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Abstract
Wecharacterize finite-time thermodynamic processes ofmultidimensional quadratic overdamped
systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the
system covariancematrix. The Bures-Wassersteinmetric between covariancematrices naturally
emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools
to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we showhow
these results can be used to analyze cases inwhich the experimental control over the system is partial.

1. Introduction

Theminimisation of dissipation is a central goal infinite-time thermodynamics [1–3]. Inmost applications, one
is interested infinding the optimal time variation of some control parameters, e.g., magnetic or electricfields, in
order to achieve a desired taskwhileminimising the amount of energy dissipated to the environment. Such tasks
could range from the design of a cycle for a thermal engine [4, 5] to the erasure of information in an information
processing device [6–8]. Finding optimal protocols in finite time is however often a very challenging task, as it
requires a functional optimisation over all possible paths in the control parameter space, as well as a perfect
understanding of the non-equilibriumdynamics resulting from such control. In the regime of smallmesoscopic
systems, remarkable progress on this topic has been achieved in the last decades with the development of the
field of stochastic thermodynamics [4, 9–14]. Optimal drivings are nowadays known for overdamped [15–20]
and underdamped systems [21–23], as well as driven single-level quantumdots [24]. However, such explicit
solutions only exist for one-dimensional systems and are, in general, computationally hard to scale up.

Other solutions are known for situations inwhich the control parameter varies slowly compared to the
system relaxation time, as the optimisation admits a geometric formulation [25–32] and the problem
considerably simplifies. Indeed, the space of control parameters can be endowedwith a Riemannianmetric in
such away that geodesic paths correspond tominimally dissipative thermodynamic processes.While the
geodesic equationsmight be hard to solve, the important realisation is that the number of coupled equations is
given by the number of control parameters, and independent of the size of the systemof interest (by comparison,
a full out-of-equilibrium solution of the dynamics needs a number of equations that scales exponentially with
the number of components of the system). This has enabled finding optimal driving protocols in such regime for
complex systems such as a two dimensional Isingmodel [33, 34], nanomagnets [35], and quantum spin chains
[36]. Optimal protocols for different classes of slowly driven heat engines have also been developed by such a
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geometric approach [32, 37–44]. Besides the slow driving regime, the optimization problem can also be
simplified in the opposite, fast-driving, regime [45–48].

Beyond the slow or fast driving limits, a general connection has been established between optimal transport
andminimally-dissipative thermodynamic protocols in the overdamped limit [49, 50]. This connectionwas
recently exploited to show that theminimal dissipation in any process governed by a Langevin equation is
directly related to the L2-Wasserstein distance between initial and final states [51, 52] (see also [53–55]).
However in general full control on the system’sHamiltonian is needed to saturate this bound. To address the
relevant case of partial experimental control, one therefore requires a different approach, that is able to quantify
dissipation on non-optimal trajectories.

In this paper, we study thermodynamic transformations formany-body quadratic overdamped systems.We
derive general expressions for the flux ofwork and heat, andwe show that the dissipation is governed by the
Bures-Wasserstein (BW) distance between covariancematrices, which coincides with the L2-Wasserstein
distance betweenGaussian distributions of [51–55]. Our derivation allows for a direct generalisation of thewell-
known single-body case, studied by Schmiedl and Seifert for a single-particle overdamped system [15], as well as
new insights on the formof optimal drivings. In particular, we provide an integral analytic expression for the
dissipation valid for any response trajectory of the system, not necessarilyminimally dissipating. This also
naturally enables the study of partial control. That is, the situationwhere the limited number of control
parameters does not allow for exploring thewhole space of states, so that the fundamental lower bounds of
[49, 51]might not be reachable. This is a common scenario in complex systems, where experimentally only a few
degrees of freedom are controllable. In order to illustrate the applicability of our results, and to show the
difference between partial and global control, we analyse a systemof two interacting particles and a particle
confined in a 2-dimensional squeezing potential with different control limitations.

