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Abstract 

Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing 

the prognostic extent of myocardial injury after myocardial infarction (MI). Within the 

context of clinical trials, CMR is also useful for assessing the efficacy of potential 

cardioprotective therapies in reducing MI size and preventing adverse left ventricular (LV) 

remodelling in reperfused MI. However, manual contouring and analysis can be time-

consuming with interobserver and intraobserver variability, which can in turn lead to 

reduction in accuracy and precision of analysis. There is thus a need to automate CMR scan 

analysis in MI patients to save time, increase accuracy, increase reproducibility and increase 

precision. In this regard, automated imaging analysis techniques based on artificial 

intelligence (AI) that are developed with machine learning (ML), and more specifically deep 

learning (DL) strategies, can enable efficient, robust, accurate and clinician-friendly tools to 

be built so as to try and improve both clinician productivity and quality of patient care. In this 

review, we discuss basic concepts of ML in CMR, important prognostic CMR imaging 

biomarkers in MI and the utility of current ML applications in their analysis as assessed in 

research studies. We highlight potential barriers to the mainstream implementation of these 

automated strategies and discuss related governance and quality control issues. Lastly, we 

discuss the future role of ML applications in clinical trials and the need for global 

collaboration in growing this field.    

 

Utility of cardiovascular magnetic resonance imaging in myocardial infarction and the 

need for automated analysis strategies  

Cardiovascular magnetic resonance (CMR) is an important cardiac imaging tool for assessing 

the prognostic extent of myocardial injury after myocardial infarction (MI) as endorsed by 

the European Society of Cardiology 2017 guidelines(1) and the Society for Cardiovascular 

Magnetic Resonance 2020 position paper.(2) Within the context of clinical trials, CMR is 



useful for assessing the efficacy of potential cardioprotective therapies in reducing MI size 

and preventing adverse left ventricular (LV) remodelling in reperfused MI. It is currently the 

gold standard imaging modality to quantify MI size,(3) and it can delineate subendocardial 

MI as little as 1 gram in size(4) with a high degree of accuracy.(5) Native T1, T2, T2* and 

post-contrast T1-mapping (to derive extracellular volume [ECV] mapping)(6) can also enable 

deeper insights to be garnered into the pathophysiological processes post MI and their 

associated prognostic significance.  

However, manual contouring and analysis can be time-consuming with interobserver and 

intraobserver variability, which can in turn lead to reduction in accuracy and precision of 

analysis. There is thus a need to automate CMR scan analysis in MI patients to save time, 

increase accuracy, increase reproducibility and increase precision. In this regard, automated 

imaging analysis techniques based on artificial intelligence (AI) that are developed with 

machine learning (ML), and more specifically deep learning (DL) strategies, can enable 

efficient, robust, accurate and clinician-friendly tools to be built so as to try and improve both 

clinician productivity and quality of patient care.  

AI refers to computer algorithm-based techniques that enable machines to perform tasks that 

resemble human intelligence. ML methods encompass supervised, unsupervised, semi-

supervised and reinforcement learning methods, amongst others, to achieve AI. DL is a set of 

advanced ML techniques that are based on artificial neural networks with hidden layers and 

can be used to detect and differentiate patterns in data. DL is currently the most popular ML 

method for medical image analysis.  

In this review, we discuss important prognostic CMR imaging biomarkers in MI and the 

utility of current ML applications in their analysis as assessed in research studies 

(summarised in Table 1 and schematically depicted in Figure 1). We highlight potential 

barriers to the mainstream implementation of these automated strategies and discuss related 

governance and quality control issues. Lastly, we discuss the future role of ML applications 

in clinical trials and the need for global collaboration in growing this field.   

 

Prognostic implications of myocardial infarction cardiovascular magnetic resonance 

imaging biomarkers 

The parameters of prognostic importance with clinical implications that may be amenable to 

automated analysis are volumetric analysis, infarct size, area at risk, presence of 

microvascular obstruction (MVO) and size of MVO.  

