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A B S T R A C T

Accelerating the rate of genetic gain has in recent years become a key objective in plant breeding for the Global
South, building on the availability of new data technologies and bridging biological interest in crop improvement
with economic interest in enhancing the cost efficiency of breeding programs. This paper explains the concept of
genetic gain, the conditions for its emerging status as an indicator of agricultural development and the broader
implications of this move, with particular emphasis on the changing knowledge-control regimes of plant breeding,
the social and political consequences for smallholder farmers and climate-adaptive agriculture. We analyse how
prioritising the variables used to derive the indicator when deciding on agricultural policies affects the rela-
tionship between development goals and practice. We conclude that genetic gain should not be considered as a
primary indicator of agricultural development in the absence of information on other key areas (including
agrobiodiversity, seed systems and the differential impact of climate change on soil, crops and communities), as
well as tools to evaluate the pros and cons of the acceleration in seed selection, management and evaluation
fostered by the adoption of genetic gain as a key indicator.
1. Introduction

The genomics revolution in the biosciences has led to substantive
changes in the organisation of how biological research is done and how
biotechnologies are produced, at practical, social and epistemic as well as
technological levels (Hilgartner, 2017; Richardson & Stevens 2015).
Plant science and its applied fields are no exception, and much attention
has been given to the development and potential impacts of transgenic
technologies and genome editing techniques such as CRISPR for food and
agriculture (e.g. Helliwell et al., 2019; Montenegro de Wit, 2020). “New
breeding techniques”, as these technologies are frequently termed, are
often analysed in terms of their novelty, disruptive potential and risk.
Yet, as noted by plant scientist Caixia Gao, beyond the headlines much of
the advantage offered by CRISPR and similar technology is simply the
ability to produce “identical results to conventional [breeding] methods
in a much more predictable, faster and even cheaper manner” (Gao,
2019, p. 275). Indeed, major debates continue to interrogate whether
gene editing produces outcomes that differ from conventional breeding
methods, such as chemical-induced mutagenesis, and what this may
mean for regulation (Pirscher et al., 2018). At a moment when the role of
genomics in plant breeding is still being defined, speed and efficiency in
Williamson).
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the identification and production of valuable varieties are increasingly
prioritised as both practical and policy objectives. The use of gene editing
technologies to this end is only the tip of the iceberg, and in fact it is a
strategy that poses many barriers. For international agricultural research
and breeding networks focused on the Global South, limited resources
present a significant obstacle to the implementation of cutting-edge
technologies such as CRISPR at scale; similar concerns affect areas of
the Global North which are not able to reproduce the conditions required
of intensively managed crops or are peripheral in relation to large scale
processing infrastructure. Less visibly, but with a broader impact, agri-
cultural research networks are being reorganised in ways that combine
older statistical and more recent data-intensive breeding methods, with
wide implications for scientific research, breeding practice and agricul-
tural systems.

In this paper, we discuss the significance of an indicator that is rapidly
becoming central to the shape and direction of such reorganisations: the
rate of genetic gain. Genetic gain is a statistical measure of the genetic
improvement of breeding populations that was first introduced in the
context of animal breeding in the early twentieth century. Genetic gain
has acquired new relevance for plant breeding in light of a resurgence of
interest in the possibilities afforded by quantitative genetics alongside
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1 We are grateful to Paul B. Thompson for drawing our attention to obser-
vations in this paragraph.
2 The use of measures of heritability has been widely critiqued, especially in

the human sciences (e.g. Sarkar, 1998, pp. 71–100), but remains fundamental to
animal and plant breeding, the latter focused on physiological traits such as
yield and resistances to pests and pathogens.
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increasingly cheap and easy methods for genomic data collection, sharing
and analysis. It is being championed as a key performance indicator for
plant breeding by breeders, researchers and funders around the world,
alongside an active commitment to “accelerate” rates of genetic gain as a
key policy objective.

In plant breeding for the public domain and the Global South, this
commitment is being spearheaded by the Consultative Group for Inter-
national Agricultural Research (CGIAR), arguably the most influential and
extensive research network for agricultural research in the world (Curry&
Lorek, under review), and the Bill and Melinda Gates Foundation (BMGF),
currently a major funder of the CGIAR and of international research
focused on development more broadly (McGoey, 2016). Similar objectives
are also well-established in advanced commercial plant breeding pro-
grammes (e.g. Byrum et al., 2017; Eathington et al., 2007). We leave the
latter aside in this paper however, in order to focus on the specific changes
to public plant breeding in the international arena, where resources are
limited and the structure of objectives is explicitly oriented towards a
wider range of development goals beyond commercial growth.

Through an analysis of relevant scientific literature and international
initiatives fostering data-intensive agriculture, we identify a set of pro-
posals for the use of genetic gain as a performance indicator, which
prioritise the achievement of greater genetic gain in seed systems and
agriculture as a necessary step towards food security and sustainable
agricultural development. We highlight the challenges that this set of
proposals holds for climate-adaptive agriculture and the sustainable
management of seed systems. In conclusion, we point out that genetic
gain, despite its usefulness as one of the main indicators for agronomic
performance, is not sufficient to assess the pace and progress of plant
breeding for agricultural development goals. Rather, the tendency to
prioritise and incentivise speed of breeding needs to be complemented by
incentives to ensure that breeding outputs are adaptive to diverse agro-
ecological systems and breeding programmes recognise the multiple
values of agricultural biodiversity.

To this aim, the paper is structured as follows. Section two begins the
paper with an overview of the concept of genetic gain and its status as an
indicator. In section 2.2 we outline the reasons why genetic gain has
become important in contemporary plant breeding and the wider field of
discourse in which its value has been located. In the third section, we
outline the evolving context of international plant breeding within which
genetic gain is utilised, focussing on a range of modernisations aimed to
make plant breeding more data-driven, and a related set of changes in the
knowledge-control regimes (Hilgartner, 2017) that structure interna-
tional breeding networks. The fourth section returns to the concept of
genetic gain, and shows how elements used as variables to compute the
indicator are being prioritised as targets for investment, which in turn
affects whether and how greater genetic gain contributes to major goals
such as developing climate-adaptive agriculture. The fifth section in-
vestigates the implications of accelerating genetic gain for seed systems,
focussing on how those commitments to greater speed are directly linked
to visions for greater commercialisation of agriculture in the Global
South. In the conclusion, we broaden our gaze to the place of agronomic
indicators within the wider knowledge-control regimes of agricultural
development, and ask what questions the above analysis poses to this
field. We make some suggestions for implementing the use of indicators
for agricultural development in ways that are comprehensible and
responsive to stakeholders, and acknowledge a wider range of goals and
values related to agroecological diversity and sustainability.

