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Abstract
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earnings. While a higher degree leads to better access to information, more clustering leads
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opposite case. We apply our theory to gender disparities in performance. We document that
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evidence that support our predictions.
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Loose connections are the connections you need. It’s the No. 1 rule of business.
Sallie Krawcheck, owner of the global women’s network 85 Broads1

1 Introduction

It is common wisdom that networks matter for labour market outcomes. But what network

structures are particularly beneficial? Different network types are associated with distinct ad-

vantages. While the importance of loose connections (Granovetter (1973)) has been shown to be

especially valuable in the context of job search as it grants access to information, it is far from

obvious that these networks are still optimal on the job. There, different considerations come

into play, making tight networks that generate peer pressure (Coleman (1988)) potentially more

advantageous.

Our main contribution is to formalise the trade-off between social capital generated by loose

versus tight networks and to illustrate the importance of the structure of social networks for

labour market outcomes. We show that a loose network with more connections (a higher degree)

allows for better performance in uncertain environments with potentially high but risky returns.

In turn, a tight network (with greater clustering) will lead to better performance in stable

environments. In a new application, we relate our theory on network differences to the gender

gap in job performance. We first document a novel fact about gender disparities in network

structure. We establish that women have on average fewer connections, a lower degree, while

their connections tend to be linked, resulting in a higher clustering coefficient compared to

men. We then link our theoretical predictions to the gender gap in performance, which is

particularly pronounced in risky occupations, and to occupational sorting. The evidence suggests

that our theory can help understand why gender disparities are more pronounced in risky work

environments.

To formalize the trade-off between access to information and peer pressure and their impact

on performance on the job, we develop a model in which workers differ regarding their net-

work structure. They are repeatedly selected into partnerships to complete projects of uncertain

output value. Project success positively depends on the partners’ efforts, where effort is unob-

servable. If the project is completed successfully, the project payoff is shared between the team

members. Because output is split but effort costs are not, there is a team moral hazard problem

at work, inducing inefficiently low effort (as in Holmstrom (1982)).

Networks can ameliorate this problem and increase effort, with different network structures

achieving this through distinct mechanisms. Agents with a higher degree receive more signals

as they can observe not only their own signal about the value of the project, which can be

high or low, but also the signals of their friends in the network. Therefore, a loose network

characterised by a higher degree leads to better information, which allows workers to identify

a valuable project on which to exert higher effort. In turn, workers with higher clustering face

more peer pressure through the following mechanism: failure at the workplace leads to frictions
1Krawcheck at Marie Claire’s luncheon for the New Guard, November 2013.
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not only among project partners but also between them and their common connections, that is

their disagreement spreads through the entire group – an idea based on the structural balance

theory.2 Since an intact relationship is necessary for a successful project, repercussions of a

failure are especially bad for a worker with high clustering. Therefore, higher clustering leads to

higher effort in order to be on good terms with future potential project partners.

We are interested in the effort levels of the project partners as a proxy for their performance

and specifically in how valuable different network structures are in distinct environments. Our

main theoretical findings are as follows: A higher degree is more beneficial for performance in

volatile environments, where the uncertainty about the project value is considerable. This is

true when (i) overall information (that is, information coming from sources unrelated to the

network) is scarce, (ii) when signals are noisy, and (iii) when project rewards differ significantly

across states. In these cases, uncertainty about the state of the world and associated rewards is

large and the benefits of purely information-based, loose networks outweigh the benefits of closed

networks that lead to more peer pressure. In turn, peer pressure leads to relatively higher effort

and thus project completion in environments characterised by little uncertainty where additional

information has no value. Note that workers facing high peer pressure exert extra effort even

if the expected project reward is low. Thus, peer pressure induces agents to be undiscerning

about when to put effort. Information, on the other hand, reduces effort if agents anticipate

a low project value, thus fine-tuning their effort to the expected project reward. Even though

information can reduce effort, it turns out that more information is still valuable in expectation,

driven by the advantage of superior effort adjustment. We further show that degree and clustering

are complementary: The marginal effect of clustering on effort is particularly large when degree

is high (i.e. when information is abundant) and vice versa.

Effort choices then translate into wages. Someone with higher clustering earns more than

someone with higher degree when uncertainty about the state is negligible. Such a worker has

a comparative advantage in jobs whose outcomes are more certain compared to jobs with less

certain outcomes. We also show that, in line with our result on effort, the marginal return to

clustering is higher when the degree is high. Finally, due to the dynamic effect of clustering,

there is a strong persistence of wage patterns across time, consolidating early career wage gaps.

We propose a novel application of this theory by connecting our predictions to gender differ-

ences in labour market outcomes. We proceed by (i) documenting gender differences in network

structures in a variety of environments, (ii) showing how the gender wage gap varies with the

uncertainty of the occupation, in line with our predictions, and (iii) directly connecting labour

market outcomes and network patterns in two distinct settings.

Men and women differ in their average network structure. Women have fewer connections

than men, that is they have a lower degree, but their peers are more likely to be connected

among each other, implying a higher clustering coefficient. Thus, women have smaller but tighter

networks, whereas men have larger but looser networks. This observation, for instance, holds
2This is a concept first proposed by Heider (1946) who has spawned a field of research that remains active

until today. For an overview on structural balance theory, see Easley and Kleinberg (2010), chapters 3 and 5.
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true for academic computer scientists (from the dblp computer science bibliography) where we

build the scholars’ networks based on co-authorships. We also find support for these patterns

beyond Academia, namely from the Enron company where we construct the employees’ network

based on email exchanges. Finally, we document these network differences across gender in the

AddHealth data set based on friendship nominations, where we focus on young adults that are

about to enter the labour market. These environments – academia, private company and schools –

vary considerably, highlighting the pervasiveness of these gender disparities in network structure.

It is beyond the scope of this paper to analyse the source of network differences between men

and women with the available data.3 But even though we do not provide an explanation for why

these network differences across gender arise, we believe the fact in itself is of interest and to the

best our knowledge, this paper is the first to document it.

We then connect the key predictions of our model regarding network structures to gender

differences in labour market outcomes: We first show that women perform worse in uncertain

environments, while having a comparative advantage in low risk occupations. Using a represen-

tative data set for the US, the US Census, we show that women have particularly low earnings

in high risk occupations such as legal occupation or management and are less likely to select into

those occupations, where we measure risk by the earnings risk of an occupation.This is in line

with our prediction given their tighter networks.

In order to assess the connection between network characteristics and labour market outcomes

more directly, we turn to AddHealth, where we can relate network features and labour market

outcomes. Our results suggest that tight networks with high clustering are indeed positively

correlated with a comparative advantage in low risk occupations. We further relate networks

in Computer Science to different, commonly used measures of academic performance, obtained

from Google Scholar profiles. As research is characterised by complex and, especially, uncertain

tasks, we view research in general and computer science in particular as an intrinsically uncertain

occupation. Our correlations indicate that loose networks are associated with a better perfor-

mance in this risky setting and that women could potentially improve their performance with a

different network structure.

Based on these findings, we argue that network differences across gender at work may be an

overlooked source of well-known gender gaps in the labour market, especially in risky environ-

ments where women perform particularly poorly.

Studies investigating gender differences in other academic disciplines corroborate our theory

and findings. Ductor, Goyal, and Prummer (2018) first show that in Economics a higher degree,

a more loose network, is correlated with higher research output across all performance measures

considered. In turn, a higher clustering coefficient, a tighter network, is negatively related with

output. Second, they also control for gender and show that women have a lower research output.

Importantly, having a higher degree helps close the gender productivity gap in Economics, while
3These differences might be due to different patterns of socialisation or distinct preferences. To analyse the

origins we would require more systematic data of children at younger ages, which to the best of our knowledge is
not available at this point.
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a higher clustering coefficient exacerbates it even further. Our conclusion is further supported

by case studies from the film industry as well as patented research, highlighting the importance

of loose networks in uncertain environments, also beyond academia.

Related Literature We contribute to a small, but distinguished literature on the relative ad-

vantages of different network structures. This literature goes back to seminal, but contradictory,

work by Granovetter (1973) and Coleman (1988). While Granovetter (1973) emphasizes the

importance of loose connections, Coleman (1988) postulates that tight networks are crucial in

overcoming trust issues as well as free riding. This debate has spawned influential research fo-

cusing on the advantages of one type of network structure, which is translated into social capital

(Putnam (2000), Burt (1992), Lin (1999)). Our paper reconciles these two strands of literature

and resolves the conflict between different network advantages: loose networks are best in un-

certain environments where information is crucial. In turn, tight networks are most beneficial if

free riding is a greater concern than information acquisition.

This trade off has been addressed by Dixit (2003) for trading networks. Karlan, Mobius,

Rosenblat, and Szeidl (2009) highlight the distinct advantages of different network structures in

the context of borrowing through networks. In contrast, we focus on networks in the labour mar-

ket. Networks first rose to prominence due to their explanatory power in the labour market, with

a particular focus on referral networks, see Montgomery (1991), Marsden and Gorman (2001),

Arrow and Borzekowski (2004), Calvó-Armengol and Jackson (2004, 2007), Calvó-Armengol and

Zenou (2005). In this literature, agents who search for a job through their network face lower

unemployment risk and receive higher wages. The reason is that they are more likely to hear

about jobs and the associated wages. This allows them to extract a wage premium. In order

to find a well-paying job, it is particularly beneficial to possess a loose network. Our work is

complementary to this well-established literature: we investigate the importance of networks on

the job.

We also provide a novel explanation for the gender gap in labour market outcomes — dispar-

ities in network structure. Common explanations of these gender differences are discrimination

(Goldin and Rouse (2000)), differences in the number and length of career interruptions and over-

all labour force experience (Bertrand, Goldin, and Katz (2010), Gayle and Golan (2011)), differ-

ences in performing job tasks with low-promotability (Babcock, Recalde, Vesterlund, and Wein-

gart (2017)), differences in competitiveness (Gneezy, Niederle, and Rustichini (2003), Niederle

and Vesterlund (2007), Dohmen and Falk (2011)) or exogenous differences in hours worked at

home, inducing women to choose low-hours-low-wage occupations (Erosa, Fuster, Kambourov,

and Rogerson (2017)). Nevertheless, these factors are not sufficient to fully close the gender gaps.

By focussing on a new disparity between men and women (their networks), we provide a novel

angle to the ever-pressing question of what explains the gender gaps in labour market outcomes.

The paper proceeds as follows: In Section 2, we develop our model and Section 3 contains

our main theoretical results. We provide evidence on gender disparities in networks, gender

differences in labour market outcomes and how the two relate in Section 4. Section 5 concludes.
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2 Model

We consider an undirected network g of N workers. Two of those workers, i, j ∈ N, are selected

in each period t. We focus here on a two period model, t ∈ {1, 2}.4 Once two workers are

selected they have to complete a project. Whether they are successful depends on their exerted

effort, which in turn depends on their network structure and past project outcomes. In order

to highlight how each of these factors matters we first consider the game that is played in each

period t.

1. Worker Selection. At the beginning of each period, two workers are randomly sampled

(without replacement) from the set of workers to complete a project. Whenever two workers i

and j have a direct link, denoted by gij = gji = 1, they have an informal connection. We assume

that workers can only complete their project successfully if there exists a direct link between

them. If there is no link between the two selected workers, their project fails and both workers

receive a payoff of zero. The number of links of worker i, his degree, is denoted by Di. Then, the

joint probability of being selected for a project and being partnered with a directly connected

worker is given by (see Appendix A for details)

si =
2Di

N(N − 1)
. (1)

This probability is proportional to the degree of an individual. This implies that workers with

higher degrees will be selected more often into potentially profitable projects.5

2. Information. Every period is characterized by a state of the world, θ, which is high or low

θ =

{
θh with probability q

θl with probability 1− q

and iid. It is drawn after project teams are formed and is not observable to the workers. In the

high (low) state, the project value is 2vh (2vl), with vh > vl. We assume that the payoff of the

project is split equally among the project partners.6

In the following, we show how a worker’s network structure affects his information about the

state of the world. Each worker obtains a signal about the state (with a signal value of one (zero)

indicating the high (low) state) but he can also observe the signals of those workers he is directly

connected to. We denote the probability of a correct signal by p and assume that signals are

informative with p > 1/2.

Since we focus on ego networks (i.e. the network of an individual), we distinguish between

the number of signals a worker obtains internally, by himself and from his direct friends, nint,i =

4We provide a discussion of the extension to an infinite horizon in the Online Appendix.
5This assumption is supported by Aral, Brynjolfsson, and Van Alstyne (2012), who study project performance

in a recruiting firm. They find that peripheral nodes, i.e. nodes that are not well connected, do fewer projects
per unit of time than central nodes.

6We impose the equal split assumption as we aim for a model in which agents are perfectly symmetric except
for their network. This allows to analyse the effects of network structures in the cleanest way possible.
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Di + 1, and the signals he obtains from external sources (which can include the signals of a

neighbor’s friends), next,i. This enables us to vary the baseline amount of information below.

We denote by ni = nint,i + next,i the overall number of signals of worker i.

Based on his signals, a worker then computes a sufficient statistic yi = (xi, ni − xi), where

xi ∈ {0, 1, . . . , ni} is the number of high signals out of all observed signals and ni − xi denotes
the number of low signal. We further assume that co-workers share their information, which

implies that two project partners always hold the same information.7

Based on yi, the posterior probability of being in the high state, P (θh|yi), is computed via

Bayesian updating and thus having a higher number of signals gives a more precise posterior.

The project value for agent i, π(yi), is then given by

π(yi) = P (θh|yi)vh + (1− P (θh|yi))vl. (2)

To summarise, the network structure matters as a higher degree gives a higher number of internal

signals, which in turn affects the expectation about the project value.

3. Choice of Effort. The paired workers simultaneously choose what effort, ei, ej ≥ 0, to exert

on the project. This effort is costly with all workers facing the same cost function c(e), which

we assume to be convex. We focus on the effort choice of two directly linked team mates. Effort

makes project success more likely. The probability that the project is completed if effort choices

are ei and ej is given by f(ei, ej) ∈ [0, 1). To ensure that f(ei, ej) is strictly smaller than one,

we assume that effort is bounded.8 This implies that success cannot be guaranteed. Further, we

make some natural assumptions on the success function f , namely that it is twice continuously

differentiable, increasing and concave in each argument, that it has constant returns to scale

and is symmetric in both arguments. Moreover, we assume that f is strictly super-modular,

f12 = f21 > 0, implying that effort levels of the workers are strategic complements. We focus on

complements as the natural benchmark for a team problem: With substitutes a worker should

complete the project by himself, circumventing the team moral hazard problem that stems from

the individual team partner bearing the full cost of effort but only obtaining a share of the

project value. Finally, if one team member chooses zero effort, the project fails for sure. After

effort has been chosen, the project outcome – success or failure – is realised. A worker’s payoff

is his share of the expected project value minus the cost of effort.

