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Abstract

Time variation is a fundamental problem in statistical and econometric analysis of
macroeconomic and financial data. Recently there has been considerable focus on de-
veloping econometric modelling that enables stochastic structural change in model pa-
rameters and on model estimation by Bayesian or non-parametric kernel methods. In
the context of the estimation of covariance matrices of large dimensional panels, such
data requires taking into account time variation, possible dependence and heavy-tailed
distributions. In this paper we introduce a non-parametric version of regularisation tech-
niques for sparse large covariance matrices, developed by Bickel and Levina (2008) and
others. We focus on the robustness of such a procedure to time variation, dependence
and heavy-tailedness of distributions. The paper includes a set of results on Bernstein
type inequalities for dependent unbounded variables which are expected to be applica-
ble in econometric analysis beyond estimation of large covariance matrices. We discuss
the utility of the robust thresholding method, comparing it with other estimators in
simulations and an empirical application on the design of minimum variance portfolios.
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1 Introduction

This paper considers estimation of large covariance matrices under structural change, pos-

sible dependence and heavy-tailed distributions. The problem of structural change in the
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econometric literature has been mainly addressed within either univariate or relatively small

multivariate models and settings. Existing research is primarily focused on factor models

where datasets are summarised by a finite set of unobserved time series, usually referred to

as factors. Examples of this literature include Stock and Watson (2002a, 2002b). There has

been little work done on structural change in large datasets. This paper addresses the issue

without recourse to factor modelling.

Estimation of large covariance matrices is particularly demanding since the number of

estimated objects rises as a square of the dimension of the dataset leading to a large amount

of aggregated estimation error. Several regularization techniques for improved estimation of

large covariance matrices have been proposed which are summarised briefly in the body of the

paper. These include Ledoit and Wolf (2004), Bickel and Levina (2008), Cai and Liu (2011)

and Abadir, Distaso, and Zikes (2014). See also the excellent review article by Fan, Liao, and

Liu (2016) and references therein. That review article focuses on structure-based estimators of

covariance and precision matrices - that is estimators that assume sparsity or a factor model.

For structure-free estimators, see Pourahmadi (2013).

In this paper we develop regularized thresholding estimation in the presence of structural

change of a general unspecified form. The characterisation of the change is an important

aspect of the problem. In contrast to the majority of the work we allow for smooth deter-

ministic or stochastic change of the covariance matrix rather than structural breaks. Some

new characterizations of smooth change introduced in this paper expand upon the notion of

smoothness used in nonparametric inference.

There is limited literature on regularized estimation under deterministic structural change,

see Chen, Xu, and Wu (2013), Zhou, Lafferty, and Wasserman (2010) and Kolar and Xing

(2011); strong mixing, see Fan, Liao, and Mincheva (2013), and heavy-tailed data (indepen-

dent, modelled by elliptical distribution), see, e.g., Wegkamp and Zhao (2016), Han and Liu

(2017), and Fan, Wang, and Zhong (2016). All this work assumes that the volatility pro-

cess is a deterministic function or a constant which is considered extremely restrictive for

economic and financial data, both from a theoretical and an empirical point of view. In a

different stochastic setup than the one considered in the paper, Bickel, Wang, and Zhou (2013)

have provided a theoretical analysis for Bickel-Levina thresholding in the context of realized

covariance, estimated from noisy data.

We provide a unified framework for estimation of the paths of large covariance matrices,

that change over time, in a potentially stochastic way, with temporal dependence, charac-

terised by mixing, and with potentially heavy tails. The key characteristic of such regularized

estimation is robustness to all those data features, which are highly likely to be present in
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financial and economic data.

Deterministic change of covariance corresponds to the typical characterization of het-

eroscedasticity. Stochastic (persistent) change of volatility, also considered in our paper, is a

standard vehicle for the modeling of structural change in the economy. It differs from ARCH

type volatility models that have dominated the financial econometrics literature since their

introduction in Engle (1982). It aligns with the empirically established fact that stochas-

tic change in volatility may be more persistent and smooth than that allowed by stationary

conditional volatility models, see Kapetanios (2010).

In order to achieve such a characterization of persistent volatility, we follow the modelling

framework of Giraitis, Kapetanios and Yates (2014, 2018) and specify that the volatility

process is, potentially stochastic, bounded and has small increments. That framework, in

turn, extended the work of, e.g., Dahlhaus (1997) on locally stationary processes, where

change was assumed to be smooth and deterministic, in nature.

This paper is organised as follows. In Section 2, we present the main results. We show that

the thresholding estimation procedure developed by Bickel and Levina (2008) and others, in

general, is robust to dependence, random scaling (volatility) and heteroscedasticity and the

type of distribution of the data. In Section 3, we discuss cross-validation methods for the

selection of tuning parameters and use simulations to compare the performance of regularized

estimation methods. In that Section, we further provide an application of regularized esti-

mation methods for designing minimum variance portfolios. Section 4 contains new results

on Bernstein type inequalities for dependent data, that are of independent interest. They are

particularly important for the rigorous analysis of penalised regression methods, like Lasso, in

the presence of time series dependence. The online supplement contains proofs and technical

results.

2 Thresholding Estimation

Given a sample (y1, · · · ,yT ) of a p-variate process yt = (y1,t, ..., yp,t)
′, estimation of the

population covariance p × p matrix Σ by the sample covariance is a well defined procedure

when p is fixed. For large covariance matrices, when p increases with T the poor performance of

the sample covariance matrix estimate Σ̂ can be improved by various regularization procedures

which include the thresholding methods developed by Bickel and Levina (2008), Cai and Liu

(2011), Fan, Liao, and Mincheva (2013) and others.

The aim of this paper is to investigate the impact of dependence, heteroscedasticity and

distribution of the data on consistency rates for regularised estimation of the covariance matrix

using the Bickel and Levina (2008) thresholding procedure. Under heteroscedasticity, the
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covariance matrix Σt = var(yt) = E[(yt − Eyt)(y
′
t − Ey′t)] varies over time, and can be

estimated by the local sample covariance matrix Σ̂t, see (10). For data with a random scaling

(volatility) component, the limit of Σ̂t is less obvious. As shown in the following analysis,

such a limit comprises a time-varying deterministic matrix and a random scale. The novelty of

our theoretical findings is showing that the Bickel-Levina thresholding procedure is robust to

dependence, light or heavy tailedness of the data and it can be adjusted for heteroscedasticity.

To reflect the robustness properties of regularised estimation of Σt, we consider three

settings for yt. Before proceeding further, we provide assumptions, notation and definitions.

Assumption M. (i) The centered stochastic process yt − Eyt is an α-mixing (but not nec-

essarily stationary) process with mixing coefficients αk
1 such that for some 0 < φ < 1 and

c > 0,

αk ≤ cφk, k ≥ 1. (1)

(ii) The elements of Eyt = (µ1,t, ..., µp,t)
′ and var(yt) = Σt = (σjk,t)j,k=1,...,p are such that

|µj,t| ≤ C, |µj,t − µj,s| ≤ C
|t− s|

max(t, s)
, |σjk,t| ≤ C, |σjk,t − σjk,s| ≤ C

|t− s|
max(t, s)

(2)

for 1 ≤ t, s ≤ T where C <∞ does not depend on j, k and t, s and T .

The components of yt = (y1,t, ..., yp,t)
′ can have a wide variety of tail behavior. We write

(yt) ∈ E(s), s > 0 to denote a thin-tailed distribution for yj,t:

max
j,t

E exp(a|yj,t|s) <∞ for some a > 0. (3)

The notation (yt) ∈ H(θ), θ > 2 denotes a heavy-tailed distribution property:

max
j,t

E|yj,t|θ <∞. (4)

The definitions (3) and (4) imply that there exists c0 > 0, c1 > 0 such that for all ζ > 0, t ≥ 1,

P
(
|yi,t| ≥ ζ

)
≤

{
c0 exp(−c1ζ

s) if (yj,t) ∈ E(s), s > 0,

c0ζ
−θ if (yj,t) ∈ H(θ), θ > 2.

Thresholding under stationarity. Suppose that yt is a stationary α-mixing process. Then,

Eyt = µ and Σ = var(yt) = [σij] do not depend on t. Denote by Σ̂ = [σ̂ij] the sample

covariance estimate of Σ,

Σ̂ = T−1
∑T

j=1 yjy
′
j − ȳȳ′, ȳ = T−1

∑T
j=1 yj. (5)

1Let F j
−∞, F∞j denote σ-fields generated by {yt, t ≤ j} and {yt, t ≥ j} respectively. Define the α-mixing

coefficient as αk = supj supA∈Fj
−∞, B∈F∞j+k

|P (A)P (B)− P (A ∩B)|.
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Hard and adaptive thresholding, introduced by Bickel and Levina (2008) and Cai and

Liu (2011), are two standard procedures to regularize Σ̂, when p increases with T . Hard

thresholding is based on the idea of setting the elements of Σ̂, whose absolute values are

smaller than some threshold λ, to zero. It yields the estimate

Tλ
(
Σ̂
)

=
(
σ̂ijI(|σ̂ij| > λ)

)
.

Procedures based on other thresholding operators can be defined, but they have similar prop-

erties to hard thresholding, asymptotically, although they may differ in finite samples.

In their seminal work Bickel and Levina (2008) showed that if yt is an i.i.d. Gaussian

process, then the regularized estimator Tλ(Σ̂) of Σ under a sparsity assumption is consistent,

∥∥Tλ(Σ̂)−Σ
∥∥ = OP (npλ) with λ = κ

√
log p

T
, (6)∥∥Tλ(Σ̂)−1 −Σ−1

∥∥ = OP (npλ) if npλ = o(1) and ||Σ|| ≥ c > 0 (7)

where ‖.‖ denotes the spectral norm and κ is a tuning parameter. Thresholding estimation as

a rule assumes that Σ is approximately sparse, i.e. the sparsity parameter, np, which is the

maximum number of non-zero elements in a row of Σ,

max
i=1,...,p

p∑
j=1

I(σij 6= 0) = np, (8)

does not grow too fast with p.

As in Bickel and Levina (2008) and Fan, Liao, and Mincheva (2013), we consider, as a

leading case, the one where Σ is sparse, although the theory can accommodate large np ≤ p.

We assume that T, p→∞.

Theorem 1 Let y1, · · · ,yT be a sample from a stationary process (yt) which satisfies As-

sumption M. Let c > 0, ε > 0 and

T ≥ cpε, T, p→∞. (9)

Then, for sufficiently large κ > 0, the regularised estimate Tλ
(
Σ̂) of Σ satisfies (6) and (7) in

the following cases.

(i) If (yt) ∈ E(s), s > 0.

(ii) If (yt) ∈ H(θ), θ > 4 and ε > 8/(θ − 4) in (9).

This theorem shows that the Bickel-Levina thresholding procedure is valid for a stationary

α-mixing process (yt) which may have a non-Gaussian, heavy-tailed distribution. For yt with
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a heavy-tailed distribution, it requires at least four finite moments and p should be relatively

small compared to T .

Thresholding under heteroscedesticity. In economic applications, heteroscedasticity may

arise due to smooth changes of the mean and unconditional variance of observations. Next

we consider the case when yt is a heteroscedastic process, i.e. var(yt) = Σt = [σij,t] and

E[yt] = µt vary with t. To account for variation in Σt, we use a kernel type sample covariance

estimator Σ̂t = [σ̂ij,t] of Σt at time t = 1, ..., T given by

Σ̂t ≡ Σ̂T,t = K−1
t

∑T
k=1 bH,|t−k|yky

′
k − ȳtȳ′t, ȳt = K−1

t

∑T
k=1 bH,|t−k|yk (10)

where Kt =
∑T

k=1 bH,|t−k| and bH,|t−k| are kernel weights defined in (12). The regularized

sample covariance estimate of Σt is defined as

Tλ
(
Σ̂t

)
=
(
σ̂ij,tI(|σ̂ij,t| > λ)

)
. (11)

Below we modify the thresholding procedure to account for heteroscedasticity.

We assume that Σt is approximately sparse, i.e. the maximum number of non-zero elements

in each row of Σt for all t, np, is either finite, or does not grow too fast with p. The rate of

change of Σt and µt will be controlled by (2) of Assumption M.

We will consider kernel estimates (10) with weights

bH,|t−k| = K(|t− k|/H), (12)

where H →∞, H = o(T ). K(x), x ∈ (0, a) is a non-negative continuous function with finite

or infinite support, such that, for some C > 0 and ν > 3,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ∈ (0, a). (13)

In particular, the functions K(x) = I(0 ≤ x ≤ 1), K(x) = (1 + xν)−1 with ν > 2 and

K(x) = exp(−cxα) with α > 0 satisfy (13).

The following theorem establishes the consistency properties of the regularised estimate

Tλ
(
Σ̂t) of Σt. Under heteroscedasticity the threshold parameter λ in (15) is larger than under

stationarity in Theorem 1. It depends on the bandwidth H (“window size”) and accounts

for the bias-variance tradeoff of change in mean µt = E[yt] and covariance Σt = var(yt). We

denote by np the sparsity parameter of Σt defined as in (8).

Theorem 2 Suppose that y1, · · · ,yT is a sample from a p-dimensional heteroscedastic process

(yt) which satisfies Assumption M. Let c0, c, δ, ε > 0.
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Then, the regularised estimate Tλ
(
Σ̂t) of Σt, δT ≤ t ≤ T , with bandwidth H such that

c0p
ε ≤ H = o

(
T/
√

log T
)

as T, p→∞ (14)

for sufficiently large κ has the properties∥∥Tλ(Σ̂t

)
−Σt

∥∥ = OP (npλ) with λ = κ
√

log p max(
1√
H
,
H

T
), (15)∥∥Tλ(Σ̂t

)−1 −Σ−1
t

∥∥ = OP (npλ) if npλ = o(1) and ||Σt|| ≥ c > 0 (16)

in the following two cases.

(i) If (yt) ∈ E(s), s > 0.

(ii) If (yt) ∈ H(θ), θ > 4 and ε > 8/(θ − 4) in (14).

The bandwidth Hopt = T 2/3 yields the lowest threshold λopt = κ
√

log p
Hopt

= κ
√

log p
T 1/3 in (15).

Condition (14) on H is similar to that on T in equation (9), Theorem 1. The choice

of λ reflects the bias–variance tradeoff of nonparametric inference. Under heteroscedasticity,

dependence and thin-tailed or heavy-tailed distribution of (yt), the optimal bandwidth, Hopt =

T 2/3 yields the threshold λopt = κ
√

log p
Hopt

which is the Bickel-Levina threshold (6) with T

replaced by Hopt. The tuning parameter κ can be selected by cross-validation.

We complete this subsection with typical examples of µt.

Example 3 The following two sequences of real numbers µ1, ..., µT satisfy assumption (2).

a) µt = t−1
∑t

j=1 aj, t ≥ 1 where aj is a bounded sequence of real numbers.

b) µt = µTt = g(t/T ), 1 ≤ t ≤ T where g(x), x ∈ [0, 1] is a bounded function with a bounded

derivative. Then,

|µt − µs| ≤ C
|t− s|
T

≤ C
|t− s|

max(t, s)
for 1 ≤ t, s ≤ T.

Thresholding under random scaling. Allowing for heteroscedasticity that involves stochas-

tic scaling is crucial in modelling macroeconomic and financial data.

Such data can be put in the form

yt = H txt, (17)

where xt is a heteroscedastic α-mixing process with time-varying mean µ
(x)
t = Ext and

covariance matrix Σ
(x)
t = var(xt), and H t = (hij,t) is a random persistent p×p matrix-valued

scaling process. We show below, that for such yt the limit of Tλ(Σ̂t) is a time varying matrix

Σt = H tΣ
(x)
t H

′
t
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which itself is a random process. Although no restriction on the dependence between H t and

xt is imposed, the elements (hij,t) of H t are assumed to be persistent (smooth) and thin-tailed

processes. The latter is formalized as follows.

Assumption H. The elements (hij,t) of H t have the following property. For all j, k = 1, ..., p,

1 ≤ t, s ≤ T , T ≥ 2,

|hjk,t − hjk,s| ≤
( |t− s|

max(t, s)

)1/2

hjk,ts (18)

where (hjk,t) ∈ E(α), (hjk,ts) ∈ E(α) for some α > 0.

Under Assumption H, all processes hjk,t and hjk,ts satisfy the thin tail property (3) with

the same parameters a.

In Theorem 4 we assume that the sparsity parameter nH of H t is bounded for all t and p,

while the sparsity parameter np of Σ
(x)
t may increase with p.

Theorem 4 Suppose that y1, · · · ,yT is a sample from a p-dimensional process, yt as in (17).

Assume that xt satisfies Assumption M and H t satisfies Assumption H with parameter α > 0.

Let ν = (α + 4)/(2α) and c0, c, δ, ε > 0.

Then, the regularised estimate Tλ
(
Σ̂t) of Σt = H tΣ

(x)
t H

′
t, δT ≤ t ≤ T , with the bandwidth

H such that

c0p
ε ≤ H = o

(
T/(log T )ν

)
as T, p→∞ (19)

for sufficiently large κ has the property that∥∥Tλ(Σ̂t

)
−Σt

∥∥ = OP (npλ) with λ = κ(log p)ν max
( 1√

H
, (
H

T
)1/2
)
, (20)∥∥Tλ(Σ̂t

)−1 −Σ−1
t

∥∥ = OP (npλ) if npλ = o(1) and ||Σt|| ≥ c > 0 (21)

in the following two cases.

(i) If (xt) ∈ E(s), s > 0.

(ii) If (xt) ∈ H(θ), θ > 4 and ε > 8/(θ − 4) in (19).

The bandwidth Hopt = T 1/2 yields the lowest threshold λopt = κ
√

(log p)2ν

Hopt
= κ (log p)ν

T 1/4 in (20).

In the presence of random scaling, the threshold, λ, in Theorem 4 is larger and the consistency

rate slower than in Theorem 2 under heteroscedasticity. The optimal threshold λopt depends

on the unknown parameter ν = (α + 4)/(2α) where α is the tail parameter of H t. If α = 2,

then ν = 3/2 . IfH t is bounded, then α =∞ and ν = 1/2. In this case λopt = κ
√

(log p)/Hopt.

Parameter κ can be selected by cross-validation.

Next, we provide two examples of processes satisfying (18).
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Example 5 Let ξj ∼ IIDN(0, 1). The following sequences ζt, t ≥ 1 satisfy (18) with α = 2.

a) ζt = t−1/2
∑t

j=1 ξj, 1 ≤ t ≤ T ,

b) ζt = T−1/2
∑t

j=1 ξj.

To verify a), let t > s. Write

|ζt − ζs| =
∣∣t−1/2

∑t
j=s+1 ξj + (t−1/2 − s−1/2)

∑s
j=1 ξj

∣∣
≤ (t−s)1/2

t1/2

∣∣ 1
(t−s)1/2

∑t
j=s+1 ξj

∣∣+ |t1/2−s1/2|
t1/2

∣∣ 1
s1/2

∑s
j=1 ξj

∣∣
≤ (t−s)1/2

t1/2
ζts, ζts = 1

(t−s)1/2
∣∣∑t

j=s+1 ξj
∣∣+ 1

s1/2

∣∣∑s
j=1 ξj

∣∣
noting that t1/2 − s1/2 ≤ (t − s)1/2. Since ζt ∼ N(0, 1), then (t − s)−1/2

∑t
j=s+1 ξj ∼ N(0, 1)

which implies (ζt) ∼ E(2), (ζts) ∼ E(2) and verifies (18) with α = 2.

b) Observe that |ζt| ≤ t−1/2|
∑t

j=1 ξj| and |ζt− ζs| ≤ (t− s)1/2T−1/2|(t− s)1/2
∑t

j=s+1 ξj| which

implies (18) with α = 2.

Throughout our analysis we have assumed a significant degree of sparsity for the covariance

matrix. The issue of sparsity can be addressed by extending the method developed by Fan,

Liao, and Mincheva (2013), based on a factor structure, to the time varying case. To do so

note that by Stock and Watson (2002a), factors can be consistently estimated, using principal

component analysis, in the presence of structural change. Then, one can use time varying

regression analysis, based on Giraitis, Kapetanios, and Yates (2018) to obtain time varying

factor loadings and associated residuals. The (sparse) covariance matrix of these residuals can

then be analysed using our proposed method. Due to the considerable technical arguments

needed to implement this approach rigorously we leave this to future research.

3 Implementation of regularized estimation

In this section we compare the finite sample performance of various approaches for the es-

timation of large dimensional covariance matrices. We also examine their usefulness for one

step ahead out-of-sample forecasting of such matrices.

Besides thresholding, another popular method of regularizing the sample covariance esti-

mator is based on shrinkage. Ledoit and Wolf (2003, 2004) have promoted this approach in a

series of papers. We consider the full sample and time-varying version of shrinkage estimators,

defined as

Σ̂LW = ρ µTI + (1− ρ)Σ̂, Σ̂LW,t = ρ µt,TI + (1− ρ)Σ̂t,

where µT = p−1tr(Σ̂), µt,T = p−1tr(Σ̂t). Here the matrices µtI and µt,TI approximate the

shrinkage target diag(Σ̂) and diag(Σ̂t) and the shrinkage intensity parameter ρ ∈ [0, 1] can be
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obtained through cross-validation. Ledoit and Wolf (2004) suggested to evaluate Σ̂LW with

the theoretically optimal

ρopt =
b2
T

d2
T

, d2
T = p−1tr(Σ̂

2
)− µ2

T , b2
T = min(b̄2

T , d
2
T ),

b
2

T =
1

pT 2

T∑
t=1

( p∑
i=1

y2
it

)2 − 1

pT
tr(Σ̂

2
).

