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  Abstract
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Aims: To evaluate the repeatability of cardiac magnetic resonance (CMR) radiomics features on test-retest scanning using a multi-
centre multi-vendor dataset with a varied case-mix.

Methods and Results: The sample included 54 test-retest studies from the VOLUMES resource (thevolumesresource.com). Images
were segmented according to a pre-defined protocol to select three regions of interest (ROI) in end-diastole and end-systole: right
ventricular blood pool, left ventricular (LV) blood pool and LV myocardium. We extracted radiomics shape features from all three
ROIs and, additionally, first-order and texture features from the LV myocardium. Overall, 280 features were derived per study.
For each feature, we calculated intra-class correlation coefficient (ICC), within-subject coefficient of variation, and mean relative
difference. We ranked robustness of features according to mean ICC stratified by feature category, ROI, and cardiac phase,
demonstrating a wide range of repeatability. There were features with good and excellent repeatability (ICC ≥ 0.75) within all
feature categories and ROIs. A high proportion of first‐order and texture features had excellent repeatability (ICC ≥ 0.90),
however, these categories also contained features with the poorest repeatability (ICC <0.50).

Conclusion: CMR radiomic features have a wide range of repeatability. This paper is intended as a reference for future
researchers to guide selection of the most robust features for clinical CMR radiomics models. Further work in larger and richer
datasets is needed to further define the technical performance and clinical utility of CMR radiomics.

   

