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Interactions in social groups can promote behavioural specialization.
One way this can happen is when individuals engage in activities with
two behavioural options and learn which option to choose. We analyse
interactions in groups where individuals learn from playing games
with two actions and negatively frequency-dependent payoffs, such as
producer–scrounger, caller–satellite, or hawk–dove games. Group members
are placed in social networks, characterized by the group size and the
number of neighbours to interact with, ranging from just a few neighbours
to interactions between all group members. The networks we analyse
include ring lattices and the much-studied small-world networks. By imple-
menting two basic reinforcement-learning approaches, action–value learning
and actor–critic learning, in different games, we find that individuals often
show behavioural specialization. Specialization develops more rapidly
when there are few neighbours in a network and when learning rates are
high. There can be learned specialization also with many neighbours, but
we show that, for action–value learning, behavioural consistency over
time is higher with a smaller number of neighbours. We conclude that
frequency-dependent competition for resources is a main driver of specializ-
ation. We discuss our theoretical results in relation to experimental and field
observations of behavioural specialization in social situations.
1. Introduction
The issue of why individuals differ in behavioural tendencies has received
much attention in recent years [1–3], with a focus on genetic or other differences
emerging early in development. One influential idea is that frequency depen-
dence can promote specialization [4]. Here, we explore the possibility that
learning with frequency-dependent rewards, such as rewards from playing
games, can give rise to specialization.

Early in the development of game theory in biology it was found that there
can be asymmetric evolutionarily stable strategies (ESSs), with the ‘bourgeois’
ESS for the hawk–dove game as a well-known example [5,6]. In this game
two individuals interact and the ESS is polarized, in the sense that one player
uses hawk and the other dove. It turns out that there are similar ESSs for
group sizes larger than two, such that players polarize into using different be-
havioural options [7]. The selection favouring polarization is stronger in smaller
groups. Here, we extend the idea of behavioural specialization to groups inter-
acting in a social network, where the group size might be large but the number
of network neighbours of an individual could be small. We focus on learning
leading to specialization, because social interactions are often repeated in a
group and persist over times long enough for learning to be important.

The idea that frequency-dependent learning leads to specialization was intro-
duced some time ago [8], with producer–scrounger relations [9] as a possible
example. Recent foraging experiments have demonstrated that negatively
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frequency-dependent learning can result in behavioural
diversity, with preferences becoming established after 25–50
foraging experiences per individual [10], which corresponds
to rather fast learning. Producer–scrounger experiments with
birds also indicate that behavioural specialization involves
learning [11] and that behaviour is consistent over time if the
social environment (the flock mates) is constant, but tends to
change in new social environments [12]. Stable producer–
scrounger relations are also found in bats that live in large
groups, but interact when foraging with a small number of
other individuals, thus forming a social network [13].

The general idea of frequency-dependent learning in social
groups is thus well established and has experimental support,
but up to now it is not known how the social environment, in
particular, the number of network neighbours, influences the
rate of establishment and the temporal stability of behavioural
specialization. Our aim here is to examine these questions,
using game-theory models of groups of individuals that
learn, based on rewards (i.e. payoffs), which actions to prefer
when interacting with neighbours in a social network. In
addition to the producer–scrounger game [9,14,15], where
individuals have the options to produce (i.e. search for a food
source) or to scrounge (i.e. attempt to exploit food sources
found by producers), we also study a caller–satellite game
[16–18] and the hawk–dove game [6,19].

Calling and acting as satellite are male behavioural options
in species inwhichmales call to attract females or, alternatively,
act as satellites to nearby callers, attempting to intercept
approaching females. In anurans, calling involves a form of
male–male competition [20], so that males can be seen as inter-
acting with neighbours in a social network [21], and the
situation could be similar in other species with calling males.

The hawk–dove game is frequently used to examine con-
tests between individuals, but it gives a highly schematic of
such behaviour. Contests in social groups often produce dom-
inance hierarchies with individual recognition, but there may
be examples of fights in social groups with limited or no indi-
vidual recognition, such as in some species of crickets [22,23],
where learning to prefer hawk versus dove in aggressive inter-
actions, which corresponds to dominant versus subordinate
behaviour, can provide a modelling starting point. Also, for
repeated hawk–dove interactions between two individuals, a
reinforcement-learning model showed polarization, one
individual using hawk and the other dove [24].