It is of relevance and interest to see how linear shrinkage and its time-varying version compares

to thresholding. Therefore, we implement the linear shrinkage estimator for both simulation

and empirical exercise. For i.i.d. data, the linear shrinkage estimator has by now been

superseded by the nonlinear shrinkage estimator of Ledoit and Wolf (2015). It is important

to note, however, that the latter, unlike its linear counterpart, depends crucially on random

matrix theoretical arguments. Therefore, it requires assuming that data are i.i.d. and p/T has

a finite limit, both of which we consider as too restrictive for our purposes. While the analysis

of the linear shrinkage estimator has also been carried out under similar assumptions, it is

likely that a number of desirable properties of this estimator carry over to less strict settings

than the i.i.d. one. In our empirical application, we also consider this type of shrinkage

estimator.

In the literature, other popular methods for large covariance estimation have been pro-

posed, which do not account explicitly for dependent data. For instance, Cai and Liu (2011)

in a recent paper provide adaptive threshold estimators for the large covariance matrix Σ. In

their approach the threshold λij depends on the i, j-th entry of the matrix Σ = var(yt) as

follows:

λij = δ

√
θ̂ij log p

T
, δ > 0, (22)

θ̂ij = T−1

T∑
t=1

(
(yit − yi)

(
yjt − yj

)
− σ̂ij

)2
, yi = T−1

T∑
j=1

yit.

Now, the lower bound for an off diagonal element of Σ is not global, but depends on the

variability of the individual point estimate of the i, j-th element of the sample covariance

matrix Σ̂.

The adaptive thresholding approach of Cai and Liu is further extended in another stimulat-

ing paper by Fan, Liao, and Mincheva (2013). The authors introduce the Principal Orthogonal

complement Thresholding (POET) estimator, to account for non sparsity, using an approxi-

mate factor model. This is done by combining the factor based covariance matrix estimator

and the thresholding approach developed in Cai and Liu (2011). To this end, consider the
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approximate factor model for yt,

yt = bft + ut, (23)

where b is the p×K matrix of factor loadings, ft is the K × 1 vector of unobserved factors,

with K << p, and ut is the idiosyncratic error which is uncorrelated with the factor ft. The

factors ft summarize information of the large vector yt. Model (23) implies that

Σ = bΣfb
′ + Σu

where Σf , Σu are defined as Σf = var(ft), and Σu = var(ut). When (23) is an approximate

factor model, Σu is a non diagonal but sparse matrix. A natural estimator is defined as

Σ̂poet = b̂Σ̂f b̂
′ + Tλij(Σ̂u)

with b̂, f̂t estimated by PCA, Σ̂f = T−1f̂ ′f̂ , Σ̂u = T−1û′û, ût = yt − f̂tb̂, and Tλij(Σ̂u) is

the regularized estimate of Σ̂u, which is adaptively thresholded (see (22)). In practice, the

number of factors K is chosen by information criteria, Kopt, as the one used in (34).

3.1 Cross Validation methods

Estimation of large covariance matrices requires the use of a number of tuning parameters.

All the estimators presented above can be generically denoted as mγ(Σ̂) and mγ(Σ̂t), where

mγ is some function and γ is a vector of tuning parameters, e.g., ρ for the Ledoit and Wolf

estimator, κ for the Bickel and Levina, (ρ,H) for time varying Ledoit and Wolf, (κ,H) or only

κ for the time varying Bickel and Levina, and δ for the Cai and Liu and POET estimators.

A popular approach to obtaining values for tuning parameters is via cross-validation. Cross-

validation schemes are especially well-suited to the time-varying framework. We propose for

this framework two objective functions that the optimal choice of parameter(s) γ minimize

over a sensible parameter space:

Q
(1)
T,γ :=

∥∥ 1

T − Ta

T∑
t=Ta+1

(
mγ

(
Σ̂t|t−1

)
− y0

ty
0
t
′)(
mγ

(
Σ̂t|t−1

)
− y0

ty
0
t
′)′∥∥

F
, (24)

Q
(2)
T,γ :=

∥∥ 1

T − Ta

T∑
t=Ta+1

(
mγ

(
Σ̂t|t−1

)−1/2
y0
ty

0
t
′
mγ

(
Σ̂t|t−1

)−1/2 − I
)

(25)

×
(
mγ

(
Σ̂t|t−1

)−1/2
y0
ty

0
t
′
mγ

(
Σ̂t|t−1

)−1/2 − I
)′∥∥

F

where y0
t = yt− ȳt with ȳt as in (10). They are based on the estimate of var

(
yt|yt−1

)
, Σ̂t|t−1,

defined as

Σ̂t|t−1 =
( t−1∑
j=1

bH,|j−t|
)−1

t−1∑
j=1

bH,|j−t|yjy
′
j − ȳt|t−1ȳ

′
t|t−1, ȳt|t−1 =

( t−1∑
j=1

bH,|j−t|
)−1

t−1∑
k=1

bH,|t−k|yk.

(26)
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The optimal choice of γ is then given by γ̂ = arg minγ Q
(j)
T,γ for j = 1 or 2. In (25), the

regularized covariance mγ

(
Σ̂t) matrix is constrained to be positive definite. If Eyt = 0 (or

Ext = 0 in (17)), then y0
t can be replaced by yt. For full sample methods, mγ

(
Σ
)
, that do

not account for time variation (i.e. no H parameter), to select γ, we use the same objective

functions with Σ̂t|t−1 computed setting bH,|j−t| = 1 in (26).

The choice of the objective function depends on the empirical application at hand, while in

different situations, the objectives (24) and (25) can give slightly different estimation results.

In practice, one can use the (25) for choices of γ that yield a positive definite covariance matrix

mγ

(
Σ̂t), while dropping all other alternatives, that do not guarantee this property. To ensure

this property, the eigenvalues of mγ(Σ̂t) should always be positive. Giraitis, Kapetanios, and

Price (2013) have shown that cross-validation methods can return tuning parameters that

optimize the forecasting mean squared error in time-varying settings.

All tuning parameters are calibrated over a sensible parameter space. For the time varying

estimator Σ̂t we search for tuning parameter H = T h, with h on the interval [0.45, 1]. For

the thresholding methods, the parameter space depends on the data at hand. For instance,

κ depends on the individual entries of the Σ̂t and the specific thresholding approach that is

considered. To this end, we focus on values of κ ∈ [κmin, κmax], where 0 < κmin, and κmax

is the minimum value that implies mγ(Σ̂t) ≡ diag(Σ̂t) for H ∈ [T 0.45, T ]. In the adaptive

thresholding approach, as suggested by Cai and Liu, we search for δ on [0, 12]. In this case,

one theoretically reasonable value is δopt = 2. This result relies on the fact the θ̂ij (see (22))

provides an estimate of the variability of each individual entry of Σ̂t. The same parameter

space is used for the POET estimator. For the Ledoit and Wolf methods, we search for ρ in

the interval [0, 1]. We look for optimal values using a grid of 20 points for h, 100 points for

κ, 50 points for δ, and 20 points for ρ in all the above parameter spaces. In the simulation

experiments we use Q
(1)
T,γ although results do not alter significantly when we use the Q

(2)
T,γ.

3.2 Monte Carlo experiments

Following the theoretical exposition, we carry out a Monte Carlo study to explore the proper-

ties of estimation and forecasting of large deterministic and stochastic time-varying covariance

matrices. We compare the performance of the estimates Σ̂, Σ̂t, Ledoit-Wolf shrinkage esti-

mates Σ̂LW , Σ̂LW,t and Bickel-Levina thresholding estimates Tλ(Σ̂), Tλ(Σ̂t), Tλopt(Σ̂t), Cai-Liu

thresholding estimates Tλij(Σ̂) and POET estimators Σ̂poet.

Monte Carlo design. The generation of Σt presents particular challenges. We wish to have

a reasonably realistic generation mechanism for Σt that corresponds to economic or financial

data. Previous work on large dimensional covariance matrices of stationary processes offers

12



little guidance since its designs for Σ with no time variation are rather simplistic for our

purposes.

We choose to have a design for Σt based on the one factor setting used in Bailey, Kapetan-

ios, and Pesaran (2016). It allows for varying degrees of sparsity np ≤ p. We consider the

data generating model

yt = (Σt)
1/2εt, t = 1, ..., T (27)

with two settings for Σt: deterministic and random. We consider two different settings for

εt: in the first one εt is an i.i.d. p-dimensional standard normal variable while in the second

εt is an i.i.d. p-dimensional random variable where each element follows a Student-t(12)

distribution with 12 degrees of freedom. As we consider relatively large values of p compared

to T , we feel that our choice of the number of degrees of freedom is reasonable. Denote

V t = diag(et) + btb
′
t = {vij,t}

where bt=
(
b1t, b2t, ..., bnpt, 0, ..., 0

)′
, et= (e1t, e2t, ..., ept)

′ are p× 1 vectors. Then, we set Σt =

{vij,t/(vii,1vjj,1)1/2}. We assume eit = hitdi where bit, eit and di will be specified below. This

simulation design can be seen as a one factor model with time-varying factor loadings. Stock

and Watson (2002a) argue that macroeconomic and/or financial time series do possess small

instabilities, which can be amplified when these span a significant long time period, and the

proposed simulation scheme is consistent with this idea.

We set T = 400 and consider three cases: p = 10 with sparsity parameter 3, 5, 10, p = 50

with np = 5, 20, 50, and p = 100 with np = 10, 40, 100, respectively.

Deterministic Σt. We consider two settings for deterministic time-varying covariance ma-

trices Σt generated respectively by

bit = 4 + 10(t/T ), hit = 10 + 25(t/T ), (28)

bit = 4 + 2 sin(2πt/T )(1 + 2t/T ), hit = 10 + 2 sin(2πt/T )(1 + 2t/T ). (29)

In these settings, we set di = 2, i = 1, ..., p. The first one is a linear trend, while the second

is a sine function of time. All settings provide considerable, smooth change for Σt over time.

Random Σt. We consider one setting for a stochastic time-varying Σt which is generated by

the following rescaled unit root processes:

bit =
(
2.4|uit/

√
t|+ 0.04

)(
1 + 2t/T

)
, hit =

(
9|uit/

√
t|+ 16

)
(1 + 2t/T ), (30)

where (ui·) are independent random walk processes: uit = ui,t−1 + ξit and ξit are i.i.d. N(0, 1).

In both settings, we assume that di are i.i.d. χ2
2 random variables, and in (27) we assume (Σt)

to be independent of (εt).

13



Finally, and for reference, we also consider a case where the covariance matrix Σt is actually

constant and equal to the identity matrix. Notice that all the above considered simulation

designs are in accordance with our theoretical formulations. For example the processes defined

in (30) involve scaled random walk processes which satisfy Assumption H. Similar arguments

can be used to verify that all the simulated processes we consider satisfy our theoretical

assumptions. As expected, in such cases, forecast methods that allow for time-varying Σt

outperform forecast methods based on non-time varying estimates of Σ.

3.3 Monte Carlo results

In this section we discuss performance of the one-step-ahead out-of-sample forecasts of ΣT

for various estimation methods, mγ(Σt), of a time-varying covariance matrix Σt using several

Monte Carlo experiments.

For the forecasting experiment, given the sample yt, t = 1, ..., T , we use the estimate of

ΣT as the forecast for ΣT+1. Formally, we define the one-step-ahead out-of-sample forecast

of ΣT+1 based on estimation method mγ(Σ̂t) as Σ̂T+1|T = mγ(Σ̂T,T ). In our Monte Carlo

experiments, we evaluate the forecast error using the Frobenius norm∥∥Σ̂T |T−1 −ΣT

∥∥
F

(31)

and denote by frmse(mγ) its Monte Carlo average over 500 replications. To compare the

quality of forecasts based on different estimation methods, as a benchmark, we choose the

standard sample covariance estimate mbench = Σ̂ which does not account for time variation.

We report the relative frmse, frmse(mγ)/frmse(mbench). The smaller the latter is, the better

is the performance of the method. Since in-sample forecasting of Σt by Σ̂t|t−1 reduces to

estimation of Σt−1 by mγ(Σ̂t−1,t−1) using data yt, t = 1, ..., t− 1, parameter γ can be selected

using cross-validation.

For each replication the tuning parameter γ in (31) is estimated by cross-validation method

using objective function (24) over the last 24 observations (Ta = T − 24 in (24)). We denote

by subscript ”cv” tuning parameters γcv obtained by cross-validation, set Hopt = T 2/3 and

Hopt = T 1/2 in estimation of a deterministic and stochastic Σt, respectively, whereas Kopt is

as in section 3, and ρopt as above.

Tables 1-7 present simulation results on the out-of-sample forecast error of large covari-

ance matrices for various models of Σt and its estimation methods. They report the average

relative frmse(mγ)/frmse(mbench), over 500 replications. Smaller numbers indicate superior

performance. The best performing method is bolded and the second best is underlined.
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Table 1: Relative frmse of one step ahead forecasts for deterministic time varying Σt. T = 400,
Σt generated by (29): sine function with a drift, εt iidN(0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 1 1 1.01 0.97 1 1 0.97 1 1

Cai-Liu δ = 2 0.99 1 1 0.94 0.99 1 0.93 0.99 1
δcv 1 1 1 0.97 1 1 0.97 1 1

POET κcv, Kopt 1 0.95 0.96 0.94 0.98 0.99 0.93 0.99 1

Ledoit-Wolf ρopt 1.03 1.02 1.01 1.09 1.02 1.01 1.11 1.02 1.01
ρcv 1.01 1 1.01 1 1 1.01 1 1 1

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 0.83 0.71 0.62 1.36 0.78 0.61 1.41 0.79 0.59
Tv-Ledoit-Wolf Hcv, ρcv 0.86 0.72 0.62 1.33 0.78 0.62 1.41 0.79 0.59

Tv-Bickel-Levina κcv, Hopt 0.71 0.69 0.82 0.81 0.77 0.61 0.81 0.88 0.89
κcv, Hopt 0.83 0.85 0.85 0.89 0.86 0.85 0.91 0.87 0.95

Table 2: Relative frmse of one step ahead forecasts for deterministic time varying Σt. T = 400,
Σt generated by (28): trend function, εt iidN(0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 1 1 1 0.97 1 1 0.96 1 1

Cai-Liu δ = 2 0.99 1 1 0.94 0.99 1 0.93 0.99 1
δcv 1 1 1 0.97 1 1 0.96 1 1

POET κcv, Kopt 1 0.95 0.97 0.94 0.98 0.99 0.93 0.99 1

Ledoit-Wolf ρopt 1.03 1.02 1.01 1.09 1.02 1.01 1.11 1.02 1.01
ρcv 1.01 1.01 1.01 1 1 1.01 1 1 1.01

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 0.62 0.57 0.5 1.07 0.6 0.5 1.11 0.6 0.5
Tv-Ledoit-Wolf ρcv, Hcv 0.68 0.61 0.52 1.09 0.61 0.51 1.12 0.61 0.52

Tv-Bickel-Levina κcv, Hcv 0.55 0.55 0.59 0.59 0.58 0.6 0.52 0.55 0.59
κcv, Hopt 0.53 0.47 0.49 0.57 0.49 0.5 0.51 0.43 0.44
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Table 3: Relative frmse of one step ahead forecasts for stochastic time varying Σt. T = 400,
Σt stochastic generated by (30), εt iidN(0, 1)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 1 1 1.01 0.96 1 1 0.95 1 1

Cai-Liu δ = 2 0.99 1 1.01 0.93 1.01 1.03 0.91 1.02 1.03
δcv 1 1 1.01 0.96 1 1 0.95 1 1

POET κcv, Kopt 1.01 0.99 0.98 0.97 0.99 0.99 0.93 0.99 1

Ledoit-Wolf ρopt 1.02 1.01 1.01 1.01 1.02 1.01 1.02 1.02 1.01
ρcv 1.01 1 1 0.99 0.99 1 1 1 1

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 0.66 0.5 0.58 1.13 0.61 0.63 1.23 0.74 0.54
Tv-Ledoit-Wolf ρcv, Hcv 0.66 0.52 0.6 0.98 0.61 0.64 1.12 0.75 0.54

Tv-Bickel-Levina κcv, Hcv 0.61 0.5 0.63 0.70 0.60 0.74 0.77 0.7 0.8
κcv, Hopt 0.65 0.48 0.66 0.75 0.63 0.71 0.79 0.78 0.81

Tables 1-6 provide comparisons of the quality of out-of-sample forecasting of a time-varying

covariance matrix Σt based on the sample covariances Σ̂, Σ̂t, and their regularized versions by

Ledoit-Wolf shrinkage and Bickel-Levina thresholding methods. For the latter, the threshold

λ is adapted to time variation via bandwidth H as described in (15) and (20), while tuning

parameters are selected by cross-validation as described in Section 3.1. For comparison reasons

we also include the Cai-Liu adaptive thresholding estimator and the POET estimator of Σt.

We use cross-validation to choose the tuning parameter, δ, in Cai-Liu adaptive thresholding

estimator, as well as the theoretically optimal value (δ = 2). In POET estimator we use

information criteria to choose the optimal number of factors K denoted by Kopt.

Monte Carlo results, for deterministic Σt, reported in Tables 1-2, 4-5 and for stochastic Σt,

reported in Tables 3, 6 clearly show what to expect from the considered methods. In general,

they indicate a significant impact from deterministic or stochastic change of Σt on the quality

of forecasting of Σt by various methods.

A number of interesting conclusions can be drawn from the tables. It is unlikely that

the time invariant sample covariance estimate Σ̂ will produce good forecasts of Σt for all t.

We use it as a benchmark. Clearly, estimation and forecasting need to be adapted to both

time variation and sparsity of Σt. The relative forecasting error, reported in the tables shows
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Table 4: Relative frmse of one step ahead forecasts for deterministic time varying Σt. T = 400,
Σt generated by (29): sine function with a drift, εt iid t(12)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 0.99 1 1.03 0.93 1 1 0.91 0.99 1.02

Cai-Liu δ = 2 0.98 0.99 1 0.88 0.99 1 0.87 0.99 1
δcv 0.99 1 1 0.94 1 1 0.92 0.99 1

POET κcv,Kopt 1 0.93 0.95 0.89 0.97 0.99 0.88 0.98 0.99

Ledoit-Wolf ρopt 1.04 1.03 1.01 1.12 1.03 1.01 1.13 1.03 1.01
ρcv 1 1 1.03 1 1.01 1 1 1 1.02

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 0.8 0.69 0.52 1.27 0.71 0.54 1.07 0.67 0.5
Tv-Ledoit-Wolf ρcv, Hcv 0.79 0.7 0.58 1.26 0.72 0.56 1.07 0.69 0.54

Tv-Bickel-Levina κcv, Hcv 0.71 0.65 0.61 0.76 0.61 0.55 0.59 0.55 0.53
κcv, Hopt 0.62 0.56 0.57 0.74 0.58 0.53 0.57 0.49 0.48

Table 5: Relative frmse of one step ahead forecasts for deterministic time varying Σt. T = 400,
Σt generated by (28): trend function, εt iid t(12)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 0.99 1 1 0.93 1 1 0.93 0.99 1

Cai-Liu δ = 2 0.98 0.99 1 0.89 0.99 1 0.88 0.99 1
δcv 0.99 1 1 0.93 1 1 0.93 1 1

POET κcv, Kopt 1 0.93 0.95 0.89 0.97 0.99 0.88 0.98 0.99

Ledoit-Wolf ρopt 1.04 1.02 1.01 1.12 1.03 1.01 1.14 1.03 1.01
ρcv 1 1 1.01 1 1 1.01 1 1 1

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 1 0.88 0.78 1.18 0.94 0.8 1.15 0.96 0.74
Tv-Ledoit-Wolf ρcv, Hcv 1.01 0.88 0.79 1.17 0.95 0.82 1.14 0.97 0.75

Tv-Bickel-Levina κcv, Hcv 0.95 0.83 0.78 0.92 0.87 0.8 0.95 0.86 0.74
κcv, Hopt 0.86 0.78 0.82 0.95 0.85 0.8 0.89 0.84 0.78
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Table 6: Relative frmse of one step ahead forecasts for stochastic time varying Σt. T = 400,
Σt stochastic generated by (30), εt iid t(12)

”dimension p” 10 10 10 50 50 50 100 100 100
”sparsity np” 3 5 10 5 20 50 10 40 100

Method Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 0.99 1.02 1.01 0.93 1.02 1 0.97 1 1

Cai-Liu δ = 2 0.97 1 1.02 0.88 1.02 1.02 0.93 1.03 1.05
δcv 0.98 1.01 1.01 0.93 1.01 1 0.96 1 1

POET κcv,Kopt 1.03 0.99 0.97 0.95 0.97 1 0.96 0.98 1

Ledoit-Wolf ρopt 1.02 1.01 1.02 0.98 1.03 1.01 1.01 1.03 1.01
ρcv 1 1.03 1 1 1.01 0.99 0.99 1 1

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 1.01 0.73 0.67 1.03 0.9 0.57 0.85 0.84 0.71
Tv-Ledoit-Wolf ρcv, Hcv 1.01 0.76 0.66 1.04 0.9 0.56 0.84 0.84 0.69

Tv-Bickel-Levina κcv, Hcv 0.93 0.73 0.73 0.77 0.88 0.59 0.65 0.81 0.72
κcv, Hopt 1.19 0.79 0.82 0.9 1.04 0.58 0.7 0.88 0.73

Table 7: Relative frmse of one step ahead forecasts for fixed deterministic Σ. T = 400, Σ = I,
εt iid t(12)

”dimension p” 10 50 100
”sparsity np” 1 1 1

Method Tuning prmt Relative frmse

Forecasts based on non time-varying estimates of Σ

Bickel-Levina κcv 0.9 0.7 0.61

Cai-Liu δ = 2 0.78 0.47 0.35
δcv 0.88 0.68 0.58

POET κcv,Kopt 1.16 0.86 0.71

Ledoit-Wolf ρopt 0.7 0.42 0.31
ρcv 0.98 1 1

Forecasts based on time-varying estimates of Σt

Σ̂t Hcv 1.29 1.15 1.08
Tv-Ledoit-Wolf ρcv, Hcv 1.02 1.09 1.05

Tv-Bickel-Levina κcv, Hcv 1.05 0.72 0.58
κcv, Hopt 1.18 0.87 0.68
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that regularization of the sample covariance estimate Σ̂ by Ledoit-Wolf shrinkage, Bickel-

Levina, Cai-Liu and POET thresholding methods is not effective. However, the time varying

sample covariance estimate Σ̂t seems to be able to adapt to time variation effectively: in

some cases it significantly improves the quality of forecasting of Σt. Regularization of Σ̂t by

Ledoit-Wolf shrinkage does not materially improve forecasting quality, while regularization

of Σ̂t by Bickel-Levina thresholding method significantly improves it in all experiments. As

expected, improvement tends to be slightly stronger when Σt is sparse, however, the effect of

time variation in Σt on forecasting quality is more severe than that of sparsity.