These three stages – worker selection, information acquisition, and effort choice – occur in both

periods. What differs across periods is information (i.e. the signals workers obtain) and the effect

of peer pressure (which impacts effort only if today’s project outcome matters for tomorrow’s

outcome). Effort depends on information through the sufficient statistic y. It depends on peer

pressure because publicly observable past project outcomes affect the quality of current relation-
7This implies that two collaborators do not hide or falsify information. We discuss in Section 3.5 the implica-

tions if we relax this assumption and conjecture that our main results could be strengthened in this case.
8That is ei ∈ [0, emax] where f(emax, emax) < 1. By choosing an appropriate bound on vh, we can guarantee

an interior solution e ≤ emax.
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ships between workers, which in turn affects the success of collaboration. We describe the quality

of the relationship by γ ∈ {γb, γg}, that is the relationship can be bad or good. We outline this

peer pressure channel here informally and defer the formal discussion to Appendix A:

Whether the relationship is good or bad depends on past outcomes, as a project failure leads

to discord among project partners that negatively affects their friendship. We further argue that

this discord between partners also spreads to common friends. This idea is based on the well-

established structural balance theory : Triads of friends are only stable as long as the relationships

are balanced. Suppose that i, j and l are all directly connected. Initially, all three relationships

are intact. Then, i and j work on a project together that fails, affecting not only their link but

rendering the entire triad unstable. This instability is resolved by the workers taking sides (here,

l would side with i or j). To simplify our analysis, we assume that all relationships in a triad will

turn bad after a project failure. Our assumption is a simplification of the following idea: When

a project fails, a worker has a positive probability of ending up with more than one negative

connection if he and the project partner had common friends. A project failure results in only

one negative connection if the project failed with someone he does not have a common friend

with. This is why project failures affect workers with high clustering more than those with low

clustering: they are deprived of more future project opportunities. A relationship between i and

j turns bad after a project failure if in the previous period either (1) i and j were teamed up or

(2) i or j were teamed with a common friend.

In each period, a strategy of an agent maps his signals y and the relationship-status γ into

an effort level, where we focus on pure strategies. Given that both the relationship-status and

signals are observable for both team partners, our equilibrium notion is perfect public equilibrium

(PPE).9 This is a strategy profile that satisfies the usual requirements of being mutually best

responses (Nash equilibrium) and sequentially rational. See Appendix A, for the formal definition

of strategies and equilibrium (Definition 2).

3 Effort Choice, Wages & Network Structure

In our setting a higher degree leads to more signals, allowing for a more precise belief about the

project value. Higher clustering, on the other hand, leads to a larger number of bad relationships

after a project failure, which affects the success of future collaboration and therefore incentivises

effort through peer pressure. This is the main trade-off we focus on. To flesh out how peer

pressure influences effort choices, we focus on a dynamic setting.

3.1 Effort Choices & Wages

We first derive the effort choices and wages before analyzing how they are affected by an agent’s

network structure. In order to ease exposition, we begin with the static game and then extend

it to the dynamic setting.
9A formal definition of this equilibrium concept is provided in Mailath and Samuelson (2006), p.231, Definition

7.1.3.
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Static Game. In the static setting, worker i chooses effort to maximize his expected payoff,

max
ei

f(ei, ej)π(yi) + (1− f(ei, ej))0− c(ei). (3)

Recall that we have yi = yj = y in any team where agents i and j are connected. Given our

assumptions on f(·, ·) and c(·), the first order condition of (3) is both necessary and sufficient

for a maximum. The problem is symmetric for worker j. Based on the first order approach, we

determine the pure strategy public perfect equilibria of the static game and denote by e(y) the

optimal strategy based on signals y.

Lemma 1 (Static Game).

1. Every public perfect equilibrium is symmetric: ei(y) = ej(y) = e(y) ∀y.
2. For each y, there exist exactly two pure public perfect equilibria.

(a) Zero effort: e(y) = 0

(b) Strictly positive effort: e(y) > 0

All proofs are collected in Appendix B. Given the symmetry of the problem, both workers exert

the same effort in equilibrium of the static game. Moreover, there exist two pure strategy PPE.

There always exists an equilibrium where both project partners exert zero effort independently of

signal realisations. It is a best response to choose zero effort given the partner chooses zero effort

as, by assumption, f(ei, 0) = f(0, ej) = 0. There also exists a PPE with strictly positive efforts.

The uniqueness of the equilibrium with strictly positive effort follows from supermodularity and

the constant returns to scale of f(·, ·), as well as the convexity of the cost function.

Dynamic Game. We now extend the static game by allowing each team partner to maximise

his payoff with respect to effort across two periods. We assume that in period 1 each worker is

in a good relationship with everyone he is connected to and thus omit the dependence on the

relationship status. We further focus on a strategy profile where, for any realisation of signals,

a worker puts strictly positive effort if the relationship to the project partner is good, and zero

effort if it is bad.10 Although clearly, there exist other equilibria in this model, in Appendix

A (see Equilibrium Selection) we make a case for why this equilibrium is a reasonable one to

focus on. As zero effort automatically leads to a project failure, payoffs for a team with a bad

relationship are zero.

The dynamic problem of team partner i is then given by

max
ei,e′i

f(ei, ej)π(yi) + (1− f(ei, ej))0− c(ei) + βsiPi(γ
′
g)E

[
f(e′i, e

′
k)π(y′i)− c(e′i)

∣∣γ′g ] (4)

We index second period variables by prime and denote by β the discount factor. The expectation

is taken with respect to the distribution of signals in period two, y′i. By the same argument as
10Again, see Appendix A for the formal definition of these strategies.
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in the static game, it is true that yi = yj ≡ y and y′i = y′k ≡ y′.
The expected payoff in the second period depends on whether a worker is selected for the

project, which occurs with probability si. If he is chosen, he can either be teamed with someone

he has a good or someone he has a bad relationship with. The probability of a good relationship

with future project partner k depends on past effort and network structure, and is given by

Pi(γ
′
g) ≡ P (γ′g|ei, ej , rij) = f (ei, ej) + (1− rij)(1− f (ei, ej)) , (5)

where rij =
Cij

Di
is the probability that the second period’s team partners have a bad relationship

after a first period failure between i and j, and where Cij is a proxy for their common friends

and thus for clustering.11 Note that this probability is symmetric across first period’s project

partners, rij = rji. Thus, worker i has a good relationship with all his potential second period

project partners only if his current project succeeds, which happens with probability f(ei, ej). If

it fails, then he only has a good relationship with his future partner, if this partner is not the same

as the current one or a common friend, indicated by the joint probability (1− rij)(1− f (ei, ej)).

We can now, based on the results from the static setting, turn to the dynamic problem in

the first period, where not only the signals, but also considerations about the relationship state

with future project partners matter.

We denote by V ∗i (y′) the maximised second period payoff when the relationship between i

and k is good, that is V ∗i (y′) ≡ maxe′i f(e′i, e
′
k)π(y′) − c(e′i). Using this notation along with (4)

and (5), the maximisation problem of agent i in the first period reads

max
ei

f(ei, ej)π(y)− c(ei) + βsi(f(ei, ej) + (1− rij)(1− f(ei, ej)))E[V ∗i (y′)]. (6)

Similar to the static problem, we show that there exists a unique PPE in which both team

partners exert strictly positive effort. With some abuse of notation, we denote the optimal effort

function in periods one and two by e(y) and e′(y′), and omit the relationship-state γ as an

argument, as effort is only strictly positive in case of a good relationship. We denote derivatives

by subscripts, e.g. the first derivative of the cost function, which is the same in both periods, is

denoted by ce(·).

Proposition 1 (Dynamic Game).

1. Every PPE is symmetric: ei(y) = ej(y) = e(y) ∀y and e′i(y
′) = e′j(y

′) = e′(y′) ∀y′.
2. In both periods, there exists a unique PPE with strictly positive effort ∀y, y′, determined by

ce(e(y)) =f1(e(y), e(y))(π(y) + βsrE[V ∗(y′)]) (7)

ce(e
′(y′)) =f1(e

′(y′), e′(y′))π(y′). (8)

Lemma 1 established that in the second period (which is identical to the static problem) there

exists a unique equilibrium with strictly positive effort, which is symmetric across project part-
11Formally, Cij = 1 +

∑
k,k 6=i,k 6=j gikgjk where

∑
k,k 6=i,k 6=j gikgjk gives the number of common friends of i and

j. So, rij is the probability that in the second period, worker i is doing a project with someone who would be
affected by a first period project failure, given that i and j are chosen for a project in the first period.
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ners. This second period effort is implicitly defined by (8) in Proposition 1. The proposition

further establishes that also in the first period, effort levels are symmetric. First, any two team

workers have the same signals. Second, two workers must have the same number of common

friends, Cij = Cji, and thus sirij = sjrji = sr (since sirij =
Cij

1
2
(N−1)N ). The effort does not

depend on the selection probability si separately from rij . The intuition for this is that a worker

is only punished when being paired with common friends or the same project partner and this is

all that matters for adjusting effort. It is irrelevant whether a person is more likely to be selected

again as the effort exerted does not increase the selection probability.

In what follows, we write βsrE[V ∗(y′)] for the expected second period value in the equation for

first period effort (7). Note that in both periods effort increases in the contemporaneous project

values, π(y) or π(y′). But in the first period there is an additional factor at play, captured by

βsrE[V ∗(y′)] in (7): the dynamic incentives of maintaining good relationships push first period

effort up.

The equilibrium effort determines the first and second period wages (which we use inter-

changeably with productivity). We focus on wages for a given team member and conditional on

the state, where we drop the subscript i when the wage is the same across team partners:

w(θ) ≡ E[f (e(y), e(y)) v|θ] (9)

w′i(θ, θ
′) ≡ siPi(γ′g|e(y), r)E[f

(
e′(y′), e′(y′)

)
v′|θ′], (10)

where θ ∈ {θl, θh}, θ′ ∈ {θ′l, θ′h} are the realised first and second period states and v ∈ {vl, vh}, v′ ∈
{v′l, v′h} are the associated project values. The expectations are as usual taken over the signal

realisations y and y′. We define these expected wages given that a certain state of the world has

materialised. Recalling that q is the probability that the high state occurs, the expected wage

across states can then be easily computed, e.g. E[w] = qw(θh) + (1− q)w(θl) for the first period.

Note that the structure of both periods’ wages is the same in that agents obtain their share

of output in case the project is successful. In the second period, however, one also has to take

into account the joint probability of being selected and having a good friendship history with the

project partner, given by siPi(γ
′
g|e(y), r). Since friendship histories matter, the second period

expected payoff not only depends on contemporaneous but also on first period effort. Both

periods’ wages are increasing in effort, highlighting the tight link between the agents’ actions

and their rewards.

3.2 Degree and Information

We now turn to the effect of information on effort and wages. All else equal, a worker with

a higher degree receives more signals about the state of the world and thus more information.

We want to know how effort varies with the number of signals and how this depends on the

environment’s underlying uncertainty.

Definition 1 (Uncertainty).
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We call a setting uncertain if all of the following features are given:

• high and low project values differ, vl 6= vh

• signals are not completely informative p ∈
(
1
2 , 1
)

• workers’ prior about the state reflects some uncertainty q ∈ (0, 1)

• overall information is bounded, ni <∞.

In turn, by vanishing uncertainty we mean a situation in which any of the four requirements

from Definition 1 is violated. We obtain the following result.

Proposition 2 (Degree, Effort & Wages).

A higher degree leads to more information, which

1. increases (decreases) expected second period effort iff the second period state is high (low).

2. increases expected first period effort if the first period state is high.

3. increases first and second period wages if the state in both periods is high.

The impact of additional information on effort and wages in both periods vanishes as the under-

lying uncertainty vanishes.

Information impacts effort through the belief about the current project value: A high signal

leads to a more optimistic belief and therefore to higher effort. Since signals are informative,

the expected project value, E[π(y)] (with the expectation again taken over y), increases in the

number of signals conditional on the realised state of the world being high θ = θh, and decreases

in the number of signals conditional on the state being low, θ = θl. Therefore, the more signals

are available due to a higher degree, that is the higher nint, the more accurate is the worker’s

posterior belief about the state of the world. In the high state, he exerts on average higher effort

compared to a worker with lower degree (where in the ‘average’ effort, the expectation is as

usual taken over the sufficient statistic y). The opposite is true for the low state. As a result, in

both periods E[e(y)|θh] − E[e(y)|θl] is increasing in information. Intuitively, workers with more

accurate information, i.e. more signals due to a higher degree, can better fine-tune their effort

to the expected project reward. Based on this discussion, the second period effort increases in

information if the state is high and decreases if the state is low (part 1.).

The first period effort (part 2.) does not only depend on the first period project value, but

also on the expected second period payoff, see (7): A higher E[V ∗(y′)] translates into higher

effort on average. We prove in Lemma 3 (Appendix B) that E[V ∗(y′)] is increasing in degree,

that is the number of signals: Having more signals yields a more precise belief about the state

and therefore allows each team to better adjust their efforts. Generally, being able to adjust

effort optimally leads to higher payoffs, and this is why more signals lead to a higher value of

the problem.

In sum, a higher degree improves information about the state of the world and is beneficial

when the true state is high. In this case, additional signals induce the agents to put signifi-

cantly more weight on the high state, translating into higher effort and project completion, and

ultimately into higher productivity/wages (part 3.).

12



Notice that the effect of additional information on effort and thus wages is reinforced when the

uncertainty of the underlying environment is considerable but dies out when uncertainty becomes

small. The reason behind this result is that the expected project value becomes independent of

the number of overall signals as uncertainty vanishes, that is if either (i) there is no difference

between high and low project values; or (ii) signals are completely informative; or (iii) a worker’s

prior reflects complete certainty about the state of the world; or (iv) overall information due to

an increase in the number of external signals becomes abundant. In any of these cases, an agent

does not need to rely on his network to learn about the state of the world.

3.3 Clustering and Peer Pressure

We now analyse the effect of clustering on effort choices and wages. Clustering induces higher

peer pressure, which attenuates the team moral hazard problem in the first period and thus

affects first period effort and wages.

Proposition 3 (Clustering, Effort & Wages).

Higher clustering increases peer pressure which leads to both higher expected first period effort

and higher first period wages independently of the state of the world.

The effect of peer pressure (through clustering given by sr above) on first period expected effort

is straightforward and unambiguously positive (see equation (7)). This channel is independent

of both the true state of the world in period one and the underlying uncertainty. Peer pressure

induces higher effort because a potential project failure today puts more friendships and thus

future project opportunities in jeopardy. Since peer pressure works as a dynamic incentive,

second period effort is unaffected by it. It then follows that peer pressure boosts the first period

wage independently of the state and the underlying uncertainty. Only in the second period, the

effect on wages is ambiguous: Peer pressure leads to higher first period effort (increasing P (γ′g|θ)
and thus pushing the second period wage up), but having many common friends also makes a

non-intact relationship with the second period team partner more likely (lowering P (γ′g|θ)).

3.4 Peer Pressure versus Information

While the previous discussion has shown that clustering and degree impact effort in quite different

ways, they can both have a positive effect on effort, depending on the level of uncertainty and

the state of the world.

We now show that these two network characteristics are complementary as the effort and the

wage in period one exhibit increasing differences in clustering and degree under the additional

assumption that ceee(·) ≤ 0.

Proposition 4 (Complementarity of Degree & Clustering).

Let ceee(·) ≤ 0. Then, higher peer pressure, i.e. more clustering, leads to a greater increase in

expected first period effort and first period wage if the worker has more information, i.e. a higher

degree.
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More clustering has a greater positive impact on effort when the degree is high, i.e. when infor-

mation is already abundant. This is equivalent to the degree having a higher impact on effort

when there is already a high level of clustering. First-period effort depends on three factors,

namely (i) the expected payoff in the first period, E [π(y)], (ii) the expected value in the second

period, E [V ∗(y′)], and (iii) the probability of being punished for project failure, proxied by sr.

A higher number of signals does not affect (i), the expected payoff in the first period, as it is

a martingale (see Lemma 2 in Appendix B). However, an additional signal increases the value

of the second period problem (ii). Particularly, this value increases the effort proportionally to

the probability of being punished for failure (iii), since effort is affected through the expression

βsrE [V ∗(y′)]. This immediately implyies that information and clustering are complementary.

Consequently, wages, which are a function of effort, also display complementarities in peer pres-

sure and information. Our theory thus rationalizes why the different types of social capital that

emerge from tight versus loose networks are complementary.