Methodologically, this article is primarily based on review and
analysis of the relevant scientific literature on genetic gain in plant
breeding. The analysis is also informed by collaborative research expe-
rience in this domain, taking place between 2018 and 2022, and
including: participation in international plant science and agricultural
data networks; informal discussions with breeders, data managers and
others within the CGIAR; and presence at a range of conferences where
relevant material has been presented and discussed. The article con-
tributes to the existing historical and philosophical literature on
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statistical techniques in agricultural research (e.g. Berry, 2015; Derry,
2015; Maat, 2008; Parolini, 2015a, 2015b; Theunissen, 2020), focussing
on the use of a specific indicator in relation to broader transformations
occasioned by data-intensive methods in this domain (Williamson et al.,
2021; Williamson & Leonelli, 2022a).

2. Genetic gain: an old indicator of new relevance

2.1. Genetic gain as an indicator

The rate of genetic gain (ΔG), also known as the response to selection,
has been defined as “the improvement in average genetic value in a
population or the improvement in average phenotypic value due to se-
lection within a population over cycles of breeding” (Rutkoski, 2019a, p.
219). Put another way, it is a measure of the change in the population
average for a given trait or index (set) of several traits that is attributable
to heritable genetic effects, and therefore to the selection decisions made
within a breeding programme. Notably, the rate of genetic gain does not
require or produce direct knowledge about the genetic architecture of
any individual or the population. Rather, it uses statistical methods to
account for the interaction of genotypic effects with environmental and
error effects in phenotypic evaluation data collected from plants or ani-
mals in the field.

Genetic gain provides an advantage over direct measures of plant or
animal performance, such as changes in yield quantity, by factoring in
the extent to which such performance is due to consistent genetic char-
acteristics of the population vis-a-vis external factors like field manage-
ment or environmental conditions (e.g. Bell et al., 1995). Realising
improvements in genetic gain for a trait therefore means obtaining reli-
able increases in performance across the range of environmental condi-
tions that the population has been selected and tested in. This range can
be adapted to capture a wide diversity of different environmental con-
ditions, including those that characterise marginal and low-input agri-
cultural environments. Ostensibly, this improves breeders' ability to
target and breed more precisely for environments that are, for example,
less agronomically standardised or are subject to greater climatic fluc-
tuations. This has made genetic gain particularly appealing to those who
want to improve the responsiveness of plant breeding to climate change,
a topic we return to below and in section 4.1

The rate of genetic gain is calculated through a mathematical model
known as the breeder's equation. There are various ways of composing
the breeder's equation, but one contemporary version (from Cobb et al.,
2019) is:

ΔG¼ðσaÞðiÞðrÞ
L

Here the rate of genetic gain (ΔG) is calculated from additive genetic
variance (σa), selection intensity (i) and selection accuracy (r), divided by
the years per breeding cycle (L). Other variants may use slightly different
variables. To provide some broad definitions of the parameters, additive
genetic variance (σa) is the degree of variation for a trait in the popula-
tion that is due to genetic rather than environmental effects or error, and
that isn't directly attributable to interactive effects between genes (such
as dominance or epistasis). Selection accuracy (r) is the square root of
heritability (h2). Heritability refers to the proportion of total variation in
the phenotype that can be attributed to genetic variation, and expresses
the reliability of phenotypic values as guides to the value of the popu-
lation for breeding.2 Taking the square root expresses heritability as a
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nonlinear rather than a linear function, such that changes to heritability
produce a variable rate of return to genetic gain. Selection intensity (i)
refers to the percentage of a population selected in a breeding pro-
gramme. Given a distribution of values for a given trait across the pop-
ulation, if one wants to improve the average it is necessary to select some
percentage of the top performing individuals to advance to the next
generation. Selecting, for example, only the top 2% will shift the average
substantially more than selecting the top 40%. However, this comes at
the cost of potentially narrowing genetic diversity, unless population size
is increased.3

Variances and heritabilities are calculated in relation to a heteroge-
neous ensemble of data acquired from multiple generations of crops
grown in field trials or other experimental sites, which may include
historical or predicted data as well as purposefully collected data. Traits
from the crops in question, including for instance flowering time and
maximum plant height, are measured, calibrated to specific standards in
order to facilitate comparisons among traits, and inputted into numerical
models that yield an overarching estimate of variance for each trait.4

These results are in turn processed further to produce an estimate for
variance in each trait that may be statistically and mathematically
compatible with the model. Only at this stage can an estimate of each
variable used in the overarching model for genetic gain be calculated;
and the model plays a crucial role in evaluating which of these factors
should be prioritised relative to the others.5

It is not our purpose here to document in detail the technical
complexity of processes involved in extracting a calculation of genetic
gain from crop data. The reason we insist on such complexity is to un-
derscore how genetic gain is not simply a measurement, but is better
thought of as an indicator. As defined by Mary Morgan, indicators are
“numbers that are not conceived as direct measurements of the concepts
they relate to, but are understood to be indicators for characteristics
relevant for those concepts” (2020, p. 113). Indicators thus derive from
the assemblage of several different data series, each of which is taken to
track one dimension of a complex, multi-dimensional phenomenon. Each
characteristic of the phenomenon in question will have a separate data
series, which is typically construed and processed to be tractable and
legible by as many audiences as possible. When assembling the data se-
ries to develop an indicator, the highly processed data contained in the
data series are standardised even further, in order to be aggregated and
combined as required. Processing data to develop an indicator therefore
involves numerous modifications to the original datasets, including
practices of selection, calibration, clustering and abstraction. These
modifications make an indicator into something different from a simple
“representation” of the phenomenon being studied. As Morgan puts, it,
indicators “offer numerical information about some aspect of one target
in relation to the goal, but they are far from measuring or representing
the target, let alone the overall goal that needs to be represented” (2020,
p. 115). We contend that this is precisely the case with genetic gain: It is a
composite of different variables and highly curated – but heterogeneous –
datasets, and therefore a relatively abstract and idealised type of mea-
sure, albeit one that is put to work in breeding practice. This becomes
especially important in relation to the uses of genetic gain as an evalu-
ative tool, given that similar indicator values may belie significant
3 For good recent introductions to the various concepts, see the manuals
provided by the CGIAR Excellence in Breeding platform: https://excellenceinb
reeding.org/toolbox/tools/eib-breeding-scheme-optimization-manuals For an
older introduction, see Falconer and Mackay's (1996) classic textbook on
quantitative genetics.
4 See Boumans and Leonelli (2020) for a discussion of the challenges

encountered by plant scientists attempting to fit crop data collected from field
trials into standardised formats and nomenclature used for modelling, especially
when compared to empirical data inputted into economic models, where
different epistemic principles are at play.
5 See Waldmann (2001) for a classic example of calculating genetic variance

in a particular plant species through a field experiment.
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variation in how such equivalence was achieved. Of particular relevance
are the pragmatic constraints involved in assembling measurements on
genetic traits and breeding outputs; the conceptual commitments guiding
decisions around which data cluster may best represent these traits; and,
most importantly, the choices around how such data should be visualised
and condensed in order to maximise their informational value (cf. Leo-
nelli, 2016). Also significant are the structural incentives that accompany
these constraints, especially since indicators are often developed and
adopted as tools of evaluation and governance for breeding programs.
We return to this point in section 4.