Historically, left ventricular (LV) ejection fraction (EF) and LV volumes have been the 

established predictors of mortality in patients with coronary artery disease (CAD) and severe 

LV dysfunction.(7) Previous studies have shown that LV function and LV end-systolic 

volume (ESV) were the strongest predictors of cardiac death after MI.(8) 

MI size refers to the size of the infarcted myocardium and is conventionally demarcated on 

late gadolinium enhancement (LGE) imaging. Morbidity and mortality post-ST elevation 

myocardial infarction (STEMI) is closely associated with acute MI size.(9) A meta-analysis 

of 2,632 patients showed that MI size assessed by CMR or SPECT within 1 month post-

primary percutaneous coronary intervention from 10 randomised controlled trials was 



strongly associated with heart failure hospitalisation and all-cause mortality at 1 year, with a 

20% increase in relative hazard ratio for both these clinical outcomes for every 5% increase 

in MI size.(10) This further adds to the growing body of evidence that acute MI size is 

prognostic.  

MVO results from the inability to reperfuse the coronary microcirculation in a previously 

ischaemic region despite revascularisation of the culprit epicardial vessel. MVO can be 

identified as a dark hypointense core within areas of hyperenhancement on early gadolinium 

enhancement imaging.(9) Intramyocardial haemorrhage (IMH) can occur if coronary 

microvasculature injury is very severe after MI, with resultant damaged vessel integrity and 

extravasation of red blood cells.(11) Both MVO and IMH are associated with larger MI size, 

adverse LV remodelling and overall worse clinical outcomes.(12) In general, prognosis 

worsens with larger MI size, with patients also more likely to have MVO and IMH with 

larger MI size. Prognosis for STEMI patients with MVO is worse than those without 

MVO.(13) Prognosis is worst for patients with MVO and IMH.(11)  

The area-at-risk (AAR) refers to the myocardial territory supplied by the infarct-related 

culprit artery that was at risk of infarction and would have infarcted if revascularisation and 

reperfusion had not taken place to salvage the viable myocardium. The myocardial salvage 

index (MSI) normalises MI size reduction to AAR and as such is a more sensitive marker 

compared with MI size alone to assess cardioprotective therapy efficacy.(14) Post-contrast 

T1-mapping has recently demonstrated promise as an alternative technique to gadolinium 

enhancement imaging in quantifying MI size.(15) T1-mapping has the potential to 

complement clinical and imaging parameters and biomarkers to optimise risk stratification in 

MI patients.(9) Oedema, assessed by CMR using T2-mapping, occurs both in the viable and 

non-viable myocardium during the first week of a reperfused STEMI in the clinical 

setting.(16–19) Oedema-based area-at-risk measured by CMR can be used to assess 

myocardial salvage in clinical cardioprotection studies but the appropriateness of this has 

been called into question.(9) 

 

Basic concepts of machine learning in cardiovascular magnetic resonance imaging  

Important image characteristics or features such as image contrast, noise characteristics, 

texture and motion are highlighted as part of a designed feature set to create a ML model that 

is trained using data. The model training, e.g. for image segmentation problems, involves 

using a ML method that allows the model to learn and optimise the parameters of the 

mathematical model from a set of CMR studies with ground truth segmentations performed 

by the human expert. The trained model is then used to predict segmentations. The training 

algorithm extracts the parts of the data that are important for the prediction task and collates 

the information together to produce the prediction result. ML models can perform either 

classification or regression tasks. Classification tasks involve discrete labels such as 

determination of the presence or absence of disease. Regression tasks involve continuous 

variables such as quantifying the percentage of infarcted myocardium of patients with an 

acute MI. The training dataset should be sufficiently large with representative variability to 

optimise performance. A validation dataset is used to evaluate a model’s performance and 

prevent model overfitting.  



It has been challenging to identify optimal discriminative features to create ML systems for a 

given task. In order to circumvent the need to design these discriminative features, DL 

methods can be applied that can learn directly (end-to-end learning) from the training dataset. 

In myocardial contouring for example, DL methods will learn the image features that are 

most useful for predicting myocardial contour locations. A specific type of DL network 

known as convolutional neural network (CNN) is often used in image analysis-associated 

tasks. A typical CNN is made up of multiple layers including convolution layers, pooling 

layers, fully connected layer, skip layers and softmax layer.(20) Deep CNNs are complex and 

can contain millions of weights, and although the features resulting from the intermediate 

layers contain information relevant to the task, it is often difficult to interpret how the 

predictions are actually made or why the network might have failed to make the accurate 

prediction.  