2.Model:Many-body overdamped spring

Weconsider a systemofN overdamped Brownian particles described by the position vector x andmutually
interacting via the time-dependent potential

= x x xV t K t,
1

2
, 1( ) ( ) ( )

or, equivalently, via the force field F(x)=−∇V(x)=− Kx (when possible, we omit writing the time argument
fromnowon). Each particle i= 1,K,Nmight have a different number of degrees of freedom di, i.e., Î x M ,
where = å =M di

N
i1 . The potential (1) accounts for both self-energy of the individual particles and interactions

between the particles. The stiffnessmatrixK is symmetric and positive definiteK� 0 (that is, the potential is
confining). Assuming that all the particles have the same friction coefficient γ, the systemdynamics obeys the set
of Langevin equations [56]

hg g= - +x xK k T2 , 2B ( )

where theGaussian noiseη obeys há ñ = 0, its components h h d dá ¢ ñ = - ¢t t t ti j ij( ) ( ) ( ), andT is the
temperature of the thermal environment, whichwe assume isfixed throughout (isothermal). Fromnowon, we
will use natural units inwhich γ= 1, kB= 1. For the general case inwhich different particles have different
friction coefficients, see section 4.

Departing from an arbitrary normalized initial distribution, the state of the system at time t is represented by
aGaussian probability density function (PDF) [56]8.

p
=

S
-

S-
x

x x
p t

t
,

1

2 det
exp

2
. 3

N

1
⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( ) ( )

HereS = á ñxxt t( ) ( ) denotes the covariancematrix at time t. The PDF (3)has zeromean á ñ =x t 0( ) (see
section 4 and appendix B for themore general case).

The distribution p(x, t) is therefore defined by its covariancematrix, whose dynamicsS = á ñ + á ñ xx xx  
can be obtained from equation (2) and reads [56]

S = - S - S +t K t t t K t T2 , 4 ( ) ( ) ( ) ( ) ( ) ( )

where implicitlyT= T1. In case the response dynamicsΣ(t) is given, and onewants to drive the potentialK(t)
accordingly (i.e.,K(t) is the control protocol generating the response dynamicsΣ(t)), the above equation has to
be solved forK(t). This is a standard Lyapunov equation that is commonly used in the context of quantum

8
ThePDFdescribing the state under the dynamics (2) is always Gaussian givenGaussian initial conditions, or after an initial transient (of

order γ/|K|) [56]which is negligible for standard time-asymptotic cycling scenarios, or in the regime of slowdriving.
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metrology (see e.g., [57]), having solution

ò òn n= - S = S - Sn n n n
¥

- S - S -
¥

- S - SK e T e T e ed 2 d . 5
0

1

0

 ( ) ( )

Notice that instantaneous quenches ofK(t) can be added at the beginning and at the end of the protocol, without
affecting the dynamics ofΣ(t). For example, to end the transformation in equilibrium, one can add a final
quench toK= TΣ−1.

Remark.We stress here that the explicit evaluation of equation (5) can be performed analytically. To be

consistent with the notation, throughout the text we use the operator ò n= n n¥ - - A B e Be, d A A
0

( ) expressed

in its integralmatrix form; at the same time, in the basis that diagonalizesA, i.e.,Aij= δijai, the components of

this operator can be easily expressed as =
+

 A B, ij
B

a a

ij

i j
( ) .

3. Thermodynamics of quadratic systems

The average energy of a systemdescribed by amultidimensional probability distribution (3) in the potential (1)
reads

ò= = å á ñ =
S

x x xE t d p t V t K t x x t
K t t

, ,
1

2

Tr

2
, 6ij ij i j( ) ( ) ( ) ( ) ( ) [ ( ) ( )] ( )

where = åAB A BTr ij ij ji[ ] . The variation of energy is split canonically in awork contribution, originating in the
variation of the external potential, and a heat contribution, stemming from the evolution of the system induced
by the dissipative environment [4, 58]. I.e. thework (W) and heat (Q)fluxes entering the system are defined as

=
S

=
S

W
K

Q
KTr

2
,

Tr

2
. 7   [ ] [ ] ( )

In a similar fashion to the seminal work by Schmiedl and Seifert [15]we canwrite thework input of afinite
time transformation of duration τ as

