𝐸 R2-score

10 % 6.2805 × 10−2 0.8538
50 % 4.7438 × 10−2 0.9976
100 % 2.7272 × 10−2 0.9991

Table 2
Generative model training accuracy.

Train data 𝐿2−𝑀𝑅𝐸 R2-score

10 % 4.9316 × 10−2 0.9359
50 % 2.8989 × 10−3 0.9983
100 % 2.1409 × 10−3 0.9990

Tables 1 and 2 show the coefficient of determination (R2-score) and 𝐿2 mean relative error,276

respectively, for GP and the probabilistic conditional generative models. The accuracy metrics are277

computed with the test samples. We observe that they are not satisfactory in the small training data278

scenario, with 10% of training data. R2-scores for the GP and conditional generative models in279

this specific training scenario are 0.8538 and 0.9359, respectively. For a data richer situation, with280

50% of training data, we observe that the models return good predictions with R2-score higher than281

0.99. Also, we observe that the conditional generative model returns better predictions than the282

GP model in a small data scenario, with an accuracy of 𝐿2−𝑀𝑅𝐸 = 2.8989 × 10−3 while the GP283

accuracy is 𝐿2−𝑀𝑅𝐸 = 4.7428 × 10−2. Finally, with 100% of the training data, we can see that the284

surrogate models return excellent predictions with R2-score very near 1.0 and mean relative errors285

lower than 0.03%.286

As a further illustration of the performance of such approaches to predict the density, we plot its287

values for n-octane, n-dodecane, and n-hexadecane densities with respect to temperature for the ML288

models trained with 50% of the dataset, since this training scenario returns the best relation between289

accuracy and computational cost. Figure 3 shows the n-octane density predictions at the pressures290

equal to 3, 10, and 100 MPa. We can observe that at 3MPa the GP model fails to deliver good291

results around the transcritical region, while the generative model provides robust predictions with292
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 3: n-Octane predictions with the GP (top) and probabilistic conditional generative models
(bottom) at the pressures 3, 10, and 100 MPa.

uncertainties bounds that capture the data. The predictive uncertainty of the proposed approaches293

reflects limited data for training the models, the epistemic uncertainty. We can also note that both294

models perform well at 10 and 100 MPa, wherein the density dependency on the temperature has295

a smooth behavior.296

Also, the n-dodecane and n-hexadecane densities are depicted along with temperature in297

Figures 4 and 5. We observe that the ML models return robust predictions at three different298

pressures. Besides, it is noted that the GP model returns larger uncertainty bounds at high pressures,299

specifically at density points not used in the training process.300

We also validate how the proposed ML technology perform in an extrapolation scenario. We301

validate them for the n-heptane, a fuel not used for building the models. In order to do that, instead302

of employing data provided by ML computations, we use an experimental database furnished by the303

National Institute of Standards and Technology (NIST). Figure 6 shows that at 3 MPa and liquid304

condition the ML model returns good predictions of the n-heptane density behavior, with small305

uncertainties. However, at supercritical conditions (𝑇𝑐 = 540.13𝐾), the GP model returns density306

predictions far from satisfactory. Also, we note that the generative model has uncertainty bounds307
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 4: n-Dodecane predictions with the GP machine learning model (top) and conditional generative
machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 5: n-Hexadecane predictions with the GP machine learning model (top) and conditional generative
machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

able to capture the thermophysical property. The 𝐿2 mean relative error between the NIST dataset308

and the expected values predicted by the GP and conditional generative models are 7.1697 × 10−2309

and 2.0838×10−2, respectively. We can also note that at higher pressure where the density behavior310

is smooth, the models present better predictions, with the GP model showing larger uncertainties311

bounds and the generative model returns smaller uncertainty bounds. Moreover, the 𝐿2 mean312
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(a) 3 MPa (b) 10 MPa (c) 100 MPa

Figure 6: n-Heptane predictions with the GP machine learning model (top) and conditional generative
machine learning model (bottom) at the pressures 3, 10, and 100 MPa.

relative errors of the GP model at 10 and 100 MPa are respectively 1.8152×10−4 and 6.3072×10−4,313

and for the conditional generative model the 𝐿2 mean relative errors at the same pressures are314