Depending on the availability of reference labels in the training dataset, ML algorithms can 

be grouped into supervised versus unsupervised learning. In supervised learning, training data 

of varying pathological status are labelled by human domain experts. In unsupervised 

learning, hidden structures within the training data are discovered during training. There are 

different ML methods suited to the varying complexities of the image analysis task. Some of 

ML methods often encountered in AI literature include linear regression,(21) support vector 

machines (SVM),(22) decision trees,(23) boosting methods,(24) linear discriminant 

analysis(25) and ensemble method.(26) In linear discriminant analysis for instance, ML 

model parameters are estimated by assuming a simple functional relationship between the 

data and the labels to separate data into normal and abnormal categories. The training data is 

learned and fit to a hyperplane by optimising linear coefficients. However, in complex and 

multi-dimensional problems involving large amounts of data, more advanced techniques such 

as support vector machines, random forests (applied to T2 map quantification(27)) and DL 

CNNs are required.(20)  

 

Applications of machine learning in myocardial infarction cardiovascular magnetic 

resonance imaging analysis 

Image segmentation 

Manually contouring the borders of the cardiac chambers and myocardium, known as 

segmentation, is a time-consuming process. In addition, differences in analysis output may 

still exist between expert readers. In this regard, ML algorithms can help to automate image 

segmentation and increase productivity, accuracy and reproducibility. This can be achieved 

through pixel-wise classification or regression-based techniques. Schuster et al showed that 

fully automated volumetric analysis of MI CMR is feasible and can be equally predictive of 

major adverse cardiac events when compared with conventional volumetric analysis.(28) 

Myocardial tissue characterisation 

Scar volume from LGE CMR imaging is a prognostic quantitative imaging biomarker.(20) 

Manual delineation methods of scar volume currently used in routine clinical practice are 

subjective, time-consuming and labour-intensive. In addition, despite using current 

thresholding techniques for LGE quantification, accuracy and reproducibility is still affected 

by intercentre variations, gadolinium kinetics variations and scattered patterns of LGE 



distribution.(20) A novel, ML-based approach to LGE has been proposed by Fahmy et al(29) 

using deep CNNs to automatically quantify LV mass and scar volume on LGE images in 

patients with hypertrophic cardiomyopathy. This could be further extrapolated to quantify 

infarct size in patients with MI. ML can also be applied to streamline data processing and 

analysis of cardiac relaxometry.  

Infarct size/ late gadolinium enhancement 

Chen et al proposed an automatic MI segmentation approach based on CNNs to analyse CMR 

LGE sequences.(30) Their proposal demonstrated promising segmentation results when 

compared to the intraobserver and interobserver variations in manual segmentation, and to 

automatic segmentation with Gaussian Mixture Model. Engan et al designed an experimental 

framework for data exploration which involved computing a very large number of features to 

describe the characteristics of the regions of interest in the images and found that the addition 

of texture analysis can improve the discriminative power of scarred and non-scarred 

myocardium to distinguish between patients with high and low risk of serious ventricular 

arrhythmias post MI.(31) Kotu et al used pixel intensity-based and underlying texture 

information-based features to define different cardiac segments such as core and border areas 

in scarred regions of MI.(32) In another study by Kotu et al, the segmentation of scarred and 

non-scarred myocardium in MI patients is obtained using different features and feature 

combinations in a Bayes classifier, with segmentation of scarred myocardium being 

comparable to manual segmentation in all crossvalidation cases.(33) Larroza et al aimed to 

differentiate acute from chronic MI using ML techniques and texture features extracted from 

CMR imaging scans and they were able to conclude that texture analysis can be used for 

differentiation of acute from chronic MI on LGE sequences, and standard cine sequences in 

which the infarction is visually imperceptible in most cases.(34) Baessler et al performed a 

proof-of-concept study whereby stepwise dimension reduction and texture feature selection 

were performed, enabling the diagnosis of MI on nonenhanced cine images by using LGE 

imaging as the standard of reference.(35) They showed that texture analysis is feasible and 

allows for the diagnosis of small and large subacute and chronic ischaemic scars on 

nonenhanced cine CMR images with high accuracy.(35) In another study by Larroza et al, 

texture analysis was used to differentiate between infarcted nonviable, viable, and remote 

segments in MI.(36) Zhang et al demonstrated the use of a DL framework on non-contrast 

cine CMR that can confirm, detect and delineate transmurality and size of chronic MI.(37) 

This has positive implications particularly for patients with renal impairment who may be 

precluded from receiving gadolinium contrast but may require myocardial viability 

assessment on CMR.   