2.2. Genetic gain in contemporary plant breeding

The breeder's equation was initially developed by cattle breeder and
quantitative geneticist Jay L. Lush in the 1930s to monitor genetic trends
in a population. The time variable was introduced by S.A. Eberhart in the
1970s as a means of evaluating the efficiency of breeding programs,
thereby establishing genetic gain as a rate (Eberhart, 1970). The final
numerical value calculated from the breeder's equation can be used to
easily compare different breeding methods. This can be calculated
retrospectively, as realised rates, or prospectively, as estimated rates. In
plant breeding, retrospective rates can be determined using historical
evaluation data or through an ‘era’ trial, where stored samples are grown
out and evaluated simultaneously. Rates can also be estimated using
simulated data from crop models (see Rutkoski, 2019b). Genetic gain
therefore provides a convenient indicator for evaluating and, crucially,
designing breeding programmes.

Despite such convenience, use of the breeder's equation has been
uneven between the fields of plant and animal breeding. For animal
breeders, it has long been recognised as a fundamental tool for moni-
toring genetic trends, reflecting the longstanding importance of statisti-
cal measures in that field to assist in evaluating working herds and flocks
that can otherwise be difficult to evaluate directly (cf. Derry, 2015; Hill,
2014; Theunissen, 2020). In plant breeding, by contrast, evaluations of
genetic gain have typically been limited to infrequent era trials, with
little systematic attempt to monitor rates (Rutkoski, 2019b, p. 982).
Recent years have seen a surge of attention to genetic gain in plant
breeding, however, with experts from CGIAR proposing that the rate of
genetic gain should be established as a high-level key performance in-
dicator for public and philanthropically funded breeding programmes
(Covarrubias-Pazaran, 2020). This commitment comes with significant
prescriptive force: Specifically, to increase the rate of genetic gain in
CGIAR and partner national agricultural research services' breeding
programs, the majority of which are located in the Global South, to a
minimum of 1.5% per year (Hunt, N.D.). Beyond policy circles, this is
frequently expressed as a general commitment to “accelerate” rates of
genetic gain and plant breeding efforts as a whole (e.g. Atlin et al., 2017;
Harfouche et al., 2019; Heffner et al., 2010; Spindel & McCouch, 2016;
Varshney et al., 2021), thus incorporating commonly used metaphors
around the velocity of biological productivity (Landecker, 2013).

The surge in attention to genetic gain forms part of a wider discourse
regarding the role of quantitative genetics in plant breeding in the
twenty-first century. Put broadly, quantitative genetics concerns the
statistical analysis of quantitatively varying traits and their inheritance,
as in genetic variances and heritabilities. As a mode of analysis, it can be
contrasted with classical and molecular genetics in that it requires little
direct knowledge of actual genetic architecture or functions (although it
can profitably be combined with these). Breeding methods grounded in
quantitative genetic population improvement have a long history in
twentieth century plant breeding (Hallauer, 2007), with some note-
worthy results: For example, using recurrent selection methods on a
single, closed population of maize, the Illinois Long-Term Selection Ex-
periments have shown progressive improvement for oil and protein
content with no upper limit after more than 100 years (Dudley, 2007).
Despite this, in recent years quantitative genetics has been cast as a
neglected corner of plant breeding, especially when compared to animal

https://excellenceinbreeding.org/toolbox/tools/eib-breeding-scheme-optimization-manuals
https://excellenceinbreeding.org/toolbox/tools/eib-breeding-scheme-optimization-manuals


7 See also the work on indicators as tools of governance collected in Rotten-
burg et al. (2015).
8 We should note that these changes are not representative of all CGIAR

programmes, which include a wide diversity of approaches and objectives (cf.
Curry & Lorek, under review), but are affecting several of the centralised ini-
tiatives around data-intensive breeding promoted within the network.
9 These programs have been modernised through the Transforming Rice
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breeding (e.g. Hickey et al., 2017), with some commentators positioning
the development of this area as the next frontier for plant breeding
(Wallace et al., 2018). This is driven by the emergence of new technol-
ogies that allow a “reinvention” of quantitative genetics, in the words of
plant breeder Rex Bernardo (2020), primarily through the integration of
quantitative with molecular genetics. A key example of such methods is
Genomic Selection, originally developed in animal breeding, which uti-
lises genome-wide sets of molecular markers to predict the genetic value
of individual plants for a given trait (Xu et al., 2020), with a range of
advantages for speed and accuracy, as we discuss in section 3.1. In their
analysis of this integration of quantitative and molecular genetics in an
animal breeding context, Lowe and Bruce (2019) identify within it a new
mode of what they term ‘marker-centric’ biology, in which quantitative
genetics' ambivalence about genetic architecture is re-centred for the
molecular age. What is distinctive about the corresponding changes in
plant breeding is not simply the belated adoption of such a mode or
related technologies, however, but the self-conscious discourse on rein-
vention that has accompanied it - and the normative significance
attributed to indicators built from such markers.6