  Contribution to the field

Cardiac magnetic resonance (CMR) radiomics is a novel image analysis technique whereby multiple quantifiers of shape and tissue
texture are derived from voxel level data. Radiomics shape and texture features can be inputed as predictor variables into
clinical models for diagnosis or outcome prediction. Within oncology, where radiomics is better developed, the incremental value of
radiomics clinical models is already established. There is increasing evidence demonstrating feasibility and clinical utility of CMR
radiomics. Translation of CMR radiomics to clinical practice requires external validity of proposed models. A key determinant of
model performance in clinical and pre-clinical settings is repeatability. We present the first study to systematically assess
repeatability of CMR radiomics shape, first-order, and texture features using a Multi-Centre, multi-vendor cohort with a
heterogeneous range of pathologies and healthy cases. This paper is intended as a reference for future researchers to guide
selection of the most robust features for inclusion in CMR radiomics models. Thus, we anticipate this paper to be of high interest
to researcher and to be widely cited in future publications.
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ABSTRACT 28 
 29 
Aims: To evaluate the repeatability of cardiac magnetic resonance (CMR) radiomics features on test-30 
retest scanning using a multi-centre multi-vendor dataset with a varied case-mix.  31 
 32 
Methods and Results: The sample included 54 test-retest studies from the VOLUMES resource 33 
(thevolumesresource.com). Images were segmented according to a pre-defined protocol to select three 34 
regions of interest (ROI) in end-diastole and end-systole: right ventricle, left ventricle (LV), and LV 35 
myocardium. We extracted radiomics shape features from all three ROIs and, additionally, first-order 36 
and texture features from the LV myocardium. Overall, 280 features were derived per study. For each 37 
feature, we calculated intra-class correlation coefficient (ICC), within-subject coefficient of variation, 38 
and mean relative difference. We ranked robustness of features according to mean ICC stratified by 39 
feature category, ROI, and cardiac phase, demonstrating a wide range of repeatability. There were 40 
features with good and excellent repeatability (ICC ≥ 0.75) within all feature categories and ROIs. A 41 
high proportion of first-order and texture features had excellent repeatability (ICC ≥ 0.90), however, 42 
these categories also contained features with the poorest repeatability (ICC <0.50). 43 
 44 
Conclusion: CMR radiomic features have a wide range of repeatability. This paper is intended as a 45 
reference for future researchers to guide selection of the most robust features for clinical CMR 46 
radiomics models. Further work in larger and richer datasets is needed to further define the technical 47 
performance and clinical utility of CMR radiomics. 48 
 49 
 50 
 51 
 52 
 53 
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INTRODUCTION 55 
Radiomics is an image analysis technique whereby a large number of advanced quantitative features 56 
are extracted from voxel level data of routine-care medical images(1). Radiomics data are structured 57 
in a minable format and can be used to develop models which link image features with biological 58 
phenotypes. The over-arching aim of radiomics analysis is to develop models for faster and more 59 
accurate disease diagnosis and risk prediction. 60 
 61 
Radiomics features comprise 1)shape and 2)signal intensity-based features (Graphical abstract). 62 
Shape features include geometric quantifiers of the rendered volume, such as, total volume, surface 63 
area, and descriptors of overall shape, such as, sphericity, elongation, and compactness. Intensity-64 
based radiomics features describe the global distribution (first-order features) and pattern (texture 65 
features) of voxel signal intensities. First-order features describe the distribution of signal intensities 66 
of individual voxels, without consideration to spatial relationships. They are generally derived from 67 
histogram-based method and summarise the intensity levels in the defined region of interest (ROI) 68 
into single quantifiers such as mean, median, maximum, randomness (entropy), skewness 69 
(asymmetry), and kurtosis (flatness). Texture features are statistical descriptors of the relationships 70 
between neighbouring voxels of similar (or different) signal intensities. They are calculated using 71 
various matrix analysis methods according to standardised mathematical definitions. 72 
 73 
The clinical utility of radiomics models for diagnosis, surveillance, and prognostication has been 74 
repeatedly demonstrated within the context of oncology(2–7). Application of radiomics analysis to 75 
cardiac magnetic resonance (CMR) images is in its early developmental stages(1). Proof-of-concept 76 
studies have demonstrated incremental value of CMR radiomics models in distinguishing important 77 
disease entities such as hypertensive heart disease and hypertrophic cardiomyopathy(8), identification 78 
of myocardial infarction from non-contrast images(9–11), and prediction of life-threatening 79 
arrhythmias(12). Thus, CMR radiomics features may have potential as important novel quantitative 80 
imaging biomarkers (QIBs). 81 
 82 
Translation of CMR radiomics to clinical practice requires external validity of proposed models. A 83 
key determinant of model performance in clinical and pre-clinical settings is repeatability, that is, the 84 
ability to repeatedly measure the same feature under identical or near-identical conditions on the same 85 
measurement unit (subject/phantom). CMR radiomics features are subject to technical (image 86 
acquisition, artefact, image processing) and population-related variations. However, their repeatability 87 
performance has not been adequately assessed in existing work. Such analysis is an essential step in 88 
assessing the clinical utility of this methodology, both for the underpinning research and the eventual 89 
clinical implementation. 90 
 91 
We present, to the best of our knowledge, the first evaluation of the repeatability of CMR radiomics 92 
features on test-retest scanning using a multi-centre multi-vendor dataset with a varied case-mix. This 93 
paper is intended as a reference for future researchers to guide selection of the most robust features 94 
for inclusion in CMR radiomics models. 95 
 96 
The design, terminology, and statistical methods reflect recommendations from the Quantitative 97 
Imaging Biomarker Alliance (QIBA)(13,14). QIBA is group of the Radiological Society of North 98 
America established to guide standardisation of the development and validation of QIBs. Reporting of 99 
methods is in line with relevant aspects of the Radiomics Quality Score (RQS)(15). The RQS 100 
provides guidance to improve quality and transparency of reporting in radiomics studies.  101 
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METHODS 102 
Setting and study population 103 
We analysed a subset of studies from the VOLUMES resource(16), comprising test-retest studies 104 
from five centres across the United Kingdom (Barts Heart Centre, University Hospitals Bristol, Leeds 105 
Teaching Hospitals, University College London Hospital, University Hospitals Birmingham NHS 106 
Trusts). The sample included a varied mix of disease and healthy cases. Exclusion criteria included 107 
age <18 years-old, implantable cardiac devices, significant arrhythmia, claustrophobia, and poor 108 
breath-holding. Further information about the resource, acquisition protocols, and study population 109 
are detailed in a dedicated publication and online resource(16,17). 110 
 111 
Scanning protocol 112 
Two vendors (Philips, Siemens), three models (Achieva, Avanto, Aera), and two magnet strengths 113 
(1.5 Tesla, 3 Tesla) were used. Scanning protocols across all contributing centres were in accordance 114 
with international recommendations(18). Complete short axis stacks covering the left and right 115 
ventricles (LV, RV) were acquired using balanced steady state free precession sequences. Details of 116 
acquisition parameters are summarised in Supplementary Table 1. Test-retest studies were performed 117 
under repeatability conditions with the same patient, location, scanner, acquisition protocol, and 118 
operating conditions. The time interval between test and retest was between 0 and 7 days). Given this 119 