While the discussion so far has focused on comparative statics effects of a single network

characteristic holding other network characteristics fixed, we now turn to the more interesting

but also more involved case of comparing two types of workers: one with higher degree but lower

clustering, called D-worker, and one with lower degree but more clustering, denoted as C-worker.

This is an empirically relevant case as clustering and degree are generally negatively correlated,

as is also evident in our datasets.12 We are interested in their relative performance depending

on the underlying uncertainty of the environment. We therefore define the notion of compar-

ative advantage in our context: the C-worker holds a comparative advantage in environments

with lower uncertainty if his relative expected wage, E[wC ]
E[wD]

= qwC(θh)+(1−q)wC(θl)
qwD(θh)+(1−q)wD(θl)

, increases as

uncertainty decreases.

Proposition 5 (Trade-Off Between Information and Peer Pressure).

Assume the cost function is quadratic c(e) = e2/2. Then:

1.Comparative Advantage: C-Workers hold a comparative advantage in environments with low

uncertainty.

2.Wage Dynamics: If a C-worker has a weakly lower first period wage than a D-worker, then he

also expects a lower wage in the second period.

The additional assumption imposed allows us to provide a closed form solution for effort, which

simplifies our analysis significantly. Our model predicts that workers with higher clustering and

lower degree have a comparative advantage in environments characterized by less uncertainty

relative to workers with lower clustering and higher degree (part 1.). We establish that the ratio

of expected wages, E[wC ]
E[wD]

increases as the number of external signals next grows, which captures

an increase in the baseline information of a worker. We first show that there exists a number

of external signals, such that an additional signal leads to a higher relative expected wage. We

then establish that for a sufficiently high number of signals the comparative advantage will not

be reversed, or put differently that this reversal is a probability zero event.
12See Appendix C, Tables 17, 18, 19.
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The intuition is clear: Workers with higher degree obtain more information and thus have

an advantage when information is valuable. But in environments with low uncertainty this

is not the case and workers with higher clustering exert relatively more effort. This leads to

higher wages for C-workers relative to D-workers, which underlines one of our key predictions:

Clustering gains importance as uncertainty vanishes. Similarly, when the uncertainty is high,

then additional information proves to be more valuable, giving an advantage to a D-worker.

Our model also predicts a strong impact of an early career wage gap on the future wage

trajectory through peer pressure, which puts workers with high clustering but low information

at a disadvantage (part 2.). As a result, if there is a wage gap in the first period, it persists

even if they perform equally well in the second period (i.e. even if uncertainty vanishes in the

second period). In expectation, a wage gap in the first period arises if and only if there is a

difference in the exerted effort. Thus, a C-worker with lower first-period wage than a D-worker

will have chosen lower effort. But a C-worker is more likely to be punished for inefficiently low

effort that resulted in a project failure through missed opportunities in the second period. So, in

expectation, the C-worker will also do worse in the second period and wage inequality persists.

Moreover, second period wage gaps between C-workers and D-workers arise even if they exert

the same effort in the first period, again through more forgone opportunities for the C-worker

after a project failure.

3.5 Discussion Modelling Assumptions

Information Sharing. We assume throughout that two team partners have the same level

of information. This implies that two collaborators share their information, although this may

induce their co-worker to exert lower effort.13 We abstract here from the possibility that agents

hide or falsify signals. In our setting, successful collaborators work together repeatedly and have

a good relationship which seems at odds with them omitting relevant information. However,

even if information could be hidden or falsified by a team partner, then we conjecture this could

strengthen our key result, namely that loose connections are more valuable than tighter ones

under sufficient uncertainty. If agents could hide information or lie, then team partners would

only rely on their own signal, signals from their direct neighbors (excluding their team partner)

who have no incentive to lie, as well as signals from other external sources. Agents with loose

networks and thus superior access to information could tailor their effort better to the expected

project reward relative to their collaborator. This guarantees them a relatively high payoff in

risky settings, increasing the output gap between two differentially informed agents even more.

Social versus Organizational Networks. We focus here on social networks (as opposed

to organisational or formal ones) that are fixed (as opposed to endogenously formed). While

firms try to optimise their organisational structure and hierarchy (i.e. the formal network) – a

question at the heart of the literature on personnel economics (for an overview see Lazear and
13This would happen if someone with a high degree and thus more information knew that the quality of project

was poor, but his partner with less information would exert a higher effort.
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Oyer (2007)) – their ability to affect who gets along is much more limited. Thus, they are forced

to take social networks as given, as fixed. However, these informal networks are essential to the

success of a firm and may interact with the organisational structure. Understanding how they

operate is therefore vital and can improve the operations of a firm. These social ties in a work

setting are the focus of our analysis.

Exogenous Networks. We assume that networks are taken as given not only by firms but

also by workers. Some workers simply get along and others do not. This is observationally

equivalent to a random meeting process, which is the correct model for friendships according

Jackson and Rogers (2007).14 Rather than focusing on network origins, we analyze the impact

of social networks on outcomes.

Note further that networks do not change across periods. We allow for two agents to (tem-

porarily) have a bad relationship after a project failure. But even in this case, they are still

connected – links are never cut.15

Team Composition. In our analysis, we focus on the network characteristics of an individual.

However, it is worth noting that given full information sharing and the fact that team partners

necessarily have the same number of common friends, our analysis carries over to network char-

acteristics of the team. Suppose that the team is such that both workers have two signals. Then,

the outcome is the same as when one worker had access to three signals and the other worker

had access to one signal. Similarly, as clustering is given by the number of common friends, it is

team specific and so we could interpret the network characteristics as features of the team.

External Signals. The notion of external signals is useful to vary the underlying uncertainty

of the environment. The meaning of these external signals varies depending on the context of

project. For example, in academia, external sources could be top publication records by field

or topic which may influence whether to work on a topic. It could also be information about

conferences or editors’ tastes or rotations. In a law firm, this may be information on what kind

of cases are likely to be ‘career cases’ due to their significance and reach while others would

be insignificant. In a company, this may be information about its medium-run objectives and

priorities of management, so that employees understand that projects advancing those objectives

will receive more weight and are be thus more important for promotions.
14Jackson and Rogers (2007) aim to distinguish between two meeting processes, a random one and a process

where agents meet through friends. They show empirically that a random process determines friendship networks.
15Note that links being cut, without links being added is not a sensible extension as at some point agents would

run out of potential project partners.

16



4 Gender Differences in Network Structure and Labour Market

Outcomes

Our framework shows that the impact of network structure on labour market outcomes (effort

and wages/output) depends on the underlying uncertainty of the work environment. In this

section, we offer an application of our theory to gender differences in labour market outcomes.

First, we establish that in a variety of settings, networks of men and women differ: on average,

men have a higher degree but lower clustering compared to women. Second, we provide evidence

that the gender earnings gap is indeed larger in more uncertain occupations and moreover,

that women are less likely to select themselves into riskier occupations. Finally, we aim to

connect these two pieces and relate network structure to labour market outcomes. We provide

correlations indicating that individuals with high clustering are less likely to select into risky

occupations, potentially rationalising why women seem to have a comparative disadvantage in

those occupations – in line with our theory.

4.1 Gender Differences in Network Structure

We document gender difference in network structure in three settings: we investigate co-authorship

networks in academic computer science, email networks from the Enron company and social net-

work patterns of high school students.

Network Measures. We begin with a formal definition of graphs that represent networks.

A graph consists of a set of nodes N and a n × n matrix g, where gij represents the possibly

directed relation between i and j. As we focus on unweighted graphs, gij equals either 0 or 1.

For each node in the graph, we define two concepts that allow an assessment of agents’ network

structure: degree and clustering coefficient.

Degree. The degree is a measure of how connected an individual is. For a directed graph, there

are three types of degree, in-degree (ID), out-degree (OD) and degree (D), denoted by

IDi =
∑
j

gji, ODi =
∑
j

gij , Di =
∑
j

min{1, gij + gji}

The in-degree describes how many agents named or wrote an email to individual i. The out-

degree provides information on how many agents individual i named or sent emails to. For an

undirected network (like that of academic computer scientists), only the degree is defined, which

in this case gives the number of coauthors.

Clustering Coefficient. The clustering coefficient is a measure of how close-knit or tight a network

is. It is computed as the ratio of the actual number of links between a node’s neighbors to the

total possible number of links between the node’s neighbors. This measure depends on whether
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the network is directed (superscript d) or undirected (superscript u):

CCdi =

∑
j 6=i;k 6=j;k 6=i gijgikgjk

Di(Di − 1)
.

CCui =
2
∑

j 6=i;k 6=j;k 6=i gijgikgjk

Di(Di − 1)
.

Co-Authorship Networks in Computer Science. We study collaboration networks of aca-

demic computer scientists. We obtain this data from the dblp computer science bibliography, a

service providing open bibliographic information on all major computer science journal publica-

tions since 1995 (our sample includes academic papers from 1995-2016).16

The raw data set contains names of scholars and the names of co-authors for each publication

listed on the platform, where based on publications we were able to extract 1,348,324 names.

After data cleaning, we are left with 585,360 unique names to whom we can assign a gender,

based on their first names.17 We have 438,531 men and 146,829 women in that sample and

construct their co-authorship networks.

In the co-authorship network, nodes are authors and a link between two nodes exists if the

corresponding authors have published at least one paper together. Note that this co-authorship

network is an undirected network since collaborations are bilateral. Hence the network charac-

teristics we compute are degree and undirected clustering coefficient. On average, a computer

scientist has a degree of 7.7 (i.e. 7.7 coauthors) and a clustering coefficient of 0.15, see Table 1.

Our results show significant differences in collaboration networks across gender: While female

computer scientists have a higher clustering coefficient, male computer scientists have a higher

degree (Table 2). Further, these characteristics show a strong negative correlation (-0.46) in our

sample of computer scientists (Table 17).

Email Networks at the Workplace. We also study networks in a private business, the Enron

company. We reconstruct the network at Enron based on email communications that were made

publicly available by the Federal Energy Regulatory Commission during its investigation of this

company following its fraudulent bankruptcy.18

Our dataset contains about 400,000 emails, where we focus on a subset of emails that have

a single receiver as group emails do not provide a good measure of whether employees have

indeed a relationship. Doing so we obtain 26,298 distinct email addresses, either senders or

receivers. One challenge is that ‘gender’ is not recorded. Fortunately, in many email addresses

first and last name are separated, so we are able to extract the first name of the employee and

assign a gender.19 This procedure leaves us with 10,211 individuals whose gender we successfully
16See http://dblp.uni-trier.de/
17We remove duplicates and deal with outliers in the degree data by trimming the top and bottom 1% of the

observations. Further, we use the package Gender in R to predict gender. The package provides a function to
predict gender from names using historical data, a comprehensive description can be found via https://cran.
r-project.org/web/packages/gender/gender.pdf.

18The Enron data is available at http://www.cs.cmu.edu/~enron/.
19We again use the package Gender in R to predict gender.
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predicted.20 Further, since our focus is on the network at work, we compute network measures

for those individuals who have an “enron.com” email address. This reduces our final sample to

3,926 Enron employees with 1,628 women and 2,298 men, for whom we compute their network

characteristics based on their email communication.21

Since emails are directed, we report both directed and undirected network characteristics.

The summary statistics are in Table 3. Regarding gender differences, we find that women have a

significantly higher clustering coefficient, both directed and undirected, and a significantly lower

in- and overall degree compared to men (Table 4). The correlation between degree and clustering

is again negative (Table 18). Thus, also in this very different context – a private business – we

find that men and women have fundamentally different network structures, with women having

smaller and denser networks.

Friendship Networks. We obtain the friendship networks from the AddHealth data set, which

contains data on students in grades 7-12 from a nationally representative sample of roughly 140

US schools in 1994-95. Every student attending the sampled schools on the interview day is

asked to compile a questionnaire (in-school data) on respondents’ demographic and behavioural

characteristics, education, family background and friendships. This sample contains information

on 90,118 students. Students were asked to name up to 5 male and 5 female friends. The

AddHealth website describes surveys and data in detail.22

The friendship network constructed from the AddHealth data is a directed network, based on

friendship nominations. We compute both directed and undirected clustering coefficients as well

as in-, out- and overall degree. We restrict attention to the individuals whose age and gender we

can identify and those with an identifier. This leaves us with a dataset of 73,244 students. The

descriptive statistics of the students are given in Table 5, those split by gender are provided in

Table 6.

The results for the entire sample are given in Table 7, where we restrict the sample to those

individuals for whom both degree and clustering are defined. We show that girls always have

a higher clustering coefficient than boys across all ages. In turn, all measures of degree change

with age. Younger girls have a higher degree than younger boys, whereas older boys (from age

of 16 onwards) have a higher degree than older girls, which holds irrespective of our measure of

degree.23

Further, we ensure that our results are not due to different shares of boys and girls at

schools by restricting attention to schools where the share of boys and girls is balanced. This

addresses the question of whether the differences in networks are driven by gender imbalances in
20While we lose a significant amount of individuals because their email addresses do not allow us to detect their

gender, we think that it is unlikely that those missing employees are predominantly male or female.
21To address the issue of outliers we also trim here the top/bottom 1% of the degree data.
22For more details on the AddHealth data, see http://www.cpc.unc.edu/projects/addhealth.
23While there may be a concern that the out-degree is influenced by the constraint on friendship nominations,

this is not a concern for in-degree. Moreover, if we take all out-degrees into account, the share of students who
name 10 friends is limited to 13%.

19

http://www.cpc.unc.edu/projects/addhealth


the environment, which may matter if there is gender homophily.24 Our results in the selected

sample confirm that our findings are not due to differing gender shares (see Table 20).25 Last,

as a robustness check, we show that our results regarding the degree are not determined by

restricting attention to those with fewer than two friends, see Table 21. As in our other datasets,

degree and clustering are negatively related (see Table 19).

We thus find that clustering is unambiguously higher for girls, hinting at girls choosing denser

and tighter networks. The number of friendships is much more sensitive to age, confirming the

results of sociologists that do not find conclusive evidence for the number of nominated friends.26

However, at older age, which is most relevant for the labour market, boys have larger networks

in all of our specifications (see also Figure 1).27

In sum, across very different environments – academia, private sector and schools – we find

that women network in smaller but tighter groups while men have larger but looser networks. To

our best knowledge, this paper is the first to document gender differences in network structure,

degree and clustering, in real world settings.

Gender Disparities in Networks: The Literature. Following up on our findings on gender

differences in networks, Ductor et al. (2018) show that the described gender differences also

emerge in Economics and Sociology. In economics, they use the Econlit database from 1970 until

2011, which comprises a large number of journals. In line with our finding, male economists have

a higher number of distinct co-authors, that is a higher degree, whereas women’s co-authors are

more likely to be co-authors among each other, leading to a higher clustering coefficient. This

finding is robust to including various controls, such as field, seniority, time trends and institution

fixed effects.

In Sociology, based on data from the Sociological Abstract database from 1963 to 1999, they

find the same patterns. Note that while men are strongly over-represented in Computer Science

as well as Economics, Sociology is almost gender balanced in the 90s.

Despite this, the gender disparities found in Computer Science and Economics persist in

Sociology, indicating once again that gender differences in networks are not driven by a gender

imbalance in the environment.

While not measuring networks in the same way we do here, Friebel and Seabright (2011)

and Friebel, Lalanne, Richter, Schwardmann, and Seabright (2017) also show in an experimental

setting that men tend to have looser networks, whereas women’s networks are tighter.28

24Gender homophily in referral networks has been shown in Beaman, Keleher, and Magruder (2018), Fernandez
and Sosa (2005), Torres and Huffman (2002), Zeltzer (2020), Zhu (2018). Mengel (2020) shows gender homophily
in networks in the lab.

25We further construct a measure for gender balance and use this as an additional control in our regression.
Our results also hold for this alternative specification, see Table 1 in the Online Appendix.