8.4484 × 10−5 and 2.0322 × 10−4.315

Furthermore, we use a coefficient of variation to measure the degree of uncertainty of the316

density predictions. It is defined as the ratio between the standard deviation 𝜎𝜌 and the mean 𝜇𝜌 of317

the prediction318

cv(𝑝, 𝑇 ) =
𝜎𝜌(𝑝, 𝑇 )
𝜇𝜌(𝑝, 𝑇 )

(13)

Figure 7 gives an overall picture by displaying a mapping between the operating conditions319

and the uncertainty on n-octane density predictions. We present an explicit quantification of the320

epistemic uncertainty resulting from the lack of data, which helps to understand limits of the ML321

models. More specifically, to make more accessible the visualization of the results, we plot this322

mapping for log10𝑝 ∈ [0.5, 2.5] MPa and 𝑇 ∈ [320, 900] K with regular intervals of 20K, allowing323

us to make explicit the strong dependence of the epistemic uncertainties regarding different regions324

of operating conditions. A critical aspect to be remarked is the higher values of cv in particular325
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(a) GP model (b) Conditional generative model

Figure 7: n-Octane density variability for a range of temperatures and pressures.

regions of the operating conditions space, especially at transcritical conditions displaying higher326

gradients of the property. We can note that the GP model returns a degree of uncertainty slightly327

large in this region. That can be mitigated by providing more training data for this specific region.328

Also, it is noted that variability of density provided by the conditional generative model is less329

pronounced at liquid regions and for high-pressure supercritical regions, which is due to the smooth330

density behavior resulting in a low degree of uncertainty in the predictions at these regions.331

In addition, we explore the ability of ML models considering other physicochemical properties.332

Specifically, we extend the above approaches to predict the diffusion coefficient of the alkane333

compounds. The diffusion coefficient controls mass transport in combustion engines. Therefore,334

understanding diffusion is extremely important in order to optimize industrial processes and335

improve device efficiency, especially for supercritical combustion, where the physicochemical336

properties of fluids are quite different from those in liquid conditions. It is worth emphasizing that337

constructing accurate and simple predictive models overcoming costly simulations and expensive338

experimental procedures is crucial for describing physicochemical properties over a wide range of339

flow conditions.340

The dataset used to build the ML models consists of 1240 values of the diffusion coefficient,341

computed within a regular temperature grid 𝑇 ∈ [300, 900] K, varying by 20K, and at specific342

pressures: 𝑃 = {1, 2, 4, 10, 20, 40, 100, 150} MPa. In the training process, 70% of the data points343
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(a) 1 MPa (b) 10 MPa (c) 100 MPa

Figure 8: n-Dodecane predictions of the diffusion coefficient with the GP machine learning model (top)
and conditional generative machine learning model (bottom) at the pressures 1, 10, and 100 MPa.

are selected randomly to training the ML models. The remaining 30% are used to testing them.344

Moreover, the training data set is organized in three subsets with 20%, 50%, and 70% of data.345

Figure 8 shows the n-dodecane diffusion coefficient predictions at the pressures equal to 1, 10, and346

100 MPa for the ML models trained with 50% of the dataset. We observe that the ML models347

return robust predictions at three different pressures with GP model returns larger uncertainty348

bounds. We can also note that similar to density the model perform better at higher pressures,349

wherein the diffusion coefficient dependency on the temperature has a smooth behavior. That350

is further confirmed by calculating the 𝐿2 mean relative error, where for a pressure of 1 MPa351

the models return worse predictions, as shown in Figure 9. That might be explained by the fact352

that the physicochemical properties display higher gradients near transcritical regions at lower353

pressures, which decreases the predictability of the models under these conditions. Also, we note354

that the generative model has slightly better predictions than the GP model. These results show355

the robustness of the proposed approaches to construct predictive models for physicochemical356

properties of diesel fuels.357

3.2. Data-fusion Machine Learning models358
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Figure 9: Comparison of the 𝐿2 mean relative error in different data regimes for training. Gaussian
process (dashed-line) and generative model (solid-line).