very short test-retest interval, it is highly unlikely that any change in radiomics features could be due 120 
to alterations in the underlying cardiovascular health. Individuals having both scans on the same day 121 
were repositioned prior to retest with repeat isocentre positioning. 122 
 123 
Image segmentation 124 
Image segmentation was performed blind to details of image acquisition, patient information, 125 
diagnosis, or scan pairings. LV endocardial and epicardial and RV endocardial contours were drawn 126 
in end-diastole and end-systole on short-axis stack images to select three ROIs for radiomics analysis: 127 
RV blood pool, LV blood pool, and LV myocardium. The blood pool ROIs reflect LV and RV 128 
cavities in end-diastole and end-systole. Segmentation was performed according to a pre-defined 129 
standard operating procedure (SOP)(19). Papillary muscles were considered part of the LV blood 130 
pool; the basal LV slice was included if there was >50% myocardium circumferentially, and for the 131 
RV, volumes below the pulmonary valve were included with position judged by review of cine 132 
images and orthogonal cuts. Contours were drawn using a machine learning approach with expert 133 
edits using Circle® cardiovascular imaging version 5.11.0 (Circle cardiovascular imaging Inc., 134 
Calgary, Canada). Initial checks and adjustments were made by Z.R.E., trainee cardiologist with two-135 
years’ experience in CMR and dedicated training in the SOP, and cross-checked by S.E.P., consultant 136 
cardiologist with over 15-years’ experience with CMR. 137 
 138 
Radiomics feature extraction 139 
Radiomics feature extraction was performed blind to details of image acquisition, patient information, 140 
diagnosis, or scan pairings. Contours from the image segmentation were used to create 3D image 141 
masks for the three ROIs in end-diastole and end-systole (Figure 1). Towards this, voxels belonging 142 
to the three ROIs were indicated as foreground voxels using a unique label per ROI, whilst all other 143 
voxels were defined as background. An in-house software implemented in Python was used to convert 144 
the contours into binary masks. In brief, the image contour was parsed into an xml file that contains 145 
the coordinates of all contour points. Subsequently, a polygon was built joining the points in the 146 
coordinate space to form the mask. Lastly, the area bounded by the contour in every slice is filled with 147 
ones using OpenCV function, fillpoly, resulting in the binary ROI. The process was repeated for all 148 
delineated contours. The image masks and the corresponding CMR DICOMÒ (Digital Imaging and 149 
Communications in Medicine) images were converted to NIFTI (Neuroimaging Informative 150 
Technology Initiative) format for subsequent processing.  151 
 152 
Radiomics features were extracted from the 3D CMR images and the corresponding 3D mask (i.e. the 153 
full 3D CMR and mask volumes) using the open-source python-based PyRadiomics platform version 154 
2.2.0 in end-diastole and end-systole30. No pre-processing or re-segmentation was used before 155 
computing the features. We considered all features available in Pyradiomics including older versions 156 
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in an effort to provide robustness insights for features, that although currently considered deprecated, 157 
were largely used in the past. 158 
 159 
Overall, 16 shape, 19 first-order, and 73 texture features were available, we applied all feature 160 
categories to the LV myocardium, and shape features to the LV and RV blood pool ROIs. For grey 161 
value discretisation, we used a fixed bin width of 25 intensity values. The texture features were 162 
extracted using five different matrices30: grey-level co-occurrence matrix (GLCM, 23 features), grey-163 
level run-length matrix (GLRLM, 16 features), grey-level size-zone matrix (GLSZM, 15 features), 164 
neighbouring grey tone difference matrix (NGTDM, 5 features), and grey-level dependence matrix 165 
(GLDM, 14 features). In total, 280 features across the three ROIs, two phases, and three radiomics 166 
categories (shape, first-order, texture) were calculated per study. 167 
 168 
Statistical analysis 169 
We considered intra-class correlation coefficient (ICC) as a valid aggregate summary of repeatability 170 
performance in this setting. For calculation of ICC, we used a one-way random effects model for 171 
absolute agreement based on a single measure; as the two time points (test, retest) can be considered 172 
interchangeable, the one-way model is valid and appropriate for our analysis(20). For each radiomics 173 
feature, we calculated the ICC and corresponding 95% confidence interval using the variance 174 
components from a one-way ANOVA (analysis of variance). We assigned descriptive terms to ICC 175 
values in line with published guidance on ICC interpretation(20): <0.5 poor, 0.5–0.75 moderate, 0.75–176 
0.9 good, ≥0.9 excellent. We ranked robustness of features according to the mean ICC stratified by 177 
feature category, ROI, and cardiac phase. In addition, for each feature, we report within-subject 178 
variability expressed through within-subject coefficient of variation (CV) and mean relative 179 
difference. We present Bland-Altman plots for a selection of exemplar features from different levels 180 
of repeatability.   181 
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RESULTS 182 
Population characteristics 183 
The sample included 54 paired test-retest CMR scans of 40 men and 14 women with mean (standard 184 
deviation) age of 51.9 (±16.8) years. Nine subjects were healthy volunteers. The remainder had a range 185 
of ischaemic and non-ischaemic cardiovascular conditions (Table 1). The majority of scans were 186 
performed on 1.5 Tesla Siemens scanners (Aera, Avanto). Three cases were performed on 3 Tesla 187 
Philips Achieva scanners. The interval between test and retest was no more than 7 days and for the 188 
majority, both scans were performed on the same day (85%, n=46).  189 
 190 
Repeatability of conventional CMR indices 191 
We first studied the repeatability of conventional CMR indices to assess possible loss of robustness 192 
associated with the segmentation process. We calculated ICC, CV, and mean relative difference for 193 
LV end-diastolic volume, LV end-systolic volume, LV ejection fraction, LV mass, RV end-diastolic 194 
volume, RV end-systolic volume, and RV ejection fraction (Supplementary Table 1). There was 195 
excellent repeatability for LV end-diastolic volume (ICC 0.97, 95% CI 0.96–0.99), LV end-systolic 196 
volume (ICC 0.96, 95% CI 0.93–0.98), and LV mass (ICC 0.95, 95% CI 0.91–0.97). As expected, 197 
repeatability of the RV indices, was slightly lower than that of the LV. Thus, we confirmed good 198 
quality contouring with repeatability of conventional CMR indices overall exceeding that of previous 199 
reports20. 200 
 201 
Repeatability of LV blood pool shape features 202 
Repeatability of LV blood pool shape features varied from moderate to excellent with mean ICC 203 
ranging from 0.511 to 0.974 [Median (IQR): 0.871 (0.175)] (Table 2, Supplementary Table 2, Figure 204 
3). Overall, there was better repeatability in end-systole than in end-diastole (Figure 2A). The most 205 
robust features were ‘volume’ in both end-systole and end-diastole, ‘least axis length’ in end-diastole, 206 
and ‘surface area’ in end-systole. In both end-diastole and end-systole, the least robust features were 207 
‘spherical disproportion’, ‘sphericity’, ‘compactness’, and ‘compactness2’.  208 
 209 
Repeatability of RV blood pool shape features 210 
Repeatability of RV blood pool shape features varied from moderate to excellent with mean ICC 211 
ranging from 0.556 to 0.941 [Median (IQR): 0.793 (0.158)] (Table 3, Supplementary Table 3, Figure 212 
4). Overall, there was better repeatability in end-diastole than in end-systole (Figure 2B). The most 213 
robust RV shape features were ‘volume’ in end-diastole, ‘minor axis length’ in end-systole, and 214 
‘surface area’ in both phases. As for the LV blood pool, ‘spherical disproportion’, ‘sphericity’, 215 
‘compactness2’, and ‘compactness’ had the poorest repeatability across both cardiac phases.  216 
 217 
Repeatability of LV myocardium shape features  218 
Repeatability of LV myocardium shape features varied from moderate to excellent with mean ICC 219 
ranging from 0.544 and 0.96 [Median (IQR): 0.839 (0.172)] (Table 4, Supplementary Table 4, Figure 220 
5). As with the LV blood pool shape features, there was better repeatability of myocardial shape 221 