It is within this wider landscape of reinvention in discourse and
practice that genetic gain has emerged as a focal point, not only as a
working tool for breeders but also, in its capacity as a key performance
indicator, as a symbolic and practical anchor around which to reorganise
plant breeding. We focus here on a set of proposals for the adoption and
increase of genetic gain that have been made by a broad coalition of
actors working for the CGIAR and for the BMGF, including both breeders
and executive figures. This includes a relatively coherent set of principles
for breeding reorganisation that have been outlined across several pub-
lications (e.g. Atlin et al., 2017; Cobb et al., 2019; Santantonio et al.,
2020), and the practical implementation of some of these principles in
CGIAR activities. We discuss these in detail in subsequent sections. Un-
derpinning these principles is an explicit concern for the efficiency of
plant breeding. As noted above, the construction of genetic gain as a rate
allows it to function as an indicator of efficiency. Its use therefore bears
on funders' concerns for the cost-efficiency of breeding (e.g. Atlin, 2016).
Yet the concerns for efficiency speak to much larger issues of what plant
breeding may or may not be able to deliver on a global scale. A consistent
theme through several of the publications noted above is the need to
construct tightly integrated and optimised data-driven pipelines for
breeding, stretching from more fundamental biological research and
‘pre-breeding’ activities, through breeding itself and on to dissemination
of new crop varieties via seed systems (e.g. Cobb et al., 2019). A key
driver behind this push for efficiency is the goal of making plant breeding
more responsive to climate change. Alongside the advantages in target-
ing breeding to more diverse environmental conditions that refocusing
on genetic gain may provide, improved efficiency is valued for the ben-
efits it provides in speed—the “acceleration” mentioned above. Various
commentators have drawn attention to the value of shorter breeding
cycles and programmes, from initiation to new crop variety release, as a
means to respond to rapidly changing climates in a timely manner, thus
staving off crop failures, hunger and poverty (e.g. Atlin et al., 2017;
Cairns& Prasanna, 2018; Lenaerts et al., 2019). This emphasis on climate
adaptation provides one of the major rationales for the adoption of ge-
netic gain and associated changes to plant breeding. We therefore return
to it in section 4, where we address some of the implications of the nature
of genetic gain as an indicator for this goal.

3. Changing regimes of plant breeding

Behind the proposal for genetic gain as a key performance indicator
lie a range of proposed and ongoing changes to plant breeding, which can
6 On the historical origins of quantitative genetics, see Provine (2001). For a
broad history of quantitative genetics as it has been applied in animal breeding
until the early twenty-first century, see Derry (2015).
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broadly be classified as changes in the methods and technologies of
breeding and related programmes, on the one hand, and changes to the
overarching knowledge-control regime of plant breeding on the other.
Following Steven Hilgartner, regimes concern the order of a “domain or
activity, typically through some combination of formal rules, informal
norms, material means, and discursive framings”, while knowledge-
control regimes specifically concern the production, regulation and use
of knowledge (Hilgartner, 2017, p. 8). As also emphasised by Pestre
(2003) and Cambrosio et al. (2014), regimes operate on a range of scales
and to differing degrees of institutionalisation. Moreover, they are mul-
tiple, overlapping and not necessarily congruent. Examples include
agreements on the dissemination of research data, academic publishing
norms, researcher evaluation metrics and intellectual property regimes.
We focus here on those changes to regimes that are relevant to the cur-
rent and proposed establishment of genetic gain as an indicator.7 As
Hilgartner makes clear, knowledge-control regimes are co-produced
at the intersection of new research agendas, governance efforts and
technological change. This makes them not only complex and
multi-dimensional forms of order, but subject to continual change, even
while some of their elements become formalised and entrenched. This is
reflected in the situation we are analysing, where material changes in
breeding have been accompanied by the adoption of strict new evalua-
tive mechanisms. At the same time, the penetration of these evaluative
tools into international plant breeding is as yet uneven. In this section we
will firstly review the major technological changes to breeding pro-
grammes, focussing on how different technical methods contribute to the
constituent variables of genetic gain. We then examine the changing
knowledge-control regimes and transnational organisation of breeding
networks. Our primary focus will be on changes occurring around the
CGIAR network, which incorporates public and philanthropically funded
breeding programmes across fifteen large research centres spread across
continents, and serves as a model for many other initiatives around the
world.8

3.1. Modernising breeding programmes

Significant reorganisation efforts over the last decade have been
focused on the modernisation of crop-specific breeding programs in the
CGIAR, in large part through projects funded by the BMGF. These pro-
grams include a wide range of crops, from irrigated rice breeding at the
International Rice Research Institute (IRRI) in the Philippines (Collard
et al., 2019) through cassava breeding at the International Institute for
Tropical Agriculture (IITA) in Nigeria (Wolfe et al., 2017).9 A range of
methods and technologies have been used to accelerate genetic gain,
instituted in diverse combinations that vary depending on the biology of
the particular crop species (whether it is temperate or tropical, its mode
of reproduction and so on), the available resources for that crop (such as
genetic marker panels and Genomic Selection models) and the existing
state of programs and funding. These methods may contribute to genetic
gain through enhancing genetic variance, selection intensity, her-
itability/selection accuracy, cycle length, or some combination of these.
Breeding (2013–2018) and NextGen Cassava (2011–present) projects, respec-
tively. Other projects with similar objectives include Delivering Genetic Gain in
Wheat (2016–2019), managed by Cornell University and including the CGIAR's
International Centre for Maize and Wheat Improvement (CIMMYT), Mexico, as a
key partner.
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3.1.1. Speed breeding
Manipulating the length of breeding offers the simplest means to

accelerate genetic gain, by increasing the number of cycles realised over
a given period of time (Cobb et al., 2019, p. 634). One way to achieve this
is through “speed breeding” and related techniques such as Rapid Gen-
eration Advance that allow multiple generations of a crop to be grown in
a year (Collard et al., 2017; Li et al., 2018; Watson et al., 2018). This
includes the use of custom-built growing facilities, such as dedicated
off-season greenhouses for temperate species, and early seed harvests
(Chiurugwi et al., 2019).

3.1.2. Genomic prediction
Modelling methods such as Genomic Selection allow the traits of an

individual plant to be predicted based on genome-wide marker data,
prior to growing the plant and evaluating it (Voss-Fels et al., 2019; Xu
et al., 2020). Such models allow selection decisions to be made at an
earlier stage, with plants that score highly for certain traits immediately
progressed to the next breeding cycle as parents. This can contribute to
reducing breeding cycle length by anywhere from 2 to 5 years (Voss-Fels
et al., 2019), but also to selection intensity and heritability. Intensity can
be increased by selecting consistent numbers of plants within larger
populations, but the costs of phenotypic evaluation at scale makes this
prohibitive. Evaluation purely based on genotyping of samples rather
than phenotyping plants has been suggested as a potential cost-effective
solution (Cobb et al., 2019, p. 632). Prediction of breeding value based
on genetic data may also be more reliable for selection of certain traits in
comparison to visual evaluation, increasing heritability.