In each of the games we study, we idealize the situation
by assuming that group members do not differ in traits like
learning, foraging or fighting abilities, in order to focus on
the particular effects of frequency-dependent learning. For
learning, we use reinforcement-learning approaches (action–
value learning and actor–critic learning) that encapsulate
basic learning concepts from animal psychology [25].
Action–value learning is the simplest of these and is an
implementation of the Rescorla–Wagner model for operant
conditioning. The learned probabilities of choosing actions
are based on differences in estimates of the value (expected
reward) from using an action.
2. Methods
Our general approach is to study reinforcement learning in
games with two actions (behavioural options) for individuals
in a group of size N that interact with neighbours in a social net-
work. Figure 1 shows the kind of networks we study, with an
illustration of two learning trajectories for a producer–scrounger
game (see the electronic supplementary material for detailed
descriptions of our methods).

The networks we use are either regular ring lattices
(figure 1a) or small-world networks (figure 1b) [26,27]. The
nodes of a network represent a group of N individuals and the
network edges represent connections between a group member
and the neighbours with which it interacts. For a ring lattice,
each group member has K neighbours (figure 1a). A small-
world network is obtained from a ring lattice by ‘rewiring’
some connections to a random, previously unconnected group
member, with prew the probability of rewiring (figure 1b).

We use two implementations of reinforcement learning [25]:
action–value learning and actor–critic learning. Action–value
learning is a simple implementation of the classical Rescorla–
Wagner model of conditioning [28], modified for instrumental
conditioning. With two actions, for instance produce (P) and
scrounge (S), a learning individualmaintains andupdates two esti-
mates (e.g. QP and QS) of the value (reward) of performing each
action. As in the Rescorla–Wagner learning updates, the change
in a value is the product of a learning rate (α) and the ‘surprise’,
i.e. the difference between the actual perceived reward (R) and
the currently estimated value (e.g. QP,t+1 =QP t + α(Rt−QPt) after
performing action P in round t). The probability of choosing an
action is a sigmoid (logistic) function of the difference in estimated
values between that action and the alternative action, multiplied
by a parameter β giving the sensitivity to differences in estimated
values (e.g. a sigmoid function of β(QP−QS); figure 1c illustrates
action–value learning trajectories).

Actor–critic learning is a commonly used but more complex
mechanism, which is related to so-called two-factor learning
theory [29,30]. In this approach, the learning of values and the
the updating of action preferences are coupled but separate
psychological mechanisms. The expected value of a round, using
the current action preferences, is updated using one learning rate
(as in Rescorla–Wagner), and the action preferences, defined as
the logit of the probability of choosing an action, are updated
using another learning rate, but with the same value difference
(the ‘surprise’). We show results from using the actor–critic learn-
ing rule in the electronic supplementarymaterial, where the details
of the rule are also described.

(a) Games
For greater generality, we study three different two-action games
with negative frequency dependence. In a round of the produ-
cer–scrounger game (with a total of T rounds), each group
member chooses whether to produce or to scrounge. A producer
has a probability λ of finding food. On finding food, the producer
consumes an amount of value V1, after which scroungers can
arrive, sharing the remaining amount V2 with the producer.
We assume that scroungers come from the producer’s neigh-
bours, but that a maximum of n̂S scroungers can participate (if
there are more available, n̂S are randomly selected).