features in end-systole than in end-diastole (Figure 2C). The most robust features in both end-diastole 222 
and end-systole were ‘minor axis length’, ‘least axis length’, ‘surface area’, and ‘volume’. The least 223 
robust features were ‘flatness’ and ‘maximum 3D diameter’ in both cardiac phases.  224 
 225 
Shape feature trends across regions of interest 226 
Across all three regions of interest and the two phases, ‘volume’ and ‘surface area’ followed by 227 
measures of the heart short axis, i.e. ‘least axis length’ and ‘minor axis length’, showed the highest 228 
average repeatability (Supplementary Figure 1). The correlated sphericity-measuring features, i.e. 229 
‘spherical disproportion’, ‘sphericity’, ‘compactness 1’, and ‘compactness 2’, produced the lowest 230 
average reproducibility and greatest variance in reproducibility across all regions (Supplementary 231 
Figure 1). 232 
 233 
Repeatability of LV myocardium first-order features  234 
Repeatability of LV myocardium first-order features varied from poor to excellent with mean ICC 235 
ranging from 0.333 to 0.964 [Median (IQR): 0.932 (0.140)] (Table 5, Supplementary Table 5, Figure 236 
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7). The proportion of features demonstrating excellent repeatability (28/38, 74%) was substantially 237 
higher than that seen for the shape features. This was alongside a small number (4/38, 11%) of 238 
particularly poorly performing features. Overall, repeatability was high in both end-diastole and end-239 
systole, with marginally better overall performance in the former (Figure 6A). For both cardiac 240 
phases, the best performing first-order features were ‘entropy’, ‘percentile 90’, ‘root mean squared’, 241 
‘median’, and ‘mean’. The following features had the worst performance in both end-diastole and 242 
end-systole: ‘kurtosis’, ‘minimum’, ‘skewness’, and ‘variance’.  243 
 244 
Repeatability of LV myocardium texture features 245 
Repeatability of LV myocardium texture features varied from poor to excellent with mean ICC 246 
ranging from -0.130 to 0.977 [Median (IQR): 0.907 (0.006)] (Supplementary Table 6, Supplementary 247 
Tables 7, Figure 8). The majority of texture features had good or excellent repeatability (125/146, 248 
86%). A small minority of features had poor repeatability (7/146, 4.8%). There was slightly better 249 
repeatability in end-diastole than in end-systole (Figure 6B). We present the ten best and worst 250 
performing texture feature and their corresponding ICCs in end-diastole (Table 6) and end-systole 251 
(Supplementary Table 8). Across both end-diastole and end-systole, ‘cluster shade’ and ‘cluster 252 
prominence’ were poorly performing features. In end-systole, ‘strength’, ‘inverse difference 253 
normalised’, and ‘inverse difference moment normalised’ also demonstrated poor repeatability.  254 
We also evaluated differences in the reproducibility of features by texture class i.e. GLCM, GLRLM, 255 
GLSZM, NGTDM and GLDM (Supplementary Figure 2). The most striking difference between 256 
texture classes was the variation in the range of ICC values. The GLCM class had the widest ICC 257 
range with very low ICC values calculated for some of the features in this class. Indeed, six of the 258 
seven texture features with the poorest repeatability belong to the GLCM class. However, broadly, all 259 
texture classes had similar mean repeatability; with the exception of GLRLM that had a significantly 260 
greater average repeatability than NGTDM, no other pairs of classes showed a significant difference 261 
in mean ICC.  262 
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DISCUSSION 263 
Summary of findings 264 
In this heterogenous case mix of test-retest studies, we demonstrated wide variation in the 265 
repeatability of CMR radiomics features by ROI, feature category and cardiac phase. There were 266 
features with good and excellent repeatability within all feature categories and ROIs. The signal 267 
intensity-based features (first-order, texture) demonstrated the greatest variation in repeatability 268 
comprising a large proportion of highly reproducible features alongside features with the poorest 269 
repeatability. We present details of repeatability performance for a comprehensive range of radiomics 270 
features, which is intended to guide selection of the most robust features for clinical modelling by 271 
future researchers. Therefore, this work is an important step in characterising the technical 272 
performance of CMR radiomics and enhancing future efforts to evaluate its clinical utility.  273 
 274 
Comparison with existing literature 275 
There have been recent efforts to define the repeatability of radiomics features relating to oncological 276 
imaging with test-retest studies(21–23) and using phantom(24), image translation(25), and image 277 
pertubation(26) experiments. These studies demonstrate variation in feature repeatability and 278 
emphasise the need to actively seek and select robust features for modelling purposes. However, these 279 
findings have limited transferability to CMR radiomics, due to the modalities studied (mostly CT) and 280 
because the ROIs selected for oncological tumour analysis are not comparable to those typically 281 
selected for CMR analysis. Nevertheless, our findings of variation in repeatability by feature category 282 
(first-order > shape > textural) is in close agreement with previous work regarding cancer radiomics24. 283 
 284 
Jang et al.(27) present the only other study to consider repeatability of CMR radiomics LV texture 285 
features (rather than texture, first order, and shape features in our analysis) in 51 patients with clinical 286 
indication for CMR scanned twice in the same session with a 3 Tesla Siemens scanner. A subset of 287 
the study participants had abnormal CMR findings (“normal” n=14, non-ischaemic cardiomyopathy 288 
n=16, ischaemic cardiomyopathy n=5, hypertrophic cardiomyopathy n=2, other n=14). The authors 289 
report variation in repeatability between classes of texture features and, similar to our findings, 290 
demonstrate that only a subset has high repeatability. Overall, when comparing equivalent measures 291 
of intra-observer variability for LV texture features, we had better repeatability indices compared to 292 
that reported by Jang et al.(27). This may reflect differences in contouring SOP between the two 293 
approaches; our contouring methodology is designed to avoid blood pool or pericardial fat in 294 
myocardial contours as inclusion of these in analysis can highly distort texture feature values, it is not 295 
clear if this was a key part of the SOP used by Jang et al.(27). Whilst we include both 1.5 and 3 Tesla 296 
scanners in the sample, the majority of our cases were scanned with a 1.5 Tesla scanner. 3 Tesla 297 
sequences are more prone to artefacts specially dark/bright lines across images and this too may have 298 
contributed to the poorer repeatability observed by Jang et al.(27). Studies in larger samples are 299 
warranted to further explore potential explanations for these differences and to perform subgroup 300 
analyses. 301 
 302 
Our study is the first to report repeatability of LV and RV CMR radiomics shape features. Radiomics 303 
shape features are calculated from 3D image masks derived from image contours, as such, their 304 
repeatability is a direct reflection of segmentation robustness. For instance, we demonstrate better 305 
repeatability of features quantifying the heart short axis, e.g. ‘least axis length’, ‘minor axis length’ 306 
and ‘maximal 2D diameter’, than those quantifying the long axis, e.g. ‘major axis length’ and 307 
‘maximum 3D diameter’. The reduced reproducibility of features along the cardiac long axis likely 308 
reflects segmentation robustness which is likely to suffer more at the apex and base of the heart rather 309 
than in the middle slices. This is consistent with our observation of low repeatability of all features 310 
quantifying ventricular sphericity. 311 
 312 
Signal intensity-based features (first-order, texture) applied to the LV myocardium reflect both 313 
segmentation and signal intensities within the defined ROI. These features are therefore sensitive to 314 
variations in image acquisition which affect intensity levels within the whole image. Furthermore, 315 
there is potential to introduce extreme outlier values in the segmentation process. For instance, an LV 316 
endocardial contour that is not perfectly opposed to the endocardium would introduce a series of high 317 