3.1.3. Environmental characterisation and multi-environment trials
As indicated in section 2.1, it is of great importance for breeders to

ensure that they are selecting for plants whose performance is the result
of a significant genetic component (high heritability), rather than those
that result from environmental effects. Heritability/selection accuracy
can be increased by evaluating and selecting across multiple environ-
ments, to correct for environmental influences. For the resulting genetic
gain to be meaningful and reliable, however, the range of environments
in which selection is undertaken must model the agricultural environ-
ments in which farmers will ultimately be growing the crop variety.
Exposing breeding materials to a range of different environments that
reflect what is known as the Target Population of Environments (TPE)—
the varying environmental conditions of the target region for which a
crop is being bred, including seasonal as well as geographical variation
and predicted future climates (Chenu, 2015)—is therefore of great
importance (Collard et al., 2019, pp. 6–7; Atlin et al., 2017, pp. 34–5).
Indeed, plant breeder Bernardo has observed that the principal expec-
tation of quantitative genetics in contemporary breeding is “to help
identify which candidates have the best genotypic value … in a target
population of environments” (2020, pp. 377–8). The TPE concept has a
long history in plant breeding, especially for estimating the heritability of
traits (e.g. Nyquist, 1991), but much like the breeder's equation the
concept has not been widely adopted. More recently, researchers in the
CGIAR Research Program on Climate Change, Agriculture and Food Se-
curity have stressed the importance of TPE characterisations in adapting
agriculture to climate change (Ramirez-Villegas & Heinemann, 2015). In
practice, this involves the use of advanced in silico methods for precision
envirotyping and crop modelling (Ramirez-Villegas et al., 2020). Advo-
cates of genetic gain have further encouraged this as a framework for
designing multi-environment field trials (METs), and implementing them
early in the breeding process (typically, if METs are undertaken at all it is
very late in the process), thus increasing selection pressures for the target
environments.
10 Other methods that we do not discuss here include the structured selection
of source germplasm to maximise gains in recurrent selection programs (Atlin
et al., 2017, pp. 32–33).
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Among all of these methods, decreasing the length of breeding cycles
is increasingly favoured as the primary means to accelerate genetic
gain.10 “Given the complexity of the other parameters in the breeder's
equation, cycle time is the easiest to understand, cheapest to manipulate,
and the most powerful parameter for increasing genetic gain” (Cobb
et al., 2019, p. 634). This is in comparison to earlier investments in
breeding improvement that have primarily focused on the other three
variables, genetic variance, selection intensity and heritability/selection
accuracy. Probably the most important rationale for this is
cost-efficiency. Cobb et al. (2019, pp. 635–8) observe that while
manipulating those three variables tends to be highly effective at first,
there are diminishing returns and increasingly large investments are
required to achieve them. The way that different variables are prioritised
has implications for the impact genetic gain will have on agricultural
systems, however. We analyse this in relation to climate-adaptive
breeding in section 4.
3.2. New knowledge-control regimes

The above-mentioned methodological shifts within breeding pro-
grammes have been accompanied and shaped by a distinctive vision for
plant breeding. As breeder Joshua Cobb and colleagues have observed,

“Advances in statistics, quantitative and population genetics, molec-
ular biology, genomics, phenomics, other -omics, and most recently
machine learning and artificial intelligence offer the potential of
transforming plant breeding programs toward a data-rich, evidence-
based, and team-oriented process and away from the romantic
tradition of an individual breeder as an artist” (Cobb et al., 2019, pp.
627–8, references removed).

This is a vision of breeding as a data-driven activity, where selection
decisions can be made on the basis of relevant and extensive data flows
rather than breeders' (or indeed other stakeholders') subjective evalua-
tions. Achieving this involves “complex processes and will require
breeding organizations to adopt a culture of continuous optimization and
improvement,” assert Cobb et al. (2019, p. 627). Such aims are built into
the knowledge-control regimes that regulate plant breeding, especially
since breeding modernisation programmes confront institutional and
political-economic challenges that lend themselves to digitalised,
data-intensive research solutions. Again in the words of Cobb and
colleagues,

“unlike private-sector organizations, public plant breeding programs
struggle to leverage and benefit from the collective investment, skills
and experience across crops that large transnational breeding com-
panies can command. As a result, public plant breeding programs
must form interactive communities of practice that allow them to
aggregate demand and stimulate the development of low-cost geno-
typing, phenotyping, and open-access IT systems for storage, man-
agement, analysis, and exchange of data” (Cobb et al., 2019, p. 640).

Hence building capacity for new breedingmethods among the diverse
breeding institutes that serve the Global South, including CGIAR centres
and national agricultural research services, is increasingly reliant on
transnational networks and communities of practice that facilitate co-
ordination of activity and knowledge exchange, as well as new norms of
openness in research and in the development of technical tools (Leonelli,
2022). Data sharing is explicitly encouraged and supported through
ever-expanding data infrastructures and related technologies and social
venues. In recent years, a range of collaborative platforms and shared
facilities have been developed to serve CGIAR and other public breeding
programmes. These are particularly focused on developing capacity for
data-intensive genomic techniques, such as Genomic Selection (cf.
Hickey et al., 2017; Spindel & McCouch, 2016). They include a
high-throughput genotyping facility at the International Crop Research
Institute for the Semi-Arid Tropics (ICRISAT) in India, to serve both
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animal and plant breeding communities globally, and GOBii, the
Genomic Open-Source Breeding Informatics Initiative, based at Cornell
University, to provide open source data management, analysis and vis-
ualisation tools to public breeding programmes (Nti-Addae et al., 2019;
Santantonio et al., 2020, pp. 9–10). Increasingly, these efforts are being
coordinated via the Excellence in Breeding platform of the CGIAR, which
was founded in 2016 and was initially proposed under the title “Platform
for Genetic Gains”. The platform, which brings together tools, services,
data and access to technology for breedingmodernisation, has similar but
broader goals to GOBii, which is set to be absorbed within the platform,
scaling up the deployment of resources and training for the imple-
mentation of genomic breeding methods, especially in Africa and South
Asia (Freedman, 2020; Williams, 2019). Moreover, the platform is
developing a single breeding information management system, the En-
terprise Breeding System, that is intended to replace the diversity of
systems (both generic and crop-specific) currently in use across CGIAR
and public breeding programmes (Storr, 2019).11

