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Abstract
Simulation offers a simple and flexible way to estimate the power of a clinical
trial when analytic formulae are not available. The computational burden of using
simulation has, however, restricted its application to only the simplest of sample
size determination problems, minimising a single parameter (the overall sample size)
subject to power being above a target level. We describe a general framework for
solving simulation-based sample size determination problems with several design
parameters over which to optimise and several conflicting criteria to be minimised.
The method is based on an established global optimisation algorithm widely used in
the design and analysis of computer experiments, using a non-parametric regression
model as an approximation of the true underlying power function. The method is
flexible, can be used for almost any problem for which power can be estimated using
simulation, and can be implemented using existing statistical software packages. We
illustrate its application to three increasingly complicated sample size determination
problems involving complex clustering structures, co-primary endpoints, and small
sample considerations.
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1 Introduction

The sample size of a clinical trial is typically minimised subject to the
power of the trial being above a nominal level, often 80 or 90%. For
many sample size determination (SSD) problems, power can be calculated
using a simple mathematical formula and the optimisation problem can be
solved in a timely manner. When complexity in the trial design or the
method of analysis mean such formulae are not readily available, we can
estimate power using a Monte Carlo (MC) approximation? ? . To do so, we
simply simulate several hypothetical sets of trial data under the alternative
hypothesis, analyse each of these, and calculate the proportion of analyses
which reject the null hypothesis. The simplicity and flexibility of the simulation
method has seen it used for a variety of statistical models and study
designs, including problems involving hierarchical models? ? , proportional
hazards models? , logistic regression models? , individual patient data meta-
analyses? ? , patient enrolment models? , stepped wedge designs? ? , and
cluster randomised crossover designs? . Although calculating MC estimates
of power can be computationally demanding, these SSD problems remain
feasible because, as optimisation problems, they are quite simple. In particular,
optimisation takes place over a single parameter (the sample size), subject to a
single constraint (power), and with respect to a single objective to be minimised
(the sample size again).

SSD problems, particularly those found in trials of complex interventions, are
not always this simple? . There may be several parameters, each influencing
the power of the trial, which need to be specified at the design stage. Several
design parameters are common in, for example, trials with multilevel structures
such as cluster randomised trials, where both the number of clusters and the
number of participants in each cluster must be specified. Increasing the number
of design parameters complicates the SSD problem by increasing the number of
possible solutions to search. A second complication arises when there is more
than one criterion we are interested in minimising, subject to the nominal
power constraint. A cluster randomised trial will often have this property, as we
would like to minimise both the total number of participants and the number
of clusters. Given multiple conflicting objectives, there is no single ‘optimum’
solution but rather a range of solutions which offer different degrees of trade-off
between the objectives. Seeking a set of good solutions, rather than a single
optimum, further adds to the difficulty of the SSD problem.

Complex SSD problems with several design parameters and several objectives
could in theory be solved using benchmark multi-objective optimisation
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algorithms such as NSGA-II? , robust implementations of which are freely
available in statistical software such as R? . However, these so-called ‘greedy’
algorithms typically assume that evaluating any proposed solution to the
problem is a very fast process, and consequently evaluate many thousands
of solutions during the search. If these algorithms were applied to problems
where evaluating solutions required computing an MC estimate of power, they
would take an infeasibly long time to converge. Thus, if we are to extend
simulation-based trial design to complex SSD problems, we require a more
general framework employing more efficient optimisation algorithms.

Outwith the context of clinical trial design, a great deal of research
has addressed optimisation problems where the evaluation of a solution
is a computationally demanding, or expensive, operation? ? . One approach
addresses the problem by substituting the expensive function with a
mathematical approximation known as a surrogate model. The surrogate model
is then used to make predictions about the true function for different values
of design parameters, with these predictions informing which point should
be evaluated next. The information obtained from this evaluation is used
to update the surrogate model, thus improving the predictions available at
the next iteration. One class of surrogate model is Gaussian process (GP)
regression. Also known as Kriging and having its roots in geostatistics? , GP
models are spatial interpolators which are computationally tractable? and can
be fitted using robust and freely available software? . A GP surrogate model
provides not only a prediction of the true function value at any point, but
also a measure of uncertainty in this prediction. This property is exploited
by the benchmark Efficient Global Optimisation (EGO) algorithm? , allowing
the next point in the search to be chosen in a way that formally balances the
potential benefits of exploitation (searching around areas already known to be
promising) and exploration (searching in areas of high uncertainty). Although
EGO was originally proposed for unconstrained optimisation of expensive
objective functions with deterministic output, various proposals have extended it
to incorporate the expensive constraints? , multiple objectives? , and stochastic
outputs? that feature in complex SSD problems.

In this paper we will explore how GP regression models and a variant of the
EGO algorithm can be used to solve complex SSD problems. In contrast with
many of the available methods and software for simulation-based SSD, which
focus on specific application areas such as multilevel designs (MLPowSim? ),
IPD meta-analyses (ipdpower? ) or stepped wedge design (SWSamp? ), we take
the same approach as that used in the SimSam package? and propose a more
general framework which can be applied to a broad class of SSD problems
following the Neyman-Pearson hypothesis testing formulation. Specifically, we
require that the user can write a program which simulates the data generating
process and analysis of the trial, returning a binary indicator denoting rejection
or otherwise of the null hypothesis. This flexibility will not only mean simulation-
based SSD can be used for a wide range of existing trial designs, but will also
facilitate SSD for novel designs developed in the future and which cannot be
anticipated now.
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The remainder of the paper is structured as follows. Three motivating
problems are described in Section ??. In Section ?? we provide the necessary
background and notation regarding Monte Carlo estimation and multi-objective
optimisation. In Section ?? we describe Gaussian process regression, the efficient
global optimisation algorithm, and a framework for its application to sample
size determination. We return to the examples in Section ??, illustrating how
the method can be applied in practice. We conclude with a discussion of the
implications and limitations of the proposed approach in Section ??.