In review



 9 

value voxels from the blood pool into what will be defined at ‘myocardium’ for radiomics analysis 318 
(Supplementary figure 3). Our findings support these theoretical suppositions. The most reproducible 319 
first-order features within the LV myocardium (‘entropy’, ‘root mean squared’, ‘median’, ‘mean,’) are 320 
measures of the average voxel SI levels, whilst the least reproducible first-order features (‘kurtosis’, 321 
‘minimum’, ‘skewness’, ‘variance’) are measures of their spread. Consistent with this, the least 322 
reproducible texture features, ‘cluster shade’ and ‘cluster prominence’, also represent measures of 323 
skewness30. These measures of spread are, of course, more susceptible to small variations in extreme 324 
signal intensity values. Notably, repeatability of conventional CMR indices in our study exceeded that 325 
of published reports. Particularly, the metric most relevant for defining the LV myocardium for LV 326 
analysis, LV mass, had excellent repeatability with ICC of 0.95 (0.91, 0.97). Therefore, as would be 327 
expected, radiomics features have, in general, much higher sensitivity to small variations in 328 
segmentation, which appear inconsequential to conventional metrics. Texture radiomics are affected 329 
not only by segmentation but are additionally sensitive to image acquisition settings and pre-330 
processing, as previously demonstrated using lung CT images28. Variation in image signal intensities 331 
due to technical factors (scanner specifications, sequence acquisition parameters) may be reduced 332 
through pre-processing intensity normalisation techniques, which may improve the repeatability of 333 
signal intensity-based radiomics by ‘smoothing’ variations in intensity levels. 334 
 335 
Study limitations and directions for future research 336 
This study presents an important first step in evaluating the technical performance of CMR radiomics 337 
first-order, texture, and shape feature. The present dataset does not permit consideration of the wide 338 
range of technical and population related factors that may be modifying the repeatability performance 339 
of radiomics features. Studies considering the impact of factors such as scanner vendor/model, 340 
magnet strength, acquisition parameters, and disease are warranted. To guide building of radiomics 341 
models that would truly translate to clinical practice, we should consider robustness of features not 342 
only under repeatability, but also under reproducibility conditions, where real-life variations in 343 
scanner, operator, and image acquisition are not strictly controlled. Finally, different technical 344 
approaches to feature extraction and image normalisation may improve robustness of radiomics 345 
features, in particular for intensity-based features. For example, different approaches to grey level 346 
discretisation have been shown to affect feature robustness(28) and future research on optimising bin 347 
width or bin number may improve radiomics robustness. Lastly, we have focused on radiomics 348 
computed on original (untransformed) images. Whilst this covers the vast majority of features in 349 
common use, there are additional features that are beyond the scope of this study, such as features 350 
extracted from mathematical transformations of the original images. There is also need for study of 351 
normalisation techniques which may improve repeatability performance of radiomics features. This is 352 
a broad topic with a large number of normalisation options (e.g. histogram matching, generative 353 
adversarial networks) that should be considered systematically in dedicated studies 354 
 355 
Conclusions 356 
There is variation in the repeatability of CMR radiomics features, which is likely to be clinically 357 
relevant. In this paper we present repeatability performance of a comprehensive range of commonly 358 
used CMR radiomics features. The work is intended to guide future researchers to select the most 359 
robust radiomics features for clinical modelling. Further work in larger and richer datasets and 360 
experimentation with different technical approaches is needed to further define the repeatability and 361 
reproducibility of CMR radiomics and to ascertain the optimal technical approach for radiomics 362 
analysis for maintaining feature robustness. 363 
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Table 1. Characteristic of the study population 479 
 480 
 481 
 482 
 483 
 484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
 501 
 502 
 503 
 504 
 505 
 506 
 507 
 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
 517 
 518 
 519 
 520 
 521 
 522 
 523 
 524 
 525 
 526 
 527 
 528 
  529 