These developments in capacity building are accompanied by new
forms of funding, regulation and evaluation focused on shifting breeding
activity towards the acceleration of genetic gain. Among funding bodies,
the BMGF has provided early and persistent financial support for projects
dedicated to refocusing breeding on genetic gain, as well as related shifts
in infrastructures and modes of collaboration (e.g. Atlin, 2016). The ac-
celeration of genetic gain is being adopted as a key policy item by CGIAR
stakeholders across the board, as evidenced in the multi-funder Crops to
End Hunger strategy for CGIAR plant breeding modernisation.12 Beyond
funding and policy, perhaps the most formal entrenchment of the indi-
cator consists in the development of new regimes of audit. Take, for
example, the Breeding Program Assessment Tool, developed by the
University of Queensland and funded by the BMGF, which includes
questions on genetic gain.13 Evaluation via the Breeding Programme
Assessment Tool is now obligatory for any plant breeding programme
receiving BMGF funding, thereby extending the scope of genetic gain as a
key indicator for breeding success. Following wider trends towards the
use of altmetrics for performance evaluation in the sciences, it has also
been proposed that evaluation of breeders themselves be shifted away
from older methods of assessment such as number of journal articles
published or varieties released and towards quantification of their
practical contribution to realised genetic gain (Cobb et al., 2019, p. 641).
Such regimes of evaluation provide additional control, pressures and
incentives towards realising the culture of continuous optimisation
described by Cobb et al. (2019).

In the remaining sections of the paper, we address some of the con-
ceptual, practical and socio-economic implications that flow from the
changes described above. In the next section, we return to our observa-
tions from section 2 on the nature of genetic gain as indicator in order to
consider how differential investment in and enhancement of the
component variables of genetic gain may affect the practical results of
increased genetic gain. In particular, we focus on incentives that push for
increasing the speed of breeding. This leads to our final section, where we
discuss how rapid breeding is accompanied by complementary proposals
to increase the rate of varietal uptake and replacement by farmers,
through the commercialisation of smallholder seed systems.
11 Outside the CGIAR, the U.S. Department of Agriculture Agricultural
Research Service (USDA-ARS) and Cornell University ‘Breeding Insight’ pro-
gram (https://www.breedinginsight.org/) seeks to develop similar capacity for
increasing genetic gains among smaller plant and animal breeding programs in
the USA, initially focussing on blueberry, alfalfa, sweetpotato, grapes and trout.
This is nevertheless premised on utilising infrastructures shared with the CGIAR,
such as GOBii.
12 See the strategy document: https://storage.googleapis.com/cgiarorg/2018/
11/SC7-B_Breeding-Initiative-1.pdf Similar policy is also being adopted by
USAID, for example in their Feed the Future program.
13 https://plantbreedingassessment.org/.

172
4. Disaggregating indicators

While genetic gain is privileged as a “high-level” indicator for agri-
cultural development (Covarrubias-Pazaran, 2020), Cobb et al. note that:

“it is imperative for senior management and financial stakeholders to
be aware of performance against key indicators such as the average
age of parental material, selection intensities (i.e., number of parents
in the crossing block), selection accuracies (i.e., heritability in multi-
location trials), number of lines advanced to each stage, length of the
breeding cycle, and percentage of external germplasm used as
parental material.” (2019, pp. 639–40)

Ostensibly similar figures for genetic gain will in practice have been
achieved through improvement of different combinations of these sub-
indicators. Understanding the figures for the constituent elements of
genetic gain as well as the implications that come from changes to each of
these is highly significant, as they hold different meanings for breeders,
funders, policymakers and other stakeholders. Indeed, diverse partici-
pants in agricultural management and food production associate
different forms of value to breeding practice, which range from scientific
to economic, political and cultural. The value of faster plant breeding, for
example, can encompass the direct economic value of improved cost
efficiency, but also political value given the significance of fostering food
systems that can rapidly respond to changing economic, environmental
or geo-political conditions (as the food shortages created by the 2022
Russian invasion of Ukraine have made abundantly clear; see also
Lenaerts et al., 2019).14

Establishing a balance between different forms of value is therefore a
key task for breeding policy, planning and management, if breeding is to
respond to the many different stakeholders invested in agricultural pro-
duction globally. As has been noted by others working within the CGIAR,
however:

“In today’s donor environment, CGIAR breeders are challenged to
demonstrate genetic gains on the order of 2% per year, using clearly
defined indicators to monitor progress. This can drive them toward
the easier goals rather than ones that result from a complex analysis of
social, physical and biological challenges, opportunities and goals”
(CGIAR Gender and Breeding Initiative, 2018, p. 1).

The point is made in relation to achieving the social goals of agri-
cultural research and development, such as gender equality and support
for marginalised or under-resourced groups (Williamson & Leonelli,
2022b). Yet it also holds in regard to the different constituent methods
that can be implemented to increase genetic gain. This can be seen in the
contemporary emphasis on reducing the length of breeding cycles over
other elements.

We can illustrate this by drawing a contrast between the utility of
interventions on breeding cycle length and on heritability, respectively,
in regard to a specific area: Climate-adaptive plant breeding.15 Across the
plant breeding literature that we have surveyed so far, one of the key
benefits attributed to accelerating genetic gain is that it will allow the
faster production of new crop varieties, thus allowing breeding systems
to keep pace with the rapid change in environmental conditions expected
under climate change in the twenty-first century. Reducing cycle length
naturally forms a key pillar of this argument, whether through increasing
selection gains from cycle to cycle or through increasing the number of
cycles realised in a single year. Speed is of the essence, in this vision. Yet
speed alone is only one part of the story. For rapid breeding to deliver
14 For similar considerations on breeding indices in animal breeding, see
Nuffield Council on Bioethics (2021, pp. 155–160).
15 This comparison is partly heuristic. In practice, improvements in the two can
be pursued jointly via the same methods, as in Genomic Selection. Yet the two
elements arguably deliver different contributions to climate adaptation, and this
is worth thinking through at some length.

https://www.breedinginsight.org/
https://storage.googleapis.com/cgiarorg/2018/11/SC7-B_Breeding-Initiative-1.pdf
https://storage.googleapis.com/cgiarorg/2018/11/SC7-B_Breeding-Initiative-1.pdf
https://plantbreedingassessment.org/
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effective climate-responsive solutions, this must be accompanied bymore
precise breeding for specific environmental conditions, both current and
predicted. This requires maintaining high rates of heritability within a
closely defined set of environmental parameters, as can be established
through the construction of a TPE and implementation of a correspond-
ing breeding program design.