26See for example Lee, Howes, and Chamberlain (2007), who show that girls have more friends than boys,
Benenson (1990, 1993), Parker and Seal (1996) who show the opposite and Eder and Hallinan (1978), who find
no conclusive evidence.

27Abstracting from network structure, David-Barrett, Rotkirch, Carney, Izquierdo, Krems, Townley, McDaniell,
Byrne-Smith, and Dunbar (2015) show a preference for different types of networks across gender among adults.

28However, Mengel (2020) does not find gender differences in an experiment with very small networks.
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This evidence along with our own leads us to conclude that there are significant differences

in how men and women network, with men having a higher degree and women having a higher

clustering coefficient. In this application of our theory, we want to raise the question whether

these differences relate to differences in labour market outcomes across gender.

4.2 Gender Differences in Labour Market Outcomes and Uncertainty

Having established gender differences in networks, we now turn to gender differences in labour

market outcomes and show that they are systematically related to the uncertainty of the envi-

ronment. For this exercise and the measurement of uncertainty, we rely on data from the 2000

US Census as a large and representative sample of the US population, which matches the timing

of Add Health.29

We first construct a measure of uncertainty at the occupational level, occupational risk,

which for brevity we will refer to as risk in tables and graphs. We measure occupational risk

by the standard deviation of residual earnings by occupation in a Mincer-type wage regression

where we regress individual log yearly earnings on commonly used observable characteristics.30

The standard deviation of the residual earnings in a given occupation is a measure for wage

variation that is associated with this occupation and cannot be predicted based on commonly

used observable controls. As such, this measure of unpredicted wage risk is closely related to the

uncertainty in our model. In Figure 2(a), we plot this measure of occupational risk for 21 broad

occupation groups.31

While occupations like legal occupations or management are high risk occupations, occupa-

tions in education or health support are considered low risk based on our measure. In Figure

2(b), we plot occupational risk against occupational mean earnings, which reveals an intuitive

risk-return trade-off.

We then establish a connection between the gender earnings gap and occupational risk. We

use the following regression to assess this relationship:

LogEarningsij = β0 + β1Riskj + β2Femalei + β3(Riskj × Femalei) + xi
Tγ + εij (11)

We regress log yearly earnings of individual i in occupation j in 2000 on occupational risk,

Riskij , an indicator for female, Femalei, and their interaction (and some standard individual-

level controls xi). The results are presented in Table 8. Column (1) is the baseline where

we do not control for occupational risk. The gender earnings gap is 36%. In column (2),

where we additionally control for occupational risk and the interaction between occupational risk

and female, the gender gap considerably shrinks (by 17 percentage points or almost by 50%).

Moreover, and important for this application, women’s earnings disadvantage is particularly
29To be precise, the year 2000 matches the time frame of wave III of AddHealth that we focus on in the next

section.
30These include education, work experience, race, gender, occupation and industry dummies, where we focus

on full-time workers.
31These groups correspond to occupational categories available in AddHealth, wave III, see next Section.
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pronounced in risky occupations, as indicated by the significant negative interaction between

female and risk. Women in the least risky occupation (Administrative occupations, where Risk =

0.44) earn 33% less than their male counterparts (-0.19+(-0.31)*0.44=-0.33). In turn, women in

the most risky occupations (Legal occupations, with Risk = 0.72) earn 41% less than their male

counterparts (-0.19+(-0.31)*0.72=-0.41). Thus, the gender earnings gap is around 24% larger in

the most risky compared to the least risky occupation.

Based on the results from the earnings regression, we expect women to be less likely to

select into riskier occupations if they understand their earnings disadvantage in those settings.

This is indeed what we find. We run an ordered probit model, which is a choice model where

the occupational alternatives are ordered by risk. We regress the riskiness of occupation j in

which individual i is employed, Riskij , on an indicator for female, Femalei and some standard

individual-level controls and occupational characteristics:

Riskij = β0 + β1Femalei + xij
Tγ + εij . (12)

Our main explanatory variable of interest is Femalei. We find that women are less likely to be

employed in riskier occupations (Table 9).

Our results suggest that women do not thrive in the way that men do in risky environments,

reflected by lower earnings in risky occupations and self-selection into safer environments, sug-

gesting they have a comparative advantage in safer settings.32

4.3 Network Structure and Labour Market Outcomes

We now show a correlation between our two findings – gender differences in network structure

and gender disparities in labour market outcomes that are particularly pronounced in risky oc-

cupations. Larger gender differences in risky occupations are related to gender differences in

networks, suggesting that women’s networks constitute a hindrance in riskier settings. We con-

duct this exercise for AddHealth, where we relate network patterns and labour market outcomes

as well as for Computer Science, linking co-authorship networks to research output.33

Network Structure and Labour Market Outcomes: AddHealth. The network measures

are collected in Wave I in AddHealth (1994/1995) when the respondents were still in high school.

Table 7 demonstrates that the degree is changing across age and so we focus on the first wave in

AddHealth that contains labour market information, wave 3 (with data collection in 2000/2001),

to relate network structure to labour market outcomes. This way we minimise the time gap

between the assessment of network characteristics and the assessment of labour market outcomes.

Wave III contains information on a subsample of 15,170 individuals that were already in-

terviewed in wave I. We drop those with missing variables, that is those with missing network

variables or occupations, as well as unemployed individuals. The resulting sample contains
32We conduct several robustness checks, including industry and occupation fixed effects, in the Online Appendix.
33The Enron e-mail data does not contain information on performance on the job.
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around 4,000 individuals.34

We are interested in whether one of the key predictions of our model (Proposition 5.1) finds

support in the data:

Prediction: Workers with a relatively higher clustering coefficient and lower degree have a com-

parative advantage in less risky environments.

We assess this hypothesis by investigating occupational choices, which should reflect indi-

viduals’ comparative advantage in risky/non-risky work settings. This allows us to assess the

value of our theory more cleanly compared to wages. The key finding of the literature on referral

networks is that a higher degree leads to higher wages as agents obtain more job offers, see for

example Calvó-Armengol and Jackson (2004, 2007). Our data does not allow us to disentan-

gle the effects of referral networks and networks on-the-job on wages. Therefore, we focus on

occupational choice, which the literature on referral networks is silent on.35

Our model predicts that workers with a relatively high clustering coefficient and/or relatively

low degree should be more likely to select into less risky occupations. To provide support this

prediction, we run an ordered probit model. We regress the riskiness of the occupation j that was

chosen by an individual i, Riskij , on his/her network characteristics Clusteringi and Degreei,

Riskij = β0 + β1Clusteringi + β2Degreei + xij
Tγ + εij (13)

where xij is a vector of individual and occupational controls. Our main explanatory variables

of interest are Clusteringi and Degreei. Based on our theory, we expect that β1 is negative

(higher clustering leads to choosing less risky occupations) while β2 is positive (higher degree

encourages choosing riskier occupations). We find that a higher clustering coefficient is negatively

related with selecting a riskier occupations, while degree does not significantly correlate with the

occupational risk choices of individuals, see Table 10. Thus, there is a sense in which individuals

self-select into the occupation that caters to their network characteristics. This finding is further

illustrated using the marginal effects corresponding to the ordered probit regression for one low

risk occupation, administrative support, and one high risk occupation, management, in Table 11.

Column (1) shows that that a higher clustering coefficient is associated with a higher probability

of choosing admin support as an occupation. In contrast, column (2) demonstrates that a higher

clustering coefficient is related to a lower probability of selecting into a management occupation.

This finding may help explain why women perform poorly in risky environments and avoid them,

i.e. could help explain our findings from the US Census: This is potentially driven by women’s

higher clustering coefficient that is disadvantageous in risky settings.
34In more detail: We are able to merge around 13,000 individuals from Wave 3 with their network characteristics

from Wave I. Focusing on those with valid occupational identifier (so that we can merge in our wage risk variable)
leaves us with around 9,000 individuals. Dropping those with missing earnings results in 6,100 individuals. Further
imposing our sample restrictions – our age restriction (> 21 years old, so individuals in our sample are in the
age range 21-27) and keeping only those individuals who work at least part time and earn at least half of the
minimum wage income – leaves us with a final sample of around 4,000 individuals.

35Additionally, the earnings/wage variables in AddHealth are of rather poor quality.
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Network Structure and Research Output: Computer Science. Research is charac-

terised by complex and, especially, uncertain tasks. The success of a research project and patents

is difficult to foresee at the time of production. Moreover, there is a considerable amount of un-

certainty stemming from the lack of job security before tenure. We therefore view research

and specifically computer science as intrinsically risky. In light of our theory (Proposition 5.1),

we predict that higher degree leads to a higher research output. On the other hand, a higher

clustering coefficient reduces research output.

Prediction: A higher degree increases research output, a higher clustering coefficient reduces it.

To evaluate our prediction, we require a measure of research output. A natural starting point

are citations and number of papers, where the number of papers can be proxied by Google’s i10-

index, which counts the number of papers with more then 10 citations.36 A more sophisticated

measure is the h-index, developed in Hirsch (2005). The h-index equals the number h when the

scholar has published h papers each of which has been cited in other papers at least h times.37 It

was developed as an improvement over the simpler measures of citations and number of papers to

take into account both research quantity and quality. As such it may be the preferred measure.

In order to obtain these output measures, we obtain the Google Scholar profiles of a randomly

selected subsample of the co-authors obtained from the dblp computer science bibliography,

which results in a sample of 25 428 computer scientists.38 This subsample has the same average

clustering coefficient but a higher average degree than the full sample (potentially due to the

fact that only more productive researchers have a google scholar profile). Regarding the purely

quantitative output measures, citations and i10-index, women score better than men in our

sample. In turn, men have a higher h-index. One interpretation is that women tend to have

more publications of little impact compared to men (captured by a higher i10-index). We report

the summary statistics of the Google Scholar sample in the Online Appendix.

To evaluate the prediction stemming from our theory, we analyse whether high degree and

low clustering is associated with better performance in this risky environment. We regress each

of the three performance measures on these network characteristics, controlling for gender. The

results are reported in Table 14: For a given clustering coefficient, an increase of degree by one is

associated with an increase in the h-index by 0.28, in the i10-index by 1.09 and in citations by 64.

In turn, for a given degree, increasing the clustering coefficient from 0 to 1 is related to a decrease

in the h-index by 9, in the i10-index by 61 and in citations by around 2000. These results lend

support to our theory that a high degree as opposed to high clustering is advantageous in work

environments that are characterised by high uncertainty.

Given our reported finding that computer scientists show large disparities in networks across

gender, with male scientists having higher degrees but female scientists having higher clustering
36This is a low bar in computer science, see Table 12, as the average citation is above 6000.
37To give an example, suppose a researcher has 5 publications, A, B, C, D, and E. The citation count is

c(A) = 10, c(B) = 8, c(C) = 5, c(D) = 4, c(E) = 3. This researcher has an h-index of 4. If the citation count
was instead c(A) = 10, c(B) = 8, c(C) = 5, c(D) = 3, c(E) = 3, then the researcher would have an h-index of 3.

38We restrict attention to a reduced number of computer scientists due to the time consuming nature of the
scraping process, which was done by a standard web crawler using Python.
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coefficients, we can also ask whether these differences in networks are related to the gender

productivity gap. To do so we compare the results from Table 14 that controls for both gender

and network characteristics with a regression that omits the network characteristics, Table 15.

Regarding the h-index, comparing columns (1) across tables, we observe that controlling for

network characteristics is related to a substantial decrease in the gender gap in performance (by

around 25%). Similarly, when focussing on the i10-index or the number of citations, controlling

for network characteristics is associated with even better female performance (compare columns

(2) and (3) across tables).

Our results suggests that if female computer scientists did not have their disadvantageous

network characteristics they might perform better according to our measures of performance.

These findings from Computer Science complement our analysis in the US Census on the relation

between risk and female labour market performance.

Network Structure, Gender and Labour Market Outcomes: The Literature. To

substantiate our findings, we also turn to the literature, some of which has more suitable data to

test our theory. There are several bits of evidence in the literature that corroborate our theory

and findings above. First, we supplement our suggestive evidence regarding computer science

with other findings for researchers in academia. We would expect, as with computer science,

that a higher degree increases output, while a higher clustering coefficient reduces it. This is

indeed what the the literature finds.

Ductor, Fafchamps, Goyal, and van der Leij (2014) show, without distinguishing or controlling

for gender, that in Economics a higher degree is related to higher research output, while higher

clustering decreases it, as predicted by our theory. Their measure takes into account the number

of publications, the impact factor of the journal the article was published in as well as the number

of co-authors on the paper. Ductor et al. (2018) also control for gender and show that women

have a lower research output according to the described measures. The gender discrepancy in

performance also holds in terms of the numbers of published papers or citations. This finding

is robust to controlling for field, institution, seniority and time trends. The output gap between

men and women is also affected by the network. Importantly, having a higher degree helps close

the gender productivity gap in Economics, while a higher clustering coefficient exacerbates it

even further (the magnitude of the gap closure by network characteristics is 5 -10%), see Table 6

in their paper. An Oaxaca-Blinder decomposition of the gender output gap confirms these effects.

Another sector where gender inequalities persist is the film industry (Lutter (2012) and Lutter

(2013)), where women create lower box revenues from movies. This industry is highly project-

based where tasks have uncertain outcomes. Ferriani, Cattani, and Baden-Fuller (2009) argue

that the film market requires fast adjustment to new work environments since film ventures

operate under constant uncertainty and have to foresee ex-ante whether the project opportunity

is valuable. They argue that information is crucial to identify potentially successful scripts and

to assemble the right project team. Based on the finding that producers who are more central in

their network (i.e., have more access to information) are more likely to increase the box revenue
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from a movie, the authors conclude that social networks provide crucial access to information.

In a similar vein, Lutter (2013) documents that women with loose information-based networks

perform better in the film-industry than women with dense networks, supporting our hypothesis

that information is the key to success in uncertain environments.

Another well-known area for gender disparities is the market for patents. Hunt, Garant,

Herman, and Munroe (2012) document that women in the US are much less likely to be granted

a patent than men, with women holding only 5.5% of commercialized patents. Gabbay and

Zuckerman (1998) document that in basic research, which is typically characterised by complex,

uncertain tasks, scientists benefit from sparse networks with many holes, whereas in applied

research, which is typically characterised by non-complex, certain tasks, scientists benefit from

dense networks. In line with this view, Ding, Murray, and Stuart (2006) argue that an important

reason for the gender wage gap in patenting is that women’s networks are less effective: In relying

more on close relationships, they lack access to industry contacts.

All of this suggests that women’s network characteristics hold them back in occupations that

are characterised by uncertainty. We view these results of how differences in gender networks may

account for productivity gaps and differential occupational choices an interesting implication of

our theory.

5 Conclusion

We develop a novel theory that sheds light on the relative advantages of having a loose versus a

tight social network at work. A loose network is particularly beneficial in an uncertain environ-

ment as it allows greater access to information. In turn, a tighter network generates peer pressure

which leads workers to exert more effort, independently of the environment. These effects induce

individuals with low clustering and high degree to have a comparative advantage in risky work

settings where information is crucial.

We apply our theory to improve our understanding of the gender wage gap, which is particu-

larly pronounced in high uncertainty settings, where we measure uncertainty by earnings risk on

the occupational level. We first document a novel fact that male and female networks differ. On

average, men have a higher degree and lower clustering coefficient, resulting in a looser network

compared to women. Second, we show that women perform particularly poorly relative to men

in high risk occupations. Finally, we connect the differences in network structure to differences

in labour market outcomes, suggesting that tight networks are indeed more beneficial in low risk

occupations. We argue that network differences across gender at work potentially are an over-

looked source of well-known gender gaps in the labour market, especially in risky environments

where women perform particularly poorly.
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Table 1: Summary Statistics: Computer Scientists

Min Max Mean Std
Degree 2.00 67.00 7.65 8.74

Clustering Coefficient 0.00 0.25 0.15 0.06
Observations 585,360

Note: Sample consists of 438,531 men and 146,829 women. This
sample does not contain individuals for whom the clustering co-
efficient is not defined, i.e. those with fewer than 2 links.