The caller–satellite game describes a group of males that can
either call (C) to attract females, or to act as satellite (S) to neigh-
bouring callers. They choose the action to use in each of a
number T of rounds. Each caller has an effective call strength s.
Because of interference (e.g. aggression) between callers, the call
strength decreases with the number of neighbouring callers (s =
1− γ0kC/k, where k is the number of neighbours and kC is the
number of these that call). The total number of females that are
attracted to a group is proportional to the sum of the call strengths
(with f the constant of proportionality). An attracted female
approaches one of the callers with probability proportional to his
call strength. If there are no satellites, the female mates with the
caller, if there is a single satellite they each have a chance of 0.5
of mating, and if there are kS satellite neighbours of the caller,
each satellite has a probability 0.5/kS of mating. This gives the
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Figure 1. Illustration of networks with social interactions. (a,b) Coloured points represent individuals in a group and grey lines connect neighbours. Neighbours have
interactions, implemented as games of a specified kind, such as producer–scrounger, caller–satellite or hawk–dove. Groups consist of 21 individuals (N = 21),
presented as points along the perimeter of a circle. Each individual in (a) is connected to two neighbours in the clockwise and two in the counterclockwise direction,
so each has four neighbours (K = 4). In graph theory such a network is called a regular ring lattice. (b) Shows a so-called small-world network, obtained from the
one in (a) through a ‘rewiring procedure’, as described by Watts & Strogatz [26]. The probability of rewiring a connection is prew = 0.1. (c) Illustration of the
probabilities to produce and the actions taken (squares denote produce and triangles scrounge) for two individuals, shown colour coded, in the network in
(a). (Online version in colour.)
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caller an advantage in mating with the female. The reason can be
that the female is trying to locate the caller and, possibly, that sat-
ellites interferewith each otherwhen trying to intercept the female.
The reward for mating is V1.

For the hawk–dove game, we assume that each group
member has an expected number T of rounds (contests). Contest-
ants are selected by first choosing a random group member and
then a random opponent among the neighbours. Each contest is
a standard hawk–dove game, with a benefit (reward) V of win-
ning and a cost (penalty) C of losing a hawk–hawk fight.
Details of this and the other games are found in the electronic
supplementary material.

(b) Learning simulations
Our results are based on individual-based simulations of learn-
ing in groups, typically 500 groups per case. As parameters we
used V1 = 1, V2 = 3 and n̂S ¼ 2 for the producer–scrounger
game; γ0 = 0.75, f = 2 and V1 = 2 for the caller–satellite game;
and V = 1 and C = 2 for the hawk–dove game.

For action–value learning, we used α = 0.1 and α = 0.01 as
learning rates for fast and slow learning, and β = 8 as the sensi-
tivity to the difference in estimated values in the probability of
choosing an action.

(c) Description of polarization
We describe the degree of polarization of the individual learned
action probabilities p in a group using a polarization index,
F ¼ ðVarðpÞ=ð�pð1� �pÞÞ. The index is a normalized variance of
the individual probabilities p. It is inspired by Wright’s fixation
index as used in population genetics [31]. If all group members
have the same p, F = 0, and if the probabilities are either 0 or 1,
but vary between individuals, F = 1. With several groups, we
average the index over groups.

To describe individual consistency over time, we use an
autocorrelation, implemented as the correlation between the
individual values of logit( p) at two points in time, as a function
of the time difference (i.e. the time lag). This corresponds to the
general approach of using a correlation of behaviour at two
points in time to measure behavioural consistency [3,4].
3. Results
The types of networks and learning processes we model are
illustrated in figure 1. With these kinds of social networks,
but for a larger group size (N = 99), we simulated action–
value learning for the producer–scrounger game (figure 2).
For fast learning we find that substantial polarization into
producers (P) and scroungers (S) emerges fairly rapidly, in
particular for a small number of neighbours (figure 2a,b,d ).
For slow learning it takes longer for polarization to develop,
but with a small number of neighbours, effects of frequency-
dependence are strong, and polarization eventually reaches
approximately the same level as for fast learning (figure 2d
shows the first 1000 rounds). By contrast, with many neigh-
bours and with all members connected, slow learning leads
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Figure 2. Behavioural polarization when there is action–value learning in a producer–scrounger game. Data are from 500 simulated groups per case and each group
has N ¼ 99 members. (a) Distributions of the probability p to act as a producer after t = 1000 rounds of learning. Blue indicates a case where learning is fast (α =
0.10) and each individual is connected to K = 4 neighbours. Red is a case where learning is slow (α = 0.01) and all group members are connected (K = 98). The
values of the group-mean polarization index F at t = 1000 for the two cases are indicated. (b) Change over time of the group-mean polarization index F for a
number of cases. Blue curves show cases with fast learning (α = 0.10) and red cases with slow learning (α = 0.01), each labelled with the value of K. The dashed
dark-blue line shows polarization in a small-world network obtained through rewiring (prew = 0.1) from the network illustrated by the dark-blue solid line, with
K = 4. (c) Distributions of the difference between the estimated values of producing (QP) and scrounging (QS) after t ¼ 1000 rounds of learning, for the two cases
in (a). The distributions are split according to an individual’s most recent action, scrounge or produce. (d ) Same as (b) but over a greater number of rounds of
learning. (Online version in colour.)
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to a steady-state polarization with rather low value of the
index F that we use to measure polarization (0≤ F≤ 1;
figure 2a,d ). The explanation is that slow learning and
many neighbours give rise to distributions of the difference
in estimated values that overlap between group members
that used P and S in the final round (reddish distributions
in figure 2c), because learning averages long histories of
nearly identical reward distributions. With fast learning, the
estimated values represent learning over a smaller number
of previous rounds, giving rise to distinct estimated value
distributions between group members that used P and S in
a given round.