Microvascular obstruction/intramyocardial haemorrhage 

In another study by Chen et al, they proposed ML-based models to automatically evaluate the 

severity of MI from physiological, clinical, and paraclinical features.(38) Two types of ML 

models were investigated for MI assessment: the classification models classify the presence 

of MI and persistent microvascular obstruction, and the regression models quantify the 

percentage of infarcted myocardium of patients suspected of having an acute MI in the 

emergency department.(38) The prediction accuracy for the classification of myocardial state 

and regression quantification of infarcted myocardium were encouraging. Rosa et al proposed 

a new automatic method for MI quantification from LGE sequences.(39) Their novel 



segmentation approach was devised for accurately detecting hyperenhanced lesions and also 

MVO areas. It also included a myocardial disease detection step which extended the 

algorithm for working under healthy scans. Goldfarb et al sought to determine the feasibility 

and performance of CMR water–fat separation and parametric mapping via DL techniques 

and demonstrated that myocardial fat deposition in chronic MI and IMH in acute MI could be 

well visualised with DL strategies.(40) 

T1 mapping 

Farrag et al implemented a DL-based method for automated LV segmentation of T1 maps 

performed using a shortened modified Look-Locker imaging (shMOLLI) sequence by 

superimposing prior information from cine CMR images in patients with myocardial fibrosis 

secondary to MI.(41) This helps to circumvent the issue with delineating endocardial-blood 

pool borders that conventional algorithms face in myocardial segmentation of T1-mapping 

images due to low signal gradients at the endocardial-blood pool boundary. The accurate 

delineation of myocardial borders will enable quantification of myocardial fibrosis from 

native (non-contrast) T1 maps.  

Myocardial perfusion 

Perfusion mapping uses AI to provide rapid quantification of myocardial blood perfusion by 

CMR imaging. In turn, quantitative myocardial blood flow (MBF) provides important 

prognostic information in patients with suspected CAD in addition to traditional 

cardiovascular risk factors.(42) Knott et al(42) have shown that in patients with known or 

suspected CAD, reduced MBF and myocardial perfusion reserve measured automatically 

inline using AI quantification of CMR perfusion mapping provided robust and independent 

prediction of major adverse cardiovascular events. 

Radiomics 

The ability of ML techniques to handle high-dimensional data has led to the development of 

radiomics, a novel field in which digital medical images are converted into mineable high-

dimensional data by extracting a large number of quantitative imaging features based on 

mathematical and statistical methods. Within the field of radiomics, texture analysis allow for 

segmentation, analysis and classification of medical images based on underlying tissue 

textures as opposed to pure visual image interpretation. The application of radiomics to 

myocardial tissue characterisation may deliver deeper insights into complex tissue changes in 

association with pathophysiology of cardiovascular disease.(20)  

In the area of MI, radiomics and texture analysis have been applied to the segmentation of 

myocardial scar and the differentiation between acute and chronic MI. Besides MI, texture 

analysis and radiomics have also been applied to differentiate between causes of myocardial 

hypertrophy,(43) prognostication in hypertrophic cardiomyopathy patients with systolic 

dysfunction,(44) T1 mapping-guided discrimination between hypertensive heart disease and 

hypertrophic cardiomyopathy,(45) and in the assessment of myocardial inflammation.(46) 

Rauseo et al(47) analysed CMR images from the UK Biobank including for patients with 

history of ischaemic heart disease (IHD) and MI for CMR radiomic signatures and found that 

shape radiomics such as maximum 2D diameter of the LV and myocardium, myocardial 

cavity volume and surface area to volume ratio were most relevant in IHD and MI, indicating 



the tendency for IHD to result in LV geometry alterations. Avard et al used radiomics 

analysis and feature identification on non-contrast cine CMR images to accurately detect MI, 

thus presenting a potential alternative diagnostic method to LGE CMR for MI.(48) Ma et al 

have shown that combining radiomic signatures of non-contrast-enhanced T1 mapping and 