The thresholding procedure Tλopt(Σ̂t) with λopt based on the theoretically optimal Hopt and

cross-validated κ and thresholding procedure Tλ(Σ̂t) where both κ and H are chosen using

cross-validation, produce similar improvements of the forecasting quality. Hence, the choice

of theoretically optimal Hopt given in Theorem 2 and Theorem 4, is a decent alternative to

cross-validated H and the Tλopt(Σ̂t) thresholding method can be recommended for empirical

work.

Finally, in Table 7, we consider a base case scenario in which the true covariance matrix

Σ = I is the identity matrix and does not vary with t. Now, the sample variance estimate Σ̂

performs better, especially for small p. The methods that do not account for time variation,

outperform the time varying methods, as expected, while the Ledoit-Wolf shrinkage estimator

is the best performing method in all experiments. This is not surprising given that the

Ledoit-Wolf method actually shrinks the estimate towards the identity matrix. As expected,

our proposed time-varying forecasting methods suffer somewhat when p is small, while when

p increases, they can deliver benefits over sample variance estimate Σ̂. This indicates that

the sparsity feature can be captured over the methods in this case too.

3.4 Empirical application

In this section we present an empirical demonstration of the potential gains from using the

proposed covariance matrix estimators to design minimum variance portfolios. The illustration

is motivated by the availability of large datasets on stock returns, and the increased demand

for portfolios with lower risk exposure.

The literature on portfolio allocation is well grounded on the mean variance efficient port-

folio frontier proposed by Markowitz (1952). The minimum variance portfolio offers a suitable

device for examining the possible superiority of portfolio weights based on the proposed large

time-varying covariance estimators, as it neutralizes the impact of the estimated expected

return parameters, focusing solely on the covariance matrix estimation (see e.g. Jagannathan

and Ma (2003)).
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Noting that Σt is the p× p covariance matrix of p-dimensional vector of returns, collected

in yt, the minimum variance portfolio is designed to minimize investors’ exposure to risk,

regardless of preferences. The vector of optimal weights given by

wt (Σt) =
Σ−1
t 1p

1′pΣ
−1
t 1p

,

where 1p is a p-dimensional vector of ones. In practice, one has to choose an estimator for Σt

and routinely compute the minimum variance weights. In our analysis, we compute portfolio

weights, employing our large covariance matrix estimators, i.e. ŵt = wt(Σ̂t).

Since our proposals involve sparse covariance estimators, we choose our sample to ac-

commodate this assumption as much as possible. To this end, we obtained data from the

Center for Research in Security Prices database and focus on daily returns from 10 differ-

ent industry sectors. The sectors are: Consumer NonDurables, Utilities, Healthcare-Medical

Equipment-Drugs, Telephone-Television Transmission, Business Equipment, Oil-Gas-Coal Ex-

traction, Manufacturing, Consumer Durables, Consumer NonDurables, Other. The smallest

portfolio examined is a 10 stocks portfolio, comprised of 1 stock from each of the 10 sectors.

The 20 stocks portfolio is comprised of 2 stocks from each of the 10 sectors and so forth until

the 100 stocks portfolio which is the largest portfolio examined. With this selection of stocks,

our aim is to accommodate a block diagonal structure for the large covariance matrix of re-

turns. The sample period starts at 10-Jun-2005 and ends at 23-Aug-2019 (T = 3967 daily

observations).

To examine the out of sample risk performance, we will proceed as follows: every five days

portfolio weights are selected as a function of the large covariance matrix estimate mγ(Σ̂t).

These are kept constant for the subsequent 5 trading days while the corresponding portfolio

returns are computed as yports =
∑p

i=1 ŵi,syi,s for s = t+ 1, .., t+ 5. Then the large covariance

matrix is reestimated and the portfolio weights are updated (see Table 8 Panels A, B, C), or

it is not reestimated and the porfolio weights remain unchanged (see Table 8 Panel D). The

above steps are repeated until the end of the sample, i.e. for the last 775 trading days of

our sample (period from 28-Jul-2016 until 23-Aug-2019). At the end, we use the 775 out of

sample portfolio returns yports , s = 1, .., 775, to compute the associated variance

PortfolioV ariance = ̂var(yport).

The method that provides the minimum out of sample portfolio variance is considered as the

best performing one.

To accommodate our minimum risk objective we modify the cross-validation criteria de-

veloped in Section 3.1 as follows: we choose tuning parameter(s) γ, used to compute ŵt, that
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minimize the objective function

Qemp
t,γ := 1

80

∑t
s=t−79

(
ŵsys − 1

80

∑t
s=t−79 ŵsys

)2

where yt is the p-vector of portfolio returns at time t. The tuning parameter ranges and

positive definiteness constraints discussed in Section 3.1 also apply here.

To account for non sparse covariance matrices, we further extend our proposals following

the approach developed in Fan, Liao, and Mincheva (2013). To this end, we first extract a

number of factors from the portfolio returns and then regularize the remaining part by our

proposed estimator. More formally, we consider the approximate factor model, for returns yt,

yt = bft + ut

where b is the p×K matrix of factor loadings, ft is the K × 1 vector of unobserved factors,

with K << p, and ut is the idiosyncratic error. We can then conclude that

Σt = b′Σfb + Σu,t (32)

where Σf , Σu,t are defined as Σf = var(ft), and Σu,t = var(ut). Assuming that Σu,t is sparse

and possesses significant time variation, a natural estimate of (32) is

Σ̂t = b̂′Σ̂f b̂ + Tλ(Σ̂u,t) (33)

with b̂, f̂t estimated by PCA, Σ̂f = T−1f̂ ′f̂ , and Tλ(Σ̂u,t) is the time varying regularized large

covariance estimator of the residuals ût = yt − b̂f̂t. In practice, the number of factors K can

be chosen by information criteria (see e.g. Bai and Ng (2002)) or set equal to a fixed number.

In our empirical exercise we estimate K according to

K̂ = arg min
0≤K≤M

{
ln

(
1

p

p∑
i=1

σ̂2
i

)
+K

(
p+ T

pT

)
ln

(
pT

p+ T

)}
(34)

where σ̂2
i = 1

T

∑T
t=1 û2

it, and ûit is the i-th element of ut.

In addition to all the above mentioned models we consider two more methods for estimating

the large covariance matrices. The first model is due to Ledoit and Wolf (2015) who extend the

previously discussed linear shrinkage estimator to the non linear case. To this end, let u be an

eigenvector of Σ = var (yt) and Σ̂ be an associated estimate of Σ. The corresponding sample

eigenvalue is equal to u′Σ̂u. Nonlinear shrinkage replaces this quantity with a consistent

estimator of u′Σu. Recovering the population eigenvalues from the sample eigenvalues requires

inverting the Marchenko-Pastur equation (see Theorem 1 of Marchenko and Pastur (1968)).
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Table 8: Performance of out of sample minimum variance portfolio forecast
”dimension p” 10 20 30 40 50 70 100
”dimension T” 3967 3967 3967 3967 3967 3967 3967

Method Tuning prmt Relative Variance
Panel A: Forecasts based on non time-varying estimates of Σ (with reestimation)

1/p 1.166 1.636 1.486 1.572 2.175 1.993 1.76
rolling 6mth 0.96 1.075 0.927 0.931 0.82 1.014 1.953
rolling 12mth 0.893 0.952 0.812 0.823 0.654 0.658 0.73
Bickel-Levina κcv 0.934 0.978 0.975 0.961 1.047 1.014 1.019

Cai-Liu κ = 2 1 0.999 0.993 1.01 1.041 1.196 1.238
κcv 0.932 0.984 0.971 0.96 0.986 0.982 1.03

POET κcv, Kopt 1.011 1.012 1.006 1.016 1.014 1.019 1.011
Ledoit-Wolf ρopt 0.993 0.978 0.982 0.992 1.012 1.009 1.007

ρcv 0.929 0.925 0.843 0.893 1.023 0.989 0.969
Ledoit-Wolf(non linear) 1 0.995 0.993 0.991 0.999 1.002 0.998

Panel B: Forecasts based on time-varying estimates of Σt

TV Hcv 0.919 0.959 0.814 0.746 0.625 0.637 0.771
TV-LW Hcv,ρcv 0.879 0.959 0.822 0.799 0.659 0.619 0.599

Tv-Bickel-LevinaS κcv, Hcv 0.877 0.981 0.877 0.831 0.616 0.605 0.597
κcv, Hopt 0.936 1.073 0.994 0.929 0.829 0.958 0.951

Tv-Bickel-Levina-FactorS κcv, Hcv 1.026 1.144 1.057 1.041 0.924 0.844 0.824
κcv, Hopt 1.397 1.301 1.232 1.182 0.992 0.979 0.947

Tv-Bickel-LevinaD κcv, Hcv 0.87 0.987 0.87 0.832 0.61 0.604 0.597
κcv, Hopt 0.884 0.899 0.755 0.789 0.648 0.641 0.634

Tv-Bickel-Levina-FactorD κcv, Hcv 1.031 1.139 1.046 1.056 0.916 0.846 0.835
κcv, Hopt 1.279 1.36 1.108 1.144 0.95 0.926 0.905

Panel C: Forecasts based on conditional covariance matrix estimates of Σt|t−1

RARCH 0.92 0.909 0.801 0.8 0.726 0.994 1
Panel D: Forecasts based on non time-varying estimates of Σ (no reestimation)

rolling 6mth 1.113 1.028 0.929 1.142 1.223 1.718 2.494
rolling 12mth 0.966 0.938 0.964 1.376 1.1 1.197 1.215
Bickel-Levina κcv 1.027 1.038 1.036 1.146 1.075 1.096 1.091

Cai-Liu κ = 2 1.027 1.037 1.039 1.068 1.109 1.562 1.576
κcv 1.128 1.077 0.995 1.097 1.125 1.152 1.092

POET κcv, Kopt 1.027 1.05 1.065 1.055 1.131 1.163 1.124
Ledoit-Wolf ρopt 1.018 1.008 1.029 1.047 1.09 1.104 1.098

ρcv 0.948 0.942 0.833 0.894 1.192 1.109 1.038
Ledoit-Wolf(non linear) 1.028 1.032 1.042 1.049 1.078 1.101 1.09

Notes: Out of sample portfolio variance relative to the performance of the portfolio derived from the full
sample covariance estimate. The method that provides the minimum out of sample risk exposure is marked
in bold(blue). The second best is underlined(red). The examined period starts at 10-Jun-2005 and ends at
23-Aug-2019 (T = 3967 daily observations), and the out of sample evaluation period covers the last 775
observations of our sample. Data correspond to daily returns from 10 different industry sectors. The
superscript “S” in “Tv-Bickel-Levina” and “Tv-Bickel-Levina-Factor” methods indicate thresholding a
stochastic Σt using λ given in (20) while the superscript “D” corresponds to thresholding a deterministic Σt

using λ as in (15).
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Ledoit and Wolf (2015) introduced an effective numerical method for inverting the Marchenko-

Pastur equation.

The second model stems for the large conditional covariance modelling literature. Noureldin,

Shephard, and Sheppard (2014) propose a model that allows estimation of flexible GARCH

type dynamics in moderately large dimensions. They refer to it as the multivariate rotated

ARCH model. The main idea of this approach is to undertake a transformation (in particular,

a rotation) of the raw returns, and then use a BEKK-type parametrization of the time-varying

covariance matrix. Inference is computationally attractive and based on the quasi-maximum

likelihood (QML).

For the p-dimensional returns yt = Σ1/2εt, the unconditional covariance Σ is decomposed

as Σ = PΛP ′ where P is the matrix of eigenvectors and Λ is the matrix of non negative

eigenvalues. Then, since εt = P (Λ)−1/2 P ′yt, with var (εt) = Ip, the conditional variance of εt

can be modelled as a BEKK type parametrization (see Engle and Kroner (1995))

var (εt|εt−1) = Gt|t−1 = (Ip − AA′ −BB′) + Aεt−1ε
′
t−1A

′ +BGt−1|t−1B
′, G0 = Id. (35)

In our empirical application we apply the scalar specification of (35) that assumes A = a1/2Ip

and B = b1/2Ip.

Finally, we also include in our analysis a number of portfolios which are commonly consid-

ered in the portfolio selection literature. The first is the equally weighted portfolio ŵt = 1/p,

where 1 is a vector of ones of dimension p. The second is the rolling sample, covariance ma-

trix estimate based portfolio. We consider rolling sample estimates of size equal to 6 and 12

months.

In Table 8 we report out of sample portfolio variance results, as a ratio to the benchmark

portfolio which is the full sample estimate, reestimated every 5 days. From Table 8 we

can draw some important conclusions about the performance of our approaches. First, our

study suggests that there are significant advantages from using the proposed time-varying

covariance estimators to derive minimum variance portfolios. In all large portfolios considered,

the proposed time-varying methodologies (see Panel B) outperform the full sample fixed ones

(see Panel A and D). This is true when we estimate the fixed large covariance only once, using

data up to 28-Jul-2016 (see Panel D) or when we reestimate them every 5 days in our out of

sample evaluation period (see Panel A).

The unregularized time-varying estimator Σ̂t, seems to perform well, while its performance

is affected by the size of the portfolio p as one would expect. For the proposed regularized es-

timator, the results remain satisfactory for both H selected by cross-validation and fixed Hopt,

indicating the effectiveness of the derived theoretical value, Hopt. In this case the deterministic

estimator seems to outperform the stochastic one, providing larger risk improvements.
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When we adjust our approach for non sparse covariance matrices, through the factor de-

composition mechanism given in (33), the designed portfolios perform better than the fixed

estimators (Panel A and D), especially when p is large. Having said that, it is important

to emphasize that non sparse versions of our proposals deteriorate, compared to their sparse

analogues, indicating that the fixed component of estimator (33) captured by the factor part

dominates the sparse time varying component, while the latter proves more important for

minimum risk portfolios. On the other hand, time varying regularization through shrinkage

(TV-LW), proves important as this method is among the top performing ones. Finally, com-

paring our methods with the large conditional covariance model RARCH (see Panel C), it

becomes apparent that this outperforms the fixed estimators (Panel A and D), for small and

medium p, while for p = 100 this becomes equivalent to the full sample estimate.

4 Exponential inequalities

This section contains new results on Bernstein type inequalities for (weighted) sums of ran-

dom variables (r.v.’s) (ξj) that are dependent, unbounded and have thin- or heavy-tailed

distributions. We suppose that (ξj) satisfies the following α-mixing assumption.

Assumption A. (ξj) is such that ξj − Eξj is an α-mixing (but not necessarily stationary)

sequence with the mixing coefficients αk such that for some c∗ > 0 and 0 < φ < 1,

αk ≤ c∗φ
k, k ≥ 1. (36)

In, addition we assume that variables, (ξj), have thin- or heavy-tailed distributions.

The notation (ξj) ∈ E(s), s > 0 denotes thin tails and means that for some a > 0,

max
j
E exp(a|ξj|s) <∞. (37)

The notation (ξj) ∈ H(θ), θ > 2 corresponds to heavy tails and means that

max
j
E|ξj|θ <∞. (38)

Exponential inequalities for sums of r.v.’s, ξj with thin- and heavy-tailed distributions will be

stated respectively using functions

ft(γ1, γ2, c, ζ) = c0

{
exp

(
− c1ζ

γ1) + exp
(
− c2(

ζ
√
t

log2 t
)γ2
)}
, ζ > 0, t ≥ 2, (39)

gt(γ1, θ, c, ζ) = c0

{
exp(−c1ζ

γ) + ζ−θt−(θ/2−1)
}
,

where γ1 > 0, γ2 > 0, θ > 2 and non-negative constants c = (c0, c1, c2) do not depend on ζ, t.

Throughout the paper, we denote a ∨ b = max(a, b) and a ∧ b = min(a, b), while C stands for

generic constants.
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4.1 Exponential inequalities for unbounded variables

First, we establish Bernstein type inequalities for sums

ST = T−1/2
∑T

k=1(ξk − Eξk)

of α-mixing and bounded variables ξk.

Lemma 1, (40), below significantly improves the bound for P (ST ≥ ζ) obtained in Theorem

3.5 of White and Wooldridge (1991). Its proof uses exponential inequalities for α-mixing

bounded random variables obtained in Theorem 2 of Merlevede et al. (2009).

Lemma 1 Let the sequence (ξj) of r.v.’s satisfy Assumption A. Then, for all ζ > 0, T ≥ 2,

P (|ST | ≥ ζ) ≤

{
fT (2, γ, c, ζ) if (ξj) ∈ E(s), s > 0, (40)

gT (2, θ′, c, ζ) if (ξj) ∈ H(θ), θ > 2 (41)

with γ = s/(s+ 1) and for any 2 < θ′ < θ where c does not depend on ζ, T .

4.2 Exponential inequalities for weighted variables

Next we obtain Bernstein type inequalities for sums

ST,t := H−1/2

T∑
k=1

bH,|t−k|(ξk − Eξk) (42)

of weighted α-mixing variables ξk with thin- or heavy-tailed distributions. The weights bH,k

are defined in (12) and (13). Under the assumption (13), they satisfy

bH,k ≤ C
(
1 + (k/H)ν

)−1
, |bH,k − bH,k+1| ≤ CH−1

(
1 + (k/H)ν

)−1
(43)

with ν > 3. So, in (42), r.v.′s. ξk are strongly downweighted when k is distant from t.

In the next lemma we obtain exponential inequalities for P (|ST,t| ≥ ζ).

Lemma 2 Let (ξj) satisfy Assumption A and (43) holds.

Then for all ζ > 0, 1 ≤ t < T ,

P (|ST,t| ≥ ζ) ≤

{
fH(2, γ, c, ζ) if (ξj) ∈ E(s), s > 0, (44)

gH(2, θ′, c, ζ) if (ξj) ∈ H(θ), θ > 2 (45)

with γ = s/(s+ 1) and for any θ′ ∈ (2, θ) where c does not depend on ζ, t,H, T .
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To obtain exponential inequalities for sums

S̃T,t := H−1/2

T∑
k=1

bH,|t−k|(ξk − Eξt),

when the variables ξk are centered by Eξt, write

S̃T,t = ST,t + rT,t, rT,t := H−1/2

T∑
k=1

bH,|t−k|(Eξk − Eξt).

The next lemma provides bounds for P (|S̃T,t| ≥ ζ) and |rT,t|.

Lemma 3 (a) For any |ζ| > 2|rT,t|, P
(
|S̃T,t| ≥ ζ

)
≤ P

(
|ST,t| ≥ ζ/2

)
.

(b) If |Eξk − Eξt| ≤ C|t− k|(t ∨ k)−1 for t, k = 1, 2, ..., then

|rT,t| ≤ C1H
3/2(H ∨ t)−1. (46)

If |Eξk − Eξt| ≤ C|t− k|T−1 for t, k = 1, 2, ..., T , then

|rT,t| ≤ C1H
3/2T−1. (47)

Constants C,C1 do not depend on k, t,H, T .

Exponential inequalities for sums ST,t allow to establish a bound for maxt=1,..,T |ST,t| which is

useful in applications. A bound for maxt=1,..,T |S̃T,t| can be obtained using

max
t
|S̃T,t| ≤ max

t
|ST,t|+ max

t
|rT,t|.

Corollary 6 Let (ξj) satisfy Assumption A and (43) hold. Assume that (ξj) ∈ E(s), s > 0

or (ξj) ∈ H(θ), θ > 2.

(a) Then, for any sequence 1 ≤ t = tT ≤ T , as T →∞,

ST,t = OP (1). (48)

(b) If in addition,

cT δ ≤ H ≤ T for some c > 0, δ > 0, (49)

then for any ε > 0,

max
1≤t≤T

|ST,t| =

{
OP

(
log1/2 T

)
if (ξj) ∈ E(s), s > 0, (50)

OP

(
log1/2 T + (TH)1/θHε−1/2

)
if (ξj) ∈ H(θ), θ > 2. (51)
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Finally, we establish uniform bounds for sums of weighted variables |ξk|.
Denote

vT,t = H−1

T∑
k=1

bH,|t−k|
( |t− k|

H

)ν |ξk|, where ν ∈ [0, 1].