2 Motivating examples

‘Pacing, graded Activity, and Cognitive behaviour therapy; a randomised
Evaluation’ (PACE)? ? was a randomised controlled trial comparing adaptive
pacing therapy (APT), cognitive behavioural therapy (CBT), graded exercise
therapy (GET) and specialist medical care (SMC) as secondary care treatments
for patients with chronic fatigue syndrome (CFS/ME). The data had a complex
multilevel data structure, with three of the four arms including a therapy
provided by different therapists (partially nested structure) and all arms
including medical care from the same doctors (crossed structure), leading to
the potential for treatment-related clustering. Since some participants receive
treatment from both a therapist and a doctor, the relationship between
participants and care providers is cross-classified. Moreover, two potentially
correlated co-primary endpoints (fatigue and disability) were used. The original
sample size calculation used a simple analytic formula for comparing proportions
in two groups of equal size. It did not account for the impact of clustering or
of simultaneously analysing two correlated endpoints. In this section we will
describe three theoretical example SSD problems based around the PACE trial,
increasing in complexity at each step.

2.1 Complex clustering

We consider redesigning the PACE trial to detect a difference in the probability
of participants responding with respect to fatigue between the APT and SMC
arms. A participant is considered to have responded if they have a score of 3
or less (indicating normal fatigue) on the likert Chalder Fatigue Scale (CFS)? .
As in the original design, we assume an equal number n of participants will be
recruited to each arm. In the intervention arm, k therapists will deliver APT to
participants, with each participants receiving treatment from a single therapist.
We assume that the number of participants allocated to each therapist will
vary with therapist. Specifically, we model the proportion of all participants
in the APT arm allocated to a therapist using a Gamma distribution with
shape parameter 1. Participants in both APT and SMC arms will receive
specialist medical care from one of 2k doctors, with the proportion allocated
to each doctor also following a gamma distribution with shape parameter 1.
This leads to a multilevel data structure where therapists are partially nested
within interventions, doctors are crossed with interventions, and patients are
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Figure 1. Multilevel structure of the SMC and APT arms of our example, where
therapists (T) are partially nested within interventions, doctors (D) are crossed with
interventions, and patients (P) are cross-classified with therapists and doctors in the
intervention arm and nested within doctors in the control arm.

cross-classified with therapists and doctors in the intervention arm and nested
within doctors in the control arm? . This structure is illustrated in Figure ??.

In this example, the primary analysis will be a logistic mixed effect model with
a likelihood ratio test of the null hypothesis that the probability of response in
the APT arm, p1, is equal to that in the SMC arm, p0. The model includes
random intercepts in the linear predictor for doctor effects and a random
coefficient for therapist effects since these will only occur in the APT arm. We
assume that the test statistic follows a chi-squared distribution with 1 degree of
freedom, and therefore that the type I error rate can be controlled at a nominal
level of α∗ = 0.05 (two-sided). As model convergence may be an issue, we include
this in our definition of power by not rejecting the null hypothesis when the
model fails to converge. We require that the power at the alternative hypothesis
H1 : p0 = 0.1, p1 = 0.25 be no less than 90%. Subject to these constraints, we
aim to find minimal values of n and k, recognising that these two objectives will
conflict with one another.

Although sample size formulae for partially nested designs with binary
outcomes are available? , they do not extend to the structure in this
example where participants are cross-classified and doctors are crossed with
interventions. Including the complex process of model non-convergence into the
definition of power further necessitates the use of simulation.

2.2 Co-primary endpoints

We extend the previous example to include a co-primary endpoint relating to
disability, a binary response defined as 75 (out of 100) or more on the short
form-36 physical function subscale? , where the mean score for the UK adult
population is around 85. An in PACE, the endpoints will be analysed separately,
each time fitting a logisitc mixed effect model and conducting a likelihood ratio
test as described in Section ??. The results of the trial will be considered positive
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only if both of the analyses show a statistically significant difference, leading to
reduced power under the alternative hypothesis of an effect on each endpoint
in comparison to the univariate case of Section ??? . Correlation between
the endpoints is expected at the participant level, and correlations between
the random effects of therapists and doctors for different endpoints are also
expected. This correlation will be modelled in the data generating process, but
not in the analysis due to concerns about the feasibility of fitting a multivariate
model. Such a mismatch between the data generating and analysis models has
been noted as a clear motivation for simulation-based power calculations? .

2.3 Small sample pilot

Finally, we consider how we might have designed a pilot trial prior to the
definitive PACE trial to provide a preliminary test of potential efficacy. At this
early stage, we would like 90% power to detect a meaningful effect in either
the fatigue or disability endpoints. To enable a small trial to have such high
power, we relax the type I error rate to 0.2 (one-sided) and change the primary
endpoints from binary responses to the continuous scores on the CFS and SF-
36. In the pilot setting we assume we have greater control over the numbers
of participants allocated to therapists and to doctors, and so can maximise
efficiency by balancing cluster sizes. We also now consider varying the number
of doctors. Our objectives are to minimise the total number of participants, the
number of therapists, and the number of doctors. The small sample setting of
a pilot trial implies the distributional assumptions underpinning type I error
control may be violated, and so we simulate power under the null hypothesis
and model this constraint in addition to power under the alternative. We include
the nominal type I error rate used when testing the null hypothesis as a design
variable, allowing an appropriate adjustment to be made as part of the larger
optimisation process.

In terms of design parameters, we must choose the total sample size in the
APT arm, denoted n1; the number of APT therapists, k; the allocation ratio
relating the total number of participants in each arm, r = n0/n1; the number of
doctors, j; and the nominal type I error rate, a. Thus, in comparison with the
preceding examples, the number of designs to be searched over is significantly
larger. By requiring the simulation of power under the null and alternative
hypotheses, the computational burden of simulation is doubled. By minimising
three objectives simultaneously, a larger set of solutions will be required to
enable the available trade-offs between them to be fully appreciated.