Although MD simulation is considered to be a robust tool to predict thermodynamic properties,359

it returns unsatisfactory values at critical points/transcritical regions. It was shown [8] that the360

transport properties predictions of diesel surrogate fuels are far from satisfactory near such critical361

points. That is also the case with n-dodecane in that study. The results depict that EMD simulation362

might be unsuitable for predicting the properties at regions near the critical point. Non-equilibrium363

molecular dynamics simulation may leverage the results near the critical points, which is beyond the364

scope of the present study. Density predictions with MD simulations and NIST data at transcritical365

regions present considerable discrepancies, as shown in Figure 10. More specifically, in operating366

conditions near the critical point of n-dodecane, critical pressure (𝑃𝑐 = 1.8170 MPa) and critical367

temperature (𝑇𝑐 = 658.1 K), our ML models based on the MD data fail to accurately predict the368

density. Figures 11 (a) and 12 (a) show the density predictions at 2 MPa for GP and conditional369

generative model, respectively. Moreover, Figures 11 (b) and 12 (b) also show that the main370

discrepancies between the expected values of ML models against the NIST database are into the371

transcritical regions.372

Aiming at improving the predictability of our ML models at transcritical regions, we adopt two373

strategies, exploring the fusion of MD simulations with experimental data. The aim here is not to374

compare these different strategies but to evaluate their potential. Both are formulated with the same375

idea, promoting the fusion of data from MD simulations and experiments datasets. In the first one,376

we propose a data-fusion strategy in which density points of the transcritical region provided by the377
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Figure 10: Comparison between n-dodecane density predictions along with temperature at 2 MPa
between MD simulations against NIST dataset.

(a) GP model (b) 𝐿2 relative error

Figure 11: n-Dodecane density predictions GP model: (a) n-Dodecane density along with temperature
at 2 MPa. (b) 𝐿2 error between the expected value predicted by the ML model against NIST.

(a) Conditional generative model (b) 𝐿2 relative error

Figure 12: n-Dodecane density predictions conditional generative model: (a) n-Dodecane density along
with temperature at 2 MPa. (b) 𝐿2 error between the expected value predicted by the ML model against
NIST.

NIST database are simply concatenated into the training dataset. The second differs as we propose378

a multi-fidelity arrangement of the data. A detailed description of both strategies is given further379

ahead.380
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(a) 2 MPa (b) L2 relative error

Figure 13: n-Dodecane density predictions with the GP model (top) and conditional generative model
(bottom) using the data-fusion approach with three density points from the NIST database.

In the data-fusion approach, we add three density values from NIST to the original training381

dataset, as depicts in Fig 13 (a). Note that the fusion improves considerably the predictions of the382

conditional generative model with relative errors lower than 5%, while the GP model still returns383

relative errors not satisfactory. Further details about this data-fusion approach can be found in the384

Appendix A.385

As discussed above, generating reliable data with MD simulations to be used in supervised386

learning might require a great computational effort. To tackle such a drawback, numerical387

formulations combining models displaying different levels of fidelity are frequently employed.388

Those multi-fidelity simulators employ, for instance, coarse grid discretizations, models based on389

simplified physics, or simplified iterative methods. Here, again we merge experimental data with390

MD simulations, restricting our approaches to two levels of fidelity.391

In this new context, we propose extensions of the previous introduced ML models. We start392

by obtaining high-fidelity {𝐱𝐻 , 𝛾𝐻} and low-fidelity {𝐱𝐿, 𝛾𝐿} input-output samples. Typically, the393

number of samples in the first case tends to be much smaller due to the related costs. We assign394
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the high-fidelity score to the experimental data, according to the considerations above about the395

potential inaccuracy of the MD obtained computed properties for transcritical regions.396

We start with our first, in this multi-fidelity context, ML model approximating the conditional397

probability 𝑝(𝛾𝐻 |𝐱𝐻 , 𝛾𝐿, 𝑧), using the generative model 𝛾𝐻 = 𝑓𝜙(𝐱𝐻 , 𝛾𝐿, 𝑧), 𝑧 ∼ 𝑝(𝑧). In another398

words, the ML model is supposed to capture the correlation between the two level of fidelity399

data. Once this is achieved, we have a predictive model computing outputs for a new point 𝐱∗:400