Corollary 7 Let (ξj) satisfy Assumption A and (43), (49) hold. Then,

max
s=1,...,T

vT,s =

{
OP (1) if (ξj) ∈ E(s), s > 0, (52)

OP (1) if (ξj) ∈ H(θ), θ > 2 and δ > 1/(θ − 1) in (49). (53)

4.3 Exponential inequalities with random scaling

In this section we discuss exponential inequalities for sums

S
(h)
T,t := H−1/2

∑T
k=1 bH,|t−k|hk(ξk − Eξk),

S̃
(h)
T,t := H−1/2

∑T
k=1 bH,|t−k|(hkξk − htEξt),

for products hkξk of an α- mixing process (ξk) and a random scaling factor (“volatility”) hk.

Differently from ARCH models, where hk is a stationary process, here hk is a persistent (non-

stationary) process satisfying Assumption B below. It introduces smoothness and thin tail

distribution restrictions on ht, see Example 5. We impose no restrictions on the dependence

between (hk) and (ξk). We assume that (ξk) are α-mixing variables with thin- or heavy-tailed

distributions.

Assumption B. (ht) satisfies one of the following two assumptions:

|ht − hk| ≤


( |t− k|
t ∨ k

)1/2
ξtk, t, k = 1, 2, ... (54)( |t− k|

T

)1/2
ξtk. 1 ≤ t, k ≤ T (55)

where (hk) and (ξtk) are such that for some α > 0,

(hk) ∈ E(α), (ξtk) ∈ E(α). (56)

Set

dHt =

{
(t ∨H)1/2H−1 if (54) holds, (57)

T 1/2H−1 if (55) holds.

Denote ζ ′ = ζdHt for ζ > 0. Notice that ζ ∧ ζ ′ = (1 ∧ dHt)ζ.

First we establish exponential inequalities for sums where variables hkξk are centered by hkEξk.
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Lemma 4 Let (ξj) satisfy Assumption A, (hj) satisfy Assumption B with α > 0 and (43)

holds.

Then there exists c > 0 such that for all ζ > 0, 1 ≤ t,H ≤ T , T > 1,

P (|S(h)
T,t | ≥ ζ) ≤

{
fH
(
γ1, γ2, c, ζ ∧ ζ ′

)
if (ξj) ∈ E(s), s > 0, (58)

gH
(
γ1, θ

′, c, ζ ∧ ζ ′
)

if (ξj) ∈ H(θ), θ > 2, (59)

with γ1 = 2α/(2 + α), γ2 = αs/(α + s+ 1) and for any θ′ ∈ (2, θ).

The same exponential inequalities hold for S̃
(h)
T,t , when hkξk are centered by htEξt. For that

we need an additional assumption on Eξk.

Assumption B′. (hk) satisfies Assumption B, and there exists C < ∞ such that for all

t, k, T ,

|Eξt − Eξk| ≤ C


( |t− k|
t ∨ k

)1/2
, t, k = 1, 2, ... if (hk) satisfies (54), (60)( |t− k|

T

)1/2
, 1 ≤ t, k ≤ T if (hk) satisfies (55). (61)

Lemma 5 Let the assumptions of Lemma 4 hold and Assumption B′ be satisfied. Then

P (|S̃(h)
T,t | ≥ ζ) ≤

{
fH
(
γ1, γ2, c, ζ ∧ ζ ′

)
if (ξj) ∈ E(s), s > 0,

gH
(
γ1, θ

′, c, ζ ∧ ζ ′
)

if (ξj) ∈ H(θ), θ > 2,

where γ1, γ2 and θ′ are the same as in Lemma 4.

Exponential inequalities allow to bound S
(h)
T,t and max1≤s≤T |S̃(h)

T,s|.

Corollary 8 Let Assumptions A and B with α > 0 hold and (43) be satisfied. Assume that

(ξj) ∈ E(s), s > 0 or (ξj) ∈ H(θ), θ > 2.

(a) Then, for any sequence 1 ≤ t = tT ≤ T , as T →∞,

S
(h)
T,t = OP (1 + d−1

Ht). (62)

In addition, if Eξk satisfies Assumption B′ then S̃
(h)
T,t = OP (1 + d−1

Ht).

(b) Let hk satisfy (55), Eξk satisfy (61), and cT δ ≤ H ≤ T where c, δ > 0 do not depend on

H,T . Then,

max
1≤s≤T

|S̃(h)
T,s| =


OP

(
(1 +HT−1/2)(log T )1/γ1

)
if (ξj) ∈ E(s), (63)

OP

(
(1 +HT−1/2){(log T )1/γ1 +

(TH)1/θ

H−ε+1/2
}
)

if (ξj) ∈ H(θ), θ > 2 (64)

with γ1 = 2α/(2 + α) and for any ε > 0.
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The following auxiliary corollary provides bounds for sums of weighted variables |hkξk|. Denote

∆T,t = H−1

T∑
k=1

bH,|t−k|
∣∣βk − βt∣∣ |hkξk|, 1 ≤ t ≤ T.

To bound ∆T,t, we need an additional assumption on (βk, hk).

Assumption C. (βk, hk) satisfy one of the following two assumptions:

|(βk − βt)hk| ≤


C
|t− k|
T

, 1 ≤ t, k ≤ T (65)( |t− k|
T

)1/2
νtk 1 ≤ t, k ≤ T (66)

where C <∞ does not depend on t, k, T and (νtk) ∈ E(α) for some α > 0.

Corollary 9 Let Assumptions A, C and (43) be satisfied. Assume that (ξj) ∈ E(s), s > 0 or

(ξj) ∈ H(θ), θ > 2.

(a) Then, for any 1 ≤ t = tT ≤ T , as T →∞,

∆T,t =

{
OP

(
HT−1

)
if (65) holds, (67)

OP

(
(H/T )1/2

)
if (66) holds. (68)

(b) Assume that cT δ ≤ H ≤ T for some c, δ > 0, and δ > 1/(θ − 1) if (ξj) ∈ H(θ). Then,

max
1≤s≤T

|∆T,s| =

{
OP (HT−1) if (65) holds, (69)

OP

(
(H/T )1/2(log T )1/α

)
if (66) holds. (70)

5 Conclusion

The estimation of covariance matrices for large datasets has received considerable attention

in recent years. Various regularization techniques for improved estimation of such matrices

were developed, mainly for independent, identically distributed variables with exponentially

declining probability tails. Dependence, heavy-tailed distributions and structural change are

prevalent in large economic and financial data sets, and they may affect regularized estima-

tion. The paper shows that the standard Bickel-Levina type thresholding procedure remains

consistent for α -mixing stationary variables following various probability distributions. It

takes a further step away from stationarity and allows for heteroscedasticity and stochastic

change (volatility) of a very general form. It shows that the thresholding procedure can be

aligned with kernel type estimates of time-varying covariances, and that the optimal threshold

λopt = κ
√

(log p)/Hopt used in such a case is an intuitive adjustment for heteroscedasticity
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compared to the threshold, λopt = κ
√

(log p)/T , that is appropriate for stationary data.

The paper shows that the thresholding procedure, adjusted for heteroscedasticity, is robust

to dependence and the type of distribution of the data, and its tuning parameters can be

selected by cross-validation. Its finite sample performance, illustrated by a detailed Monte

Carlo study and an empirical application on designing minimum variance portfolios, provides

a clear rationale for the proposed theoretical methods. Finally, the paper derives Bernstein

type exponential inequalities for weighted sums of dependent random variables with thin or

heavy-tailed distributions, that are of independent theoretical interest.
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This Supplement provides proofs of the results given in the text of the main paper. It is

organised as follows: Section A provides proofs of the main results on exponential inequalities

of Section 4 of the main paper. Section B provides proofs of Theorems 1-3 of the main paper.

Section C contains auxiliary technical lemmas.

Formula numbering in this supplement includes the section number, e.g. (A.1), and refer-

ences to lemmas are signified as “Lemma A#”, “Lemma B#”, “Lemma C#”, e.g. Lemma A1.

Equation, lemma and theorem references to the main paper do not include section number

and are signified as “Equation (#)”, “Lemma #”, “Theorem #”, e.g. (1), Theorem 1.

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts, and we denote a ∨ b = max(a, b), a ∧ b = min(a, b).

A. Exponential inequalities. Proofs

This section contains the proofs of the results of Section 4 on Bernstein inequalities for

(weighted) sums of random variables ξj that are dependent, unbounded and have thin- or

heavy-tailed distributions.

We shall frequently refer to the α-mixing Assumption A and property (36) of (ξj) of Section

4 of the main paper. To denote that r.v.’s (ξj) have thin- or heavy-tailed distributions, we

use respectively notation (ξj) ∈ E(s), s > 0 and (ξj) ∈ H(θ), θ > 2 of Section 4 of the main

paper, see (37) and (38).

Merlevede, Peligrad and Rio (2009) in their Theorem 2 obtained a Bernstein type in-

equality for bounded α- mixing random variables. The following lemma is a minor auxiliary

generalization of their result to a sequence of truncated random variables.

Lemma A1 Let the sequence (ξk) of zero mean random variables satisfy Assumption A. Set

ξD,k := ξkI(|ξk| ≤ D) where D > 0. Suppose that

m∗ := max
k≥1

(E|ξk|p)1/p <∞ for some p > 2.

1



Then, there exist 0 < c <∞ such that for all ζ > 0, D > 0 and T ≥ 2,

P
(∣∣ T∑

k=1

(ξD,k − EξD,k)
∣∣ ≥ ζ

)
≤ exp

(
− cζ2

v̄2T +D2 + ζD log2 T

)
, (A.1)

with v̄2 = m∗(1 + 24
∑∞

j=1 α
1−2/p
j ) where c > 0 depends only on c∗ in (36) of Assumption A.

Proof of Lemma A1. By Theorem 14.1 of Davidson (1994), under Assumption A, the

truncated process (ξD,t) is also α-mixing with mixing coefficients α̃k ≤ αk. Hence, the bound

(2.3) of Theorem 2 in Merlevede et al. (2009) implies

P
(∣∣∑T

k=1(ξD,k − EξD,k)
∣∣ ≥ ζ

)
≤ exp

(
− cζ2

v2DT+D2+ζD log2 T

)
,

with

v2
D = sup

i>0

(
var(ξD,i) + 2

∑
j>i

|cov(ξD,i, ξD,j)|
)
,

where c depends only on c∗ in (36). We will show that v2
D ≤ v̄2 which proves (A.1).

The conclusion (2.2) in Davydov (1968) applied with p = q > 2 gives

|cov(ξD,i, ξD,j)| ≤ 12(E|ξD,i|p)1/p(E|ξD,j|p)1/pα̃
1−2/p
|i−j| ≤ 12m∗α

1−2/p
|i−j| .

Observe that var(ξD,i) ≤ Eξ2
D,i ≤ (E|ξD,i|p)2/p ≤ m∗. Hence,

v2
D ≤ m∗

(
1 + 24

∞∑
j=1

α
1−2/p
j

)
= v̄2 <∞

which completes the proof of the lemma. �

The proof of Lemma 1 of the main paper combines the modified version, Lemma A1, of the

exponential inequality for bounded random variables by Merlevede, Peligrad and Rio (2009),

with a truncation argument employed in White and Wooldridge (1991).

Proof of Lemma 1. Without restriction of generality we prove the validity of (40), (41) for

ζ ≥ 1. (The inequalities (40) and (41) can be extended to 0 < ζ < 1 by selecting large enough

constant c0.) Recall that ST = T−1/2
∑T

k=1(ξk − Eξk).
We start with (40). We need to prove that

P
(
|ST | > ζ

)
≤ fT (2, γ, c, ζ) = c0

{
exp

(
− c1ζ

2) + exp
(
− c2(

ζ
√
T

log2 T
)γ
)}
, (A.2)

with γ = s/(s + 1) where positive constants c0, c1, c2 do not depend on ζ, T . Denote by

D = DT,ζ the truncation constant depending on T, ζ which will be selected later. Write

ξk = wk + vk where wk = ξkI(|ξk| ≤ D), vk = ξkI(|ξk| > D). Then,

ST = T−1/2

T∑
k=1

(wk − Ewk) + T−1/2

T∑
k=1

(vk − Evk) (A.3)

=: sT,1 + sT,2

2



and

P (|ST | ≥ ζ) ≤ P (|sT,1| ≥ ζ/2) + P (|sT,2| ≥ ζ/2).

Thus, to prove (A.2), it suffices to show that for some c, for all ζ ≥ 1, T ≥ 2,

P
(
|sT,i| ≥ ζ

)
≤ fT (2, γ, c, ζ), i = 1, 2. (A.4)

By Assumption A, (ξj−Eξj) is an α-mixing process which mixing coefficients αk satisfy (36).

Hence, by Theorem 14.1 in Davidson (1994), (wj−Ewj) and (vj−Evj) are α-mixing sequences

and their respective mixing coefficients αw,k and αv,k satisfy

αw,k ≤ αk, αv,k ≤ αk, k ≥ 1. (A.5)

Thus, by Lemma A1, for all T ≥ 2 and D > 0,

P
(
|sT,1| ≥ ζ

)
≤ exp

(
− c1ζ

2T

v̄2T +D2 + ζT 1/2D log2 T

)
(A.6)

where c1 > 0 does not depend on T , D or ζ. Using, on the r.h.s. of (A.6), the inequality

− 1

|a|+ |b|+ |c|
≤ − 1

3 max(|a|, |b|, |c|)
,

with a = v̄2T , b = D2, c = ζT 1/2D log2 T , we obtain

P
(
|sT,1| ≥ ζ

)
≤ exp

(
− c′1ζ2

)
+ exp

(
− c′2ζ

2T

D2

)
+ exp

(
− c′2ζT

1/2

D log2 T

)
, ζ ≥ 1 (A.7)

with c′1 = c1/(3v̄
2), c′2 = c1/3. Setting

∆T =
T 1/2

log2 T
,

(A.7) becomes

P
(
|sT,1| ≥ ζ

)
≤ exp

(
− c′1ζ2

)
+ exp

(
− c′2

(ζ∆T

D

)2
log4 T

)
+ exp

(
− c′2ζ∆T

D

)
. (A.8)

We select D = DT,ζ such that ζ∆T/D = Ds. Then,

D =
(
ζ∆T

)1/(s+1)
, Ds =

(
ζ∆T

)s/(s+1)
and ζ∆T

D
=
(
ζ∆T

)s/(s+1)
. (A.9)

For ζ ≥ 1, T ≥ 2 it holds ζ∆T ≥ ∆T ≥ 1. This together with (A.9) implies
(
ζ∆T

)
/D ≥ 1.

Notice that log4 T ≥ log4 2 =: v > 0 for T ≥ 2, and v ∈ (0, 1). Hence,(ζ∆T

D

)2
log4 T ≥

(ζ∆T

D

)
v,

ζ∆T

D
≥ v

ζ∆T

D
= v(ζ∆T )s/(s+1) = v

( ζ√T
log2 T

)s/(s+1)
.
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Applying these relations in (A.8), we obtain

P
(
|sT,1| ≥ ζ

)
≤ exp

(
− c′1ζ2

)
+ 2 exp

(
− c′2vζ∆T

D

)
≤ exp

(
− c′1ζ2

)
+ 2 exp

(
− c′2v(ζ∆T )s/(s+1)

)
≤ 2
(

exp
(
− c′1ζ2

)
+ exp

(
− c′2v

( ζ√T
log2 T

)s/(s+1)))
≤ fT (2, γ, c, ζ).

This proves (A.4) for P (|sT,1| ≥ ζ). Turning to sT,2, by Markov inequality,

P
(
|sT,2| ≥ ζ

)
≤ ζ−2T−1E

( T∑
k=1

(vk − Evk)
)2

(A.10)

≤ ζ−2T−1

T∑
j,k=1

cov(vj, vk).

Let p, q > 1, 1/p + 1/q < 1. Assumption (ξj) ∈ E(s) implies E|vj|p < ∞, E|vj|q < ∞.

Since (vj − Evj) is α-mixing sequence with the mixing coefficients αv,k ≤ αk, k ≥ 1, then, by

Conclusion 2.2 in Davydov (1968),

|cov(vj, vk)| ≤ 12(E|vj|p)1/p(E|vj|q)1/qα
1−1/p−1/q
|j−k| , j 6= k. (A.11)

In turn, for j = k, var(vj) ≤ Ev2
j . Setting

Vp := max
j≥1

(E|vj|p)1/p,

we obtain

P
(
|sT,2| ≥ ζ

)
≤ ζ−2T−1

[ T∑
j=1

var(vj) +
T∑

j,k=1: k 6=j

cov(vj, vk)
]

≤ ζ−2V 2
2 + ζ−212VpVq

(
T−1

T∑
j,k=1:k 6=j

αe|j−k|
)

where e := 1− 1/p− 1/q > 0. By (36),

T−1
∑T

j,k=1:j>k α
e
|j−k| = T−1

∑T
s=1 α

e
s(T − s) ≤

∑∞
s=1 α

e
s <∞.

This implies that with some C that does not depend on T or D, it holds that

P
(
|sT,2| ≥ ζ

)
≤ Cζ−2(V 2

2 + VpVq). (A.12)

Set p = q = 2 + δ where δ > 0 is a small number. Then, by (A.12),

P
(
|sT,2| ≥ ζ

)
≤ Cζ−2(V 2

2 + V 2
p ) ≤ Cζ−2V 2

p (A.13)
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because V 2
2 = maxj Ev

2
j ≤ maxj(E|vj|p)2/p = V 2

p . For D > 0, by (C.9) it holds that

E|vj|p = E[|ξj|pI(|ξj| > D)] ≤ c′0 exp(−c′1Ds)

for some c′0, c
′
1 > 0 which do not depend on j and D. This implies

V 2
p ≤ (c0

′)2/p exp(−(2/p)c1
′Ds).

Thus, there exists c0 > 0, c2 > 0 such that for all ζ ≥ 1, T ≥ 2, in view of (A.9),

P
(
|sT,2| ≥ ζ

)
≤ Cζ−2 exp

(
− (2/p)c′2D

s
)

≤ c0 exp
(
− c2(ζ∆T )s/(s+1)

)
= c0 exp

(
− c2(

ζ
√
T

log2 T

)s/(s+1)
)

≤ fT (2, γ, c, ζ),

which proves the bound (A.4) for sT,2 and completes the proof of (A.2) and (40).

Proof of (41). Let (ξj) ∈ H(θ). We need to prove that for any fixed 2 < θ′ < θ,

P (|ST | > ζ) ≤ gT (2, θ′, c, ζ) (A.14)

= c0

{
exp(−c1ζ

2) + ζ−θ
′
T−(θ′/2−1)

}
, ζ > 0, T ≥ 2.

Write ST = sT,1 + sT,2 as in (A.3). To verify (A.14), it remains to show that

P (|sT,i| ≥ ζ) ≤ gT (2, θ′, c, ζ), i = 1, 2 for some c.

It suffices to consider the case ζ ≥ 1.

We start with the evaluation P (|sT,1| ≥ ζ). Set

D =
a−1ζ
√
T

log3(ζ
√
T )
≥ 1,

where a > 0 will be selected below. For ζ ≥ 1 it holds log(ζ
√
T ) ≥ log(

√
T ) ≥ log(

√
2) =:

b > 0. Then, from (A.7) we obtain

P
(
|sT,1| ≥ ζ) ≤ exp

(
− c′1ζ2

)
+ exp

(
− c′2a2 log6(ζ

√
T )
)

+ exp
(
− c′2a log(ζ

√
T )
)

≤ exp
(
− c′1ζ2

)
+ exp

(
− c′2a2b5 log(ζ

√
T )
)

+ exp
(
− c′2a log(ζ

√
T )
)
.

Hence, selecting a such that c′2a
2b5 ≥ θ′, c′2a ≥ θ′, we obtain

P
(
|sT,1| ≥ ζ) ≤ exp

(
− c′1ζ2

)
+ 2(ζ

√
T )−θ

′
.

5



This proves the bound (A.14) for P
(
|sT,1| ≥ ζ).

Next we turn to P (|sT,2| ≥ ζ). By (A.13),

P (|sT,2| ≥ ζ) ≤ Cζ−2V 2
p

with p = 2 + δ. According to (C.10), we can bound

E|vj|p = E[|ξj|pI(|ξj| > D)] ≤ c′0D
−(θ−p)

with some c′0 > 0 which does not depend on D and j. This implies

V 2
p ≤ (c′0)2/pD−(θ−p)(2/p).

Hence,

P (|sT,2| ≥ ζ) ≤ Cζ−2D−(θ−p)(2/p) (A.15)

= Cζ−2(ζ
√
T )−(θ′−2)aT,ζ ,

where

aT,ζ :=
(ζ
√
T )θ

′−2

D(θ−p)(2/p) =
(a log3(ζ

√
T ))(θ−p)(2/p)

(ζ
√
T )γ

and

γ = (θ − p)(2/p)− (θ′ − 2) = θ − θ′ − θ(p− 2)/p = θ − θ′ − θδ/p > 0

when θ > θ′, p = 2 + δ and δ > 0 is selected sufficiently small. Since ζ
√
T ≥

√
2 for ζ ≥ 1,

T ≥ 2, this implies that supζ≥1, T≥2 aT,ζ ≤ C ′ <∞. Thus, (A.15) implies

P (|sT,2| ≥ ζ) ≤ Cζ−θ
′
T−(θ′/2−1) ≤ gT (2, θ′, c, ζ)

which proves the bound (A.14) for P (|sT,2| ≥ ζ).