3 Background

3.1 Monte Carlo estimation

Monte Carlo methods can be used to numerically approximate expectations
E[f(Z)] of real valued functions f(Z) with respect to the probability distribution
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of Z. Given N samples of Z, denoted zi, i = 1, . . . , N , the MC estimate is

E[f(Z)] ≈ 1

N

N∑
i=1

f(zi). (1)

The estimate is unbiased for all N and has variance equal to

ω2 = V ar

[
1

N

N∑
i=1

f(zi)

]
=

1

N
V ar [f(zi)] . (2)

The standard error of the MC estimate will therefore reduce at a rate of 1/
√
N

as we increase N . When N is large we can consider an MC estimate to be
the true expectation plus a normally distributed error term with 0 mean and
variance ω2, i.e.

1

N

N∑
i=1

f(zi) = E[f(Z)] + e, where e ∼ N(0, ω2). (3)

In the context of simulation-based trial design, if Z is the test statistic to be
compared with an acceptance region Λ then the probability of acceptance under
hypothesis H is E[I(Z ∈ Λ) | H], where I(.) is the indicator function. An MC
estimate of the power of a trial design under H can therefore be obtained given
N test statistics z1, . . . , zN sampled under H. The steps required to simulate
these statistics are described in? , and we briefly summarise them here:

1. Define the population model. This describes the underlying target
population and should specify all population parameters and distributions
under the hypothesis of interest.

2. Define the sampling strategy. This should specify the numbers of patients,
clusters, or any other sampling units in the trial and how they will be
drawn from the population.

3. Define the method of analysis. For hypothesis testing, this will include
defining the form of the test statistic Z and the acceptance region Λ.

Given each of the above elements, pseudo-random number generators can be
used to simulate the recruitment, randomisation and primary outcome measure
of patients under the hypothesis of interest, from which a test statistic zi can
be calculated.

3.2 Multi-objective optimisation

A solution to the SSD problem consists of a vector of design parameters x, and
the solution space X is the set of all solutions. A simple SSD problem may have
a 1-dimensional solution space, while more complex problems may have several
dimensions. Elements of x may include parameters defining the sample size of
the trial, the acceptance region to be used in the analysis, or any other design
aspect over which we have control and which may influence the trial operating
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characteristics. For instance, in example ?? a solution x = (k, n) is defined by
the number of participants in each arm (n) and the number of therapists in the
intervention arm (k).

An objective function f(x) is a function f : X → R which we wish to minimise.
In a multi-objective problem with B objectives, we denote the vector of objective
values as y = (f1(x), . . . , fB(x)) ∈ RB . We will describe RB as the objective
space. In our example ??, we have two objectives: minimising the number of
clusters f1(x) = k; and minimising the total number of participants, f2(x) = 2n.

A constraint function g(x) is a function g : X → R which must be less than
or equal to 0 for the solution x to be considered feasible. For example, if type
II error rate is denoted by β(x) and the nominal type II error rate is set at
β∗, a constraint function would be g(x) = β(x)− β∗. We denote C constraint
functions as gj(x), j = 1, . . . , C. The general SSD problem can now be stated
as

min
x∈X

fi(x), i = 1, . . . , B (4)

subject to gj(x) ≤ 0, j = 1, . . . , C. (5)

We denote by ≺ the relation of Pareto dominance, where a solution dominates
another if it is at least as good in all respects, and better in at least one.
Formally, x∗ ≺ x if fi(x∗) ≤ fi(x) for i = 1, . . . , B, and fj(x∗) < fj(x) for some
j. For instance, xa = (n = 100, k = 10) ≺ xb = (n = 120, k = 10) in example ??,
but xa = (n = 100, k = 10) ⊀ xc = (n = 80, k = 13). The Pareto set is the set
of non-dominated solutions Xp = {x ∈ X | @ x∗ ∈ X s.t. x∗ ≺ x}. An example
Pareto set for example ?? is plotted in Figure ??, illustrating the available
trade-offs between the two objectives.

Multi-objective optimisation seeks to find a set of solutions that are close to
the true Pareto set, with every member of the set non-dominated with respect
to all other members. We will refer to these as approximation sets, denoted A.
That is, any set A such that A ∈ X with ∀ x ∈ A : @ x∗ ∈ A : x∗ ≺ x is an
approximation set? . A set A is feasible if all constraints are satisfied by every
member of A. An example feasible approximation set for example ??, plotted
in Figure ??, is given by the four (2n, k) points

A = {(589, 24), (705, 20), (810, 12), (982, 10)}. (6)

To understand the similarity between any approximation set A and the ideal
Pareto set, we measure its dominated hypervolume. This is the volume of the
subspace dominated by solutions in A and bounded by a reference point r:

H(A) = Vol({y ∈ RB | y is dominated by some y∗ ∈ A and y ≺ r}). (7)

The largest possible hypervolume of any feasible approximation set A is
achieved by the true Pareto set Xp. We can therefore frame the multi-objective
optimisation problem as finding the feasible approximation set A with largest
hypervolume. Taking a reference point of r = (1200, 30) (marked by the cross
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Figure 2. Example Pareto front Xp and approximation set A for a cluster randomised
trial design problem. The dominated hypervolume of the approximation set with respect
to a reference point (cross) is the shaded area.

in Figure ??), our example approximation set has a dominated hypervolume of
9202. This can be compared with that of the Pareto set, at 14501. We would
expect the approximation set to converge to the Pareto set as the number of
optimisation iterations increases.