As described in section 3.1, there is increasing investment in multi-
environment trials as key components of breeding programs, across
multiple crops and institutes, in order to improve heritability rates. Yet
identifying and accessing appropriate land and then implementing
METs can be very costly for breeding institutes (Collard et al., 2019, p.
7). METs therefore tend to be restricted in number. Moreover, they
remain highly controlled environments, and may therefore not be
representative of working agricultural environments. As Ceccarelli
(2015, p. 90) notes, the differences between research stations and
target farming environments can in many cases render calculations of
genetic gain “irrelevant”. This problem has of course been noted and
addressed by breeders. In selection theory, the divergence between
trial and farm environments can be accounted for through estimation
of a “correlated” response to selection (i.e. genetic gain), a measure of
the accuracy with which performance in target farm environments can
be predicted in selection environments (Atlin et al., 2001). The
effectiveness of using such correlated measures, however, continues to
be a matter of controversy (Ceccarelli, 2015, p. 90). In contemporary
plant breeding, several funders and policymakers, including the BMGF
and the United States Agency for International Development (USAID),
have indicated a desire to extend the nascent regimes of evaluation to
assess realised rates of genetic gain not simply in field trial environ-
ments, but directly on farm.16 Such on-farm estimation of genetic gain
would improve the reliability of crop variety performance for farmers,
but poses several practical challenges relating to infrastructure and
labour on the one hand (cf. Layden, 2020) as well as design on the
other, regarding how many and which farms are selected as evaluation
sites. The questions of design may prove especially challenging when
trying to balance evaluation in a representative range of farm envi-
ronments with climatic conditions that may as yet only be predicted
for the target region.17

Our point here is that faster breeding and increased environmental
precision are two distinct components of climate-adaptive breeding that
require complicated investment and management, including in both
genomics and field trials. Arguably, heritability is the more critical of
the two for the production of reliable, climate-adaptive crop varieties
and the more difficult to achieve, with speed playing an auxiliary role
related to the predicted temporality of climate change and of systems
for the dissemination of seed to farmers. Emerging knowledge-control
regimes in plant breeding may produce incentives and disincentives
that push breeders towards “the easier goals”, as the authors of the
Gender and Breeding Initiative report put it. It is especially important to
maintain a critical eye on such structural issues given a further set of
proposals that have been made by key proponents of genetic gain
regarding speed and seed systems, as a complement to their primary
proposals about breeding organisation and practice. These raise a
number of questions about the impact of both sets of reorganisation (to
plant breeding and to seed systems) on farmers and other stakeholders
in agricultural systems.
16 E.g. comments made by Nora Lapitan (US AID Feed the Future programme)
during talk entitled ‘A Strategic Approach to Modernization of the Breeding
Pipeline and Delivery of Genetic Gains’, Plant and Animal Genome XXVIII
conference, San Diego, 11 Jan 2020.
17 Participatory breeding methods, in which selection is conducted on farm,
present an alternative method to increase on-farm genetic gain. We discuss this
at greater length in AUTHORS (Williamson & Leonelli, 2022b; see also Cec-
carelli, 2015).
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5. Genetic gain in the seed system

The efficiency and impact of public plant breeding programmes have
often been evaluated in terms of the number of varieties released, a
measure that is now widely recognised as a “gross overestimate of the
efficiency of a breeding program” (Ceccarelli, 2015, p. 88). There is
increasing consensus that any account of the impact of breeding pro-
grammes must be focused on the adoption of new varieties by farmers.
Alongside the arguments for breeding reorganisation, authors such as
Atlin et al. (2017) and Cobb et al. (2019) have put forth complementary
arguments that increased rates of genetic gain should be matched by
increased rates of varietal adoption and replacement by farmers. This is
frequently linked to the need to ensure that agricultural systems are
climate-responsive, through widespread dissemination and cultivation of
the newest, most adaptive varieties (e.g. Atlin et al., 2017; Cairns &
Prasanna, 2018).

This has led to arguments that a wholesale transformation of seed
systems in the Global South is necessary, drawing on the model of
existing commercial systems:

“Commercial farmers in temperate regions make data-driven cultivar
choices, and replace varieties even for a very small potential yield
increase. They have a high degree of confidence in the data provided
by seed companies and extension services. Companies thus have a
strong incentive to maximize rates of genetic gain, and to disseminate
a steady stream of improved products. Matching the effectiveness of
such systems in delivering climate change adaptation is a critical
challenge for the public sector breeding and seed systems that serve
most farmers in the developing world.” (Atlin et al., 2017, p. 35)

Indeed, “continuous, rapid varietal turnover, the precondition for plant
breeding to contribute effectively to climate change adaptation, is likely
only sustainable in commercialized cropping systems where farmers
frequently purchase seed” (Atlin et al., 2017, p. 35). Against this assertion,
a broad range of risks have been identified with efforts to commercialise
smallholder agriculture and seed systems at scale. These include dispos-
session of farmers from the seed that they rely on (Kloppenburg, 2004,
2010) and the alienation of farmers from practical and social knowledge in
regard to varietal selection and cultivation (Flachs, 2019). Despite Atlin
et al.'s depiction of farmers making data-driven choices, the scope for
informed decision-making is recognised to be highly dependent on formal
knowledge-dissemination networks, and on relations with individual,
institutional and material actors that may preclude the need for detailed
decision-making, for better or for worse. “Farmers need enough trust in
both the products and the information provided about them to ensure that
they demand improved varieties based on data and recommendations
provided by reliable advisers, rather than just on visual demonstration”
(Atlin et al., 2017, p. 36). This produces a degree of risk for all parties,
however, in which data may not prove reliable when breeding outputs
move from research and breeding environments to the less controlled
physical environments and different epistemic environments of the farm.
The efforts to establish on-farm estimations and evaluations of genetic gain
are one attempt to control for such unreliability. Nevertheless, even where
such efforts are established, understanding and trust in detailed quanti-
tative data about varietal performance may be lacking on the part of
farmers, who may draw on different forms of judgement and expertise
(such as that drawn from practical experience) to make their farming de-
cisions (cf. Howlett & Velkar, 2010).18

Regardless, the extent to which farmer decision-making is seen as
critical to such systems is limited in practice. “In the high-functioning
18 To provide an example from animal breeding, Lonkila (2017) describes how
the quantified indexes of performance of dairy cattle bred using Genomic Se-
lection in Finland did not correspond to farmers' ways of evaluating cattle and
nor did quantified evaluations maintain their reliability on farm, leading to
contestation between farmers and breeders.
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seed systems that offer farmers the best protection from climate change,
new varieties are pushed into farmers' fields, not pulled” (Atlin et al.,
2017, p. 36). As such, responsibility for stimulating varietal turnover is
delegated to seed suppliers, regulators and other governmental in-
stitutions to leverage indirect control through means such as policy
changes, withdrawal of older varieties or even penalties for their use
(2017, p. 36; Spielman & Smale, 2017).