Table 2: Network Measures by Gender: Computer Science

Male Female Difference
Degree 7.8810 6.9551 0.9259***

(37.5695)
Clustering Coefficient 0.1511 0.1608 -0.0098***

(-51.4112)
Observations 585,360

t-statistics in parenthesis. ***p<0.01, **p<0.05, *p<0.1.
Note: Sample consists of 438,531 men and 146,829 women. This
sample does not contain individuals for whom the clustering coef-
ficient is not defined, i.e. those with fewer than 2 links.

Table 3: Summary Statistics: Enron

Min Max Mean Std
Outdegree 0.00 157.00 5.87 13.96
Indegree 0.00 124.00 6.13 11.70
Degree 2.00 203.00 9.68 19.15

Clustering Coefficient Undirected 0.00 1.00 0.33 0.33
Clustering Coefficient Directed 0.00 1.00 0.23 0.27

Observations 3,926

Note: Sample consists of 3,926 individuals, 1,628 women and 2,298 men. This
sample does not contain individuals for whom the clustering coefficient is not
defined, i.e. those with fewer than 2 links.
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Table 4: Network Measures by Gender: Enron

Male Female Difference
Outdegree 5.9852 5.7021 0.2831

(0.6270)
Indegree 6.4904 5.6130 0.8774***

(2.4299)
Degree 10.0461 9.1566 0.8895*

(1.4687)
Clustering Coefficient Undirected 0.3236 0.3500 -0.0264***

(-2.4635)
Clustering Coefficient Directed 0.2241 0.2462 -0.0221***

(-2.4645)
Observations 3,926

Note: t-values in parenthesis. ***p<0.01, **p<0.05, *p<0.1.
The statistics are based on our sample of 3,926 observations, with 1,628 women
and 2,298 men. This sample does not contain individuals for whom the clustering
coefficient is not defined, i.e. those with fewer than 2 links.

Table 5: Summary Statistics: Add Health

Mean Std. Dev. Min Max

Cl. Coeff. Dir. 0.124 0.143 0 1
Cl. Coeff. Undir. 0.182 0.184 0 1
Degree 8.306 4.305 2 39
In-Degree 4.496 3.642 0 37
Out-Degree 5.514 3.197 0 10
Age 14.952 1.708 10 19
Gender 0.515 0.5 0 1

Observations 73244

Note: Network measures by gender, individuals that cannot be
uniquely identified are omitted. For the number of men versus
women, see Table 6. For gender, zero denotes men, one denotes
women.

Table 6: Network Measures and Age by Gender: Add Health

Male Students Female Students Difference
Mean Std Dev. Min Max Mean Std Dev. Min Max t-test

Cl. Coeff. dir. 0.125 0.151 0 1 0.123 0.135 0 1 0.00251∗
Cl. Coeff. undir. 0.175 0.187 0 1 0.188 0.182 0 1 -0.0124∗∗∗
Degree 8.166 4.43 2 39 8.436 4.179 2 37 -0.272∗∗∗
In-Degree 4.396 3.719 0 37 4.589 3.566 0 34 -0.194∗∗∗
Out-Degree 5.252 3.331 0 10 5.761 3.044 0 10 -0.509∗∗∗
Age 15.04 1.716 10 19 14.869 1.696 10 19 0.171∗∗∗

Observations 35506 37738
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Network measures by gender; individuals that cannot be uniquely identified are omitted.



Figure 1: Clustering Coefficient and Degree Across Ages
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Figure 2: (a) Measured Risk by Occupation; (b) Occupational Risk and Earnings

Note: Line in (b) based on regression of yearly earnings on a constant, risk and risk squared.

Table 8: Log Earnings, Risk and Gender

(1) (2)
Log Earnings Log Earnings

Female -0.363∗∗∗ -0.192∗∗∗

(0.000617) (0.00428)

Risk 1.057∗∗∗

(0.00608)

Female*Risk -0.310∗∗∗

(0.00836)

Years of Educ 0.115∗∗∗ 0.110∗∗∗

(0.000161) (0.000159)

Experience 0.0274∗∗∗ 0.0275∗∗∗

(0.000136) (0.000135)

Experience2 -0.000383∗∗∗ -0.000387∗∗∗

(0.00000277) (0.00000274)

Black -0.0672∗∗∗ -0.0586∗∗∗

(0.00142) (0.00142)

White 0.0555∗∗∗ 0.0508∗∗∗

(0.00111) (0.00111)

Constant 8.605∗∗∗ 8.120∗∗∗

(0.00291) (0.00411)
Observations 3558758 3558758
R2 0.246 0.257
Sample: 2000 US Census, Full-time workers. Estimation by OLS.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 9: Occupational Risk and Gender

(1)
Risk

Female -0.166∗∗∗

(0.00111)

Years of Educ -0.0164∗∗∗

(0.000244)

Experience -0.00722∗∗∗

(0.000234)

Experience2 0.000124∗∗∗

(0.00000459)

Black -0.0619∗∗∗

(0.00256)

White -0.0138∗∗∗

(0.00192)

Log Occ Mean Earnings 1.625∗∗∗

(0.00238)
Observations 3558758
Pseudo R2 0.044
Sample: 2000 US Census, Full-time workers. Estimation method: ordered probit.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 10: Occupational Risk and Networks

(1)
Risk

Clustering Coefficient -0.0325∗∗

(0.0165)

Degree -0.0114
(0.0171)

Female -0.0690∗∗

(0.0331)

Age -0.517
(0.447)

Age2 0.00970
(0.00976)

Log Occ Mean Earnings 0.987∗∗∗

(0.0478)

Race Dummies Yes

Education Dummies Yes

Work Exper 1999 Yes

Work Exper 2000 Yes
Observations 3976
Pseudo R2 0.021
Standard errors in parentheses
Sample: AddHealth Wave III. Focus is on individuals who work at least part-time,
who earn at least half of the minimum wage, ≥ 21 years old.
We include indicators for 3 education groups: < high school, high school, > high school.
Estimation method: ordered probit.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 11: Occupational Risk and Networks (Marginal Effects)

(1) (2)
Risk Risk

Clustering Coefficient 0.00571∗∗ -0.00129∗

(0.00291) (0.000660)

Degree 0.00200 -0.000450
(0.00301) (0.000679)

Female (d) 0.0121∗∗ -0.00273∗∗

(0.00583) (0.00132)

Age 0.0910 -0.0205
(0.0785) (0.0178)

Age2 -0.00171 0.000384
(0.00171) (0.000389)

Log Occ Mean Earnings -0.174∗∗∗ 0.0391∗∗∗

(0.00981) (0.00333)

Race Dummies Yes Yes

Education Dummies Yes Yes

Work Exper 1999 Yes Yes

Work Exper 2000 Yes Yes
Observations 3976 3976
Marginal effects; Standard errors in parentheses
Sample: AddHealth Wave III. Focus is on individuals who work at least part-time,
who earn at least half of the minimum wage, ≥ 21 years old.
Column (1) reports the marginal effects corresponding to a low risk occupation (admin support).
Column (2) reports the marginal effects corresponding to a low high occupation (management).
The prob of choosing Management Occupations=0.054; the prob of choosing Admin Occupations=0.1 .
(d) for discrete change of dummy variable from 0 to 1
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 12: Performance Measures: Computer Science (Google Scholar Sample)

Min Max Mean Std
Citations 0.00 679167.00 6135.92 21134.20
h-Index 0.00 262.00 20.84 24.74

i10-Index 0.00 1973.00 59.56 139.61

Note: Sample consists of 15,827 men and 9,601 women. This
sample does not contain individuals for whom the clustering
coefficient is not defined, i.e. those with fewer than 2 links.

Table 13: Performance Measures by Gender: Computer Science (Google Scholar Sample)

Male Female Difference
Citations 5925.6335 6482.5707 -556.9371**

(-1.9417)
h-Index 21.4645 19.8201 1.6443***

(5.1499)
i10-Index 58.3324 61.5721 -3.2397**

( -1.7057)
Observations 25,428

t-statistics in parenthesis. ***p<0.01, **p<0.05, *p<0.1.
Note: Sample consists of 15,827 men and 9,601 women. This
sample does not contain individuals for whom the clustering co-
efficient is not defined, i.e. those with fewer than 2 links.
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Table 14: Performance of Computer Scientists: Network Characteristics and Gender

Dependent variable:

h-Index i10-Index Citations

(1) (2) (3)

Degree 0.28000∗∗∗ 1.09269∗∗∗ 63.81948∗∗∗
(0.01441) (0.08180) (12.45628)

Clustering.Coefficient −8.73374∗∗∗ −61.11535∗∗∗ −1,989.62000
(2.61046) (14.82026) (2,256.90300)

Female −1.23644∗∗∗ 5.01811∗∗∗ 649.90050∗∗
(0.31642) (1.79639) (273.56360)

Constant 19.64833∗∗∗ 54.86391∗∗∗ 5,511.55300∗∗∗
(0.49005) (2.78215) (423.68020)

Observations 25,428 25,428 25,428
R2 0.02538 0.01378 0.00190
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Sample: Google Scholar Sample.

Table 15: Performance of Computer Scientists by Gender

Dependent variable:

h-Index i10-Index Citations

(1) (2) (3)

Female −1.64434∗∗∗ 3.23972∗ 556.93710∗∗
(0.31985) (1.80597) (273.37420)

Constant 21.46446∗∗∗ 58.33241∗∗∗ 5,925.63400∗∗∗
(0.19654) (1.10972) (167.98080)

Observations 25,428 25,428 25,428
R2 0.00104 0.00013 0.00016
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Sample: Google Scholar Sample.
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Appendix A: Omitted Details of Model and Derivations

Derivation of si

The probability that one agent is chosen is given by P (K) = N−1
1
2
N(N−1) = 2

N , and the probability

that this agent i is linked to the suggested project partner j, given that he is selected by P (gij =

1|K) = Di
N−1 . Then, the probability of being chosen and being partnered with a friend is

si ≡ P (gij = 1 ∧K) = P (gij = 1|K)P (K) =
2Di

N(N − 1)
.

Peer Pressure and Relationship Quality

We outline here formally how a project outcome affects the relationships of workers. As men-

tioned previously, whether the project of workers i and j was a success, S, or a failure, F is

publicly observable and denoted by ω ∈ Ω = {S, F}×{1, 2, . . . , N}2. As an example, if ω = S12,

this means that a project was successfully completed by workers 1 and 2. We condition also on

the workers who carried out the project as we do not only care about whether the project was

successful but also about the workers who were involved. Each project failure induces some bad

relationships in the network g. The network that contains the links that signify a bad relation-

ship is denoted by gb ⊂ g. The specific network gb that arises after Fij, that is a project failure

between workers i and j, where gij = 1, is given by gb(Fij) = {{ij, il, jl}|gil = 1 ∧ gjl = 1, ∀l}.
Workers i and j have a bad relationship with each other if their joint project fails. But a worker

l, who is connected to both i and j also has a bad relationship with both of them. Denote by

gg(Fij) = g\gb(Fij) the good relationships in the network g. Let γg ∈ gg and γb ∈ gb. Further,
for any i, j gg(Sij) = g.

Perfect Public Equilibrium

The relationship quality between two directly connected workers constitutes a state, γ ∈ Γ =

{γg, γb}. Also, recall the publicly observed signals y ∈ Y .

We can define a pure public strategy σ : Γ× Y → E, which maps from the relationship state

and the signals into the action space.

Due to our restriction to public strategies, the equilibrium concept applied is that of a public

perfect equilibrium, which is a sequential equilibrium with the further restriction that agents

only condition on publicly observable outcomes, but not on privately observed actions. This

implies we are not allowing agents to condition on their own effort, but only on whether projects

failed or not. We index the variables in the second period by prime.

Definition 2. A public perfect equilibrium (PPE) is a profile of public strategies σ that for any

state γ, γ′ ∈ Γ and for any signal realization y, y′ ∈ Y specifies a Nash equilibrium for the repeated

game, i.e. in the first period, σ(γg, y) is a Nash equilibrium and in the second period σ′(γ′, y′) is

a Nash equilibrium.
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We restrict attention to the strategies according to which agents exert high effort if the relation-

ship to the project partner is good and zero effort otherwise. This implies for period one and

period two strategies:

Period 1: ∀ y σ(γg, y) > 0

Period 2: ∀ y′ σ′(γ′g, y
′) > 0 and σ′(γ′b, y

′) = 0.

To simplify notation in the main text, we there denote the first and second period strategies

by e(y) and e(y′) (instead of σ(γg, y) and σ(γ′g, y
′)), where we omit the relationship state as an

argument. Note that a PPE is a sequential equilibrium

Equilibrium Selection

In our analysis, we have selected the equilibrium that induces workers to play high effort if their

relationship is good and zero effort if their relationship is bad. Alternatively, agents could choose

to play the static high effort PPE each period, independently of their relationship. Another

possibility is to select zero effort independently of past project outcomes and signals.39 We

evaluate these different equilibria according to their expected payoffs. We find that if workers

always choose the payoff maximizing equilibrium, then the zero effort equilibrium will never be

played. Men will do even better in volatile environments, whereas women keep their advantage

in environments with little uncertainty, leaving our conclusions of Section 2 unchanged.

In order to see this, we define the payoffs from choosing the static high effort PPE and from

our proposed strategy, respectively:

W stat
i =si(1 + β)E

[
f(e′(y), e′(y))π(y)− c(e′(y))

]
, (14)

W dyn
i =siE [f(e(y), e(y))π(y)− c(e(y))]

+ siβE [(1− r(1− f(e(y), e(y))))]E
[
f(e′(y′), e′(y′))π(y′)− c(e′(y′))

]
. (15)

The equilibrium we select yields a higher payoff than the static PPE whenever W dyn
i > W stat

i .

To simplify notation, we let E[V1] = E [f(e(y), e(y))π(y)− c(e(y))] and

E[V2] = E [f(e′(y′), e′(y′))π(y′)− c(e′(y′))]. Welfare under our strategy, W dyn
i , is higher than

welfare in the static high effort PPE, W stat
i , whenever

E[V1]− E[V2] > βri(1− E[f(e(y), e(y))])E[V2] (16)

So, if E[V1] − E[V2] > 0 and E[f(e(y), e(y))] is sufficiently large, then welfare is higher under

our strategy.40 An example of parameter values for which equation (16) holds is given in Table
39Obviously, there are other equilibria, such as whenever a project fails, all relationships in the network turn

bad and then all players choose zero effort. Another possibility is that a good relationship leads to zero effort and
a bad relationship to positive effort. We find these equilibria hard to justify and therefore use the static PPE as
a benchmark. Further, endogenizing the equilibrium selection is beyond the scope of this work.

40Note that E[V1] − E[V2] > 0 might not always be the case, although e > e′. To see this we consider the
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16. We assume f(ei, ej) =
√
ei, ej and c(ei) = 1

2e
2
i . In this example, men exert on average lower

effort than women, in both states of the world. This is not surprising given that the project

value in both states of the world is fairly similar.

Table 16: Welfare Parameters

vl vh p q β dW dM CW CM N
1.5 1.6 0.75 0.5 0.9 2 3 2 1 4

Notice that E[f(e(y), e(y))] is large if effort is high under any signal realization. Effort does not

vary greatly with the different signal realizations if the project values across states are similar,

implying little uncertainty in the environment. We have shown that women exert higher effort

than men in these environments, see Proposition (2).