Demographics 
Age (mean ±standard deviation) 51.9 (±16.8) years 
Sex (Men: n, percentage) 40 (75%) 
Diagnosis (n) 
Healthy volunteer 
Myocardial infarction (chronic) 
Dilated cardiomyopathy 
Hypertrophic cardiomyopathy 
Left ventricular hypertrophy 
Cardio-oncology 

9 
14 
5 
15 
4 
7 

Scanner vendor, model, magnet strength (n) 
Siemens, Aera, 1.5 Tesla 
Siemens Avanto, 1.5 Tesla 
Philips Achieva, 3 Tesla 

23 
28 
3 
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Table 2 footnote: CI: confidence interval; CV: Coefficient of variation; ICC: intra-class correlation 530 
coefficient; MRD: Mean relative difference 531 

 532 
 533 
 534 
 535 

Table 2. Repeatability of left ventricular blood pool shape features in end-diastole 536 
 537 

Feature name Robustness ICC (95% CI) CV (%) MRD (%) 
Volume  Excellent 0.957 (0.927, 0.975) 5.35 5.58 
Least axis length  Excellent 0.950 (0.916, 0.971) 2.39 2.51 
Minor axis length Good 0.879 (0.800, 0.928) 3.35 2.93 
Surface area  Good 0.876 (0.796, 0.926) 5.77 5.75 
Surface area to volume ratio  Good 0.869 (0.785, 0.921) 3.46 3.5 
Maximum 2D diameter (Slice)  Good 0.844 (0.747, 0.906) 4.15 4.29 
Maximum 2D diameter (Column) Good 0.777 (0.646, 0.864) 4.34 4.96 
Elongation  Good 0.775 (0.642, 0.863) 5.7 5.94 
Major axis length Good 0.764 (0.626, 0.856) 4.72 4.75 
Flatness  Moderate 0.747 (0.602, 0.845) 5.9 6.06 
Maximum 2D diameter (Row) Moderate 0.746 (0.601, 0.844) 4.95 5.3 
Maximum 3D diameter Moderate 0.698 (0.532, 0.813) 5.19 5.64 
Compactness 2  Moderate 0.575 (0.367, 0.729) 10.55 9.39 
Compactness  Moderate 0.554 (0.339, 0.714) 5.34 4.72 
Sphericity  Moderate 0.546 (0.329, 0.708) 3.57 3.15 
Spherical Disproportion  Moderate 0.511 (0.285, 0.683) 3.57 3.15 

 538 
 539 
 540 
 541 
 542 
 543 
 544 
 545 
 546 
 547 

  548 
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Table 3 footnote: CI: confidence interval; CV: Coefficient of variation; ICC: intra-class correlation 549 
coefficient; MRD: Mean relative difference 550 

 551 
 552 
 553 

Table 3. Repeatability of right ventricular blood pool shape features in end-diastole 554 
Feature name Robustness ICC (95% CI) CV (%) MRD (%) 
Minor axis length Excellent 0.915 (0.858, 0.950) 4.52 4.87 
Surface area  Good 0.899 (0.832, 0.940) 7.38 7.57 
Volume  Good 0.894 (0.825, 0.937) 11.03 11.52 
Least axis length  Good 0.841 (0.741, 0.904) 4.34 4.6 
Maximum 2D diameter (Slice)  Good 0.837 (0.736, 0.902) 4.36 4.26 
Surface Area to Volume Ratio  Good 0.816 (0.704, 0.889) 5.45 5.96 
Flatness  Good 0.800 (0.679, 0.878) 5.55 6.04 
Maximum 3D diameter Good 0.795 (0.672, 0.876) 5.33 5.69 
Major axis length Good 0.791 (0.666, 0.873) 4.98 5.02 
Maximum 2D diameter (Row) Good 0.790 (0.665, 0.873) 5.91 6.5 
Maximum 2D diameter (Column) Good 0.772 (0.638, 0.861) 6.8 7.42 
Elongation  Moderate 0.749 (0.604, 0.846) 6.22 6.73 
Compactness  Moderate 0.679 (0.506, 0.800) 4.78 5.35 
Compactness 2  Moderate 0.679 (0.506, 0.800) 9.52 10.67 
Sphericity  Moderate 0.679 (0.505, 0.800) 3.19 3.57 
Spherical disproportion  Moderate 0.672 (0.496, 0.795) 3.19 3.57 