4 Simulation-based sample size determination

4.1 Overview

The proposed method is based on the Efficient Global Optimisation algorithm? .
For clarity we will describe the algorithm in the context of an SSD problem
with a single constraint function, denoted g(x), which must be estimated
using simulation. The more general case of several constraints will follow. The
initial step is to select a number of potential solutions to the SSD problem
XE = (x(1), . . . ,x(E)) and evaluate the constraint function at each of these
points, giving yE = (g(x(1)), . . . , g(x(E))). A Gaussian process regression model
is then fitted to the data, relating the solutions XE to the estimates yE and
providing an approximation of the constraint function g. The solution x∗ which
has the largest expected improvement EI(x) according to the predictions of
the GP model, is then found. This solution is evaluated to obtain y∗. This
new data is then used to update the GP model, which is then used again to
find the next solution to evaluate. The algorithm can be repeated until either
the computational resources available have been exceeded, or until no further
improvements are being obtained. The Algorithm is summarised in ?? below.

The process of computing MC estimates used in steps (1) and (5) has already
been described in Section ??. In what follows we will first consider step (3),
describing Gaussian process regression models and outlining how they can be
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Algorithm 1 Efficient Global Optimisation?

1: Compute MC estimates yE = (g(x(1)), . . . , g(x(E)))
2: while Computation budget not exhausted do
3: Regress yE on XE = (x(1), . . . ,x(E))
4: Find x∗ = arg maxEI(x)
5: Compute MC estimate y∗ = g(x∗) and add to yE, XE

6: Update the computational budget
7: end while

fitted and used to make predictions. The notion of expected improvement in
step (4) will then be defined for the constrained multi-objective problems we
are concerned with. Finally, we cover the remaining aspects of implementation.

4.2 Gaussian process regression

Consider a set of points XE = {x(1), . . . ,x(E)} ⊂ X at which an expensive
function g will be estimated using the Monte Carlo method. Consider also
some other point x∗ 6∈ XE where we are interested in making a prediction of
g(x∗). The value of g at each point in {XE ,x∗} is initially unknown, but can be
modelled by a Gaussian process (GP).

In using a GP we assume that our belief regarding the the values of g can
be represented by a multivariate normal distribution. Prior to computing any
estimates of g, we assume that the mean function of this multivariate normal is
equal to zero∗. We write the covariance matrix of the distribution as(

K(XE ,XE) K(XE ,x∗)
K(x∗,XE) K(x∗,x∗)

)
, (8)

where K(XE ,XE) is the E × E covariance matrix for the points XE , k∗ =
K(XE ,x∗) = K(x∗,XE) is the E-length vector of covariances between XE and
x∗, and K(x∗,x∗) is the variance at x∗.

Given this prior distribution, we compute the MC estimates y(1), . . . , y(E) at
each point in XE . From equation (??), y(i) = g(x(i)) + e(i) where e(i) is a zero-
mean normally distributed error term with standard deviation ω(i). We denote
by ∆ the E × E diagonal matrix where the ith entry is [ω(i)]2. The distribution
of g(x∗) conditional on the observed y can be shown to be normal with mean
k>∗ (K + ∆)−1y and variance k(x∗, x∗)− k>∗ (K + ∆)−1k∗

? . Thus, given a prior
covariance matrix of the form (??) and some MC estimates of g at the points XE ,
a conditional predictive distribution of g(x∗) can be found. It is this distribution
which will be used in the optimisation algorithm when deciding which solution
should next be evaluated.

∗This is not a restrictive assumption. After observing estimates of the function g and updating
the GP model to account for these, the mean function can take on non-zero values.
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The predictive distributions are influenced by the prior covariance matrix
(??). The matrix is populated using a covariance function (or kernel), k(x,x′) :
X × X → R. This function must be symmetric and positive definite for the
covariance matrix to have the same properties. One such covariance function is
the squared exponential, which has the form

k(x,x′) = σ exp

− D∑
j=1

(xj − x′j)2

λ2j

 . (9)

By using covariance functions of this form we will obtain a Gaussian process
which is infinitely differentiable over X and thus very smooth. This would appear
to be a reasonable restriction to place upon the power functions we are interested
in. In order to populate the covariance matrix we must choose values of the
hyper-parameters θ = (σ, λ1, . . . , λD). We do this by numerically optimising the
log marginal likelihood

log p(y | XE ,θ) = −1

2
y>[K + ∆]−1y − 1

2
log |K + ∆| − n

2
log 2π, (10)

considered as a function of θ ? . Fitting a GP model by maximum likelihood in
this manner can be done using the function km in the R package DiceKriging,
as illustrated in the appendix.

An illustration of a Gaussian process regression model of a power function in
one dimension is given in Figure ?? above. The power of three different choices
of sample size have been calculated and a GP model fitted to the results. The
figure illustrates how the uncertainty in the model predictions (shaded area)
increases the further we are from a point which has been evaluated. The GP
prediction of power at a sample size of n = 190, shown as a dashed line, is
normally distributed with mean 0.84 and standard deviation 0.035.

4.3 Expected improvement

At any given point during the optimisation process we can obtain an
approximation set A based on the set of solutions which have been evaluated
up to that point. If a new point x∗ is considered feasible, a new approximation
set A∗ will be identified. The improvement resulting from the evaluation of x∗
is the difference in the dominated hypervolumes:

I = H(A∗)−H(A). (11)

Prior to evaluation, we do not know if the point x∗ will be considered feasible.
We therefore modify I to account for the probability that x∗ will be considered
feasible after the MC estimates have been obtained. This probability can be
estimated using the GP regression methodology described in Section ??. A GP
model of unknown constraint function g will describe our current belief about
the value of g at x∗ using a normal distribution with mean m and variance
s2 g(x∗) ∼ N (m, s2), and we will consider the point x∗ feasible if the upper
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Figure 3. A Gaussian process model of a power function over a one-dimensional sample
size (solid line) based on three evaluations. Uncertainty is shown as the shaded area.
Expected improvement (dotted line) is maximised at a sample size of 190, where the
predicted power is normally distributed around a mean estimate of 0.84 (dashed line).