The distributions of the difference QP−QS in figure 2c are
split up according to the current action (P or S) used by an
individual, and illustrate polarization. Thus, for K = 4 and
fast learning (blue), the distributions for current producers
and scroungers are separated, corresponding to strong polar-
ization, whereas for K = 98 and slow learning (red) they are
largely overlapping, corresponding to weak polarization.

Results for the caller–satellite game (figure 3a) and the
hawk–dove game (figure 3b) were qualitatively similar to
the producer–scrounger game, with rapid polarization for
fast learning and a small number of neighbours. Small-
world networks produced similar, and sometimes somewhat
higher, polarization compared to the ring lattice they were
constructed from (prew = 0.1;figures 2b,d and 3a,b).

Even though fast learning can give rise to pronounced
polarization with many neighbours, the number of neighbours
still has an important effect on individual behavioural consist-
ency, as illustrated in figure 4a. We found higher temporal
autocorrelation with smaller number of neighbours, for time
lags of up to a few hundred rounds, for all three games
(figure 4b,c,d ). Our understanding is that this is caused by
consistent differences between individuals in the expected
rewards of actions, because of stronger effects of frequency
dependence, in a similar way as was found by McNamara
et al. [7] for smaller groups.

We repeated the learning simulations shown in figures 2–4
with actor–critic learning instead of action–value learning, and
the results are shown in electronic supplementary material,
figures S1–S3. Actor–critic learning shows some similarity to
action–value learning in producing a somewhat faster build-
up of polarization with a smaller number of neighbours in a
social network. There is also a qualitative difference in that,
after many rounds, actor–critic learning gives rise to extreme
polarization, with very high consistency over time (electronic
supplementary material, figure S3). Thus, after many rounds
of actor–critic learning individuals develop strong action
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(Online version in colour.)
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Figure 4. Illustration of behavioural consistency for different cases of social networks and games. Consistency tends to be higher in social networks with fewer
neighbours. The group size is N = 99 for all cases. (a) Four examples of the individual probability p to act as a producer. The dark-blue curves show two examples
with K = 4 neighbours, and the reddish curves show examples with K = 98 neighbours. In order to illustrate steady-state situations, the curves start at round
t = 4000. (b) Autocorrelation for the logit of the probability to act as producer, for the fast-learning cases in figure 2b,d and using the same colour coding.
In order to illustrate steady-state situations, the autocorrelations were computed from rounds between t = 4000 and t = 5000. (c) Autocorrelation for the logit
of the probability to act as caller, for the fast-learning cases in figure 3a. (d ) Autocorrelation for the logit of the probability to act as hawk, for the fast-learning
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preferences, which limit their exploration of actions. This
could be an unrealistic aspect of actor–critic learning, because
reversal learning studies indicate that the algorithm takes
longer to learn a reversal than is found in experiments [32].
A conclusion from a recent review [33] of the applicability of
reinforcement learning algorithms, including action–value
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learning and actor–critic learning, is that both these have some
support from neuroscience, but that more work is needed to
develop a better understanding of reinforcement learning as
implemented in real neural systems.