If agents always play the strategy that yields the highest payoff, then in an environment

with high uncertainty the static high effort PPE will be selected, whereas in an environment

with low uncertainty and relatively high payoffs, our proposed strategy is implemented. But this

implies that the differences between men and women, which we discussed in Section 2 , remain

unchanged. Women would do even worse than men in uncertain environments than under our

strategy and perform the same in situations with low uncertainty and high payoffs.

But the equilibrium that is payoff maximizing might not be selected. If a worker exerts

positive effort, but his team partner shirks and only exerts zero effort, then he will face a loss.

So, if there is a possibility of mis-coordination it might be better to always choose zero effort.

Whether the expected payoff maximizing equilibrium or the zero effort equilibrium (that even

under mis-coordination yields no losses) will be selected depends on whether payoff or risk dom-

inant strategies should be played. The evidence for this is mixed at best (Van Huyck, Battalio,

and Beil (1990), Cooper, DeJong, Forsythe, and Ross (1990), Cooper, DeJong, Forsythe, and

Ross (1992)).

We believe that it is plausible to assume that workers might risk to choose the high effort

which can potentially result in a loss (namely when they trust their project partner after a good

history) and that they go for the strategy that ensures a nonnegative profit after a loss and thus

bad history.

Appendix B: Proofs

Throughout, we make the following assumption on f :

Assumption 1. The success probability function f satisfies:

1. Symmetry: f(ei, ej) = f(ej , ei)

2. f1(ei, ej) > 0, f2(ej , ei) > 0

3. f11(ei, ej) = f22(ej , ei) < 0

example given in Table 3.5, where E[V1] < E[V2]. The reason is that workers choose very high effort in the first
period even if the project does not yield a payoff in order to avoid having a bad relationship in the second period.
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4. Strict Supermodularity: f12(ei, ej) = f21(ei, ej) > 0

5. f(ei, 0) = f(0, ej) = 0

6. f(λei, λej) = λf(ei, ej), λei, λej ≤ emax41

The cost function c(e) has the following properties: c(0) = 0, ce(0) = 0, ce(emax) > π(y).

Proof of Lemma 1: Static Game

Given the Assumption 1, there always exists an equilibrium where both project partners exert

zero effort. It therefore remains to show that this equilibrium is unique, with ei = ej > 0.

We first show symmetry. From the first order conditions we obtain

f1(ei, ej)

f2(ei, ej)
=
ce(ei)

ce(ej)
(17)

Suppose, by contradiction, that effort levels are not symmetric ej > ei. Due to convexity of the

cost functions, the RHS of (17) is smaller than one. Due to concavity and supermodularity of

the effort function, we have f1(ei, ej) > f2(ei, ej), which is why the LHS is larger than one, which

gives the contradiction.

Further, the equilibrium where both workers exert strictly positive effort is unique. It suffices

to show that the FOCs (which under symmetry become a function of one variable) have one zero

under the condition that effort is strictly positive.

f1(e, e)π(y) = ce(e) (18)

Due to our assumption of constant returns to scale, f1(e, e) is constant in e. By our assumption

of convex costs with c(0) = 0, the first derivative of the cost function ce(e) starts in the origin

below f1(e, e) as ce(0) = 0, is strictly increasing and at the maximum effort exceeds π(y). Hence,

the two functions have a unique intersection, implying a unique symmetric equilibrium with

strictly positive effort.

Proof of Proposition 1:

The proof follows directly from maximization problem (6), Lemma 1 and the arguments given

in the text.

Proof of Proposition 2:

Second Period Effort We first establish how second period effort is affected by additional infor-

mation, depending on the state of the world. We know from equation (8) that the second period

effort is a function of expected payoff, π(y). To stress that a worker receives n signals, we adjust

our notation and denote the project value by π(yn). We then establish in Lemma 2 that π(yn)

increases in the number of signals in the high state and decreases in the number of signals in the
41We know that ei ∈ [0, emax]. If λ ∈ [0, 1], then λei ≤ emax, and for λ > 1 we impose the additional restriction

that λei ≤ emax, ∀i.
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low state. It then follows immediately from equation (8) that a worker with more signals exerts

higher effort in the high state and lower effort in the low state (proving claim 2. of Proposition

2).

Additionally, Lemma 2 characterizes the effect of vanishing uncertainty on the expected

payoff.

Lemma 2 (Information and Expected Project Value). Project value π(yn) satisfies the martin-

gale property: π(yn) = E[π(yn+1)|yn]. However, given that the state is realized, a worker with

more signals holds a more accurate posterior belief about the state of the world and thus about

the project value:

vh > E [π(yn+1)|θh] > E [π(yn)|θh] vl < E [π(yn+1)|θl] < E [π(yn)|θl] .

The impact of an additional signal vanishes, if uncertainty vanishes, i.e. E [π(yn)|θ] = E [π(yn+1)|θ],
if either (i) vl → vh, (ii) p→ 1, (iii) q → 1 if θ = θh, q → 0 if θ = θl, or (iv) next →∞.

Proof of Lemma 2:

We prove this Lemma in three steps.

First, we show the claim that π(y) has the martingale property:

π(yn) = P (θh|yn)vh + (1− P (θh|yn))vl

Define ψn ≡ P (θh|yn). We know that the stochastic process {ψn} is a martingale as

E[ψn+1|yn] = E[E[ψ|yn+1]|yn] = E[ψ|yn] = ψn,

where the second equality follows from the tower property of conditional expectations. Then,

E[π(yn+1)|yn] = E[ψn+1vh + (1− ψn+1)vl|yn] = E[ψn+1vh|yn] + E[(1− ψn+1)vl|yn]

= ψnvh + (1− ψn)vl = π(yn)

Second, we prove the stated properties of E [π(yn)] and E [π(yn)|θ]. Some useful observations:

1. The number of signals do not impact E[π(y)] due to the martingale property of π(y),

E[π(yn+1)] = E[E[π(yn+1)|yn]] = E[π(yn)].
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2. We note that the posterior is given by

P (θh|y) =
P (y|θh)P (θh)

P (θh)P (y|θh) + P (θl)P (y|θl)
=

qpx(1− p)n−x

qpy(1− p)n−x + (1− q)pn−x(1− p)x

=
1

1 + 1−q
q

(
1−p
p

)2x−n (19)

To simplify notation we define p̃ ≡ 1−p
p , q̃ ≡ 1−q

q and ŷ ≡ 2x−n. Then, ψn = P (θh|y) = 1
1+q̃p̃ŷ

.

3. We note that the expected project value conditional on state is given by:

E [π(yn)|θh] =

n∑
x=0

n!

x!(n− x)!

(
px(1− p)n−x

)(qpx(1− p)n−xvh + (1− q)pn−x(1− p)xvl
qpx(1− p)n−x + (1− q)pn−x(1− p)x

)

We are interested in showing that

E [π(yn+1)|θh] > E [π(yn)|θh] (20)

E [π(yn+1)|θl] < E [π(yn)|θl] (21)

We will show that equation (20) holds and leave the proof of equation (21) to the reader. Using

notation ψn = P (θh|y), we can rewrite equation (20) as

(vh − vl)E [(ψn+1 − ψn)|θh] > 0

As (vh − vl) > 0, by assumption, it remains to be shown that E [ψn+1 − ψn|θh] > 0. Given

θ = θh, and a signal realization ŷ, ψn+1 = 1
1+q̃p̃ŷ+1 with probability p and ψn+1 = 1

1+q̃p̃ŷ−1 , with

probability (1− p). Therefore,

1

1 + q̃p̃ŷ
<

p

1 + q̃p̃ŷ+1
+

1− p
1 + q̃p̃ŷ−1

⇔ pp̃2 + (1− p)− p̃ < q̃p̃ŷ(p+ (1− p)p̃2 − p̃)

which holds since pp̃2 + (1− p)− p̃ = 0 and 0 < q̃p̃ŷ(p+ (1− p)p̃2 − p̃), as p > 1
2 and thus

E [ψn|θh] < E [ψn+1|θh] ,

which concludes the proof.

Third, we show our last claim that additional signals do not matter as uncertainty vanishes which

is true in any of the following cases:
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(i) For vl → vh,

lim
vl→vh

E [π(yn)|θh] =

n∑
x=0

(n)!

x!(n− x)!

(
px(1− p)n−x

)
vh = (p+ 1− p)nvh = vh,

where the second step follows from the binomial formula. The expression is independent of n

and therefore additional signals do not matter. An analogous argument holds for E [π(y)|θl].

(ii) Assume p→ 1. Then,

lim
p→1

E [π(yn)|θh] = lim
p→1

n∑
x=0

(n)!

x!(n− x)!

(
px(1− p)n−x

)(qpx(1− p)n−xvh + (1− q)pn−x(1− p)xvl
qpx(1− p)n−x + (1− q)pn−x(1− p)x

)
= lim

p→1

(n)!

n!(n− n)!

(
pn(1− p)n−n

)(qpn(1− p)n−nvh + (1− q)pn−n(1− p)nvl
qpn(1− p)n−n + (1− q)pn−n(1− p)n

)
= lim

p→1
pn
(
qpnvh + (1− q)(1− p)nvl
qpn + (1− q)(1− p)n

)
= vh,

which is independent of n; and analogous when conditioning on θ = θl.

(iii) Assume q → 1. Then,

lim
q→1

E [π(yn)|θh] =
n∑
x=0

(n)!

x!(n− x)!

(
px(1− p)n−x

)
vh = (p+ 1− p)nvh = vh

which is independent of n. Similarly for q → 0 and E [π(y)|θl].
(iv) Note that x ∼ Binomial(np, np(1 − p)) if θ = θh and x ∼ Binomial(n(1 − p), np(1 − p)) if

θ = θl. Then, limn→∞(x− (n− x)) =∞ if θ = θh and limn→∞(x− (n− x)) = −∞ if θ = θl. To

see this note that x− (n− x) = 2x− n. By the weak law of large numbers, as n→∞,

if θ = θh x
P→ np ⇒ lim

n→∞
(2np− n) =∞

if θ = θl x
P→ n(1− p) ⇒ lim

n→∞
(2n(1− p)− n) = −∞.

Then, limn→∞ P (θh|y) = 1 if the true state is θ = θh and limn→∞ P (θh|y) = 0 if the true state

is θ = θl as

lim
n→∞

P (θh|y) = lim
n→∞

1

1 + 1−q
q

(
1−p
p

)2x−n
We have already shown that P (θh|y) is increasing in n if θ = θh and decreasing in n if θ = θl. Thus

we can apply the Monotone Convergence Theorem, which implies that limn→∞ E[P (θh|y)vh] =

E[limn→∞ P (θh|y)vh]. From this it follows that limn→∞ E [π(y)|θh] = vh and limn→∞ E [π(y)|θl] = vl.

�

First Period Effort The first period effort is a function of both π(yn) and E[V ∗(y′)], see equation
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(7). Thus, additional signals affect effort through their impact on π(yn) and E[V ∗(y′)]. As we

have already established the effect of additional signals on π(yn), we now turn to E[V ∗(y′)]. In

Lemma 3 we first show that V ∗(y′) is a convex function of the second period project value, π(y′),

which is a martingale, see Lemma 2. This establishes that additional signals lead to a higher

expected value. As before we analyze the effect of vanishing uncertainty, now on the expected

value.

Lemma 3 (Information and Second Period Expected Value). V ∗(y′n) is a submartingale. Thus,

a worker with more signals has a higher second period expected value:

E[V ∗(y′n)] < E[V ∗(y′n+1)],

The impact of an additional signal vanishes, if uncertainty vanishes, i.e. E[V ∗(y′n)] = E[V ∗(y′n+1)],

if either (i) vl → vh (ii) p→ 1 (iii) q → 1 if θ = θh, q → 0 if θ = θl, or (iv) next →∞.

Proof of Lemma 3:

First, we establish that V ∗(y′) is a submartingale: We can express V ∗(y′) as a function of π(y′),

and write

V ∗(y′) ≡ g(π(y′)) (22)

As π(y′) is a martingale, we have that g(π(y′)) is a submartingale if g is a convex function,

whenever E[V ∗(y′n)] <∞ which holds as 0 ≤ E[V ∗(y′n)] < vh,∀n.
Note that equilibrium effort depends on the expected project payoff through the signals, or

e′(y′). We mostly omit this dependence here in order to keep notation simple and write e′.

Applying the envelope theorem repeatedly, the first and second derivative of g are given by

∂g(π(y′))

∂π(y′)
= f2(e

′, e′)π(y′)
∂e′

∂π(y′)
+ f(e′, e′)

∂2g(π(y′))

∂π(y′)2
= [f22(e

′, e′) + f12(e
′, e′)]π(y′)

(
∂e′

∂π(y′)

)2

+ f2(e
′, e′)π(y′)

∂2e′

∂π(y′)2
+ f2(e

′, e′)
∂e′

∂π(y′)

+ (f1(e
′, e′) + f2(e

′, e′))
∂e′

∂π(y′)

= f2(e
′, e′)π(y′)

∂2e′

∂π(y′)2
+ f2(e

′, e′)
∂e′

∂π(y′)
+ (f1(e

′, e′) + f2(e
′, e′))

∂e′

∂π(y′)

From the first order condition of the static problem, evaluated at the equilibrium effort, we can

compute

∂e′

∂π(y′)
=

f1(e
′, e′)

(∂2c(e′)/∂e′2)
> 0

∂2e′

∂π(y′)2
=

(f11(e
′, e′) + f21(e

′, e′)) ∂e′

∂π(y)

(∂2c(e′)/∂e′2)
= 0
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It follows that

∂2g(π(y′))

∂π(y′)2
= f2(e

′, e′)
∂e′

∂π(y′)
+ (f1(e

′, e′) + f2(e
′, e′))

∂e′

∂π(y′)
> 0,

which implies that V ∗(y′n) is a submartingale and therefore E[V ∗(y′n)] is increasing in n.

Second, we prove the stated properties of

E[V ∗n ] =
n∑
x=0

n!

x!(n− x)!
(qpx(1− p)n−x + (1− q)pn−x(1− p)x)

(
f(e′, e′)π(y)− c(e′)

)
(23)

as uncertainty vanishes:

(i) Consider vl → vh.

We are interested in

lim
vl→vh

E[V ∗n ] = lim
vl→vh

n∑
x=0

n!

(x)!(n− x)!
(qpx(1− p)n−x + (1− q)pn−x(1− p)x)

(
f(e′(y′), e′(y′))π(y′)− c(e′(y′))

)
,

where e′(y′) is the equilibrium effort for given y′. As the other terms are constant in vl, all that mat-

ters is

lim
vl→vh

(
f(e′(y′), e′(y′))π(y′)− c(e′(y′))

)
= lim

vl→vh
f(e′(y′), e′(y′)) lim

vl→vh
π(y′)− lim

vl→vh
c(e′(y′))

= lim
vl→vh

f(e′(y′), e′(y′))vh − lim
vl→vh

c(e′(y′))

Note that limπ(y′)→vh e
′(y′) = e′vh , i.e. the effort converges to some constant e′vh as π(y′) →

vh, since e′(y′) is a linear function of π(y′) as due to constant returns to scale of f e(y) =

f1(1, 1)π(y). Also, due to constant returns to scale, f(e′(y′), e′(y′)) = e′(y′)f(1, 1) and thus

lime′(y′)→e′vh
f(e′(y′), e′(y′)) = e′vhf(1, 1), which again is constant in n. As f(e′vh , e

′
vh

) = e′vhf(1, 1)

is continuous, we know that limπ(y′)→vh f(e′(y′), e′(y′)) = e′vhf(1, 1). The argument is similar for

c(.). Then, we can write

lim
vl→vh

(
f(e′(y′), e′(y′))π(y′)− c(e′(y′))

)
= bvl ,

where bvl is constant and thus independent of n. Therefore, as vl converges to vh, the expected

second period value converges to a constant and is independent of the number of signals,

lim
vl→vh

E[V ∗n ] = bvl .