100× p% quantile of this distribution is below 0. We denote this quantile as

q(x∗) = m+ Φ−1(p)s, (12)

where Φ is the standard normal cumulative distribution. Following an evaluation
of x∗ the GP model will be updated and the quantile revised to q+(x∗). Before
the evaluation the value of q+(x∗) is unknown, but it is shown in? that its
predictive distribution is q+(x∗) ∼ N(m+, s

2
+) where

m+ = m+ Φ−1(p)

√
ω2s2

ω2 + s2
(13)

s2+ =
[s2]2

ω2 + s2
, (14)

and ω is the MC error of the planned evaluation, estimated as m(1−m)/N
where N is the number of MC samples to be used. The predictive distribution
can then be used to calculate the probability that the point x∗ will be considered
feasible following its evaluation. Following? , we multiply the theoretical
improvement I by this probability, thus penalising candidate solutions with a low
chance of satisfying the constraint. This then gives us our expected improvement
measure EI, where

Expected Improvement EI(x∗) = [H(A∗)−H(A)]

C∏
j=1

Φ

(
−mj,+

sj,+

)
. (15)
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Note that we include a penalty term for all j = 1, . . . , C constraint functions.
This maximisation problem is in itself complex, with a potentially large number
of local maxima. We therefore use the particle swarm optimisation algorithm
as implemented in the R package pso? , designed to avoid becoming trapped in
local maxima, to solve this sub-problem.

An illustration of expected improvement for a single-objective problem is
given in Figure ??. When choosing which sample size to evaluate next and
aiming to find the lowest sample size with at least 80% power, we balance the
potential improvement over the best current solution (a sample size of 260)
with the probability of constraint satisfaction. In this case, we would choose to
evaluate the sample size of 190, estimated by the GP model to have a power of
84%.

4.4 Implementation

To apply Algorithm ?? in practice we must first choose the initial set of points
to be evaluated, XE . One recommendation is to include 10 points for each
dimension of the solution space, and to allocate between 30 and 50% of the total
computation budget to their evaluation? . To select the location of the points
in XE we use the space-filling Sobol sequence generated using the R package
randtoolbox? . The number of iterations and the number of MC samples N used
at each iteration must also be chosen. Given a total computational budget in
terms of MC samples, the choice of these values should account for the fact that
fitting GP regression models in R to more than around 800 points is currently
infeasible? .

As the algorithm depends on GP regression models, it can be helpful to assess
the fit of these models. One approach is to regularly plot the predicted mean
and standard deviation in one or two dimensions, centred at the last evaluated
point. Poor model fit could be identified if the mean function is not, for example,
strictly increasing as expected. We can also contrast the predicted function
values with the obtained function values at each iteration, halting the algorithm
if a large and unexpected discrepancy in these values is observed.

We have used R to implement the proposed framework, partly due to the
availability of robust and efficient R packages for fitting Gaussian process models
(DiceKriging? ) and for global optimisation (pso? ). Using R also provides
flexibility in terms of the user-writen simulation routines by facilitating various
complicated analysis procedures, e.g. multilevel modelling through lme4? . Our
implementation works to a simple interface. The user must provide instances
of two data frames. The first, design_space, contains a row for each design
parameter describing its name and its lower and upper bounds. The second,
constraints, contains a row for each constraint function gj . Each row should
include a label for the constraint, the hypothesis it pertains to, a nominal power
which should not be exceeded, and the confidence we require in the constraint
being satisfied (i.e. the p in Equation ??). Further, two functions are required.
The first, objectives, takes as its argument a vector of design parameter
values x and returns a vector of objective values (f1(x), . . . , fB(x)). The second,
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sim_trial, takes as its arguments a vector of design parameter values x and
a vector of parameter values defining the conditions under which we wish
to simulate. The function should simulate the necessary data generation and
analysis and return a boolean indicator of the rejection of the null hypothesis,
or, more generally, of declaring ‘success’. Given these components, the example
R code in the appendix can be modified to solve the problem at hand.

5 Application to the examples

In this section we describe the data generating models used to simulate trial
data for each of our examples and the methods used in their analyses. Full
details, including all the programs used to generate the results presented, are
given in the appendix.

5.1 Complex clustering

We model the binary response of the ith participant using a latent variable
representation. Specifically, we suppose that underlying the binary response yi
there is a continuous latent variable y∗i such that

yi =

{
1 if y∗i ≥ 0

0 if y∗i < 0.

We then define our model in terms of the y∗i . Using the multilevel model notation
of? :

y∗i = β0 + β1ti + u
(2)
therapist(i)ti + v

(2)
doctor(i) + ei (16)

u
(2)
therapist(i) ∼ N(0, σ2

T ) (17)

v
(2)
doctor(i) ∼ N(0, σ2

D), (18)

where ei is a level 1 residual with mean zero and variance σ2
W . Assuming ei

follows a logistic distribution with σ2
W = 3.29 leads to a random intercept logistic

model. An alternative to the random coefficient model we use here would be a
random intercept model including a dummy therapist in the control arm, but
there is no methodological literature to recommend one over the other in the
cross-classified setting.