This completes the proof of (41) and the lemma. �

We start the proof of Lemma 2 with the following technical lemma.

Lemma A2 Let xtk, k, t ≥ 1 be random variables such that E|xtk| <∞ and atk and vtk > 0

be real numbers such that

max
n≥1

max
1≤t≤n

n∑
1≤k≤n

|atk|vtk <∞. (A.16)

Then there exists ε > 0 such that for all ζ > 0, t ≥ 1,

P
(
|

n∑
k=1

atkxtk| ≥ ζ
)
≤ ε−1 max

1≤k≤n
E
[ |xtk|
ζvtk

I(
|xtk|
ζvtk

≥ ε)
]
. (A.17)

6



Proof of Lemma A2. By (A.16) there exists ε > 0 such that

n∑
k=1

|atkvtk| < 1/(2ε), t ≥ 1.

From

|xtk/vtk| = |xtk/vtk|
(
I(|xtk/vtk| ≤ εζ) + I(|xtk/vtk| > εζ)

)
≤ εζ + ytk,

where ytk := |xtk/vtk|I(|xtk/vtk| ≥ εζ), we obtain

|
n∑
k=1

atkxtk| ≤
n∑
k=1

|atkvtk|
|xtk|
vtk
≤

n∑
k=1

|atkvtk|(εζ) +
n∑
k=1

|atkvtk|ytk

≤ ζ/2 +
n∑
k=1

|atkvtk|ytk.

Then, by Markov inequality,

P
(
|
∑n

k=1 atkxtk| ≥ ζ
)
≤ P

(∑n
k=1 |atkvtk|ytk ≥ ζ/2

)
≤ (ζ/2)−1

∑n
k=1 |atkvtk|Eytk

≤ (ζ/2)−1
(∑n

k=1 |atkvtk|
)

max1≤k≤nEytk

≤ (ζ/2)−1(2ε)−1 max
1≤k≤n

Eytk

which proves (A.17). �

Proof of Lemma 2. Without restriction of generality assume that ζ ≥ 1. Notice that

property (43) of bH,k implies

max
k=1,...,T

bH,k(
k ∨H
H

)1/2 ≤ C,
T−1∑
k=1

|bH,k − bH,k+1|(
k ∨H
H

)1/2 ≤ C, (A.18)

where C <∞ does not depend on H,T .

Denote ξ′k := ξt−k, ξ
′′
k := ξt+k for k ≥ 0. Write

ST,t = H−1/2
∑T

k=1 bH,|t−k|(ξk − Eξk) (A.19)

= H−1/2
∑t−1

k=1 bH,k(ξ
′
k − Eξ′k) +H−1/2

∑T−t
k=0 bH,k(ξ

′′
k − Eξ′′k)

=: s
(1)
T,t + s

(2)
T,t.

To prove (44) for P (|ST,t| ≥ ζ), it suffices to verify that for ` = 1, 2,

P (|s(`)
T,t| ≥ ζ) ≤ fH(2, γ, c, ζ) if (ξj) ∈ E(s), s > 0. (A.20)

To prove (45) for P (|ST,t| ≥ ζ), it suffices to show that for ` = 1, 2,

P (|s(`)
T,t| ≥ ζ) ≤ gH(2, θ′, c, ζ) if (ξj) ∈ H(θ), θ > 2. (A.21)

7



We provide the proof for s
(1)
T,t. (For s

(2)
T,t the proof is similar). Set

xk =
∑k

i=1(ξ′i − Eξ′i), yk = k−1/2xk, νk =
(
k∨H
k

)1/2
for k = 1, ..., t− 1.

Using summation by parts, we can write s
(1)
T,t as

s
(1)
T,t = H−1/2

t−2∑
k=1

(bH,k − bH,k+1)xk +H−1/2bH,t−1xt−1

=
t−1∑
k=1

atkxk, (A.22)

where

atk = H−1/2(bH,k − bH,k+1) for k = 1, ..., t− 2, at,t−1 = H−1/2bH,t−1.

Subsequently, using notation yk and νk introduced above, we can write

s
(1)
T,t =

∑t−1
k=1 atk (k ∨H)1/2 (yk/νk). (A.23)

From (A.18) it follows
t−1∑
k=1

atk (k ∨H)1/2 ≤ C

where C <∞ does not depend on t,H, T . Hence, by Lemma A2, there exists ε > 0 such that

pT,ζ = P (|s(1)
T,t| ≥ ζ) ≤ ε−1 max

1≤k<t
E
[ |yk|
ζνk

I(
|yk|
ζνk
≥ ε)

]
. (A.24)

Notice that νk ≥ 1.

Proof of (44). Suppose that (ξj) ∈ E(s). Then, (40) of Lemma 1 implies

P (|yk| ≥ ζ) ≤ fk(2, γ, c, ζ), ζ > 0, k ≥ 2.

Therefore, by (C.11) of Lemma C2(ii),

E[|yk|I(|yk| ≥ εζνk)] ≤ fk
(
2, γ, c′, εζνk

)
for some c′ which does not depend on k. Thus, (A.24) implies

pT,ζ ≤ C max
1≤k<t

ν−1
k fk

(
2, γ, c′, εζνk

)
≤ C max

1≤k<t
fk
(
2, γ, c′, εζνk

)
. (A.25)

For k ≥ H, it holds that νk = 1, and we have

fk
(
2, γ, c, εζνk

)
= c0

{
exp

(
− c1(εζ)2

)
+ exp

(
− c2(

εζ
√
k

log2 k
)s/(s+1)

)}
≤ fH(2, γ, c, ζ).

8



For 1 ≤ k < H, we have νk = (H/k)1/2 ≥ 1 and νk
√
k =
√
H, which allows to conclude

fk
(
2, γ, c, εζνk

)
= c0

{
exp(−c1(εζνk)

2) + exp
(
− c2(

εζνk
√
k

log2 k
)s/(s+1)

)}
≤ c0

{
exp

(
− c1(εζ)2) + exp

(
− c2(

εζ
√
H

log2H
)s/(s+1)

)}
= fH(2, γ, c, ζ).

Together with (A.24), this yields pT,ζ ≤ fH(2, γ, c, ζ) which proves (A.20).

Proof of (45). Assume that (ξj) ∈ H(θ) and let θ′ ∈ (2, θ). By (41) of Lemma 1,

P (|yk| ≥ ζ) ≤ gk(2, θ
′, c, ζ)

for k ≥ 2, and by (C.12) of Lemma C2(iii),

E[|yk|I(|yk| ≥ εζνk)] ≤ max(εζνk, 1)gk
(
2, θ′, c, εζνk

)
(A.26)

for some c which does not depend on k. Notice that ζνk ≥ 1. Then,

(εζνk)
−1 max(εζνk, 1) ≤ max

(
1, (εζνk)

−1
)
≤ 1 + ε−1.

Thus, by (A.26) and (A.24),

pT,ζ ≤ C max
1≤k<t

gk
(
2, θ′, c′, εζνk

)
(A.27)

where C depends on ε. For k ≥ H we have νk = 1, and therefore

gk
(
2, θ′, c, εζνk

)
= gk

(
2, θ′, c, εζ

)
= c0

{
exp

(
− c1(εζ)2

)
+ (εζ)−θ

′
k−(θ′/2−1)

}
≤ gH

(
2, θ′, c, εζ

)
.

For k ≤ H, we have νk = (H/k)1/2 ≥ 1 and therefore

(ζνk)
−θ′k−(θ′/2−1) = (ζ(H/k)1/2)−θ

′
k−θ

′/2k = (ζH1/2)−θ
′
k

≤ ζ−θ
′
H−(θ′/2−1)

which allows to conclude

gk
(
2, θ′, c, εζνk

)
= c0

{
exp

(
− c1(εζνk)

2
)

+ (εζνk)
−θ′k−(θ′/2−1)

}
≤ c0

{
exp

(
− c1(εζ)2

)
+ (εζ)−θ

′
H−(θ′/2−1)

}
= gH

(
2, θ′, c, εζ

)
.

Together with (A.27), this implies pT,ζ ≤ gH(2, θ′, c, ζ) which proves (A.21). �
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Proof of Lemma 3. (a) Write S̃T,t = ST,t + rT,t. Assumption ζ > 2|rT,t| implies ζ − |rT,t| ≥
ζ/2. Therefore

P (|S̃T,t| ≥ ζ) ≥ P (|ST,t| ≥ ζ − |rT,t|) ≤ P (|ST,t| ≥ ζ/2).

(b) If |Eξk − Eξt| ≤ C|k − t|/(t ∨ k) for k, t ≥ 1, then by (C.16) of Lemma C3,

|rT,t| ≤ CH−1/2
∑T

k=1 bH,|t−k|(
|t−k|
t∨k ) ≤ c1

H3/2

H∨t

for some c1 > 0 which proves (46).

If |Eξk − Eξt| ≤ C|k − t|/T for k, t = 1, ..., T , then by (43),

|rT,t| ≤ CH−1/2

T∑
k=1

bH,|t−k|(
|t− k|
T

)

≤ C
(
H−1

T∑
k=1

bH,|t−k|(
|t− k|
H

)
)H3/2

T
≤ c2

H3/2

T
(A.28)

for some c2 > 0 which does not depend on t,H, T . This proves (47). �

Proof of Corollary 6.

Proof of (a). The bounds (44)-(45) together with definition of ft, gt in (39) imply

P (|ST,t| ≥ b)→ 0, T →∞, b→∞.

Hence, ST,t = OP (1) which proves (48).

Proof of (b). Assume that (ξj) ∈ E(s), s > 0. We will show that as T →∞, b→∞,

P
(

max
t=1,...,T

|ST,t| > bδT,H
)

= oP (1), δT,H = (log T )1/2 +
(logH)2

H1/2
(log T )1/γ (A.29)

with γ = s/(s+ 1). Let b > 0. Then by (44) and (39),

P
(

maxt=1,...,T |ST,t| ≥ bδT,H
)
≤
∑T

t=1 P
(
|ST,t| ≥ bδT,H

)
≤

T∑
t=1

fH(2, γ, c, bδT,H)

≤ Tc0

{
exp

(
− c1(bδT,H)2

)
+ exp

(
− c2(

(bδT,H)
√
H

log2H
)γ
)}

≤ Tc0

{
exp

(
− c1b

2 log T ) + exp
(
− c2b

γ log T
)}

≤ 2T−1 → 0

for b such that c1b
2 ≥ 2, c2b

γ ≥ 2. This proves (A.29). Under assumption cT δ ≤ H ≤ T it

holds δT,H = O(log1/2 T ). Hence, (A.29) implies (50):

P
(

max
t=1,...,T

|ST,t| > b log1/2 T
)
→ 0, T →∞, b→∞.
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Next, assume that (ξj) ∈ H(θ), θ > 2. Let θ′ ∈ (2, θ). We will show that, as T →∞, b→ ∞,

P
(

max
t=1,...,T

|ST,t| > bδT,H
)

= oP (1), δT,H = (log T )1/2 +H1/2
( T

Hθ′−1

)1/θ′
. (A.30)

For b > 0, by (45) and definition of gt, (39),

P
(

maxt=1,...,T |ST,t| ≥ bδT,H
)

≤
∑T

t=1 P
(
|ST,t| ≥ bδT,H

)
≤
∑T

t=1 gH(2, θ′, c, bδT,H)

≤ Tc0

{
exp

(
− c1(bδT,H)2) + (bδT,H)−θ

′
H−(θ′/2−1)

}
≤ c0{T exp

(
− c1b

2 log T ) + b−θ
′
( T
Hθ′/2−1 )−1TH−(θ′/2−1)

}
≤ c0{T−1 + b−θ

′} → 0

as T → ∞ and b → ∞. This proves (A.30). To prove that (A.30) implies (51), it suffices to

show that for any ε > 0 there exists 2 < θ′ < θ and a > 0 such that

log1/2 T + (HT )1/θHε−1/2 ≥ aδT,H , δT,H = log1/2 T + (TH)1/θ′H−1/2. (A.31)

Write

(HT )1/θHε−1/2 = (HT )1/θ′H−1/2vH , vH := (HT )1/θ−1/θ′Hε.

We will show that vH ≥ a > 0 for some 1 > a > 0 which proves (A.31). By the assumption

of the corollary, cT δ ≤ H ≤ T . Then,

vH =
Hε

(HT )1/θ′−1/θ
≥ (cT δ)ε

T 2(1/θ′−1/θ)
= cε T b, b := δε− 2(1/θ′ − 1/θ).

If b ≥ 0, this implies vH ≥ cε. Clearly, b ≥ 0 if θ′ is selected sufficiently close to θ. �

Proof of Corollary 7. Let 0 ≤ ν ≤ 1. Write

vT,t := H−1

T∑
k=1

b̃H,|t−k||ξk|, b̃H,|t−k| := bH,|t−k|(|t− k|/H)ν . (A.32)

By (43), b̃H,|t−k| ≤ C(1 + (k/H)ν−1)−1. It is easy to see that b̃H,k satisfies (43) with parameter

ν − 1. Since under assumptions of corollary,

max
k≥1

E|ξk| ≤ C <∞, max
t≥1

H−1

T∑
k=1

b̃H,|t−k| ≤ C,

then

max
1≤t≤T

|vT,t| ≤ max
1≤t≤T

|v′T,t|+ C, v′T,t = H−1

T∑
k=1

b̃H,|t−k|(|ξk| − E|ξk|).
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Since (ξk) satisfies Assumption A, then by Theorem 14.1 in Davidson (1994), (|ξk|) also satisfies

Assumption A. To prove the claim (52)-(53) of the corollary, it remains to show that

max
1≤t≤T

|v′T,t| = OP (1). (A.33)

Let (ξj) ∈ E(s), s > 0. Then, by (50) of Corollary 6 and assumption (49) on H,

max
1≤t≤T

|v′T,t| = O(H−1/2 log1/2 T ) = oP (1).

Let (ξj) ∈ H(θ), θ > 2. Then, by (51) of Corollary 6 and assumption (49), for any ε > 0,

max
1≤t≤T

|v′T,t| = OP

(
H−1/2 log1/2 T + (TH)1/θHε−1

)
.

By assumption, H ≥ cT δ with δ > 1/(θ − 1) which implies that (TH)1/θHε−1 = o(1) when ε

is selected sufficiently small. This proves (A.33) and completes the proof of the corollary. �

Proof of Lemma 4. Without restriction of generality assume that ζ ≥ 1.

Proof of (58)-(59) for P (|S(h)
T,t | ≥ ζ). Denote

h′k := ht−k, ξ
′
k := ξt−k, h

′′
k := ht+k, ξ

′′
k := ξt+k for k ≥ 0.

As in (A.19) write S
(h)
T,t as

S
(h)
T,t = H−1/2

∑T
k=1 bH,|t−k|hk(ξk − Eξk)

= H−1/2
∑t−1

k=1 bH,kh
′
kξ
′
k +H−1/2

∑T−t
k=0 bH,kh

′′
kξ
′′
k

= : s
(h)
T,t;1 + s

(h)
T,t;2.

Proof of (58)-(59) for S
(h)
T,t reduces to verification of these bounds for s

(h)
T,t;1 and s

(h)
T,t;2:

P (|s(h)
T,t;`| ≥ ζ) ≤

{
fH
(
γ1, γ2, c, ζ ∧ ζ ′

)
if (ξj) ∈ E(s), (A.34)

gH
(
γ1, θ

′, c, ζ ∧ ζ ′
)

if (ξj) ∈ H(θ), θ > 2 (A.35)

for ` = 1, 2. We start with s
(h)
T,t;1. Denote

xk =
k∑
i=1

(ξ′i − Eξ′i), yk = k−1/2xk, y′k = h′kyk, νk :=
(k ∨H

k

)1/2
, k ≥ 1. (A.36)

Then as in (A.22), summation by parts yields

s
(h)
T,t;1 = H−1/2

∑t−2
k=1(bH,kh

′
k − bH,k+1h

′
k+1)xk +H−1/2bH,t−1h

′
t−1

=
{
H−1/2

∑t−2
k=1(bH,k − bH,k+1)(h′kxk) +H−1/2bH,t−1(h′t−1xt−1)

}
+H−1/2

∑t−2
k=1 bH,k(h

′
k − h′k+1)xk

=: s
(1)
T,t;1 + s

(2)
T,t;1. (A.37)
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Hence, it suffices to verify the bounds (A.34)-(A.35) for s
(1)
T,t;1 and s

(2)
T,t;1.

First, we evaluate P (|s(1)
T,t;1| ≥ ζ). The sum s

(1)
T,t;1 can be obtained from s

(1)
T,t in (A.22) by

replacing xk by h′kxk. Therefore, the same argument as in the proof of (A.24) implies that

there exists ε > 0 such that

P (|s(1)
T,t;1| ≥ ζ) ≤ ε−1 max

k=1,...,T
(ζνk)

−1E[|y′k|I(|y′k| ≥ εζνk], ζ ≥ 1, T ≥ 2. (A.38)

We now show that for all ζ > 0, k ≥ 2,

P
(
|y′k| ≥ ζ

)
≤ fk(γ1, γ2, c, ζ) if (ξk) ∈ E(s), (A.39)

P
(
|y′k| ≥ ζ

)
≤ gk(γ1, θ

′, c, ζ) if (ξj) ∈ H(θ), (A.40)

with γ1, γ2 and θ′ as in (58)-(59). Recall that y′k = h′kyk where (h′k) ∈ E(α) by assumption

(56). Moreover, (40) and (41) imply that

P (|yk| ≥ ζ) ≤ fk(2, γ, c, ζ) if (ξk) ∈ E(s),

P (|yk| ≥ ζ) ≤ gk(2, θ
′, c, ζ) if (ξj) ∈ H(θ).

So, (A.39) and (A.40) follow from Lemma C1 (iii) and (iv), respectively.

As shown in the proof of (44) and (45), the relations (A.38)-(A.40) imply

P
(
|s(1)
T,t;1| ≥ ζ

)
≤ fH

(
γ1, γ2, c, ζ

)
if (ξk) ∈ E(s), (A.41)

P
(
|s(1)
T,t;1| ≥ ζ

)
≤ gH

(
γ1, θ

′, c, ζ
)

if (ξk) ∈ H(θ), (A.42)

which verifies (A.34)-(A.35) for s
(1)
T,t;1. Next we show that setting ζ ′ = ζdHt,

P
(
|s(2)
T,t;1| ≥ ζ

)
≤ fH

(
γ1, γ2, c, ζ

′) if (ξk) ∈ E(s), (A.43)

P
(
|s(2)
T,t;1| ≥ ζ

)
≤ gH

(
γ1, θ

′, c, ζ ′
)

if (ξk) ∈ H(θ). (A.44)

Together with (A.37)-(A.40), the latter proves (A.34)-(A.35) for s
(h)
T,t;1.

We now prove (A.43)-(A.44). We have

P
(
|s(2)
T,t;1| ≥ ζ

)
= P (dHt|s(2)

T,t;1| ≥ dHtζ). (A.45)

In view of definition of h′k, by assumptions (54)-(55),

h′k − h′k+1 = ht−k − ht−k−1 = δ
−1/2
tk ξtk, for k = 1, ..., t− 2,

and δtk = t − k if (54) holds; δtk = T if (55) holds, while (ξtk) ∈ E(α) by assumption (56).

Then, with νk and yk as in (A.36), setting y′′k = ξtkxkk
−1/2 = ξtkyk, we can write

(h′k − h′k+1)xk = (
k

δtk
)1/2 ξtkxk

k1/2
= (

k ∨H
δtk

)1/2y
′′
k

νk
.
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Hence,

dHts
(2)
T,t;1 =

t−2∑
k=1

dHt
H1/2

bH,k(h
′
k − h′k+1)xk (A.46)

=
t−2∑
k=1

ãtk(
y′′k
νk

), ãtk =
dHt
H1/2

bH,k(
k ∨H
δtk

)1/2.

Next we show that for all t,H, T ,

sHt :=
t−2∑
k=1

|ãtk| ≤ C <∞. (A.47)

Let (54) hold. Then, by definition, dHt = (H ∨ t)1/2H−1, δHt = |t− k|, and by (C.17),

sHt = dHt

t−2∑
k=1

bH,k
H1/2

(
k ∨H
t− k

)1/2 ≤ (
H

H ∨ t
)−1/2

( t−1∑
j=1

bH,|t−j|
H

(
|t− j| ∨H

j
)1/2
)
≤ C, t ≥ 2.

Let (55) holds. Then, dHt = T 1/2H−1, δHt = T , and by property (43) of bH,k,

sHt =
t−2∑
k=1

bH,k
H

(k ∨H
H

)1/2 ≤ C, t ≥ 2, T ≥ 2.

From (A.45)–(A.47) and Lemma A2 it follows that there exists ε > 0 such that

P
(
|s(2)
T,t;1| ≥ ζ

)
= P

(
|dHts(2)

T,t;1| ≥ ζ ′
)
≤ ε−1 max

1≤k≤t−2
E
[ |y′′k |
ζ ′νk

I(
|y′′k |
ζ ′νk

≥ ε)
]
. (A.48)

This bound is of the same type as (A.38) for P (|s(1)
T,t;1| ≥ ζ). Recall that y′′k = ξtkyk and by

(56), variables ξtk have the property (ξtk) ∈ E(α). Hence, (A.48) implies (A.43)-(A.44) by the

same argument as in the proof of (A.41)-(A.42) for s
(1)
T,t;1.