𝐲𝐇∗ = 𝑓𝜙(𝐱∗, 𝑓𝐿(𝐱∗), 𝑧). At this point, it is worth remarking that one of the inputs is the output of401

the low-fidelity model, leading to a recursive scheme to obtain the predictions of the multifidelity402

model. In fact, here the considered low fidelity data is produced with expensive MD simulations.403

Therefore, in order to achieve a feasible scheme, we need to build an auxiliary, cheap to compute404

and accurate, proxy for the low fidelity model using the available data.405

As a second approach, the one based on GPs, we employ the nonlinear autoregressive multi-406

fidelity GP (NARGP) regression model [53]. The main idea of the NARGP model is to extend407

GP modeling to capture nonlinear correlations from data generated by sources of different fidelity408

[72, 73]. It enables the construction of probabilistic models prone to encapsulate uncertainties, built409

upon the recursive relation 𝑦𝐻 = 𝑔(𝑥𝐻 , 𝑓𝐿(𝑥𝐻 )) involving low and high fidelity data, in which 𝑓𝐿410

is a GP model for the former. Moreover, we put a GP prior on 𝑔. After the training, we obtain the411

predictive model, which turns to be also a GP, 𝑦𝐻 = 𝑔(𝑥∗, 𝑓𝐿(𝑥∗)).412

To assess the above multi-fidelity ML approaches, we use an illustrative example involving413

data from "low-fidelity" MD simulations and "high-fidelity" NIST experimental values. For414

both approaches, the training dataset consists of 7 density values of n-dodecane 𝜌𝐻 (𝑝, 𝑇𝐻 )415

and 𝜌𝐿(𝑝, 𝑇𝐿), at the pressure of 2 MPa and a set of temperatures given by 𝑇𝐻 = 𝑇𝐿 =416

{320, 440, 500, 620, 660, 680, 700}K. Note that we prioritize points located in the transcritical part,417

since this region presents larger discrepancies between the values predicted by MD simulations and418

the NIST database.419

The conditional generative model is constructed using fully connected feed-forward architec-420

ture for the encoder and generator networks with 4 hidden layers and 100 neurons per layer, while421
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the discriminator architecture has 2 hidden layers with 100 neurons per layer. All activation uses422

a hyperbolic tangent non-linearity. The models are trained for 20,000 stochastic gradient descent423

steps using the Adam optimizer [70] with a learning rate of 10−4, while fixing a one-to-five ratio for424

the discriminator versus generator updates. Furthermore, we have fixed the entropy regularization425

parameter to 𝜆 = 1.5, and we also employed a one-dimensional latent space with a standard normal426

prior, 𝑝(𝑧) ∼  (0, 1).427

We train the NARGP model via maximizing the marginal log-likelihood using the Mattern 3/2428

kernel function. The gradient descend optimizer L-BFGS is used considering randomized restarts429

to ensure convergence to a global optimum. Once the high-fidelity recursive GP is trained, we can430

compute the predictive posterior mean and variance at a given untested point 𝐱∗ by sampling the431

probabilistic predictive model.432

The main results are summarized in Fig 14. More specifically, the results indicate that433

the NARGP model was able to satisfactorily reconstruct the high-fidelity data. To make this434

comparison quantitative, we compute the mean 𝐿2 relative error between the expected values435

predicted by the generative model and the NIST data. It shows predictions with accuracy of436

𝐿2−𝑀𝑅𝐸 = 1.4524 × 10−2. Moreover, it returns good uncertainty bounds able to capture the437

high-fidelity response at the transcritical region. Also, we note a perfect agreement between the438

expected value provided by the probabilistic conditional generative model and the high-fidelity439

data, resulting in an accuracy of 𝐿2−𝑀𝑅𝐸 = 4.4782 × 10−5. Finally, we observe that the multi-440

fidelity model returns small uncertainty bounds despite the small amount of data employed in the441

training process.442

4. Conclusions443

In this work, we propose a computational methodology based on the use of ML with Molecular444