 555 
 556 
 557 
 558 
 559 
 560 
 561 
 562 
 563 

  564 
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Table 4 footnote: CI: confidence interval; CV: Coefficient of variation; ICC: intra-class correlation 565 
coefficient; MRD: Mean relative difference 566 

 567 
 568 
 569 
 570 

Table 4. Repeatability of left ventricular myocardium shape features in end-diastole 571 
 572 

Feature name Robustness ICC (95% CI) CV (%) MRD (%) 
Volume  Excellent 0.946 (0.909, 0.968) 7.34 8.6 
Minor axis length Excellent 0.944 (0.905, 0.967) 2.27 2.53 
Least axis length  Excellent 0.934 (0.890, 0.961) 2.62 2.7 
Maximum 2D diameter (Slice)  Excellent 0.913 (0.855, 0.948) 2.88 2.9 
Surface area  Excellent 0.909 (0.849, 0.946) 5.23 5.79 
Surface Area to Volume Ratio  Good 0.837 (0.735, 0.902) 7.03 7.89 
Maximum 2D diameter (Column) Good 0.779 (0.649, 0.866) 4.09 4.76 
Compactness 2  Good 0.761 (0.622, 0.854) 15.91 17.81 
Compactness  Good 0.757 (0.616, 0.851) 8.06 8.97 
Sphericity  Good 0.753 (0.610, 0.848) 5.39 5.99 
Maximum 2D diameter (Row) Moderate 0.739 (0.590, 0.839) 4.88 5.23 
Spherical disproportion  Moderate 0.724 (0.569, 0.830) 5.39 5.99 
Major axis length Moderate 0.717 (0.559, 0.825) 5.06 5.27 
Elongation  Moderate 0.693 (0.525, 0.809) 5.44 5.38 
Maximum 3D diameter Moderate 0.677 (0.503, 0.799) 5.16 5.61 
Flatness  Moderate 0.544 (0.327, 0.707) 6.45 6.25 

 573 
 574 
 575 
 576 
 577 
 578 
 579 
 580 
 581 
 582 
 583 

  584 
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Table 5 footnote: CI: confidence interval; CV: Coefficient of variation; ICC: intra-class correlation 585 
coefficient; MRD: Mean relative difference 586 

 587 
 588 

Table 5. Repeatability of left ventricular myocardium first-order features in end-diastole 589 
 590 

Feature name Robustness ICC (95% CI) CV (%) MRD (%) 
Entropy  Excellent 0.962 (0.936, 0.978) 8.9 9.7 
90th Percentile Excellent 0.961 (0.934, 0.977) 11.9 11.8 
Root mean squared  Excellent 0.959 (0.930, 0.976) 11.9 11.4 
Median  Excellent 0.958 (0.928, 0.975) 12.4 11.9 
Mean  Excellent 0.957 (0.927, 0.975) 12.1 11.5 
Energy  Excellent 0.950 (0.915, 0.970) 25.2 27.1 
Uniformity  Excellent 0.942 (0.902, 0.966) 13.0 14.0 
Mean absolute deviation  Excellent 0.934 (0.890, 0.961) 15.1 16.3 
10th Percentile Excellent 0.933 (0.888, 0.961) 15.0 15.0 
Robust mean absolute deviation  Excellent 0.932 (0.885, 0.960) 15.5 16.5 
Interquartile range  Excellent 0.929 (0.881, 0.958) 15.4 15.9 
Standard deviation  Excellent 0.918 (0.864, 0.952) 15.8 17.3 
Total energy  Excellent 0.912 (0.853, 0.948) 26.0 28.0 
Maximum  Good 0.875 (0.794, 0.925) 19.1 21.0 
Range  Good 0.810 (0.694, 0.885) 20.8 23.4 
Variance  Good 0.802 (0.683, 0.880) 30.4 33.7 
Skewness  Poor 0.434 (0.192, 0.627) 187.5 72.7 
Minimum  Poor 0.401 (0.154, 0.602) 62.1 65.9 
Kurtosis  Poor 0.369 (0.116, 0.577) 39.3 41.5 

 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
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Table 6 footnote: CI: confidence interval; CV: Coefficient of variation; ICC: intra-class correlation 604 
coefficient; MRD: Mean relative difference. 605 

 606 
 607 

Table 6. The 10 most and 10 least robust left ventricular myocardium texture features in end-608 
diastole. 609 