(ii) Consider p→ 1 for θ ∈ {θh, θl}.
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Note that

lim
p→1

π(y) = vh if n− 2x < 0

lim
p→1

π(y) = qvh + (1− q)vl if n− 2x = 0

lim
p→1

π(y) = vl if n− 2x > 0

As π(y) converges to some constant (and, of course, the same holds for π(y′)), so does

f(e′(y′), e′(y′))π(y′)− c(e′). We denote by V ∗(vh) (V ∗(vl)) [V ∗(v)] the limit of

f(e′(y′), e′(y′))π(y′)− c(e′) when π(y) converges to vh (vl) [qvh + (1− q)vl].

Note further that if n−2x < 0, limp→1(qp
x(1−p)n−x+(1−q)pn−x(1−p)x) = limp→1 qp

x(1−p)n−x.
Then we know that

lim
p→1

qpx(1− p)n−x =

{
q if x = n

0 otherwise

If n − 2x > 0, limp→1(qp
x(1 − p)n−x + (1 − q)pn−x(1 − p)x) = limp→1(1 − q)pn−x(1 − p)x. It

follows that

lim
p→1

(1− q)pn−x(1− p)x =

{
1− q if x = 0

0 otherwise

Last, if n− 2x = 0, limp→1(qp
x(1− p)n−x + (1− q)pn−x(1− p)x) = limp→1 p

x(1− p)n−x = 0, as
x, n > 0. From this it then follows that

lim
p→1

E[V ∗n ] = lim
p→1

(
n∑

x=0

n!

x!(n− x)!
(qpx(1− p)n−x + (1− q)pn−x(1− p)x) (f(e′(y′), e′(y′))π(y′)− c(e′(y′)))

)
= qV ∗(vh) + (1− q)V ∗(vl),

which is independent of n.

(iii) Consider q → 1. Notice that

lim
q→1

(qpx(1− p)n−x + (1− q)pn−x(1− p)x) = pn−x(1− p)x,

lim
q→1

π(y) = vh.
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It follows that

lim
q→1

E[V ∗n ] = lim
q→1

(
n∑
x=0

n!

x!(n− x)!
(qpx(1− p)n−x + (1− q)pn−x(1− p)x)

(
f(e′(y′), e′(y′))π(y′)− c(e′(y′))

))

= lim
q→1

(
n∑
x=0

n!

x!(n− x)!
(pn−x(1− p)x)V ∗(vh)

)
= lim

q→1
V ∗(vh)(1− p+ p)n = V ∗(vh),

where the last step follows from the fact that V ∗(vh) is a constant and the binomial theorem.

Thus, the limit is a constant and independent of n.

Next, consider q → 0.

lim
q→0

(qpx(1− p)n−x + (1− q)pn−x(1− p)x) = pn−x(1− p)x,

lim
q→0

π(y) = vl,

and by the same steps as previously it follows that limq→0 E[V ∗n ] is constant.

(iv) Consider the case of abundance of information: next →∞.

We want to show that

lim
n→∞

E[V ∗n ] = E[V ∗].

We know that for each n, E[V ∗n ] ≤ E[V ∗n+1] as V ∗n is a submartingale and that E[V ∗n ] ≤ vh for all

n. By the monotone convergence theorem, we know that a finite limit exists, which we denote

by E[V ∗]. �

We have thus established that E[V ∗n ] is increasing in the number of signals. We know from

Lemma 2 that π(yn) can be increasing or decreasing in the number of signals, depending on the

state of the world. Thus, if the state in the first period is high, first period effort is increasing in

the number of signals (proving claim 1. in Proposition 2).

Wages The effect of information on wages follows immediately from wage functions (9) and (10),

conditional on the high state θ = θh (proving claim 3. in Proposition 2).

Vanishing Uncertainty Additional information does not affect second period effort if uncertainty

is vanishing, see Lemma 2 (i)-(iv). Further, the result that the impact of degree on average first

period effort vanishes as uncertainty vanishes is due to Lemma 2 (i)-(iv) and Lemma 3 (i)-(iv).

Similarly, under vanishing uncertainty, the impact of a higher degree on wages vanishes since

information affects wages through effort.
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Proof of Proposition 3

The effect of clustering on expected first period effort follows from our expression of equilib-

rium effort (7), showing that it is increasing in sr. The effect on productivity/wages follows

immediately from the wage function (9).

Proof of Proposition 4:

We show that clustering and degree are complementary for the expected first period effort. We

can rewrite the first order condition (7) as follows(
ce(e)

f1(e, e)

)
= π(y) + βsrE[V ∗(y′)]

Taking expectations yields

E
(

ce(e)

f1(e, e)

)
= E(π(y)) + βsrE[V ∗(y′)]

E(π(y)) is independent of the number of first period signals and so an additional signal only

increases E[V ∗(y′)]. We define

F
(
e,E[V ∗(y′)], sr

)
≡ E

(
ce(e)

f1(e, e)

)
− E(π(y))− βsrE[V ∗(y′)] = 0

Then we calculate

∂2F (e,E[V ∗(y′)], sr)

∂E[V ∗(y′)]∂sr
=

∂

(
∂E

(
ce(e)

f1(e,e)

)
∂e

∂e
∂E[V ∗(y′)]

)
∂sr

− β

=
∂2
(
E
(

ce(e)
f1(e,e)

))
∂e2

∂e

∂E[V ∗(y′)]

∂e

∂sr
+
∂E
(

ce(e)
f1(e,e)

)
∂e

∂2e

∂E[V ∗(y′)]∂sr
− β = 0

Note that

∂E
(

ce(e)
f1(e,e)

)
∂e

= E
(
cee(e)

f1(e, e)

)
> 0;

∂2E
(

ce(e)
f1(e,e)

)
∂2e

= E
(
ceee(e)

f1(e, e)

)
≤ 0

Further,

∂e

∂sr
=
βE[V ∗(y′)]

E
(
cee(e)
f1(e,e)

) > 0;
∂e

∂E[V ∗(y′)]
=

βsr

E
(
cee(e)
f1(e,e)

) > 0

It follows that

∂2e

∂E[V ∗(y′)]∂sr
=

1

E
(
cee(e)
f1(e,e)

)
β − βsr

E
(
cee(e)
f1(e,e)

) βE[V ∗(y′)]

E
(
cee(e)
f1(e,e)

)E( ceee(e)
f1(e, e)

) > 0
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This implies immediately that clustering and degree are complements, also if we allow for discrete

changes. Given that effort increases more for a high level of information as clustering increases,

it follows that the first period wage, which is an increasing function of effort displays increasing

differences in clustering and degree:

∂2E[w]

∂E[V ∗(y′)]∂sr
= E

[
(f1(e, e) + f2(e, e))

∂2e

∂E[V ∗(y′)]∂sr

]
> 0 (24)

Proof of Proposition 5: Trade-Off Between Information and Peer Pressure

We assume that a D-worker has a higher degree and hence more signals, nint, and has clustering,

(sr)D. In turn, a C-worker has a lower degree and thus a lower number of signals (and therefore

sD > sC) but higher clustering and therefore (sr)C > (sr)D.

1. Comparative Advantage:

We want to show that E[wC ]
E[wD]

(where wC indicates the first period wage of a C-worker and wD

indicates the first period wage of a D-worker) increases as the environment becomes more certain.

First notice that,

E[wC ]

E[wD]
=
qwC(θh) + (1− q)wC(θl)

qwD(θh) + (1− q)wD(θl)
(25)

Note that under the stated assumption of CRS of f , the first and second period efforts are given

in closed form:

e(y) =f1(1, 1)(π(y) + βsrE[V ∗(y′)]) (26)

e′(y′) =f1(1, 1)π(y′). (27)

And so we obtain for the expected wage as:

E[w] =f(1, 1)f1(1, 1) (qvh + (1− q)vl)βsrE[V ∗(y′)]

+ f(1, 1)f1(1, 1) (qvhE[π(y|θh)] + (1− q)vlE[π(y|θl)]) , (28)

which follows from substituting equation (26) into wage equation (9). To simplify notation we

define k1 ≡ f(1, 1)f1(1, 1) and v ≡ qvh + (1 − q)vl. By the law of total expectation it follows

that (1− q)E[π(y|θl)] = E[π(y)]− qE[π(y|θh)]. Then, equation (28) becomes

E[w] =k1
(
vβsrE[V ∗(y′)] + q(vh − vl)E[π(y|θh)] + E[π(y)]vl

)
(29)

The wage ratio (25) can then be expressed as

E[wC ]

E[wD]
=
vβ(sr)C (E[V ∗(y′)])C + q(vh − vl) (E[π(y|θh)])C + (E[π(y)])C vl

vβ(sr)D (E[V ∗(y′)])D + q(vh − vl) (E[π(y|θh)])D + (E[π(y)])D vl
(30)
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Note that E[π(y)] is independent of the number of signals as it is a martingale and thus,

(E[π(y)])C = (E[π(y)])D = v. Further, note that

E[V ∗(y′)] = C1(vh − vl)2qE [ψn|θh] + 2C1vl(vh − vl)q + C1v
2
l (31)

E[π(y)|θh)] = (vh − vl)E[ψn|θh] + vl (32)

where C1 = f1(1, 1)
(
1− 1

2f1(1, 1)
)
. C1 is positive as the value of the problem is positive. To

obtain the simplified expression for E[V ∗(y′)] in (31), we used equation (23) and substituted in

the equilibrium first period effort (26). We then applied the binomial theorem and used the

martingale property.

To make the notation more compact and to single out those variables that depend on informa-

tion, we now introduce the variables ai and bi, i ∈ {C,D} (which do not depend on information)

and write the wage ratio (25) as (where we also use (31) and (32)):

E[wC ]

E[wD]
=
aC + bC (E[ψ|θh])C

aD + bD (E[ψ|θh])D
(33)

For illustration, we now focus on the case where the D-worker has one more signal than the

C-worker. Our exercise aims at analyzing (33) when reducing uncertainty, which we here achieve

by letting next and thus n grow. If (33) is increasing in the number of signals n, it must hold that

aC + bCE[ψn|θh]

aD + bDE[ψn+1|θh]
>
aC + bCE[ψn−1|θh]

aD + bDE[ψn|θh]

or

(
aCbD + aDbC

)
E[ψn|θh] + bCbDE[ψn|θh]2

> aCbDE[ψn+1|θh] + aDbCE[ψn−1|θh] + bCbDE[ψn+1|θh]E[ψn−1|θh] (34)

We focus first on showing that bCbDE[ψn|θh]2 > bCbDE[ψn+1|θh]E[ψn−1|θh], or

E[ψn|θh]2 > E[ψn+1|θh]E[ψn−1|θh] (35)

Thus, if we establish that E[ψn|θh] is log-concave, then inequality (35) follows immediately. As

concavity implies log-concavity it suffices to show that E[ψn|θh] is concave.

Concavity of E[ψn|θh]:

It is helpful to express ψn in terms of its log-likelihood ratio (LLR). Without any signals the

LLR, denoted by λ0 is a function of the prior q:

λ0 = log

(
q

1− q

)
, (36)

49



Generally, the LLR is given by

λn+1 = λn + 2 log

(
p

1− p

)
(xn −

1

2
),

where we denote by xn the signal realization of the nth observation. Further,

log

(
ψn

1− ψn

)
= λn ⇔ ψn =

eλn

1 + eλn
.

Taking expectations yields

E(ψn|θh) = E
(

eλn

1 + eλn
|θh
)

Then, we take the first and second derivative with respect to n, which yields

∂E(ψn|θh)

∂n
= E

(
∂ψn
∂λn

∂λn
∂n

∣∣∣∣∣θh
)

∂2E(ψn|θh)

∂n2
= E

(
∂2ψn
∂λ2n

(
∂λn
∂n

)2

+
∂ψn
∂λn

∂2λn
∂n2

∣∣∣∣∣θh
)

Note that λn is a linear function in n. To see this note that with each signal, the LLR either

increases or decreases by a constant. Thus, ∂
2λn
∂n2 = 0 and

sign

(
∂2E(ψn|θh)

∂n2

)
= sign

(
∂2E(ψn|θh)

∂λ2n

)
We therefore restrict attention to the derivative with respect to λn:

∂E(ψn|θh)

∂λn
= E

(
(1 + eλn)eλn − e2λn

(1 + eλn)2

∣∣∣θh) = E
(

eλn

(1 + eλn)2

∣∣∣θh)
∂2E(ψn|θh)

∂λ2n
= E

(
(1 + eλn)2eλn − 2e2λn(1 + eλn)

(1 + eλn)4

∣∣∣θh) = E
(
eλn(1− eλn)

(1 + eλn)3

∣∣∣θh)
The second derivative is negative (thereby implying that E(ψn|θh) is concave) if

1− eλn < 0 ⇔ 0 < λn

This implies that if the LLR is negative, then the expected posterior belief E(ψn|θh) is convex,

otherwise, it is concave. The LLR is positive if the probability of the high state outweighs the

probability of the low state, that is if sufficiently many signals have been positive. It remains to

be shown that, given that the true state is θ = θh, λn is positive for some n and that once it is

positive, the probability of it becoming negative again vanishes. We first show that λn becomes

positive within a finite number of observations. To see this define a stopping time T over the set
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of all possible observations P,

T = inf{n ≥ 0 : λ+n ∈ P},

where λ+n is the sequence for which λn > 0. Then, Williams (1991), p. 101 establishes the

following:

Lemma 4. Suppose that T is a stopping time such that for some N ∈ N and some ε > 0 we

have for every n ∈ N:

P (T ≤ n+N |Fn) > ε almost surely (37)

Then, E[T ] <∞.

Note that Fn denotes the filtration with n observations. Inequality (37) is fulfilled as the prob-

ability that there are more positive than negative signals given any number of signals is strictly

positive and thus there exists an ε that is smaller than this probability. This establishes that λn
becomes positive for a finite number of signals.

Next, we want to establish that once λn is strictly positive, the probability of λn becoming

negative converges to zero as n grows. We know from Hoeffding’s Inequality that the number of

high signals is concentrated around its mean, with exponentially small tail, formally

P (np− y ≥ t) ≤ e−2nt2

Given that some λn is positive, we know that the number of high signals must satisfy y > n
2 for

n even and y ≥ n+1
2 for n odd. We focus on the case where n is even, the case of n odd follows

immediately. The probability of λn being negative is equivalent to having more than half of the

signals indicating the low state. We therefore set t = np− n
2 , which yields

P (np− y ≥ np− n

2
) ≤ exp

(
−2n3

(
p− 1

2

)2
)

(38)

It is evident that for n sufficiently high, the probability of having more low signals than high

signals (which is the probability on the LHS of (38)) approaches zero quickly and thus we have

established that λn is positive in finite time and remains positive for sufficiently large n with

probability approaching one. Thus for a sufficiently high LLR, E(ψn|θh) is concave. While we

focus here on the effect of an increase in signals n on the LLR, note that the LLR is also affected

by q and p, where q is the prior probability of the high state and p is the probability of the

signal being high given that the state is high. More precisely, λn is increasing in q and p. Thus,

the LLR is influenced by all of our measures of uncertainty. Decreasing uncertainty by increas-

ing q, p or n leads to a higher and, at some point, positive LLR, in which case E(ψn|θh) is concave.
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Inequality (35) is thus fulfilled and for (34) to hold it remains to be shown that

(
aCbD + aDbC

)
E(ψn|θh) ≥ aCbDE(ψn+1|θh) + aDbCE(ψn−1|θh)

⇔ aDbCE(ψn − ψn−1|θh) ≥ aCbDE(ψn+1 − ψn|θh) (39)

is fulfilled. We know that E(ψn|θh) is concave and increasing for n sufficiently high, and thus

E(ψn − ψn−1|θh) > E(ψn+1 − ψn|θh).