Dynamics simulations to compute physicochemical properties of single compound fuels at engine-445

relevant conditions. The ML models have been revealed to be a powerful tool to predict accurately446

the fuel properties of pure compounds. Moreover, this study explores the versatility of the ML447
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(a) NARGP model (b) Conditional generative model

Figure 14: Multi-fidelity modeling of n-dodecane diesel surrogate fuel density.

models to handle data from different sources, which can then be integrated efficiently in the context448

of UQ workflows with many-query tasks.449

We place our contribution in the emerging area of physics-aware ML, where the final model,450

in many different ways, blends two main components: availability of experimental data and/or451

often expensive computational models relying on first principles and phenomenological closure452

equations, and deep learning data-driven models. Such combination allows describing physico-453

chemical properties over a wide range of flow conditions at relatively low cost, and also offers a454

broad spectrum of opportunities to enhance CFD codes.455

This study has shown a successful prediction of fuel physical quantities, in this case density456

and diffusion coefficient, that can also be extended to other physicochemical properties as well as457

more complex fuel molecules or multicomponent mixtures like dimethyl ethers or oxymethylene458

dimethyl ethers. The generation of reliable physicochemical properties of renewable fuels is an459

important step forward towards the generation of digital tools that can assist on the decarbonization460

by the use of renewable fuels.461
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Appendix A Data-fusion studies678

In order to enhance the predictability of the ML models at transcritical regions, here we propose679

a data-fusion approach. Specifically, we concatenate density points of the transcritical region680

provided by the NIST database into the training dataset. The aim here is to improve the density681

predictability of our ML models, by supplying reliable information about this state variable in the682

specific region where MD data is scarce. Following this purpose, the first attempt is to add one683

density point from the NIST database. Here, we concatenate the n-dodecane density at pressure684

2 MPa and temperature 660 K to the training data. By adding this point to the training set, it is685

verified that the ML models can recover the density at 660 K, as shown in Figure 15. However,686
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(a) 2 MPa (b) 𝐿2 relative error

Figure 15: n-Dodecane density predictions with the GP model (top) and conditional generative model
(bottom) using the data-fusion-fidelity approach with one density point from the NIST database.

the 𝐿2 relative errors between the expected values predicted by ML models and the NIST data are687

still considerable in transcritical regions. Also, we can note that the conditional generative model688

has larger uncertainty bounds at the transcritical region trying to recover density behavior due to689

the lack of data in this region. Furthermore, Figure 16 shows that adding density points from NIST690

into the training data does not change the degree of uncertainty at other operating conditions.691

As a further attempt to enhance the density predictions at the transcritical region, we now692

concatenate one more density point from the NIST database. More specifically, in addition to693

concatenating the n-dodecane density at pressure 2 MPa and temperature 660 K to the training694

data, we also add the n-dodecane density at 680 K. Figure 17 shows that adding two density points695

from NIST data in the transcritical region slightly improves the predictions of the GP model, while696

the relative error remains considerable. However, we can verify that the generative model returns697

satisfactory predictions with 𝐿2 relative error lower than 10% in the transcritical region. This shows698

the capability of the conditional generative model to enhance the predictability of the density when699
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(a) 10 MPa (b) 100 MPa

Figure 16: n-Dodecane density predictions with the GP model (top) and conditional generative model
(bottom) using the data-fusion-fidelity approach with one density point from the NIST database at the
pressures 10 and 100 MPa.

some pieces of information about the correct behavior of the transport property are given to the700

model.701

Finally, to further increase the predictability of our ML models, a third attempt is proposed702

based on adding three density points from NIST to the training data, those being the n-dodecane703

densities at 2 MPa and temperatures 660, 680, and 700K. Figure 13 depicts that in this training704

scenario the density predictions of the GP model have some improvements, but the 𝐿2 relative705

error is still considerable. Furthermore, we can verify that the conditional generative model returns706

accurate predictions, with relative errors lower than 5% in transcritical regions. Finally, we note707

that the generative model has uncertainty bounds able to recover the density predictions near the708

critical point.709
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(a) 2 MPa (b) L2 relative error

Figure 17: n-Dodecane density predictions with the GP model (top) and conditional generative model
(bottom) using the data-fusion-fidelity approach with two density points from the NIST database.
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