Given the risks outlined above, it is necessary to ask whether the
objective of increasing varietal turnover serves the ends described. As we
have made clear in the previous section, the speed of breeding that un-
derpins speed of turnover is only meaningful as a climate-adaptive
measure if it is accompanied by substantive investments in comple-
mentary breeding objectives.

6. Conclusion

While discussing the value of indicators of (in her case, socio-
economic) development, Morgan argues that: “while these data
certainly contain information indicating characteristics of development,
they should not be considered measurements of development” (Morgan,
2020, p. 116). As an indicator of agronomic and breeder performance,
genetic gain forms one among a wider set of indicators that form a key
part of the knowledge-control regimes of agricultural research and
development. These include, to take one example, the indicators
comprising Goal 2, Zero Hunger, of the UN Sustainable Development
Goals (cf. Morgan & Bach, 2018). They also include indicators more
directly associated with the concerns and objectives regarding seed sys-
tems described in the previous section. For example, a key method for
assessing varietal turnover is through calculating the ‘weighted average
age of varieties’ sown across a given geographical area (see Brennan &
Byerlee, 1991). How such indicators are used in practice to govern
development interventions, and how they are brought into relation with
data on genetic gain (for the two are closely linked in the imperatives for
“accelerated” breeding that we have discussed throughout the paper) is a
question that requires further research. Indeed, it is a particularly
important question given that it is likely to have significant effects on
how ‘the field’ as object of intervention moves from being a set of
environmental parameters associated with agronomic performance (�a la
in-field analyses of genetic gain) to a concrete environment inhabited by
farmers and other stakeholders whose practices and decisions are being
evaluated and governed in regard to crop selection and cultivation.

What is clear is that the cumulative picture provided by these sets of
indicators does not, as Morgan indicates, provide a measure of devel-
opment. This has to do with the very nature of indicators as epistemic
objects. As abstract figures calculated from multiple data series they can
be composed in different ways, and the particular ways in which they are
constructed are critical to understanding their meaning and utility, as we
demonstrated in regard to genetic gain and climate adaptation. At the
same time, the development and choice of indicators is always expressive
of particular sets of concerns. The special importance attributed to
breeding speed, and to the commercialisation of seed systems, is linked to
a particular vision of agricultural development (Williamson & Leonelli,
2022b), whose long historical roots (Scott, 2017) have found full
expression within the so-called Green Revolution (Curry, 2022). Within
this vision, biodiversity is often interpreted as a repository of crop vari-
eties whose agronomic value can be tested, improved and eventually
sanctioned through research and related commercialisation – a model
that Fenzi and Bonneuil characterise as “resourcist”, to underscore its
emphasis on plants as genetic “resources” from which value should be
extracted (Fenzi & Bonneuil, 2016). For example, an additional recom-
mendation alongside the methodological changes described in section 3
has been that breeders' source material should be restricted to elite
germplasm, i.e. that from high-performing (and often commercial) va-
rieties (e.g. Atlin et al., 2017, pp. 32–3; Cobb et al., 2019, pp. 629–30).
This is warranted in terms of immediate increases to genetic gain, since it
makes it possible for breeders to avoid engaging in lengthy backcrossing
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processes with non-elite varieties such as farmers' landraces. Neverthe-
less, calculations of genetic variance, as favourable as they may be,
cannot account for the wide range of values of crop biodiversity,
including not only for breeding itself (Curry, 2017) but also for health
and wellbeing, cultural identity, ecology and sustainability (see Hunter
et al., 2017). Moreover, this recommendation introduces further re-
strictions on breeders in terms of intellectual property regimes. Because
most elite varieties derive from commercial breeding programs, and are
therefore covered by intellectual property rights, the range of available
material for public breeding is in practice limited to those elite varieties
released as public goods by CGIAR or other public breeders (Atlin et al.,
2017, pp. 32–3). Those released by the CGIAR may also be subject to the
organisation's own Intellectual Asset principles (Lopez-Noriega et al.,
2019).

Pointing out the limits of genetic gain calculations, and the knowl-
edge control regime in which they are deployed, does not diminish their
importance as a working component of plant breeding. As proponents
have argued, assessing the rate of genetic gain can be extremely valuable
when attempting to quantify and compare the outputs of breeding
models and specific programmes, especially in relation to the improve-
ment of quantitative genetic traits and controlling for the effects of
genotype-environment interactions. But it is worth critically reflecting on
the role such calculations are given in regard to agricultural development
and in mitigating the impact of climate change on agriculture. Whether
genetic gain should be used as the key indicator performance indicator for
plant breeding is a question that should be widely debated, with an eye to
the importance of developing complementary indicators that take a range
of views on what constitutes agricultural development into account (e.g.
Ceccarelli, 2015). In other words, we argue that awareness of both the
usefulness and the limits of genetic gain as an indicator, as depicted
above, needs to translate into an enriched framing of the knowledge
control regimes associated with data-intensive agriculture.

It is not within the scope of this paper to provide a comprehensive
analysis of what such an enriched framing should involve: such an
elaboration requires transdisciplinary cooperation across many stake-
holders in the agricultural system, as we have demonstrated through our
long-standing collaboration with researchers and institutions from mul-
tiple sectors involved in agricultural development (Williamson & Leo-
nelli, 2022a). What we can provide, in closing, are some suggestions for
what agricultural knowledge control regimes should include going for-
ward. Alongside the technologies supporting primary breeding indicators
like genetic gain, we support the adoption of metrics and infrastructures
specifically oriented towards agrobiodiversity and agroecological con-
servation, the diversification of seed systems, and mitigating the differ-
ential impact that climate change is having on soil, crops and
communities. Moreover, there needs to be a commitment towards col-
lecting, preserving and disseminating information – such as meta-data
and documentation on processes of data standardisation – that will
enable stakeholders to disaggregate indicators such as genetic gain and
understand their components and the different implications that they
pose, thereby increasing the ability to critically engage with performance
indicators for rapid breeding. This has concrete implications for current
investment in data-intensive agriculture. It calls for resources to: make
the underpinning data and models accessible and scrutinizable, which
helps to disaggregate indicators and verify their provenance; strengthen
the governance of data infrastructures through participative engagement
that facilitate farmers' input into the production and use of related re-
sources and resulting indicators; and identify and consider development
goals beyond high-yield agriculture, including the valorisation of agro-
diversity for crops, soil and relevant farming communities.
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