As a check of the robustness of our results, we simulated
learning for the producer–scrounger game over a greater
number of rounds and for a greater group size (electronic
supplementary material, figure S4). Finally, similar distri-
butions as in figure 2c but for the caller–satellite and hawk–
dove games are shown in electronic supplementary material,
figure S5.
l/rspb
Proc.R.Soc.B
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4. Discussion
The general idea of behavioural specialization from frequency
dependence [4,34], and in particular from frequency-
dependent learning [8], forms the basis of our modelling
approach. Experimental observations are consistent with such
specialization through learning [11]. It is also experimentally
established that learning can result in behavioural diversity
rather than in uniformity and conformity [10]. These studies
further show that learning to specialize happens after a fairly
limited number of foraging events per individual, roughly cor-
responding to our model assumptions of fast learning.

The traditional approach in game theory in biology is to
examine genetically determined strategies [6]. In small
groups, the fact that an individual never encounters itself
(in pairwise interactions) can influence whether a mixed
ESS or a polymorphism of pure strategies is the expected out-
come [35–37]. There are similar effects for learning in small
groups. With negative frequency dependence, an individual’s
preference for an action can cause others to learn to prefer a
different action, and vice versa, and this is an explanation
for behavioural specialization [7].

Theoretical analyses of learning in games, both in econ-
omics [38] and biology [24], tend to focus on the endpoints of
learning, reached after many rounds of interaction. This
allows investigation of correspondences between learning out-
comes and game equilibria, such as ESSs, but it is important to
consider possible limitations of the approach. In reality individ-
ualsmight need to learn rather quickly, so that the consequences
of learning after a fairly small number of rounds is the thing that
matters. This should favour high rates of learning. As our
results here illustrate, the rate of learning can have a qualitative
influence on behavioural specialization (see also sections
5.2–5.5 in [19] for a discussion of effects of learning rates and
the number of rounds). Recent experimental work in neuro-
science further illustrates that learning is a complex process
where individuals can adjust their learning rate, depending
on how changeable the environment is likely to be [39].

Concerning social networks, there are observations on
foraging in wild great tits (Parus major) indicating that indi-
viduals associate with a limited number of other birds [40].
For bats there are more detailed field observations of the
number of producer–scrounger network neighbours [13],
with individuals typically having only a handful of other
group members that they predominantly interact with.
There is also evidence that individuals show consistency
over time in producer–scrounger relationships [12,41,42].

Our models assume that individuals do not differ in their
inherent tendencies to prefer or learn about behavioural
options. The reason for the assumption is to focus specifically
on frequency-dependent learning, but it is likely to be an
oversimplification of real situations. For instance, producer–
scrounger studies have found that producing can correlate
with better performance in a learning task [43], or that
there are sex-differences in the tendency to produce
[13,41,42]. It is even possible that consistency in the order
in which individuals engage in an activity can influence
which action they specialize on Dubois et al. [44]. Still, exper-
iments show that individuals can change specialization in a
new social environment [12].

Less is known about frequency-dependent learning of
caller–satellite specialization in the field. Observations indicate
that males use calls to assess the size or strength of neighbour-
ing males in anurans and that this influences their behaviour
[20,21]. There is thus the possibility that learning about the
social environment plays a role in behavioural specialization,
and it is also likely that variation in individual characteristics
has a considerable influence on which behaviour is learnt.

As mentioned, our hawk–dove model could be a simple
starting point for modelling of social dominance in small
groups of individuals with limited individual recognition.
This might be the case for males in some species of crickets
[22,23,45] but, again, individual characteristics relating to
fighting ability are likely to be important in these situations.

In conclusion, our results show that frequency-dependent
learning can give rise to behavioural specialization in a social
network. We have identified the number of network neigh-
bours and the rate of learning as potentially important for
the speed at which specialization emerges in a group, and
possibly also for the strength of polarization and the consist-
ency of behaviour over time. Further experimental work
investigating these aspect would improve our understanding
of the factors behind behavioural specialization.

Data accessibility. C++ source code for the individual-based simulations
is available at GitHub, together with instructions for compilation on a
Linux operating system: https://github.com/oleimar/behavspec.

Electronic supplementary material is available online [46].
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