For the purposes of power calculations we must make some assumptions
about the various nuisance parameter values. We set the 2nd level variance
components to σ2

T = 0.19, σ2
D = 0.37 in order to give a variance partition

coefficient of σ2
D/(σ

2
D + σ2

W ) = 0.1 in the control arm, a typical value in
this setting. Similarly, the variance partition coefficient for between-therapist
variance is then σ2

T /(σ
2
T + σ2

D + σ2
W ) = 0.05, and for between-doctor variation,

σ2
D/(σ

2
T + σ2

D + σ2
W ) = 0.095. Recall that we want to simulate the power of the

trial under the alternative hypothesis H1 : p0 = 0.1, p1 = 0.25. We can translate
these probabilities into corresponding values for the coefficients in our model,
giving H1 : β0 = log(p0/(1− p0)) = −2.20, β1 = log(p1/(1− p1))− β0 = 1.10.
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The design parameters are the number of participants in each arm n, the
number of therapists k in the APT arm, and the number of doctors j delivering
specialist medical care across both arms. For simplicity and ease of illustration
we will fix j = 2k. When searching over the remaining design parameters n and
k we will initially consider n ∈ [100, 500] and k ∈ [3, 30], noting that these can
be easily revised if the initial evaluations indicate larger values are required
to achieve nominal power. We wish to minimise both the total number of
patients f1(x) = 2n and the total number of care providers f2(x) = 3k. The
only constraint we must satisfy is that the type II error rate β(x) under the
alternative hypothesis is no more than β∗ = 0.1. This gives the constraint
function g1(x) = β(x)− 0.1.

The original PACE sample size calculation did not account for clustering
and, using simple analytic formulae for power of test of proportions, arrived
at n = 135 per arm (before inflating for attrition) to achieve 90% power.
Simulating the actual power obtained from n = 135 under our proposed model,
with k = 10 therapists and j = 20 doctors, gave an MC estimate of 0.69 power
(95% confidence interval 0.66 to 0.72). Fitting two multilevel models for each
sample led to a significant computational burden, needing over 5.3 minutes to
generate the N = 1000 samples required for this estimate. Thus, there is a need
to search for an appropriate sample size using simulation, but a practical limit
on the number of designs which we can evaluate in a timely manner.

We initialised the optimisation algorithm by generating a Sobol sequence of
size 20 and computing MC estimates of power for each point using N = 100
samples. Following this, 30 iterations of the algorithm were applied, with
N = 100 samples used at each iteration. We chose these optimisation parameters
to ensure a solution could be found quickly, noting that further iterations can
easily be added if solutions of a higher quality are sought. In Figure ?? we plot
the 50 evaluated solutions, distinguishing between those in the initial design
XE , those which were subsequently evaluated during the iterative phase of
the algorithm, and those which together form the final approximation set. The
contours of the mean function of the final GP model are also shown.

For comparison, we also plot the approximation set obtained using a similar
procedure as that implemented in MLPowSim, software designed for simulation-
based SSD for problems with multilevel data. Specifically, we take a Sobol
sequence of size 50 and estimated the type II error at each of these points
using N = 100 MC samples. For each point a 95% confidence interval based on
the MC error was calculated, and any points where the interval was not entirely
below the nominal value of 0.1 were discarded. Of those that remained, any
dominated solutions were discarded. The remaining two solutions are plotted
in Figure ??. The proposed method has led to a solutions of higher quality
which collectively dominate those produced by the simpler method, with lower
numbers of participants, providers, or both.

At the ith iteration of the algorithm we calculated the dominated volume
H(Ai), plotted in Figure ??. In this instance the algorithm appears to
successfully improve the quality of the approximation set as the number of
iterations increases, with the rate of improvement decreasing over time. The
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Figure 4. Objective values of solutions in the initial set XE (open circles), subsequent
iterations of the algorithm (crosses), and those in the final approximation of the Pareto
set (filled squares). The approximation set obtained using a fixed design is also shown
(filled circles). Contours represent the mean function of the final GP model.

total running time was 47 minutes. Note that H(Ai) is not strictly increasing.
This is because the evaluation of a new solution can lead to revised estimates
of other solutions which were in the approximation set, such that they are then
considered infeasible and removed from the set.

The solutions which form the final approximation set are detailed in Table ??.
As few as 6 therapists and 12 doctors can lead to a sufficiently powered trial,
although 742 participants in total are required in this configuration. On the
other hand, if minimising the total sample size is deemed more important than
minimising the number of therapists and doctors, we see that as few as 546
participants are necessary providing 12 therapists and 24 doctors are included.
The approximation set contains 6 solutions in total, providing a reasonable set
of options from which the solution best representing the priorities of the decision
makers can be selected.

As can be seen from Table ??, approximate upper 95% confidence limits based
on the initial N = 1−2 MC estimates of power often exceed the corresponding
nominal bound of 0.1. For example, the solution described in the first row would
have an approximate upper 95% two-sided confidence interval of (0.049, 0.171).
To verify the actual type II error we computed a more precise MC estimates
using N = 504 samples, which gave an estimate of 0.093 and a two-sided interval
of (0.087, 0.099). Similar results are seen for the remaining solutions in the
approximation set, as shown in Table ??. This demonstrates the GP’s ability to
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Figure 5. Quality of the approximation set obtained as the algorithm proceeds, where
higher dominated hypervolume reflects higher quality.

Table 1. Approximation set after 30 iterations for Example 1. Solutions are defined by
their total sample size 2n, number of therapists k, and number of doctors j. Type II error
rate β is constrained to be below 0.1, while the total sample size and number of
providers are to be minimised.

2n k j β (s.e.), N = 102 β (s.e.), N = 504

742 6 12 0.11 (0.031) 0.093 (0.003)
678 7 14 0.1 (0.03) 0.081 (0.003)
626 8 16 0.11 (0.031) 0.087 (0.003)
604 9 18 0.09 (0.029) 0.077 (0.003)
564 10 20 0.06 (0.024) 0.081 (0.003)
546 12 24 0.09 (0.029) 0.084 (0.003)

share information of MC estimates computed at several points to increase the
precision at each of them.