T1 values can provide higher diagnostic accuracy for MVO and radiomic signatures can also 

provide incremental value in predicting LV longitudinal systolic myocardial contractility at 

six months.(49)  

Prognostication 

ML is well-suited to handle large amounts of clinical information and to find intrinsic 

structure within this body of information to predict clinical outcomes.(20) Random survival 

forests technique has been used to identify the top predictors of each outcome measure in the 

Multi-Ethnic Study of Atherosclerosis (MESA), and CMR-derived LV structure and function 

were identified as one of the top predictors of incident heart failure.(50) Information 

maximising component analysis, a supervised feature extraction method, has been used to 

determine more efficient and sensitive indices of overall remodelling between patients with 

MI and asymptomatic volunteers from the MESA study.(51) Supervised ML of CMR 

imaging scans has been used to predict occurrence of cardiac arrhythmia in patients with MI 

from image-derived scar texture features, size and location of scar.(52)   

 

Barriers to implementation 

One limitation of ML techniques is the black-box nature of DL algorithms, where it is often 

unclear what information is used or what interactions between nodes and layers have 

occurred to derive a certain successful or unsuccessful classification or result.(20) The lack of 

transparency and explainability could affect user trust which can restrict the use of AI in 

healthcare. ML models for CMR imaging analysis also need to be robust and portable 

between scanners, sequences, imaging parameters and centres.(20) Radiomic analysis in 

particular, is highly dependent on image acquisition parameters that can affect texture and 

histogram-based intensity values.(47) Heterogenous datasets from different centres should be 

evaluated to check the validity of proposed ML algorithms on a large scale.(47) Large, 

publicly available CMR datasets also need to be developed so that different algorithms can be 

objectively compared for their performance.(20) 

 

Governance and quality control 

Open source publication of computational processes, codes and datasets can help to mitigate 

the unpredictable failures of ML algorithms that may occur.(20) Current ML and DL methods 

can be vulnerable to adversarial attacks that can influence results and render models unsafe 

for clinical use. To ensure top quality of labelled training data, ground truth must be 

rigorously reviewed, particularly in clinical reporting where clinicians from different centres 

may disagree in reporting style and findings.(20)  

 

 



Future applications and directions 

Controlled trials are required to evaluate the application of ML methods across multiple 

centres and varied patient groups. Validation should be performed using data from the same 

cohort as well as from other cohorts at different centres and using different acquisition 

devices. For continued advancement of the field, algorithms should be published in open 

source repositories to enable cross-checking, benchmarking, replication and improvement by 

international groups. In addition, although large cohort data sets have been used for ML 

training, these applications must be extended with care to specific patient groups with various 

pathologies and with fair representation so that variations between age, sex and ethnicities 

can also be accounted for.(20)  

 

Conclusion 

AI, ML and more specifically DL can improve efficiency, reproducibility, precision and 

accuracy in the assessment of important prognostic imaging biomarkers in MI CMR scans 

through the development of automated CMR analysis strategies. Global collaboration through 

open-source publication of codes and datasets will help to further advance the field and 

improve governance, safety and quality control through knowledge sharing. Future directions 

include the incorporation of automated analysis within clinical trials that assess clinical 

outcomes, and the extension of existing ML applications to heterogenous patient cohorts.  
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Table 1. Summary of studies utilising artificial intelligence-enabled analysis methods on 

cardiovascular magnetic resonance imaging scans of myocardial infarction. 

Research 

group 

Year of 

publication 

Imaging 

biomarker 

Results Machine learning 

method(s) 

Schuster 

et al(28) 

2020 Volumetric 

analysis and 

infarct size 

analysis 

Fully automated 

volumetric analysis of MI 

CMR is feasible and can 

be equally predictive of 

major adverse cardiac 

events when compared 

Use of AI-based 

software 

(Manufacturer’s 

undisclosed DL-

based model) 



with conventional 

volumetric analysis 

Chen et 

al(30) 

2022 MI 

segmentation 

Demonstrated promising 

segmentation results when 

compared to the 

intraobserver and 

interobserver variations in 

manual segmentation, and 

to automatic segmentation 

with Gaussian Mixture 

Model. 