Further, we can show that aDbC = aCbD, which is equivalent to

βC1

(
(sr)C − (sr)D

)
v(v − qvh − (1− q)vl) = 0

as v = qvh + (1− q)vl. Thus, we have shown that (39) is positive for n sufficiently high, which

establishes that C-workers have a comparative advantage as uncertainty vanishes. �

2. Wage Dynamics:

Claim: wD(θ) ≥ wC(θ) ⇒ E[w′D] > E[w′C ].

From (10), it follows that the second period expected wage across states is defined as

E[w′] = qw′(θ, θ′h) + (1− q)w′(θ, θ′l) = f(1, 1)siPi(γ
′
g|θ)

(
qE[e′(y′)|θ′h]vh + (1− q)E[e′(y′)|θ′l]vl

)
Recall that P (γ′g|θ) ≡ E[f (e(y), e(y)) + (1− r)(1− f (e(y), e(y)))|θ] = E[e(y)|θ]rf(1, 1) + 1− r.

Suppose that in the first period wD(θ) ≥ wC(θ), implying E[e(y)D|θ] ≥ E[e(y)C |θ]. Moreover,

by assumption, sC < sD and (sr)C > (sr)D. Hence, [sP (γg|θ)]D > [sP (γg|θ)]C since

[sP (γg|θ)]D = (sr)D(E[e(y)D|θ]f(1, 1)−1)+sD > [sP (γg|θ)]C = (sr)C(E[e(y)C |θ]f(1, 1)−1)+sC

where the expression in brackets, E[e(y)|θ]f(1, 1) − 1, is negative but (weakly) less so for the

D-worker. Last, we focus on

qE[e′(y′)|θ′h]vh + (1− q)E[e′(y′)|θ′l]vl = f1(1, 1)
(
q(vh − vl)E[π(y′)|θ′h]vh + vvl

)
,

where we again denoted v ≡ qvh + (1 − q)vl and where we used the law of total expecta-

tion (1 − q)E[π(y|θl)] = E[π(y)] − qE[π(y|θh)]. As E[π(y′)|θ′h] is the only variable here that

depends on information and since it is increasing in the number of signals, it follows that

q (E[e′(y′)|θ′h])D vh + (1 − q) (E[e′(y′)|θ′l])
D vl > q (E[e′(y′)|θ′h])C vh + (1 − q) (E[e′(y′)|θ′l])

C vl.

Thus, wD(θ) ≥ wC(θ) implies E[w′D] > E[w′C ], which proves the claim. �
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Appendix C: Data and Additional Results

Computer Scientists

Table 17: Correlation of Network Measures: Computer Science

Degree Clustering Coefficient
Degree 1
Clustering Coefficient -0.46*** 1
***p<0.01, **p<0.05, *p<0.1.
Note: Sample consists of 438,531 men and 146,829 women. This sample does
not contain individuals for whom the clustering coefficient is not defined, i.e.
those with fewer than 2 links.

Enron

Table 18: Correlation of Network Measures: Enron

Degree Clustering Coefficient
Degree 1
Clustering Coefficient -0.21*** 1
***p<0.01, **p<0.05, *p<0.1.
The statistic is based on our sample of 3,926 individuals, 1,628 women and
2,298 men. This sample does not contain individuals for whom the clustering
coefficient is not defined, i.e. those with fewer than 2 links.

AddHealth

Table 19: Correlation of Network Measures: Add Health

Degree Clustering Coefficient
Degree 1
Clustering Coefficient -0.11*** 1
***p<0.01, **p<0.05, *p<0.1.
Note: This sample does not contain individuals for whom the clustering
coefficient is not defined, i.e. those with fewer than 2 links. It also does not
include individuals for whom we do not have gender or age. Observations :
73,244.
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Table 21: Differences in Degree: Add Health Sample All Degrees

Degree Degree In Degree In Degree Out Degree Out Degree

Female 0.0892∗∗∗ 0.153∗∗∗ 0.0802∗∗∗ 0.139∗∗∗ 0.172∗∗∗ 0.204∗∗∗

(0.00661) (0.00867) (0.00682) (0.00903) (0.00673) (0.00857)

Age -0.0431∗∗∗ -0.0140∗∗∗ -0.0520∗∗∗

(0.00265) (0.00271) (0.00274)

Age 16-17 -0.00915 0.0510∗∗∗ -0.0523∗∗∗

(0.0106) (0.0109) (0.0111)

Age 18-19 -0.160∗∗∗ -0.0353 -0.243∗∗∗

(0.0201) (0.0198) (0.0211)

Female*Age 16-17 -0.144∗∗∗ -0.131∗∗∗ -0.0718∗∗∗

(0.0136) (0.0141) (0.0141)

Female*Age 18-19 -0.237∗∗∗ -0.266∗∗∗ -0.109∗∗∗

(0.0280) (0.0267) (0.0305)

SCHOOL FIXED EFFECTS INCLUDED

Observations 80333 80333 80333 80333 80333 80333

R2 0.160 0.163 0.105 0.107 0.130 0.131

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Network characteristics are standardized and can be interpreted in terms of standard deviations,
all regressions include school fixed effects. This sample also contains individuals with fewer than 2
connections.
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Figure 3: Clustering Coefficient and Degree Across Ages
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1 Theory

Selection Probability si. We demonstrate the robustness of our results by calculating the

wage conditional on being selected. This is only relevant for the wages in the second period. To

see this note that effort and wages in the first period are calculated conditional on being selected.

For the effort in the second period, the probability of being selected does not matter per se, but

only in combination with the share of common friends rij , that is the second period effort only

depends on sirij = sr. However, the probability of being selected matters for wages in the

second period, defined as w′i(θ, θ
′) ≡ siPi(γ

′
g|e(y), r)E[f (e′(y′), e′(y′)) v′|θ′]. We now show that

our results do not change if we consider the second period wage conditional on being selected,

which we also refer to wages per project:

ω′i(θ, θ
′) ≡ Pi(γ

′
g|e(y), r)E[f

(
e′(y′), e′(y′)

)
v′|θ′] (1)

The effect of information on second period wages is unchanged, as si is not affected by

additional signals. Having common friends also does not have an impact on si, and so our

results hold also for the wages per project.

Our result on wage dynamics also remains unchanged. We restate the result here.

Remark 1. Wage Dynamics: If a C-worker has a weakly lower first period wage than a D-worker,

then he also expects a lower wage per project in the second period.

Proof. Claim: wD(θ) ≥ wC(θ) ⇒ E[ω′D] > E[ω′C ].

As in the Proof of Proposition 5, we define

E[ω′] = qω′(θ, θ′h) + (1− q)ω′(θ, θ′l) = f(1, 1)Pi(γ
′
g|θ)

(
qE[e′(y′)|θ′h]vh + (1− q)E[e′(y′)|θ′l]vl

)
,

which, using the new definition (1), no longer depends on si. As before, P (γ′g|θ) ≡ E[f (e(y), e(y))+
(1− r)(1− f (e(y), e(y)))|θ] = E[e(y)|θ]rf(1, 1) + 1− r.

1



Again, by assumption, in the first period wD(θ) ≥ wC(θ), implying E[e(y)D|θ] ≥ E[e(y)C |θ].
Moreover, P (γg|θ)D > P (γg|θ)C since

[P (γg|θ)]D = rD(E[e(y)D|θ]f(1, 1)− 1) + 1 > [P (γg|θ)]C = rC(E[e(y)C |θ]f(1, 1)− 1) + 1

where the expression in brackets, E[e(y)|θ]f(1, 1) − 1, is negative but (weakly) less so for the

D-worker, exactly as before. The remainder of the proof of Proposition 5 applies as is.

This demonstrates that our current definition of wages (according to which they depend on

the probability of being selected) does not affect our results.

Infinite Horizon We extend our setting to allow for an infinite horizon. If a project fails in t,

then relationships in the next period t+1 are bad with the current project partner and common

friends. In t+ 2, all relationships are good again. Note that links are never cut.

Consider first the problem if an agent is in a bad state, that is he is paired with someone he

has a bad relationship with. In the current period his payoff is zero, but in the following period

he has a good relationship with everyone again. Denote the expected present value of a good

relationship by EWi(γg). In addition to the usual expectation regarding signals, the expectation

is also taken over all potential pairings of partners as it can make a difference of whether i is

matched with j or k even though he has a connection with both. Thus, agent i’s discounted

present value in the current period conditional on being matched with someone with whom the

relationship is bad is given by:

Wij(γb) = 0 + βsiEWi(γg) (2)

Note that this expression does not depend on who the partner is, beyond having a bad relationship

with him, and further, that it is a constant. Therefore, Wij(γb) =Wi(γb) = EWi(γb).

The value of the problem in the good state if partners i and j are selected is then given by

Wij(γg) = V ∗ij(γg) + βsi
(
Pi(γ

′
g)EWi(γ

′
g) + (1− Pi(γ

′
g))EWi(γ

′
b)
)
, (3)

where V ∗ij(γg) is the current value of the problem given that the team is in a good state and

Pi(γ
′
g) is the probability of a good state in the next period, as defined on p. 10, expression (5).

We can simplify this expression to

Wij(γg) = V ∗ij(γg) + βsi
(
Pi(γ

′
g)EWi(γ

′
g) + (1− Pi(γ

′
g))[0 + βsiEWi(γ

′′
g )]

)
= V ∗i (γg) + βsiPi(γ

′
g)EWi(γ

′
g) + β2s2i (1− Pi(γ

′
g))EWi(γ

′′
g ), (4)

where double prime denotes two periods ahead. Noting that EWi(γ
′
g) = EWi(γ

′′
g ), we can

2



simplify further to

Wij(γg) = V ∗i (γg) + β(1− βsi)siPi(γ
′
g)EWi(γ

′
g) + β2s2iEWi(γ

′
g) (5)

This setting differs in some aspects, but the key dependence of the payoff on degree and

clustering is the same as before. Note that clustering enters through siPi(γ
′
g), which is the same

as in the main text. Therefore, higher clustering still yields higher effort. Similarly, EWi(γg)

depends on the number of signals. Note that EWi(γg) is a weighted average of value of the

problem for i with different agents and we have shown that the value of the problem for each

team depends positively of the number of signals.

However, in this setting the probability of being selected matters independently of the clus-

tering, so the symmetry of effort choices among project partners is broken. If an agent has a

higher probability of being selected then his payoff is higher and therefore, he would exert higher

effort. The baseline set up in the paper allows us to focus on the trade off between peer pressure

and information, whereas here degree comes with an additional advantage–that of being selected

for more projects in the future.

In sum, in the infinite horizon setting our two key forces – clustering and information – are

still crucial determinants of effort. However, the trade-off we highlight is cleaner in our baseline

model.

2 Data

2.1 Add Health: Robustness

AddHealth network measures with gender balance measured at the school level as control
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2.2 Census Data: Robustness

Earnings Regression with industry and occupational fixed effects.

Table 2: Log Earnings, Risk and Gender

(1) (2)
Log Earnings Log Earnings

Female -0.323∗∗∗ 0.0601∗∗∗

(0.000718) (0.00460)

Risk 4.255∗∗∗

(0.0144)

Female*Risk -0.712∗∗∗

(0.00879)

Years of Educ 0.0846∗∗∗ 0.0842∗∗∗

(0.000180) (0.000180)

Experience 0.0258∗∗∗ 0.0256∗∗∗

(0.000127) (0.000127)

Experience2 -0.000362∗∗∗ -0.000361∗∗∗

(0.00000257) (0.00000257)

Black -0.0437∗∗∗ -0.0438∗∗∗

(0.00134) (0.00133)

White 0.0382∗∗∗ 0.0380∗∗∗

(0.00103) (0.00103)

Constant 9.030∗∗∗ 6.362∗∗∗

(0.00550) (0.00916)
Observations 3558758 3558758
R2 0.332 0.334
Sample: 2000 US Census, Full-time Workers. Estimation by OLS.
Controls that are included but not reported: Industry and occupation fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Occupational choice with industry fixed (ordered probit).

Table 3: Occupational Risk and Gender

(1)
Risk

Female -0.198∗∗∗

(0.00125)

Years of Educ 0.000240
(0.000267)

Experience -0.00153∗∗∗

(0.000237)

Experience2 0.0000574∗∗∗

(0.00000465)

Black 0.0234∗∗∗

(0.00254)

White 0.00884∗∗∗

(0.00190)

Log Occ Mean Earnings 1.861∗∗∗

(0.00248)
Observations 3558758
Pseudo R2 0.072
Sample: 2000 US Census, Full-time workers. Estimation method: ordered probit.
Controls that are included but not reported: Industry fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Occupational choice (linear probability model).

Table 4: Occupational Risk and Gender

(1)
Risk (binary)

Female -0.0507∗∗∗

(0.000504)

Years of Educ -0.0176∗∗∗

(0.000121)

Experience -0.000833∗∗∗

(0.000110)

Experience2 0.0000121∗∗∗

(0.00000216)

Black -0.0149∗∗∗

(0.00124)

White -0.00152
(0.000936)

Log Occ Mean Earnings 0.492∗∗∗

(0.000942)

Constant -4.405∗∗∗

(0.00962)
Observations 3558758
R2 0.094
Sample: 2000 US Census, Full-time Workers. Estimation method: Linear probability model.
Binary outcome is occupational risk below and above median.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Occupational choice with industry fixed (linear probability model).

Table 5: Occupational Risk and Gender

(1)
Risk (binary)

Female -0.0542∗∗∗

(0.000508)

Years of Educ -0.00644∗∗∗

(0.000117)

Experience 0.000746∗∗∗

(0.000100)

Experience2 0.00000325
(0.00000198)

Black 0.0139∗∗∗

(0.00113)

White 0.00237∗∗∗

(0.000838)

Log Occ Mean Earnings 0.525∗∗∗

(0.000876)

Constant -4.697∗∗∗

(0.00940)
Observations 3558758
R2 0.252
Sample: 2000 US Census, Full-time workers. Estimation method: Linear probability model.
Binary outcome is occupational risk below and above median.
Controls that are included but not reported: Industry fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Computer Science: Robustness

Table 6: Summary Statistics: Computer Scientists (Google Scholar Sample)

Min Max Mean Std
Degree 2.00 95.00 10.19 12.54

Clustering Coefficient 0.00 0.25 0.14 0.07
Observations 25,428

Note: Sample consists of 15,827 men and 9,601 women. This
sample does not contain individuals for whom the clustering coef-
ficient is not defined, i.e. those with fewer than 2 links.
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Table 7: Correlation of Network Measures: Computer Science (Google Scholar Sample)

Degree Clustering Coefficient
Degree 1

Clustering Coefficient -0.54*** 1
t-statistics in parenthesis. ***p<0.01, **p<0.05, *p<0.1.
Note: Sample consists of 15,827 men and 9,601 women. This sample does
not contain individuals for whom the clustering coefficient is not defined, i.e.
those with fewer than 2 links.

Table 8: Network Measures by Gender: Computer Science (Google Scholar Sample)

Male Female Difference
Degree 10.6618 9.4204 1.2415***

( 7.8320)
Clustering Coefficient 0.1339 0.1408 -0.0069***

(-7.7570)
Observations 25,428

t-statistics in parenthesis. ***p<0.01, **p<0.05, *p<0.1.
Note: Sample consists of 15,827 men and 9,601 women. This sample
does not contain individuals for whom the clustering coefficient is not
defined, i.e. those with fewer than 2 links.
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