5.2 Co-primary endpoints

For our second example we consider a second co-primary binary responder
endpoint. We use the same latent variable representation as described in the
preceding section to model the fatigue response yFi and disability response yDi
of the ith participant. Correlation between these two endpoints is modelled
by simulating bivariate residuals (eFi , e

D
i ) from a joint logistic distribution

with correlation ρW and marginal variances σ2
e = 3.29 as before. We also allow

for correlation between the random effects associated with each therapist and
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Figure 6. Objective values of solutions in the initial set XE (open circles), subsequent
iterations of the algorithm (crosses), and those in the final approximation of the Pareto
set (filled squares).

doctor. These are now simulated according to the bivariate normal distributions

(uFtherapist(i), u
D
therapist(i)) ∼ N

(
(0, 0)T ,

(
σ2
T ρTσ

2
T

ρTσ
2
T σ2

T

) )

(vFdoctor(i), v
D
doctor(i)) ∼ N

(
(0, 0)T ,

(
σ2
D ρDσ

2
D

ρDσ
2
D σ2

D

) )
We set all correlations equal at ρW = ρT = ρD = ρD = 0.9, reflecting a situation
where both a patient’s responses and the individual therapist and doctor effects
and very similar for both the fatigue and disability outcomes.

The algorithm was applied using the same settings as before, with an initial
design of 20 points followed by 30 iterations, and each evaluation using N = 100
MC samples. The run time in this case was 96 minutes, roughly double that
of the previous example due to each simulation fitting twice as many models.
The resulting approximation set is plotted in Figure ??. Again, the contours
represent the mean function of the final GP model.

Table ?? provides full details of the obtained approximation set together
with their initial MC estimates of type II error rate using N = 102 MC samples,
and further estimates using N = 504 MC samples. Approximate 95% confidence
intervals around the more precise estimates all either include the nominal
constraint of 0.1, or lie entirely below it.

Prepared using sagej.cls



Wilson et al. 19

Table 2. Approximation set after 30 iterations for Example 2. Solutions are defined by
their total sample size 2n, number of therapists k, and number of doctors j. Type II error
rate β is constrained to be below 0.1, while the total sample size and number of
providers are to be minimised.

2n k j β (s.e.), N = 102 β (s.e.), N = 504

846 9 18 0.12 (0.033) 0.069 (0.003)
638 10 20 0.09 (0.029) 0.104 (0.003)
624 12 24 0.09 (0.029) 0.096 (0.003)

5.3 Small sample pilot

For our final example, recall that we have two continuous co-primary endpoints.
For notational simplicity we use model (??) but now consider the y∗i to be the
actual observed continuous response, as opposed to a latent variable. We now
assume the individual-level residual term ei is normally distributed but with the
same variance as before, thus maintaining the variance partition coefficients at
the same levels. The alternative hypothesis remains H1 : β1 = 1.10. Note that
this corresponds to a treatment effect standardised with respect to the total
standard deviation in the APT arm of 1.10/

√
(0.19 + 0.37 + 3.29) = 0.56.

Our design parameters (together with the ranges considered) are the total
sample size in the APT arm, denoted n1 (50 to 100); the number of APT
therapists, k (2 to 10); the allocation ratio relating the total number of
participants in each arm, r = n0/n1 (0.5 to 1.5); the number of doctors, j
(3 to 20); and the nominal type I error rate to be used in the hypothesis
tests, a (0.05 to 0.2). The three objective functions to be minimised are
f1(x) = n1 + rn1, f2(x) = k and f3(x) = j. The two constraints to be satisfied
are g1(x) = β(x)− 0.1 and g2(x) = α(x)− 0.2.

Given the increase in dimensions of the solution space, we use an initial Sobol
sequence design of 50 solutions. As before, we use 100 MC samples for each
evaluation. After 50 iterations of the algorithm, an approximation set containing
15 solutions was obtained. The algorithm took 2 hours and 36 minutes to run.
The objective values of these solutions are illustrated in Figure ??, with full
details provided in Table ??. The total number of participants ranged from 140
to 214; of therapists, from 5 to 10; and of doctors, from 5 to 23. Type I error
rates ranged from 0.09 to 0.14, all some way below the actual constraint value of
0.2. We calculated precise MC estimates (using N = 504 samples) of both type I
and II error rates for each solution in the approximation set. As shown in Table
??, type II error rates all appear to be around or slightly below the constraint
of 0.1. Type I error rates, in contrast, are in some cases significantly below the
constraint of 0.2. This suggests there is some potential for improvement in the
approximation set by applying further iterations of the algorithm.

6 Discussion

Although simulation is often required for clinical trial sample size determination,
related methodology has typically assumed that there is only one parameter
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Figure 7. Objective values of the approximation set obtained following 50 iterations of
the algorithm for Example 3.

Table 3. Approximation set after 50 iterations for Example 3. Solutions are defined by
the number of participants in the APT arm n1, the total number of participants across
both arms n, the number of therapists k, the number of doctors j, and the nominal type
I error rates a. Both Type I and II error rates are estimated using simulation using N
samples, and are constrained at 0.2 and 0.1 respectively.

N = 102 N = 504

n1 n k j a β (s.e.) α (s.e.) β (s.e.) α (s.e.)

94 202 5 15 0.11 0.07 (0.026) 0.12 (0.033) 0.088 (0.003) 0.17 (0.004)
94 169 6 21 0.12 0.11 (0.031) 0.13 (0.034) 0.081 (0.003) 0.179 (0.004)
94 214 6 12 0.11 0.05 (0.022) 0.21 (0.041) 0.09 (0.003) 0.157 (0.004)
84 167 6 23 0.10 0.09 (0.029) 0.12 (0.033) 0.103 (0.003) 0.147 (0.004)

79 174 7 10 0.12 0.17 (0.038) 0.13 (0.034) 0.086 (0.003) 0.171 (0.004)
95 203 7 9 0.09 0.1 (0.03) 0.16 (0.037) 0.085 (0.003) 0.134 (0.003)
75 152 8 9 0.13 0.1 (0.03) 0.12 (0.033) 0.083 (0.003) 0.175 (0.004)
78 149 8 16 0.12 0.08 (0.027) 0.21 (0.041) 0.088 (0.003) 0.171 (0.004)