The proof of the bounds (A.34)-(A.35) for s
(h)
T,t;2 can be obtained using similar arguments as

above for s
(h)
T,t;1. This completes the proof of (A.34)-(A.35) which imply (58)-(59) of Lemma 4

for P
(
|S(h)
T,t | ≥ ζ

)
. �

Proof of Lemma 5. It suffices to verify (A.34)-(A.35) for P
(
|S̃(h)
T,t | ≥ ζ

)
. Write

S̃
(h)
T,t = S

(h)
T,t + rT,t, rT,t := H−1/2

∑T
k=1 bH,|t−k|(hkEξk − htEξt).

Since by Lemma 4, P (|S(h)
T,t | ≥ ζ) satisfies (58)-(59) and thus (A.34)-(A.35), to establish the

corresponding bounds for P
(
|S̃(h)
T,t | ≥ ζ

)
, it suffices to show that P (|rT,t| ≥ ζ) satisfies (A.34)-

(A.35) as well. We will prove that there exists c0 > 0 and c1 > 0 such that

P
(
|rT,t| ≥ ζ

)
≤ c0 exp(−c1ζ

α), ζ > 0, T ≥ 2. (A.49)
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Since α > γ1 = 2α/(2 + α), (A.49) together with definition (39) of ft and gt, implies (A.34)-

(A.35) for P
(
|rT,t| ≥ ζ

)
.

Proof of (A.49). Write

P
(
|rT,t| ≥ ζ

)
= P

(
dHt|rT,t| ≥ ζ ′

)
, ζ ′ = dHtζ.

Case 1. Suppose that E|ξk − Eξt| and |hk − ht| satisfy assumptions ((60), (54)). Then,

|hkEξk − htEξt| ≤ |hk(Eξk − Eξt)|+ |Eξt| |hk − ht| (A.50)

≤ C(
|t− k|
t ∨ k

)1/2zk, zk = |hk|+ |ξtk|.

Under (54), by definition (57), dHt = (t ∨H)1/2H−1. Hence,

dHt|rT,t| ≤ C

T∑
k=1

atkzk, atk = (
t ∨H
H

)1/2 bH,|t−k|
H

(
|t− k|
t ∨ k

)1/2.

Applying (C.16) with γ = 1/2, we get

max
t=1,...,T

T∑
k=1

atk ≤ C <∞.

Hence, by Lemma A2, there exists ε > 0 such that

P
(
dHt|rT,t| ≥ ζ ′

)
≤ ε−1 max

1≤k≤T
E
[ |zk|
ζ ′
I(
|zk|
ζ ′
≥ ε)

]
. (A.51)

By assumption (56), (zk) ∈ E(α). Hence, by Lemma C2(i),

E
[
|zk|I(|zk| ≥ εζ ′)

]
≤ c′0 exp(−c′1ζ ′α)

which together with (A.51) implies

P
(
dHt|rT,t| ≥ ζ ′

)
≤ c′0ζ

′−1
exp(−c′1ζ ′α).

Therefore,

P
(
|rT,t| ≥ ζ

)
≤ c′0 exp(−c′1ζ ′α) for ζ ′ ≥ 1. (A.52)

This bound remains valid for 0 < ζ ′ < 1 if c′0 is selected such that c′0 exp(−c′1) ≥ 1. Then,

c′0 exp(−c′1ζ ′α) ≥ c′0 exp(−c′1) ≥ 1 for 0 < ζ ′ < 1

and, thus, (A.52) holds. This proves (A.49).
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Case 2. Suppose that E|ξk−Eξt| and |hk−ht| satisfy assumptions ((61), (55)). Then, instead

of (A.50), we have the bound

|hkEξk − htEξt| ≤ C(
|t− k|
T

)1/2zk, zk = |hk|+ |ξtk|. (A.53)

Under (55), by definition (57), dHt = T 1/2H−1 for t = 1, ..., T . Hence,

dHt|rT,t| ≤ C
T∑
k=1

a∗tkzk, a∗tk = (
T

H
)1/2 bH,|t−k|

H
(
|t− k|
T

)1/2 =
bH,|t−k|
H

(
|t− k|
H

)1/2.

By the same argument as in (A.28) it follows that

max
t=1,...,T

T∑
k=1

a∗tk ≤ C <∞.

Hence, as above, by Lemma A2, there exists ε > 0 such that (A.51) holds, and using the same

argument as in Case 1, we obtain (A.49).

Thus, P (|rT,t| ≥ ζ) satisfies (A.49) which completes the proof of the lemma. �

Proof of Corollary 8. (a) Recall that ζ ∧ ζ ′ = ζ(1 ∧ dHt). The bounds (58)-(59) together

with definitions of ft, gt in (39) imply

P
(
(1 ∧ dHt)|S(h)

T,t | ≥ b
)
→ 0, b→∞.

This proves (62):

S
(h)
T,t = OP ((1 ∧ dHt)−1) = OP

(
1 + d−1

Ht

)
.

The same argument implies S̃
(h)
T,t = OP

(
1 + d−1

Ht

)
, since by Lemma 5, P (|S̃(h)

T,t | ≥ ζ) satisfies

the same bounds (58)-(59).

(b) Under assumption (55), dHt = T 1/2H−1. Set zT,t := (1 ∧ dHt)S̃(h)
T,t .

Assume that (ξj) ∈ E(s), s > 0. We will show that as T →∞, b→∞,

P
(

max
t=1,...,T

|zT,t| > bδT,H
)

= oP (1), δT,H = (log T )1/γ1 +
(logH)2

H1/2
(log T )1/γ2 , (A.54)

where γ1 and γ2 are the same as in (58) of Lemma 4.

For b > 0, by (58), definition of ft, (39), and equality (ζ ∧ ζ ′)(1 ∧ dHt)−1 = ζ,

P (maxt=1,...,T |zT,t| ≥ bδT,H) ≤
∑T

t=1 P ((1 ∧ dHt)|ST,t| ≥ bδT,H)

≤
∑T

t=1 fH(γ1, γ2, c, bδT,H)

≤ Tc0

{
exp

(
− c1(bδT,H)γ1

)
+ exp

(
− c2(

(bδT,H)
√
H

log2H
)γ2
)}

≤ Tc0

{
exp

(
− c1b

γ1 log T ) + exp
(
− c2b

γ2 log T
)}

≤ 2c0T
−1 → 0
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for b such that c1b
γ1 ≥ 2, c2b

γ2 ≥ 2. This proves (A.54). Since for cT δ ≤ H ≤ T it holds

δT,H = O
(

log1/γ1 T
)
, (A.54) implies:

max
t=1,...,T

|zT,t| = OP (δT,H) = OP (log1/γ1 T ).

This together with definition zT,t := (1 ∧ dHt)S̃(h)
T,t , where dHt = T 1/2H−1, and inequality

(1 ∧ T 1/2H−1)−1 ≤ 1 +HT−1/2, implies (63):

max
t=1,...,T

|S̃(h)
T,t | = OP

(
(1 ∧ T 1/2H−1)−1 log1/γ1 T

)
= OP

(
(1 +HT−1/2) log1/γ1 T

)
.

Next, consider the case (ξj) ∈ H(θ), θ > 2. First we show that for any θ′ ∈ (2, θ), as T →∞,

max
t=1,...,T

|zT,t| = OP (δT,H), δT,H = (log T )1/γ1 +H1/2
( T

Hθ′−1

)1/θ′
. (A.55)

For b > 0, by (59), definition of gt, (39) and equality (ζ ∧ ζ ′)(1 ∧ dHt)−1 = ζ, we obtain

P
(

maxt=1,...,T |zT,t| ≥ bδT,H
)

≤
∑T

t=1 P
(
(1 ∧ dHt)|ST,t| ≥ bδT,H

)
≤
∑T

t=1 gH(γ1, θ
′, c, bδT,H)

≤ Tc0

{
exp

(
− c1(bδT,H)γ1) + (bδT,H)−θ

′
H−(θ′/2−1)

}
≤ c0{T exp

(
− c1b

γ1 log T ) + b−θ
′
( T
Hθ′/2−1 )−1TH−(θ′/2−1)

}
≤ c0{T−1 + b−θ

′} → 0

as T → ∞ and b → ∞. This proves (A.55). The same argument as in the proof of (51) of

Corollary 6 shows that validity of (A.55) for any 2 < θ′ < θ implies that for any ε > 0,

max
t=1,...,T

|zT,t| = OP

(
δ̃T,H

)
, δ̃T,H = (log T )1/γ1 +Hε−1/2(TH)1/θ. (A.56)

In turn, since dHt = T 1/2H−1, this yields

max
t=1,...,T

|S̃(h)
T,t | = OP

(
(1 ∧+H−1T 1/2)−1δ̃T,H

)
= OP

(
(1 +HT−1/2){(log T )1/γ1 +Hε−1/2(TH)1/θ}

)
which proves (64) and completes the proof of the corollary. �

Proof of Corollary 9. Denote

vT,t,ν = H−1

T∑
k=1

bH,|t−k||
t− k
H
|ν |ξk|, 0 ≤ ν ≤ 1. (A.57)
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Proof of (67) and (69). Let (65) hold. Then,

|∆T,t| ≤ CH−1

T∑
k=1

bH,|t−k||
t− k
T
| |ξk| = C(H/T )vT,t,1. (A.58)

Since under assumptions of lemma, maxk E|ξk| <∞, together with (43) this implies

EvT,t,1 ≤ C(max
k
E|ξk|)H−1

T∑
k=1

bH,|t−k||
t− k
H
| = O(1).

Hence, vT,t,1 = OP (1) which together with (A.58) proves (67):

|∆T,t| = C(H/T )OP (1) = OP (H/T ).

Notice that by Corollary 7, under the assumptions of Corollary 9(b),

max
1≤s≤T

|vT,s,ν | = OP (1), 0 ≤ ν ≤ 1. (A.59)

This together with (A.58) proves (69):

max
1≤s≤T

|∆T,t| ≤ C(H/T ) max
1≤s≤T

|vT,s,1| = OP (H/T ).

Proof of (68) and (70). Let (66) hold. Then

|∆T,t| ≤ CH−1

T∑
k=1

bH,|t−k|(
t− k
T

)1/2|νtkξk|. (A.60)

By (66), (νtk) ∈ E(α), α > 0, while by assumption of corollary, (ξj) ∈ E(s), s > 0 or

(ξj) ∈ H(θ), θ > 2. Thus, from Lemma C1 (i)-(ii) it follows maxtk E|νtkξk| <∞. Hence,

E|∆T,t| ≤ C(H/T )1/2(max
tk

E|νtkξk|)H−1

T∑
k=1

bH,|t−k|(
t− k
H

)1/2 ≤ C(H/T )1/2,

where C > 0 does not depend on t,H, T . This proves (68), ∆T,t = OP

(
(H/T )1/2

)
.

Next, by (A.60),

max
1≤t≤T

|∆T,t| ≤ C(H/T )1/2( max
1≤k,t≤T

|νtk|)( max
1≤t≤T

vT,s,1/2), (A.61)

where vT,s,1/2 is defined by (A.57). Since (νtk) ∈ E(α), (C.3) of Lemma C1 implies:

max
1≤k,t≤T

|νtk| = OP

(
(log T )1/α

)
.

By (A.59),

max
1≤t≤T

|vT,s,1/2| = OP (1)

which together with (A.61) proves (70):

max
1≤t≤T

|∆T,t| = OP

(
(H/T )1/2(log T )1/α

)
.

This completes the proof of the corollary. �
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B. Proofs of Theorems 1-3.

For convenience of the proof of Theorems 1-3, we include Lemma B1 which summarizes the

key steps of the proof of Theorem 1, Bickel and Levina (2008) and adjusts them to our setting.

Recall notation of p× p covariance matrix Σt = [σij,t], sample covariance estimator Σ̂t =

[σ̂ij,t] of Σt, (10), and the regularized sample covariance estimate defined in (11):

Tλ
(
Σ̂t

)
=
(
σ̂ij,tI(|σ̂ij,t| > λ)

)
.

Denote

M = max
i,j=1,...,p

|σ̂ij,t − σij,t|, N = max
i=1,...,p

p∑
j=1

I
(
|σ̂ij,t − σij,t| > λ/2

)
.

Recall the definition of the sparsity parameter np of covariance matrix Σt which is the maxi-

mum number of non-zero elements in a row of Σt, see, e.g., (8).

Lemma B1 (see Bickel and Levina (2008, proof of Theorem 1)). For any λ > 0,

||Tλ(Σ̂t)−Σt|| ≤ 2M N +Mnp + 2λnp. (B.1)

Moreover, if λ is such that as T →∞,

maxi,j=1,...,p P
(
|σ̂ij,t − σij,t| > λ/2

)
= o(p−2), (B.2)

then ∥∥Tλ(Σ̂t

)
−Σt

∥∥ = OP (npλ). (B.3)

In addition, if (B.3) holds, npλ = o(1) and ||Σt|| ≥ c > 0, then∥∥Tλ(Σ̂t

)−1 −Σ−1
t

∥∥ = OP (npλ). (B.4)

Proof. Verification of (B.1) follows closely the steps of the proof of Theorem 1, pp. 2582-2584

in Bickel and Levina (2008). For clarity, we include the details of the proof.

We have

Tλ(Σ̂t)−Σt = [δij,t]i,j=1,...,p, δij,t = σ̂ij,tI(|σ̂ij,t| > λ)− σij,t.

By the well-known property of the spectral norm of a symmetric matrix,

||Tλ(Σ̂t)−Σt|| ≤ max
i=1,...,p

( p∑
j=1

|δij,t|
)
. (B.5)
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Write

δij,t = {σ̂ij,tI(|σ̂ij,t| > λ)− σij,tI(|σij,t| > λ/2)}+ {−σij,tI(|σij,t| ≤ λ/2)}

= δ
(1)
ij,t + δ

(2)
ij,t.

Notice that

|δ(2)
ij,t| ≤ |σij,t|I

(
|σij,t| ≤ λ/2

)
≤ (λ/2)I(|σij,t| 6= 0).

On the other hand,

δ
(1)
ij,t = σ̂ij,t

(
I(|σ̂ij,t| > λ)− I(|σij,t| > λ/2)

)
+ (σ̂ij,t − σij,t)I(|σij,t| > λ/2)

= {σ̂ij,tI(|σ̂ij,t| > λ, |σij,t| ≤ λ/2)}+ {−σ̂ij,tI(|σ̂ij,t| ≤ λ, |σij,t| > λ/2)}

+{(σ̂ij,t − σij,t)I(|σij,t| > λ/2)} = v
(1)
ij,t + v

(2)
ij,t + v

(3)
ij,t.

Notice that for |σ̂ij,t| > λ, |σij,t| ≤ λ/2 it holds

|σ̂ij,t| ≤ 2(|σ̂ij,t| − |σij,t|) ≤ 2|σ̂ij,t − σij,t|,

|σ̂ij,t − σij,t| ≥ |σ̂ij,t| − |σij,t| > λ/2.

Hence,

|v(1)
ij,t| ≤ 2|σ̂ij,t − σij,t|I

(
|σ̂ij,t − σij,t| > λ/2

)
,

|v(2)
ij,t| ≤ λI(|σij,t| 6= 0),

|v(3)
ij,t| ≤ |σ̂ij,t − σij,t|I(|σij,t| 6= 0).

Therefore,

|δij,t| ≤ |δ(1)
ij,t|+ |δ

(2)
ij,t| ≤ |v

(1)
ij,t|+ |v

(2)
ij,t|+ |v

(3)
ij,t|+ |δ

(2)
ij,t|

≤ 2|σ̂ij,t − σij,t|I
(
|σ̂ij,t − σij,t| > λ/2

)
+ |σ̂ij,t − σij,t|I

(
|σij,t| 6= 0

)
+ 2λI

(
|σij,t| 6= 0

)
.

Note that by definition of the sparsity parameter, maxi=1,...,p

∑p
j=1 I(|σij,t| 6= 0) = np. Apply-

ing this in (B.5), we obtain

||Tλ(Σ̂t)−Σt|| ≤ max
i=1,...,p

( p∑
j=1

|δij,t|
)

≤ 2{ max
i,j=1,...,p

|σ̂ij,t − σij,t|}{ max
i=1,...,p

p∑
j=1

I(|σ̂ij,t − σij,t| > λ/2)}

+{ max
i,j=1,...,p

|σ̂ij,t − σij,t|}{max
i

p∑
j=1

I(|σij,t| 6= 0)}+ 2λ{max
i

p∑
j=1

I(|σij,t| 6= 0)}

≤ 2M N +Mnp + 2λnp
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which proves (B.1).

Proof of (B.3). If (B.2) holds then

P
(
M ≥ λ/2

)
≤

p∑
i,j=1

P
(
|σ̂ij,t − σij,t| > λ/2

)
≤ p2 max

ij
P
(
|σ̂ij,t − σij,t| > λ/2

)
= o(1).

In turn,

P (N > 1) ≤ P (N > 0) ≤ P (M > λ/2)→ 0.

This shows that M = OP (λ) and N = OP (1) which together with (B.1) proves (B.3).

To prove (B.4), set B := Tλ
(
Σ̂t), A := Σt. By assumption, ‖A‖ ≥ c > 0 and npλ = o(1).

By (B.3), ‖B − A‖ = OP (npλ) = oP (1). Thus,

‖B‖ ≥ ‖A+ (B − A)‖ ≥ ‖A‖ − ‖B − A‖ ≥ c− oP (1) ≥ c(1 + oP (1)).

This implies ‖B−1‖ = OP (1). Hence,

‖B−1 − A−1‖ = ‖A−1(A−B)B−1‖ ≤ ‖A−1‖ ‖A−B‖ ‖B−1‖

≤ c−1OP

(
npλ
)
OP (1) = OP

(
npλ
)

which proves (B.4). �

Proof of Theorem 1. Recall that

λ = κ(T−1 log p)1/2 (B.6)

has property λ → 0 as T → ∞ in view of (9). By assumption of the theorem, (yt) is a

stationary sequence, the sample covariance matrix Σ̂ = (σ̂ij) given by (5) is the estimate of

Σ = (σij) = var(yt) and σij does not depend on t.

By Lemma B1, in view of definition (B.6), to show (B.3) and thus, the claim (6) of Theorem

1, it suffices to prove that for sufficiently large κ,

maxi,j=1,...,p P
(
|σ̂ij − σij| > 2λ

)
= o(p−2). (B.7)

(Notice that (B.7) implies that (B.2) holds for sufficiently large κ which in turn proves (B.3).)

Fix (i, j) and set zk = yikyjk. Because of stationarity assumption, Eyik = Eyi1, Eyjk = Eyj1

and Ezk = σij do not depend on k. Observe that

σij = cov(yik, yjk) = Ezk − EyikEyjk.
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Then we can write

σ̂ij − σij = T−1

T∑
k=1

yikyjk − ȳiȳj − σij

= sT,ij − ȳiȳj + Eyi1Eyj1, sT,ij := T−1

T∑
k=1

(zk − Ezk), ȳi = T−1

T∑
k=1

yik.

Observe that

ȳiȳj − Eyi1Eyj1 = (ȳi − Eyi1)(ȳj − Eyj1) + E[yi1](ȳj − Eyj1) + E[yj1](ȳi − Eyi1).

Both assumptions (yik) ∈ E(s) and (yik) ∈ H(θ) imply that m = maxi,k E|yik| <∞.

Therefore,

|σ̂ij − σij| ≤ |sT,ij|+ |ȳi − Eyi1| |ȳj − Eyj1|+m|ȳj − Eyj1|+m|ȳi − Eyi1|.

So, we obtain

P
(
|σ̂ij − σij| > 4λ

)
≤ P

(
|sT,ij| > λ

)
+ P

(
|ȳi − Eyi1| |ȳj − Eyj1| > λ

)
(B.8)

+P
(
m|ȳj − Eyj1| > λ

)
+ P

(
m|ȳi − Eyi1| > λ

)
.

Since λ = o(1) as T →∞, then
√
λ ≥ λ for λ ≤ 1. Hence,

P
(
|ȳi − Eyi1| |ȳj − Eyj1| > λ

)
(B.9)

≤ P
(
|ȳi − Eyi1| >

√
λ
)

+ P
(
|ȳj − Eyj1| >

√
λ
)

≤ P
(
|ȳi − Eyi1| > λ

)
+ P

(
|ȳj − Eyj1| > λ

)
.

Therefore, to prove (B.7), it suffices to show that uniformly in i, j, as T →∞,

max
i,j=1,...,p

P
(
|sT,ij| > λ

)
= o(p−2), max

i=1,...,p
P
(
|ȳi − Eyi1| > λ

)
= o(p−2), (B.10)

max
i=1,...,p

P
(
m|ȳi − Eyi1| > λ

)
= o(p−2), (B.11)

when κ is selected sufficiently large. We will prove (B.10), while (B.11) can be shown using

the same argument as in the proof of the second claim in (B.10).

Denote

S∗T,ij = T 1/2sT,ij, S∗T,i = T 1/2ȳi = T−1/2

T∑
k=1

(yik − Eyik).

Then, with η = T 1/2λ,

P
(
|sT,ij| > λ

)
≤ P

(
|S∗T,ij| > η

)
, (B.12)

P
(
|ȳi − Eyi1| > λ

)
≤ P

(
|S∗T,i| ≥ η

)
.
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By Assumption M, the process (yk − Eyk) is α-mixing, and therefore processes (zk − Ezk),
(yik − Eyik) are also α-mixing with mixing coefficients satisfying (1).