 610 
Feature name Robustness ICC (95% CI) CV (%) MRD (%) 
Inverse difference moment  Excellent 0.975 (0.957, 0.985) 6.94 6.48 
Inverse difference  Excellent 0.973 (0.955, 0.984) 5.05 4.82 
Joint entropy  Excellent 0.973 (0.953, 0.984) 7.79 7.24 
Run length non uniformity normalized  Excellent 0.970 (0.949, 0.983) 4.45 4.10 
Short run emphasis  Excellent 0.970 (0.948, 0.982) 2.18 1.99 
Difference entropy  Excellent 0.965 (0.940, 0.979) 7.48 7.54 
Run percentage  Excellent 0.963 (0.938, 0.979) 3.84 3.17 
Small dependence emphasis  Excellent 0.960 (0.933, 0.977) 11.69 11.87 
Sum entropy  Excellent 0.959 (0.931, 0.976) 7.22 6.77 
Sum average  Excellent 0.958 (0.930, 0.976) 11.03 11.7 
Grey level variance  Good 0.792 (0.668, 0.874) 28.66 31.84 
Informal measure of correlation 2  Good 0.755 (0.612, 0.850) 11.91 12.33 
Complexity  Moderate 0.744 (0.597, 0.843) 38.65 42.09 
Inverse difference normalized  Moderate 0.720 (0.563, 0.827) 0.72 0.80 
Strength  Moderate 0.717 (0.559, 0.825) 40.74 47.21 
Informal Measure of correlation 1  Moderate 0.695 (0.528, 0.811) 20.64 21.63 
Inverse difference moment normalized Moderate 0.676 (0.502, 0.798) 0.23 0.24 
Correlation  Moderate 0.562 (0.350, 0.720) 19.12 20.66 
Cluster shade  Poor 0.420 (0.175, 0.616) 204.88 74.52 
Cluster prominence  Poor 0.364 (0.110, 0.573) 60.66 69.95 

 611 
 612 
 613 
 614 
 615 
 616 
 617 
 618 
 619 
 620 
 621 
 622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
 630 
 631 
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 633 
Central Figure. Title: Overview of the pipeline to evaluate test-retest repeatability of CMR 634 
radiomics features; legend: Test-retest CMR studies are segmented to define three ROIs for radiomics 635 
analysis: LV blood pool, RV blood pool, and LV myocardium. Shape features are analysed for all 636 
three ROIs. Additionally, first-order and texture features are extracted from the LV myocardium. 637 
Statistical analysis is performed to assess repeatability performance of radiomics features. CMR: 638 
cardiac magnetic resonance; GLCM: grey level co-occurrence matrix; GLDM: grey level dependence 639 
matrix; GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix; NGTDM: 640 
neighbouring grey tone difference matrix; ROI: region of interest.  641 
 642 
Figure 1. Title: Definition of the LV/RV blood pool and the LV myocardium for radiomics analysis; 643 
legend: From left to right: 2D short axis mid-ventricular slice; segmentation of the three regions of 644 
interest shown overlaid on the image: LV myocardium (blue), LV blood pool (light blue), and RV 645 
blood pool (green); 3D reconstructions of the segmented ROIs. Please note, that radiomics analysis 646 
has been performed in 3D; 2D slices are provided for visualisation purposes only. CMR: cardiac 647 
magnetic resonance; LV: left ventricle; ROI: region of interest; RV: right ventricle.  648 
 649 
Figure 2. Title: Repeatability of radiomics shape features for the LV blood pool (A), RV blood pool 650 
(B), and LV myocardium (C) in end-diastole and end-systole; legend: ICC: intra-class correlation 651 
coefficient; LV: left ventricle; RV: right ventricle 652 
 653 
 654 
Figure 3. Title: Bland-Altman plots for selected LV blood pool shape features in end-diastole (left) 655 
and end-systole (right) with different levels of repeatability; legend: Differences in Bland-Altman are 656 
calculated after normalizing radiomics in the range [0-1] to facilitate comparison among different 657 
features. All features are unitless. LV: left ventricle 658 
 659 
Figure 4. Title: Bland-Altman plots for selected RV blood pool shape features in end-diastole (left) 660 
and end-systole (right) with different levels of repeatability; legend: Differences in Bland-Altman are 661 
calculated after normalizing radiomics in the range [0-1] to facilitate comparison among different 662 
features. All features are unitless. RV: right ventricle 663 
 664 
Figure 5. Title: Bland-Altman plots for selected LV myocardium shape features in end-diastole (left) 665 
and end-systole (right) with different levels of repeatability; legend: Differences in Bland-Altman are 666 
calculated after normalizing radiomics in the range [0-1] to facilitate comparison among different 667 
features. All features are unitless. LV: left ventricle 668 
 669 
Figure 6. Title: Repeatability of LV myocardium radiomics first-order (A) and texture (B) features in 670 
end-diastole and end-systole; legend: ICC: intra-class correlation coefficient; LV: left ventricle 671 
 672 
Figure 7. Title: Bland-Altman plots for selected LV myocardium first-order features in end-diastole 673 
(left) and end-systole (right) with different levels of repeatability; legend:  Differences in Bland-Altman 674 
are calculated after normalizing radiomics in the range [0-1] to facilitate comparison among different 675 
features. All features are unitless.  LV: left ventricle 676 
 677 
Figure 8 Title: Bland-Altman plots for selected LV myocardium texture features in end-diastole (left) 678 
and end-systole (right) with different levels of repeatability; legend: Differences in Bland-Altman are 679 
calculated after normalizing radiomics in the range [0-1] to facilitate comparison among different 680 
features. All features are unitless. LV: left ventricle 681 
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