76 142 8 22 0.12 0.07 (0.026) 0.17 (0.038) 0.098 (0.003) 0.156 (0.004)
80 140 9 17 0.13 0.04 (0.02) 0.2 (0.04) 0.084 (0.003) 0.176 (0.004)
81 146 9 12 0.14 0.14 (0.035) 0.18 (0.039) 0.079 (0.003) 0.181 (0.004)
97 190 10 5 0.14 0.07 (0.026) 0.27 (0.045) 0.072 (0.003) 0.178 (0.004)

which we are able to adjust (the sample size); that there is only one operating
characteristic which must be estimated using simulation (the power of the trial);
and that our goal is to minimise only one criterion (the sample size again)? ? . In
this paper we have described a flexible approach to simulation-based SSD which
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can be used for more general multi-parameter problems. The method draws
on established global optimisation algorithms which use statistical ‘surrogate‘
models to solve design problems where there are several parameters to be
chosen, several objectives to minimise, and several constraints to satisfy. We have
illustrated how such problems arise in clinical trials of complex interventions.

The general optimisation framework we have suggested recognises that in
many complex trials we are interested in minimising more than one quantity
subject to constraints on operating characteristics. Problems of this sort are
common in multilevel trial design? , but are typically approached by first
reducing the multiple objectives down to a single objective. For example, in
the design of a cluster randomised trial it is common to fix the number of
participants per cluster and minimise the number of clusters? , or vice-versa? ? .
Alternatively, a function which specifies the cost of sampling at the cluster
and the patient level could be specified? , and the overall cost minimised? .
The latter approach has been suggested for both two-level? and three-level
hierarchical trial designs? ? . However, the a priori specification of such a cost
function may not always be feasible, particularly when several stakeholders are
involved? . The Pareto optimisation framework we have described leads to a
more computationally challenging optimisation problem, but produces a set of
good solutions enabling the available trade-offs between objectives to be seen
and selected from.

As noted in Section ??, related work in simulation-based design methodology
has often focussed on a specific area of application. One advantage that brings
is the relative ease with which the software can be used to solve a new problem
within the same area. In contrast, our approach requires that the user provides a
program which simulates the data generation and analysis of their proposed trial
design. Although some have argued that this requirement may be prohibitive
in practice? , it allows the user to solve their specific problem rather than
some related version of it. Moreover, prior to addressing the sample size issue,
modelling and simulation can help inform many other aspects of trial design,
such as the patient population or the choice of endpoint? . One way to assist
users in writing their own simulations is to share example programs for a range
of problems, providing a starting point for the development of a new program.
We have provided some examples in the appendix.

When submitting a proposed design for approval by a funding body it is
important that the sample size calculation is transparent and replicable. This
may be achieved in the context of simulation-based SSD by supplying the
simulation program as part of the application? . Given this, any reviewer should
be able to re-calculate the operating characteristics of the proposed design.
However, a greater challenge for the reviewer is understanding the program
and ensuring it is an accurate representation of the model in question. This
requirement has partly motivated our use of R. Although significantly slower
than a compiled language such as C++, it has been argued that software written
in R is more transparent? . Validation will be further facilitated if a simulation
protocol of the sort described in? is provided alongside the code. Future work
could develop an interface for alternative statistical software such as Stata or
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SAS, allowing a simulation program to be written in them and connect with the
R implementation of the optimisation algorithm.

We have followed the conventional approach to clinical trial design whereby
constraints on operating characteristics are set and then a constrained
optimisation problem is solved. In practice the constraints are not fixed in
advance, but adjusted iteratively in response to the design requirements they
produce. For example, an initial nominal power of 90% may require an infeasibly
large sample size, leading to a revision down to 80%. Such an iterative procedure
will increase an already substantial computational burden for simulation-based
design. However, note that a change to a constraint does not mean starting the
process again, since any previous MC estimates can still be used when fitting the
GP model(s). The sequential nature of the optimisation algorithm suggests that
an interactive routine could be developed, where the user pauses the algorithm
in response to the sample size requirements which are being observed, adjusts
the constraints, and then continues with the optimisation.

The examples have demonstrated that the time required to solve a sample
size determination problem can be significant, of the order of hours. Given
that the majority of computational effort is expended generating MC samples
when evaluating solutions, it is important that these simulation programs
are as efficient as possible. We recommend making use of code profilers such
as R’s ‘Rprof’ to identify the parts of the program that are consuming
the most resources. Further efficiencies could potentially be gained by using
more sophisticated methods for surrogate modelling and efficient optimisation.
For example, when the modelled function can be assumed monotonic, this
information can be incorporated into the surrogate modelling process? .

Numerous extensions to the proposed approach can be considered. One
argument for simulation-based design is the ease with which sensitivity to
model assumptions, such as the value of nuisance parameters, can be assessed? .
Future work could consider how a systematic assessment of sensitivity to
nuisance parameters could be conducted, given a proposed trial design. Such
investigations fall under the heading of uncertainty quantification and can
be carried out using GP regression and associated techniques? . A further
extension could consider Bayesian approaches to trial design, including hybrid
Bayesian-frequentist assurances? , fully Bayesian measures such as average
coverage criterion? , and decision-theoretic methods? . Aside from very simple
cases involving only conjugate analyses, evaluating these Bayesian criteria will
generally require simulation? and so optimal design may benefit from the
efficient methods discussed here. Complex SSD problems are also common in
the area of adaptive designs, which can aim to minimise the expected sample
size under several different hypotheses and over a number of stopping rule
parameters? . Extending the proposed methods to such problems would require
using surrogate models to approximate the objective functions, as opposed to
only the constraints.

In conclusion, efficient optimisation algorithms based on surrogate models
of expensive operating characteristic functions can be used to solve complex
clinical trial sample size determination problems. By using these methods we
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can avoid making unrealistic simplifying assumptions at the trial design stage,
both in terms of the statistical model underlying the trial and of the nature of
the design problem.
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