CNNs (versus 

Gaussian Mixture 

Model) 

Engan et 

al(31) 

2010 Scarred and 

non-scarred 

myocardium 

Addition of texture 

analysis can improve 

discriminative power of 

scarred and non-scarred 

myocardium to distinguish 

between patients with high 

and low risk of serious 

ventricular arrhythmias 

post-MI 

Maximum 

likelihood 

estimation with 

Bayes classifiers 

Kotu et 

al(32) 

2013 Core and 

border areas in 

scarred regions 

of MI 

Pixel intensity-based and 

underlying texture 

information-based features 

were used to define 

different cardiac segments 

such as core and border 

areas in scarred regions of 

MI.  

Probability 

function based on 

Bayes rule 

Kotu et 

al(33) 

2013 Segmentation 

of scarred and 

non-scarred 

myocardium in 

MI 

Segmentation of scarred 

and non-scarred 

myocardium in MI patients 

obtained using different 

features and feature 

combinations in a Bayes 

classifier, with 

segmentation of scarred 

myocardium being 

comparable to manual 

segmentation in all cross-

validation cases 

Maximum 

likelihood 

estimation with 

Bayes classifiers 

Larroza 

et al(34) 

2017 Texture 

features 

extracted from 

Demonstrated that texture 

analysis can be used for 

differentiation of acute 

Three ML 

methods: Random 

forest, support 



infarcted area 

on LGE CMR 

images, and the 

entire 

myocardium 

on cine CMR. 

from chronic MI on LGE 

sequences and standard 

cine sequences 

vector machine 

(SVM) with 

Gaussian Kernel, 

and SVM with 

polynomial kernel. 

 

Baessler 

et al(35) 

2018 Subacute and 

chronic 

ischaemic scar 

Enabled the diagnosis of 

MI on nonenhanced cine 

images by using LGE 

imaging as the standard of 

reference. Method 

involved stepwise 

dimension reduction and 

texture feature selection 

Multiple logistic 

regression models 

Larroza 

et al(36) 

2018 Infarcted 

nonviable, 

viable and 

remote 

segments 

Texture analysis was used 

to differentiate between 

infarcted nonviable, viable, 

and remote segments in MI 

SVM 

Zhang et 

al(37) 

2019 Transmurality 

and size of 

chronic MI 

DL framework was used 

on non-contrast cine CMR 

to confirm, detect and 

delineate transmurality and 

size of chronic MI. Also 

uses computer vision dense 

(optical) flow method.  

Three DL 

methods: CNN, 

long short-term 

memory (LSTM), 

and stacked auto-

encoder 

Chen et 

al(38) 

2022 Presence of MI 

and MVO and 

quantification 

of infarcted 

myocardium 

Prediction accuracy for the 

classification of 

myocardial state and 

regression quantification 

of infarcted myocardium 

were encouraging 

Methods used for 

regression: linear 

regression, 

support vector 

regression, 

decision tree 

regression, 

random forest, 

multilayer 

perceptron, 

gradient boosting, 

XGBoost, light 

gradient boosting, 

and ensemble 

method.  

Methods used for 

classification: 



random forests 

and SVM with 

linear kernel 

function.  

Rosa et 

al(39) 

2021 Hyperenhanced 

lesions and 

also MVO 

areas. 

Novel segmentation 

approach was devised for 

accurately detecting 

hyperenhanced lesions and 

also MVO areas. Also uses 

computer vision Otsu’s 

method for image 

processing. 