(i) Let (yik) ∈ E(s). Then (zk) ∈ E(s/2), and Ezk = σij does not depend on k. Hence, (40) of

Lemma 1 implies that with γ = (s/2)(1 + s/2),

P
(
|S∗T,ij| > η

)
≤ fT (2, γ, c, η), (B.13)

P
(
|S∗T,i| > η

)
≤ fT (2, γ, c, η).

Notice that η = κ(log p)1/2. Then, by definition of ft in (39),

fT (2, γ, c, η) = c0

{
exp(−c1η

2) + exp
(
− c2

( ηT 1/2

log2 T

)γ}
= c0

{
exp(−c1κ

2 log T ) + exp
(
− c2

(κ(log T )1/2T 1/2

log2 T

)γ}
= o(p−2)

because c1κ
2 > 2 when κ is chosen large enough, and under assumption (9), T ≥ cpε,

log p = o
(((log T )1/2T 1/2

log2 T

)γ)
.

This together with (B.13) and (B.12) proves (B.10).

(ii) Let (yik) ∈ H(θ). Then, (zk) ∈ H(θ/2), and (41) of Lemma 1 implies

P
(
|S∗T,ij| > η

)
≤ gT (2, θ′, c, η), 2 < θ′ < θ/2, (B.14)

P
(
|S∗T,i| > η

)
≤ gT (2, θ′, c, η).

Recall that η = κ(log p)1/2. Then the function gT given in (39) has property

gT (2, θ′, c, η) = c0

{
exp

(
− c1η

2
)

+ η−θT−(θ′/2−1)
}

= c0

{
exp

(
− c1κ

2 log p
)

+ (κ(log p)1/2)−θ
′
T−(θ′/2−1)

}
= o(p−2)

because c1κ
2 > 2 for large enough κ, and since under assumption (9) of the theorem,

p2 = o(T θ
′/2−1) (B.15)

if θ′ ∈ (2, θ/2) is selected close enough to θ/2. Indeed, then T ≥ c0p
ε, ε > 8/(θ − 4) which

implies p2 = o(T θ
′/2−1) if θ′ is selected close enough to θ/2.

This, together with (B.14) and (B.12) proves (B.10) which completes the proof of (6).

Property (7) follows using (B.4) of Lemma B1. �
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Proof of Theorem 2. Recall that in Theorem 2

λ = κ(log p)1/2 max
(
H−1/2, H/T

)
. (B.16)

By Lemma B1, to prove (B.3) which is equivalent to the claim (15) of theorem, it suffices

to verify validity of (B.2) when parameter κ is selected sufficiently large. For notational

simplicity, instead of (B.2) we will show that for sufficiently large κ,

max
i,j=1,...,p

P
(
|σ̂ij,t − σij,t| > 4λ

)
= o(p−2). (B.17)

Since κ can be arbitrary selected, (B.17) implies (B.2).

Recall that yt = (y1t, ..., ypt)
′. Set zk = yikyjk. Notice that

σij,k = cov(yik, yjk) = Ezk − EyikEyjk.

Then,

σ̂ij,t − σij,t = K−1
t

∑T
k=1 bH,|t−k|yikyjk − ȳitȳjt − σij,t

= sT,ij,t − ȳitȳjt + EyitEyjt, (B.18)

sT,ij,t = K−1
t

∑T
k=1 bH,|t−k|(zk − Ezt), ȳit = K−1

t

∑T
k=1 bH,|t−k|yik.

Notice that

ȳitȳjt − EyitEyjt = (ȳit − Eyit)(ȳjt − Eyjt) + E[yit](ȳjt − Eyjt) + E[yjt](ȳit − Eyit).

Under assumption (yik) ∈ E(s) or (yik) ∈ H(θ), maxi,t |Eyit| ≤ m <∞. Hence,

|σ̂ij,t − σij,t| ≤ |sT,ij,t|+ |ȳit − Eyit| |ȳjt − Eyjt|+m|ȳjt − Eyjt|+m|ȳit − Eyit|.

Therefore,

P
(
|σ̂ij,t − σij,t| > 4λ

)
≤ P

(
|sT,ij,t| > λ

)
+ P

(
|ȳit − Eyit| |ȳjt − Eyjt| > λ

)
(B.19)

+P
(
m|ȳjt − Eyjt| > λ

)
+ P

(
m|ȳit − Eyit| > λ

)
.

Notice that λ = o(1) as T →∞ by (14). Hence,
√
λ ≥ λ for λ ≤ 1. So,

P
(
|ȳit − Eyit| |ȳjt − Eyjt| > λ

)
(B.20)

≤ P
(
|ȳit − Eyit| >

√
λ
)

+ P
(
|ȳjt − Eyjt| >

√
λ
)

≤ P
(
|ȳit − Eyit| > λ

)
+ P

(
|ȳjt − Eyjt| > λ

)
.
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Therefore, to prove (B.17), it suffices to show that uniformly in i, j, as T →∞,

max
i,j=1,...,p

P
(
|sT,ij,t| > λ

)
= o(p−2), max

i=1,...,p
P
(
|ȳit − Eyit| > λ

)
= o(p−2), (B.21)

max
i=1,...,p

P
(
m|ȳit − Eyit| > λ

)
= o(p−2). (B.22)

We will prove (B.21). ((B.22) can be shown using the same argument as in the proof of the

second claim in (B.21)). Write

sT,ij,t = H1/2K−1
t

(
H−1/2

T∑
k=1

bH,|t−k|(zk − Ezk) +H−1/2

T∑
k=1

bH,|t−k|(Ezk − Ezt)
)

=: H1/2K−1
t (s∗T,ij,t + rT,ij,t),

ȳit − Eyit = H1/2K−1
t

(
H−1/2

T∑
k=1

bH,|t−k|(yik − Eyik) +H−1/2

T∑
k=1

bH,|t−k|(Eyik − Eyit)
)

=: H1/2K−1
t (s∗T,i,t + rT,i,t).

Observe that there exists a1, a2 > 0 such that for all 1 ≤ t ≤ T , T ≥ 1,

a1H ≤ Kt ≤ a2H.

Then

(Kt/H
1/2)λ ≥ a1H

1/2λ =: η. (B.23)

Therefore

P
(
|sT,ij,t| > λ

)
≤ P

(
|s∗T,ij,t + rT,ij,t| > η

)
≤ P

(
|s∗T,ij,t| > η − |rT,ij,t|

)
,

P
(
|ȳit − Eyit| > λ

)
≤ P

(
|s∗T,i,t + rT,i,t| > η

)
≤ P

(
|s∗T,i,t| > η − |rT,i,t|

)
.

First we show that, as p→∞,

|rT,ij,t| ≤ η/2, |rT,i,t| ≤ η/2 (B.24)

which implies

P
(
|sT,ij,t| > λ

)
≤ P

(
|s∗T,ij,t| ≥ η/2

)
, (B.25)

P
(
|ȳit − Eyit| > λ

)
≤ P

(
|s∗T,i,t| ≥ η/2

)
.

To verify (B.24), we use the equality Ezt = E[yityjt] = cov(yit, yjt) +EyitEyjt which together

with assumption (2) implies that uniformly in i, t, s,

|Eyit| ≤ C, |Eyit − Eyis| ≤ C
|t− s|
t ∨ s

, (B.26)

|Ezt| ≤ C, |Ezt − Ezs| ≤ C
|t− s|
t ∨ s

.
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This together with (46) of Lemma 3 and the assumption of the theorem, δT ≤ t ≤ T , yields

|rT,ij,t| ≤ C∗
H3/2

H ∨ t
≤ C∗

H3/2

H ∨ δT
≤ C∗

H3/2

δT
, (B.27)

|rT,i,t| ≤ C∗
H3/2

δT

because H = o(T ) by the assumption (14). Since

λ
√
H ≥ κ(log p)1/2H3/2/T,

this implies
η

|rT,ij,t|
≥ a1κ(log p)1/2

C∗/δ
> 2,

η

|rT,i,t|
> 2

when κ(log p)1/2 is sufficiently large. This proves (B.24) and (B.25).

By Assumption M, the process (xt − Ext) is α-mixing, and therefore (zt − Ezt) is also

α-mixing with mixing coefficients satisfying (1).

(i) Let (yk) ∈ E(s). Then, (zk) ∈ E(s/2) and (yik) ∈ E(s/2). So, applying (44) of Lemma 2

we obtain

P
(
|s∗T,ij,t| > η/2

)
≤ fH(2, γ, c, η/2), γ = (s/2)(1 + s/2), (B.28)

P
(
|s∗T,i,t| > η/2

)
≤ fH(2, γ, c, η/2).

The function

fH(γ1, γ2, c, ζ) ≤ c0

{
exp(−c1ζ

γ1) + exp
(
− c2

( ζH1/2

log2H

)γ2} (B.29)

given in (39) is non-increasing in ζ. By (B.23),

η/2 ≥ (a1/2)κ(log p)1/2. (B.30)

Thus,

fH(2, γ, c, η/2) (B.31)

≤ c0

{
exp

(
− c1(a1/2)2κ2 log p

)
+ exp

(
− c2

(
(a1/2)κ log1/2 p

H1/2

log2H

)γ)}
= o(p−2)

because c1(a1/2)2κ2 > 2 when κ is chosen large enough, and by (14), H ≥ c0p
ε, which implies

log p = o
((

log1/2 p
H1/2

log2H

)γ)
.

This together with (B.28) and (B.25) proves (B.21).
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(ii) Let (yk) ∈ H(θ). Then, (zk) ∈ H(θ/2) and (yik) ∈ H(θ/2), and using (45) of Lemma 2,

we obtain

P
(
|s∗T,ij,t| > η/2

)
≤ gH

(
2, θ′, c, η/2

)
, 2 < θ′ < θ/2, (B.32)

P
(
|s∗T,i,t| > η/2

)
≤ gH

(
2, θ′, c, η/2

)
.

The function

gH(γ, θ′, c, ζ) = c0

{
exp

(
− c1ζ

γ
)

+ ζ−θt−(θ′/2−1)
}

(B.33)

given in (39) is non-increasing in ζ. Again, using the bound η/2 ≥ (a1/2)κ(log p)1/2, we obtain

gH(2, θ′, c, η/2) (B.34)

≤ c0

{
exp

(
− c1(a1/2)2κ2 log p

)
+ ((a1/2)κ(log p)1/2)−θ

′
H−(θ′/2−1)

}
= o(p−2)

because c1(a1/2)2κ2 > 2 for large enough κ and because p2 = o(Hθ′/2−1) under the assumption

(14) of the theorem if θ′ ∈ (2, θ/2) is selected close enough to θ/2, see the proof of (B.15).

Clearly, (B.34), (B.32) and (B.25) prove (B.21).

This completes the proof of the claim (15) of theorem.

The claim (16) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth Hopt = T 2/3 minimizes max
(
H−1/2, (H/T )

)
, so

λ = κ(log p)1/2 max
(
H−1/2, (H/T )

)
≥ λopt = κ(log p)1/2T−1/3

which proves the last claim of the theorem. �

Proof of Theorem 4. In this theorem,

λ = κ(log p)ν max
(
H−1/2, (H/T )1/2

)
, ν =

α + 4

2α
. (B.35)

Notice that by (19), λ = o(1). As in Theorem 2, to prove the main result (20) of this theorem,

it suffices to verify (B.17), i.e. to show that uniformly in i, j, for sufficiently large κ it holds:

P
(
|σ̂ij,t − σij,t| > 4λ

)
= o(p−2). (B.36)

We will rewrite σ̂ij,t − σij,t as follows. Observe that

yk = Hkxt = (y1k, ..., ypk)
′, where yik =

∑p
u=1 hiu,kxuk,

Σt = H tΣ
(x)
t H

′
t = (σij,t), where σij,t =

∑p
u,v=1 hiu,thju,tσ

(x)
uv,t
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and yikyjk =
∑p

u,v=1 hiu,khjv,kxukxvk. Since σ
(x)
uv,t = E[xutxvt]− ExutExvt, then

σij,t =

p∑
u,v=1

hiu,thju,t
(
E[xutxvt]− E[xut]E[xvt]

)
.

So,

σ̂ij,t − σij,t = K−1
t

∑T
k=1 bH,|t−k|yikyjk − ȳitȳjt − σij,t (B.37)

=
∑p

u,v=1 πij,uv,t, where

πij,uv,t = s̃ij,uv,t − ȳiu,tȳjv,t + (hiu,tE[xut])(hjv,tE[xvt]),

s̃ij,uv,t = K−1
t

∑T
k=1 bH,|t−k|

(
hiu,khjv,kxukxvk − hiu,thjv,tE[xutxvt]

)
,

ȳiu,t = K−1
t

∑T
k=1 bH,|t−k|hiu,kxuk.

By assumption of the theorem, the sparsity parameter nH of H t is finite and fixed, and does

not depend on t, p, T . Therefore, for any fixed (i, j) the sum
∑p

u,v=1[...] in (B.37) includes no

more than n2
H of non-zero terms. Without restriction of generality, assume that

σ̂ij,t − σij,t =

nH∑
u,v=1

πij,uv,t.

Hence, to verify (B.36), it suffices to show that uniformly in i, j, u, v, for sufficiently large κ it

holds:

P
(
|πij,uv,t| > 4λ′

)
= o(p−2), λ′ = λ/n2

H . (B.38)

Set siu,t = ȳiu,t − hiu,tE[xut], viu,t = hiu,tE[xut]. Then,

πij,uv,t = s̃ij,uv,t − (siu,tsjv,t + viu,tsjv,t + vjv,tsiu,t).

Thus, similarly to (B.19),

πij,uv,t ≤ P
(
|s̃ij,uv,t| > λ′

)
+ P

(
|siu,tsjv,t| > λ′

)
(B.39)

+P
(
|viu,tsjv,t| > λ′

)
+ P

(
|vjv,tsiu,t| > λ′

)
.

Since λ→ 0, assume that λ ≤ 1. Then, λ′ < 1, and similarly to (B.20),

P
(
|siu,tsjv,t| > λ′

)
≤ P

(
|siu,t| > λ′

)
+ P

(
|sjv,t| > λ′

)
.

Therefore, to prove (B.38), it suffices to show that uniformly in u, v, i, j, as T → ∞, for

sufficiently large κ it holds

P
(
|s̃ij,uv,t| > λ′

)
= o(p−2), P

(
|sjv,t| > λ′

)
= o(p−2), (B.40)

P
(
|viu,tsjv,t| > λ′

)
= o(p−2).
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Let i, j, u, v be fixed. Define zk := xukxvk, h̃k := hiu,khjv,k. By Assumption M, the process

(xk − Exk) is α-mixing, and therefore the process (zk − Ezk) is also α-mixing with mixing

coefficients satisfying (1). Moreover, as in the proof of Theorem 2, Ezk satisfies (B.26). By

Assumption H, (hiu,k) satisfies (18) with parameter α and (h̃k) with parameter α/2.

We can write

s̃ij,uv,t = K−1
t H1/2qij,uv,t, qij,uv,t = H−1/2

∑T
k=1 bH,|t−k|

(
h̃kzk − h̃tEzt

)
,

siu,t = K−1
t H1/2qiu,t, qiu,t = H−1/2

∑T
k=1 bH,|t−k|

(
hiu,kxuk − hiu,tExut

)
.

This together with (B.23), setting η = a1H
1/2λ′, implies

P
(
|s̃ij,uv,t| > λ′

)
≤ P

(
|qij,uv,t| > η

)
, (B.41)

P
(
|siu,t| > λ′

)
≤ P

(
|qiu,t| ≥ η

)
,

P
(
|viu,tsjv,t| > λ′

)
≤ P

(
|viu,tqjv,t| ≥ η

)
.

In addition, set L = b(log p)1/α > 1, where b > 0 will be selected below. Then,

P
(
|viu,tqjv,t| ≥ η

)
≤ P

(
|viu,t| ≥ L

)
+ P

(
L|qjv,t| ≥ η

)
(B.42)

= P
(
|viu,t| ≥ L

)
+ P

(
|qjv,t| ≥ L−1η

)
,

P
(
|qiu,t| ≥ η

)
≤ P

(
|qiu,t| ≥ L−1η

)
.

We will show that there exist sufficiently large b > 0 and κ > 0 such that

P
(
|viu,t| ≥ L

)
= o(p−2), (B.43)

P
(
|qij,uv,t| ≥ η

)
= o(p−2), P

(
|qjv,t| ≥ η/L

)
= o(p−2) (B.44)

which together with (B.42), (B.41) implies (B.40) which completes the proof of (B.36).

Proof of (B.43). By assumption, (xt) ∈ E(s) or (xt) ∈ H(θ) which implies maxi,t |Exit| ≤ m <

∞. Therefore, |viu,t| = |hiu,tE[xut]| ≤ m|hiu,t|. By Assumption H, (hiu,t) ∈ E(α). Therefore,

(viu,t) ∈ E(α) which implies that for some c0, c1 ≥ 0,

P
(
|viu,t| ≥ ζ

)
≤ c0 exp(−c1|ζ|α), ζ > 0.

Using this bound with ζ = L = b(log p)1/α, we obtain

P
(
|viu,t| ≥ L

)
≤ c0 exp(−c1b

α log p) = o(p−2)

when b is selected such that c1b
α > 2. This proves (B.43).
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Proof of (B.44).

(i) Let (xik) ∈ E(s). Recall that qij,uv,t is a weighted sum of variables h̃kzk, and by the

assumptions of the theorem, (hiu,k) ∈ E(α). Thus, (h̃k) ∈ E(α/2) and (zk) ∈ E(s/2). On the

other hand, qiu,t is a weighted sum of variables hiu,kxuk, where (hiu,k) ∈ E(α) and (xuk) ∈ E(s).

Hence, by the claim (58) of Lemma 5,

P
(
|qij,uv,t| > η

)
≤ fH

(
γ1, γ2, c, η(1 ∧ dHt)

)
, (B.45)

P
(
|qiu,t| ≥ η/L

)
≤ fH

(
γ′1, γ

′
2, c, (η/L)(1 ∧ dHt)

)
,

where

γ1 =
2(α/2)

α/2 + 2
=

2α

α + 4
, γ2 =

(α/2)(s/2)

α/2 + s/2 + 1
=

αs

2α + 2s+ 4
, (B.46)

γ′1 =
2α

α + 2
, γ′2 =

αs

α + s+ 1
.

By assumption of the theorem, δT ≤ t ≤ T . We will show below that

η(1 ∧ dHt) ≥ aδκ(log p)1/γ1 , aδ = δ1/2(a1/n
2
H), (B.47)

(η/L)(1 ∧ dHt) ≥ a′δκ(log p)1/γ′1 , a′δ = b−1δ1/2(a1/n
2
H).

The function fH(γ1, γ2, c, ζ), see (B.29), is non-increasing in ζ. So,

fH
(
γ1, γ2, c, η(1 ∧ dHt)

)
≤ fH(γ1, γ2, c, aδκ(log p)1/γ1),

fH
(
γ′1, γ

′
2, c, (η/L)(1 ∧ dHt)

)
≤ fH(γ′1, γ

′
2, c, a

′
δκ(log p)1/γ′1).

Notice that,

fH(γ1, γ2, c, aδκ(log p)1/γ1)

≤ c0

{
exp

(
− c1(aδκ)γ1 log p

)
+ exp

(
− c2

(
aδκ(log p)1/γ1

H1/2

log2H

)γ2} = o(p−2)

because c1(aδκ)γ1 > 2 when κ is selected sufficiently large, and because by the assumption

(19), H ≥ c0p
ε, which implies

log p = o
((

log1/γ1 p
H1/2

log2H

)γ2).
The same argument implies, that for sufficiently large κ,

fH(γ′1, γ
′
2, c, a

′
δκ(log p)1/γ′1) = o(p−2).

Together with (B.45) and (B.41) this proves (B.40).
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Proof of (B.47). Notice that ν = (α + 4)/(2α) in (B.35) has property:

νγ1 = 1, (ν − α−1)γ′1 = 1. (B.48)

By definition (57), dHt = (t ∨ H)1/2H−1. By assumption, δT ≤ t ≤ T and H = o(T ).

Therefore,

dHt ≥ (δT ∧H)1/2H−1 ≥ (δT )1/2H−1,

1 ∧ dHt ≥ δ1/2(1 ∧ T 1/2H−1).

Since for any e > 0, (1 ∨ e)(1 ∧ e−1) = 1, we obtain

η(1 ∧ dHt) = (a1/n
2
H)κ(log p)ν{(H−1/2 ∨ (H/T )1/2)H1/2}(1 ∧ dHt)

≥ (a1/n
2
H)κ(log p)νδ1/2(1 ∨HT−1/2)(1 ∧ T 1/2H−1)

= (a1/n
2
H)δ1/2κ(log p)ν = aδκ(log p)ν .

Since by (B.48), ν = 1/γ1 this proves the first claim in (B.47).

On the other hand, L−1 = b−1(log p)−1/α, and therefore,

(η/L)(1 ∧ dHt) ≥ b−1(a1/n
2
H)δ1/2κ(log p)ν−1/α = a′δκ(log p)1/γ′1

by (B.48) which completes the proof of (B.47).