CNN, principal 

component 

analysis, and SVM  

 

Goldfarb 

et al(40) 

2019 CMR water–fat 

separation and 

parametric 

mapping 

Myocardial fat deposition 

in chronic MI and IMH in 

acute MI could be well 

visualised with DL 

strategies 

CNN 

Farrag et 

al(41) 

2019 Automated LV 

segmentation 

of T1 maps 

DL-based method 

implemented for 

automated LV 

segmentation of T1 maps 

performed using a 

shortened modified Look-

Locker imaging 

(shMOLLI) sequence by 

superimposing prior 

information from cine 

CMR images in patients 

with myocardial fibrosis 

secondary to MI 

Modality 

independent 

neighbourhood 

descriptor (MIND) 

Knott et 

al(42) 

2020 MBF and 

myocardial 

perfusion 

reserve 

In patients with known or 

suspected CAD, reduced 

MBF and myocardial 

perfusion reserve 

measured automatically 

inline using AI 

quantification of CMR 

perfusion mapping 

provided robust and 

independent prediction of 

major adverse 

cardiovascular events 

CNN 

 

 



Rauseo 

et al(47) 

2021 Maximum 2D 

diameter of the 

LV and 

myocardium, 

myocardial 

cavity volume 

and surface 

area to volume 

ratio 

Shape radiomics such as 

maximum 2D diameter of 

the LV and myocardium, 

myocardial cavity volume 

and surface area to volume 

ratio were most relevant in 

IHD and MI, indicating the 

tendency for IHD to result 

in LV geometry alterations 

SVM and random 

forest (RF) 

Avard et 

al(48) 

2022 Radiomics 

analysis and 

feature 

identification 

on non-contrast 

cine CMR 

images to 

accurately 

detect MI 

Radiomics analysis and 

feature identification was 

used to accurately detect 

MI in non-contrast cine 

CMR images, presenting a 

potential alternative 

diagnostic method to LGE 

CMR for MI 

SVM, RF, Extra 

Tree, Logistic 

Regression, Linear 

Discriminant 

Analysis, 

Quadratic 

Discriminant 

Analysis, 

AdaBoost, k-

nearest neighbor 

(k-NN), Naïve 

Bayes, Multilayer 

Perceptron 

Ma et 

al(49) 

2021 Radiomic 

signatures of 

non-contrast-

enhanced T1 

mapping and 

T1 values 

Combining radiomic 

signatures of non-contrast-

enhanced T1 mapping and 

T1 values can provide 

higher diagnostic accuracy 

for MVO and radiomic 

signatures can also provide 

incremental value in 

predicting LV longitudinal 

systolic myocardial 

contractility at six months 

LASSO regression 

analysis 

 

Zhang et 

al(51) 

2015 LV 

remodelling 

index post-MI 

IMCA enables better 

characterisation of global 

remodelling than linear 

discriminant analysis, and 

can be used to quantify 

progression of disease and 

the effect of treatment 

Linear 

discriminant 

analysis, principal 

component 

analysis, and 

information 

maximising 

component 

analysis (i.e. 

Information 

preserving 



component 

analysis)(53)  

Kotu et 

al(52) 

2015 Size, location, 

and textural 

information 

concerning the 

scarred 

myocardium 

Texture features based on 

scar gradient and local 

binary patterns 

along with localisation 

features demonstrated 

good discriminative power 

when distinguishing low-

risk versus high-risk 

patients for developing 

arrhythmias post-MI 

k-NN and SVM 

Table legend: MI – myocardial infarction; CMR – cardiovascular magnetic resonance; AI – 

artificial intelligence; CNN – convolutional neural network; LGE – late gadolinium 

enhancement; DL – deep learning; MVO – microvascular obstruction; ML – machine 

learning; IMH – intramyocardial haemorrhage; LV – left ventricle; MBF – myocardial blood 

flow; CAD – coronary artery disease; IHD – ischaemic heart disease; IMCA - information 

maximising component analysis. 

 

 

 

 

 

 



 

Figure 1. Utility of artificial intelligence/deep learning-based strategies in analysis of cardiovascular magnetic resonance myocardial infarction 

imaging biomarkers 

Figure legend: MI – myocardial infarction; CMR – cardiovascular magnetic resonance; AI – artificial intelligence; DL – deep learning; MVO – 

microvascular obstruction; ML – machine learning; IMH – intramyocardial haemorrhage; LV – left ventricle; MBF – myocardial blood flow; 

CAD – coronary artery disease; IHD – ischaemic heart disease; MACE – major adverse cardiovascular events; IHD – ischaemic heart disease.  

 



 