(ii) Let (xit) ∈ H(θ). Then qij,uv,t is a weighted sum of variables h̃kzk where (h̃k) ∈ E(α/2)

and (zk) ∈ H(θ/2). In turn, qiu,t is a weighted sum of variables hiu,kxuk where (hiu,k) ∈ E(α)

and (xuk) ∈ H(θ). Thus, by the claim (59) of Lemma 5,

P
(
|qij,uv,t| > η

)
≤ gH

(
γ1, θ

′, c, η(1 ∧ dHt)
)
, θ′ ∈ (2, θ/2), (B.49)

P
(
|qiu,t| ≥ η/L

)
≤ gH

(
γ′1, θ

′, c, (η/L)(1 ∧ dHt)
)
,

where γ1 and γ′1 are the same as in (B.46). Since gH(γ1, γ2, c, ζ), (B.33), is a non-increasing

function in ζ, by (B.47) we can bound

gH
(
γ1, θ

′, c, η(1 ∧ dHt)
)
≤ gH

(
γ1, θ

′, c, aδκ(log p)1/γ1
)
,

gH
(
γ′1, θ

′, c, (η/L)(1 ∧ dHt)
)
≤ gH

(
γ′1, θ

′, c, a′δκ(log p)1/γ′1
)
.

Notice that

gH
(
γ1, θ

′, c, aδκ(log p)1/γ1
)

≤ c0

{
exp

(
− c1(aδκ)γ1 log p

)
+

1

(aδκ(log p)1/γ1)θ′
1

Hθ′/2−1

}
= o(p−2)
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when κ is selected such that c1(aδκ)γ1 > 2, and θ′ ∈ (2, θ/2) is selected close enough to θ/2,

see the proof of (B.34). Similarly, it can be shown that for sufficiently large κ,

gH
(
γ′1, θ

′, c, a′δκ(log p)1/γ′1
)

= o(p−2).

Together with (B.49) this implies (B.44). This completes the proof of the claim (20) of

Theorem 4.

The claim (21) of the theorem is shown in (B.4) of Lemma B1.

The bandwidth Hopt = T 1/2 minimizes max
(
H−1/2, (H/T )1/2

)
which implies

λ = κ(log p)ν max
(
H−1/2, (H/T )1/2

)
≥ λopt = κ(log p)νT−1/4

which proves the last claim of the theorem. �

C. Auxiliary results

This section contains auxiliary results used in the proofs.

Recall definition of functions ft and gt, (39).

Lemma C1 (i) Let x ∈ E(α), y ∈ E(α′) where α > 0, α′ > 0. Then xy ∈ E(α̃) where

α̃ = αα′/(α + α′).

Moreover, x+ y ∈ E(min(α, α′)) and |z| ≤ |x| implies z ∈ E(α).

(ii) Let x ∈ E(α), y ∈ H(θ) where α > 0, θ > 0. Then xy ∈ H
(
θ′
)

for any 0 < θ′ < θ.

(iii) Let (xt) ∈ E(α), α > 0 and P (|yt| ≥ ζ) ≤ ft(γ1, γ2, c, ζ), ζ > 0, t ≥ 2 with γ1, γ2 > 0.

Then

P (|xtyt| ≥ ζ) ≤ ft(γ̃1, γ̃2, c
′, ζ), ζ > 0, t ≥ 2, (C.1)

where γ̃1 = αγ1/(α + γ1), γ̃2 = αγ2/(α + γ2) and c′ does not depend on t, ζ.

(iv) Let (xt) ∈ E(α), α > 0 and P (|yt| ≥ ζ) ≤ gt(γ, θ, c, ζ), ζ > 0, t ≥ 2 where γ > 0, θ > 2.

Then for any θ′ ∈ (2, θ),

P (|xtyt| ≥ ζ) ≤ gt(γ̃, θ
′, c′, ζ), ζ > 0, t ≥ 2, (C.2)

where γ̃ = αγ/(α + γ) and c′ does not depend on t, ζ.

(v) If (xt) ∈ E(α), (xtk) ∈ E(α) for some α > 0 then as T →∞,

max
1≤t≤T

|xt| = OP

(
(log T )1/α

)
, max

1≤t,k≤T
|xtk| = OP

(
(log T )1/α

)
. (C.3)
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Proof.

(i) Let x ∈ E(α), y ∈ E(α′) where α > 0, α′ > 0 and let α̃ = αα′/(α + α′). Then for some

a > 0,

E exp(a|x|α) <∞, E exp(a|y|α′) <∞.

To prove (i), we will show that E exp(a|xy|α̃) <∞.

Set p = (α + α′)/α′, q = (α + α′)/α. Then p > 1, q > 1, 1/p + 1/q = 1 and α̃p = α,

α̃q = α′. Hence, for k = 1, 2, ... by Hölder’s inequality,

E|xy|α̃k = E[|x|α̃k|y|α̃k] ≤ (E|x|k α̃p)1/p(E|y|k α̃q)1/q = (E|x|k α)1/p(E|y|k α′)1/q

≤ (max(E|x|k α, E|y|k α′)1/p+1/q = max(E|x|k α, E|y|k α′)

≤ E|x|k α + E|y|k α′ .

Therefore,

E exp(a|xy|α̃) ≤
∞∑
k=0

akE|xy|α̃k

k!
≤

∞∑
k=0

ak(E|x|k α + E|y|k α′)
k!

≤ E exp(a|x|α) + E exp(a|y|α′) <∞.

(ii) Let x ∈ E(α), y ∈ H(θ) where α > 0, θ > 0. Then, for some a > 0,

E exp(a|x|α) <∞, E|y|θ <∞.

The latter implies that E|x|b <∞ for any b > 0.

Let θ′ ∈ (0, θ). To prove (ii), we will show that E|xy|θ′ < ∞. Set p = θ/θ′ and let q > 1

be defined by equality 1/p+ 1/q = 1. Then, by Hölder inequality,

E|xy|θ′ ≤ (E|x|θ′q)1/q(E|y|θ′p)1/p = (E|x|θ′q)1/q(E|y|θ)1/p <∞.

This completes the proof of (ii).

Before proceeding to the proof of (iii)-(iv), we obtain the following two auxiliary results.

First, consider the function

f(x) = xα + c(v/x)α
′
, x > 0

where α > 0, α′ > 0, v > 0, c > 0. It achieves its unique minimum at

x0 = (cα′/α)1/(α+α′)vα
′/(α+α′)

because x0 is a unique solution of equation f ′(x) = αxα−1 − cα′(v/x)α
′
x−1 = 0 and f ′′(x0) =

xα−2
0 α(α + α′) > 0. Thus,

f(x) ≥ f(x0) = c′vα̃, x ≥ 0 (C.4)
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where α̃ = αα′/(α + α′) and c′ = (cα′/α)α/(α+α′)(1 + α/α′).

Second, we obtain the upper bound for P (|xy| ≥ ζ) for the product of r.v.′s x and y when

x ∈ E(α), α > 0. Let p, q > 1, 1/p+ 1/q = 1. Then

P
(
|xy| ≥ ζ

)
=

∑∞
k=0 P

(
{|x| ∈ [k, k + 1)} ∩ {|xy| ≥ ζ}

)
≤

∑∞
k=0 P

1/p
(
|x| ∈ [k, k + 1)

)
P 1/q

(
|y| ≥ ζ/(k + 1)

)
.

Since x ∈ E(α), then for k ≥ 0,

P
(
|x| ∈ [k, k + 1)

)
≤ P

(
|x| ≥ k

)
≤ c′0 exp(−2c′1k

α), k ≥ 0

for some c′0 > 0, c′1 > 0. Denote

gkζ := exp(−c′1kα)P 1/q(|y| ≥ ζ/k).

Then,

P
(
|xy| ≥ ζ

)
≤ C

∑∞
k=0 exp{−2c′1k

α + c′1(k + 1)α}gk+1,ζ

≤ C maxk≥1 gkζ
∑∞

k=0{−2c′1k
α + c′1(k + 1)α}

≤ C max
k≥1

gkζ . (C.5)

We use this result to evaluate P (|xy| ≥ ζ) in parts (iii)-(iv) of the lemma.

(iii) Without restriction of generality, we assume that ζ ≥ 1. By (C.5),

P (|xtyt| ≥ ζ) ≤ C max
k≥1

gkζ . (C.6)

Under assumptions of (iii), gkζ = exp(−c′1kα)f
1/q
t (2, γ, c, ζ/k). To evaluate f

1/q
t (2, γ, c, ζ/k),

denote ζt = ζ
√
t/ log2 t. Using the definition of function ft, (39), and inequality

(a+ b)1/q ≤ a1/q + b1/q, a, b > 0, (C.7)

we obtain

f
1/q
t (γ1, γ2, c, ζ/k) ≤ C

(
exp

(
− c1(ζ/k)γ1

)
+ exp

(
− c2(ζt/k)γ2

))1/q

≤ C
(

exp
(
− (c1/q)(ζ/k)γ1

)
+ exp

(
− (c2/q)(ζt/k)γ2

))
.

Hence, there exist constants c
′′
1 , c

′′
2 > 0 such that

gk,ζ ≤ C{exp(−c′′1(kα + (ζ/k)γ1)) + exp(−c′′2(kα + (ζt/k)γ2))}.
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Next, using (C.4) to bound f(k) := kα + (ζ/k)γ1 , f(k) := kα + (ζt/k)γ2 from below, we obtain

gk,ζ ≤ c∗0
(

exp(−c∗1ζ γ̃1) + exp(−c∗2ζ
γ̃2
t )
)

= ft(γ̃1, γ̃2, c
∗, ζ), k ≥ 1,

with γ̃1 = αγ1/(α + γ1), γ̃2 = αγ2/(α + γ2). Thus, (C.6) implies

P
(
|xtyt| ≥ ζ

)
≤ ft(γ̃1, γ̃2, c

′′
, ζ)

which proves (iii).

(iv) Let ζ ≥ 1. Under assumptions of (iv), (C.6) holds with

gkζ = exp(−c′1kα)g
1/q
t (γ, θ, c, ζ/k).

Next we evaluate g
1/q
t (γ, θ, c, ζ/k). Let 2 < θ′ < θ. Then, θ/θ′ > 1 and (θ − 2)/(θ′ − 2) > 1.

Let q > 1 be such that min(θ/θ′, (θ − 2)/(θ′ − 2)) > q. By (C.7) and definition of gt, (39),

g
1/q
t (γ, θ′, c, ζ/k) ≤ C

(
exp{−c1(ζ/k)γ}+ (ζ/k)−θt−(θ/2−1)

)1/q

≤ C{exp{−(c1/q)(ζ/k)γ}+ ζ−θ/qt−(θ/2−1)/qkθ/q}. (C.8)

Definition of q > 1 implies θ/q > θ′ and (θ/2 − 1)/q > θ′/2 − 1. This together with (C.8)

yields

g
1/q
t (γ, θ′, c, ζ/k) ≤ C

(
exp{−(c1/q)(ζ/k)γ}+ ζ−θ

′
t−(θ′/2−1)kθ/q

)
, ζ ≥ 1, t ≥ 1.

Hence,

max
k≥1

gkζ ≤ C max
k≥1

exp{−c1
′′(kα + (ζ/k)γ)}+ Cζ−θ

′
t−(θ′/2−1) max

k≥1
{exp(−c2

′kα)kθ/q}

≤ C
(

max
k≥1

exp{−c1
′′(kα + (ζ/k)γ)}+ ζ−θ

′
t−(θ′/2−1)

)
.

Applying to f(k) := kα + (ζ/k)γ the bound (C.4), we obtain

max
k≥1

gkζ ≤ c∗0

(
exp(−c∗1ζ γ̃) + ζ−θ

′
t−(θ′/2−1)

)
= gt(γ̃, θ

′, c∗, ζ)

with γ̃ = αγ/(α + γ). Then (C.6) implies P (|xtyt| ≥ ζ) ≤ gt(γ̃, θ
′, c∗, ζ) which proves (iv).

(v) We need to show that, as T →∞, b→∞,

P
(

max
t=1,...,T

|xt| ≥ b(log T )1/α
)
→ 0, P

(
max

t,k=1,...,T
|xtk| ≥ b(log T )1/α

)
→ 0.

By assumption, there exist a > 0 and α > 0 such that

max
t≥1

E exp(a|xt|α) <∞, max
t,k≥1

E exp(a|xtk|α) <∞.
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Let b be such that abα ≥ 2. Then, as T →∞,

P
(

max
t=1,...,T

|xt| ≥ b(log T )1/α
)
≤

T∑
t=1

P
(
|xt| ≥ b(log T )1/α

)
≤

T∑
t=1

E(exp(a|xt|α)

exp(abα log T )
≤ T−2

T∑
t=1

C → 0.

Similarly,

P
(

max
t,k=1,...,T

|xtk| ≥ b(log T )1/α
)
≤

T∑
t,k=1

P
(
|xtk| ≥ b(log T )1/α

)
≤

T∑
t,k=1

E(exp(a|xtk|α)

exp(abα log T )
≤ T−2

T∑
t,k=1

C → 0.

This completes the proof of (v) and the lemma. �

Lemma C2 Let γ > 0.

(i) Let ξ be a zero mean random variable. Then for all ζ > 0,

E
(
|ξ|γI(|ξ| > ζ)

)
≤

{
c0 exp(−c1ζ

s) if ξ ∈ E(s), s > 0 (C.9)

c0ζ
γ−θ if ξ ∈ H(θ), γ < θ (C.10)

for some c0 > 0, c1 > 0 which do not depend on ζ.

(ii) Let st, t ≥ 1 be zero mean random variables such that for some γ1 > 0, γ2 > 0 and c,

P
(
|st| ≥ ζ

)
≤ ft(γ1, γ2, c, ζ) for all ζ > 0, t ≥ 2.

Then,

E
[
|st|γI(|st| > ζ)

]
≤ ft(γ1, γ2, c

′, ζ), ζ > 0, t ≥ 2, (C.11)

where c′ does not depend on ζ, t.

(iii) Let st, t ≥ 1 be zero mean random variables such that for some θ > 0, γ1 > 0 and c,

P
(
|st| ≥ ζ

)
≤ gt(γ1, θ, c, ζ) for all ζ > 0, t ≥ 2.

Then, for 0 < γ < θ,

E
[
|st|γI(|st| > ζ)

]
≤ max(ζγ, 1)gt(γ1, θ, c

′, ζ), ζ > 0, t ≥ 2, (C.12)

where c′ does not depend on ζ, t.
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Proof. Without restriction of generality let ζ ≥ 1. Denote F (x) = P (|ξ| ≥ x). Then

E
[
|ξ|γI(|ξ| > ζ)

]
= −

∫∞
ζ
xγdF (x) = −ζγF (ζ) +

∫∞
ζ
xγ−1F (x)dx. (C.13)

(i) If (ξk) ∈ E(s), then F (x) ≤ c′0 exp
(
−2c′1|x|s

)
for some c′0, c

′
1 > 0. Notice that F (x) ≥ F (ζ),

x ≥ ζ. Applying these bounds in (C.13), we obtain (C.9):

E
[
|ξ|γI(|ξ| > ζ)

]
≤ F 1/2(ζ)

{
ζγF 1/2(ζ) +

∫∞
1
xγ−1F 1/2(x)dx

}
≤ CF 1/2(ζ) ≤ C exp(−c′1ζs).

If (ξ) ∈ H(θ), then F (x) ≤ c′0|x|−θ. Using this bound in (C.13), we obtain (C.10):

E[|ξ|γI(|ξ| > ζ)] ≤ C
{
ζγ|ζ|−θ +

∫ ∞
ζ

xγ−1x−θdx
}
≤ Cζγ−θ.

(ii) Let again ζ ≥ 1. Denote F ∗t (x) = P (|St| ≥ x). Then as in (C.13),

E
[
|st|γI(|st| > ζ)

]
= −

∫ ∞
ζ

xγdF ∗t (x) = −ζγF ∗t (ζ) +

∫ ∞
ζ

xγ−1F ∗t (x)dx, (C.14)

E
[
|st|γI(|st| > ζ)

]
≤ F

∗1/2
t (ζ)

{
ζγF

∗ 1/2
t (ζ) +

∫ ∞
1

xγ−1F
∗ 1/2
t (x)dx

}
.

By assumption, P (|st| ≥ ζ) ≤ ft(γ1, θ, c, ζ). Definition (39) of ft implies that

ft(γ1, γ2, c, ζ) ≤ c0 exp
(
− 2c1ζ

min(γ1,γ2)
)
, ζ > 0, t ≥ 2

for some c0, c1 > 0. Thus, by (C.14), for ζ ≥ 1

E
[
|st|γI(|st| > ζ)

]
≤ f

1/2
t (γ1, γ2, c, ζ)

(
ζγf

1/2
t (γ1, γ2, c, ζ) +

∫∞
1
xγ−1f

1/2
t (γ1, γ2, c, x)dx

)
≤ Cf

1/2
t (γ1, γ2, c, ζ) ≤ Cft(γ1, γ2, c

′, ζ)

for some c′ in view of (C.7). This proves (C.11).

(iii) Let ζ ≥ 1. Since P (|st| ≥ ζ) ≤ gt(γ1, θ, c, ζ), (C.14) implies

E[|st|γI(|st| > ζ)] ≤ ζγgt(γ1, θ, c, ζ) +

∫ ∞
ζ

xγ−1gt(γ1, θ, c, x)dx. (C.15)

By definition (39), gt(γ1, θ, c, ζ) ≤ c0{exp(−2c1ζ
γ1) + ζ−θt−(θ/2−1)} for some c0, c1 > 0. Thus,∫ ∞

ζ

xγ−1gt(γ1, θ, c, x)dx

≤ C
(

exp(−c1ζ
γ1)

∫ ∞
ζ

xγ−1 exp(−c1x
γ1)dx+

∫ ∞
ζ

xγ−θ−1t−(θ/2−1)dx
)

≤ Cζγ
(

exp(−c1ζ
γ1) + ζ−θt−(θ/2−1)

)
= ζγgt(γ1, θ, c

′, ζ)

for some c′. This together with (C.15) proves (C.12). �
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Lemma C3 Let bH,k satisfy (43) with ν > 3 and 0 ≤ γ < 2. Then for 1 ≤ t,H ≤ T , T ≥ 1,

H−1

T∑
k=1

bH,|t−k|(
|t− k|
t ∨ k

)γ ≤ C(
H

H ∨ t
)γ, (C.16)

H−1

T∑
k=1

bH,|t−k|(
|t− k| ∨H

k
)1/2 ≤ C(

H

H ∨ t
)1/2, (C.17)

where C > 0 does not depend on t, T,H.

Proof. Notice that

(
H

H ∨ t
)γ =

(
(
H

t
)γ ∧ 1

)
= (

H ∧ t
t

)γ. (C.18)

By (43), bH,k ≤ C(1 + (k/H)ν)−1 for k ≥ 0 where ν ≥ 3. Therefore, for 0 ≤ γ < 2,

H−1

T∑
k=1

bH,k(k/H)γ ≤ C, max
k≥1

bH,k(k/H)γ ≤ C, (C.19)

where C does not depend on H,T .

Denote by Iγ,H the l.h.s. of (C.16). Then, by (C.19), noting that t ∨ k ≥ t,

Iγ,H = H−1

T∑
k=1

bH,|t−k|(
|t− k|
t ∨ k

)γ = H−1

T∑
k=1

bH,|t−k|(
|t− k|
H

)γ(
H

t ∨ k
)γ ≤ C(

H

t
)γ.

On the other hand, since |t− k|/(t ∨ k) ≤ 1, using (C.19) we obtain

Iγ,H ≤ H−1
∑T

k=1 bH,|t−k| ≤ C

which together with (C.18) proves (C.16).

To prove (C.17), denote by IH the l.h.s. of (C.17). Write

IH = H−1

T∑
k=t/2+1

[...] +H−1

t/2∑
k=1

[...] =: IH;1 + IH;2.

Then,

IH;1 ≤
[
H−1

T∑
k=t/2+1

bT,|t−k|(
|t− k| ∨H

H
)1/2(

H

k
)1/2]

≤ C(
H

t
)1/2
[
H−1

T∑
k=1

bT,|t−k|(
|t− k| ∨H

H
)1/2
]
≤ C(

H

t
)1/2

by (C.19). On the other hand, for 1 ≤ k ≤ t/2, it holds |t− k| ≥ t/2. Then,

1 = (|t− k|/H)(H/|t− k|) ≤ 2(|t− k|/H)(H/t),
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and

IH;2 ≤ 2H−1

t/2∑
k=1

{bT,|t−k|(
|t− k| ∨H

H
)1/2 |t− k|

H
}(H
t

)(
H

k
)1/2.

Then, using the second claim of (C.19), we obtain

IH;2 ≤ C(
H1/2

t
)

t/2∑
k=1

k−1/2 ≤ C(
H

t
)1/2.

The bounds for IH;1 and IH;2 imply IH ≤ C(H/t)1/2.

In view of (C.18), to prove (C.17), it remains to show that IH ≤ C. By (C.19),

IH ≤ H−1
∑T

k=1 bT,|t−k|(
|t−k|∨H

H
)1/2(H

k
)1/2

≤ H−1
∑2H

k=1 bT,|t−k|(
|t−k|∨H

H
)1/2(H

k
)1/2 + 2H−1

∑T
k=2H bT,|t−k|(

|t−k|∨H
H

)1/2

≤ CH−1/2
∑2H

k=1 k
−1/2 + CH−1

∑T
k=1 bT,|t−k|(

|t−k|∨H
H

)1/2 ≤ C,

where C <∞ does not depend on t,H and T . This proves IH ≤ C and (C.17), and completes

the proof of the lemma. �
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