ò

ò ò n

= S

= S - S + S S

t

t
t t

n n
¥

- S - S

W dt K

K
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dt d e e
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2
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0

0
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⎤
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where in the second equality we integrated by parts and used equation (5). In the followingwewill indicate as
t - D  0( ) ( ) ≔ the variation of any quantity during a transformation. Given that

òS = - = Dt txd p p Slogdet ln1

2 0 0∣ ∣ is the variation of VonNeumann entropy of the system (3), it is possible to
rewrite equation (8) as

ò ò n- D - D = S S º
t

n n
¥

- S - SW E T S dt d e e W
1

2
Tr . 9

0 0
irr

 ⎡
⎣

⎤
⎦

( ) ( )

This expression identifies the dissipatedwork,Wirr, of an arbitrary response trajectoryΣ(t). This is our firstmain
result. The above derivation represents a naturalmultidimensional generalisation of the one-dimensional result
of [15].

The irreversible work (9) turns out to be the integral in time of a quadratic form that coincides with the

Bures-Wasserstein (BW)metric on positive-definitematrices [59, 60]. That is ò= S S
t

SW dt g ,irr 0
 ( ), where

ò n= n n
S

¥
- S - Sg A B d e Ae B,

1

2
Tr , 10

0
( ) [ ] ( )

S S º S S + SSg d d D d, , , 11BW
2( ) ( ) ( )

with the latter being the infinitesimal BWsquared distance. Thismetric has been intensely studied as it appears
in problems of statistical inference andmetrology in quantum information [57, 59, 61, 62], as well as in the
theory of optimal transport [60, 63].

For fixed endpoints, the lower bound forWirr is obtained for the response trajectoryS t¯ ( ) thatminimizes the
integral of the quadratic form in equation (9). That is

t
S SW

D ,
, 12irr

BW 1 2
2( ) ( )

where the BW-geodesic length between the initial and final pointsΣ(0)=Σ1,Σ(τ)=Σ2, is given by (see
appendix A, or [59, 60])
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S S º S + S - S S SD , Tr Tr 2 Tr . 13BW 1 2
2

1 2 1 2 1( ) [ ] [ ] [ ] ( )

The corresponding geodesic, i.e., theminimally dissipating response trajectory, is given by (cf appendix A)

tS = - S + S + - S S + S Ss s s s s1 1 , 142
1

2
2 1 2 2 1¯ ( ) ( ) ( )( ) ( )

with s= t/τ and thus 0� s� 1 independently on the total duration t of the protocol.
The appearance of the distance (13) in (12) is no coincidence: it was realised recently [51, 52] that the optimal

transport problem is connected to the irreversible entropy production in diffusive dynamics, and its value is
minimized by the L2-Wasserstein distance between the initial and final distributions [49, 51, 52, 64]. In the case
of Gaussian distributions, the L2-Wasserstein distance coincides with the above BWdistance between the
covariancematrices (13).

Besides it being straightforward, one key advantage of our derivation is that expression (9) is valid for any
response trajectory and allows to computeWirr alsowhen the transformation does not saturate the lower bound
(12). In particular, it can be used for the realistic case of partial experimental control, when the system is
constrained to explore only a subset of the distributions space (see the following paragraph and examples in
section 5).

3.1. Total control versus partial control
In experiments, the system is typically controlled by varyingK(t). The optimal control parameter protocol K̄
corresponding to the geodesic (14) is determined by substituting S̄ into (5). Perfect implementation of K̄ would
then saturate theminimal dissipation bound (13). However, this assumes that K̄ is experimentally feasible. This
might not be the case in general. Performing theminimization over a restricted region of control parameters
limits the system response to a submanifold of allowed states. In general, this results in a case-dependent
minimumvalue strictly larger than the globalminimum, t>W Dirr BW

2 , e.g., see Example 5.1 below.
In other cases, the initial and final point of the transformationmight not even befixed (e.g., when optimizing

the strokes of a thermal cycle to increase its performance as a heat engine). To show the consequences of fixed/
unfixed boundary statesΣ(0) andΣ(τ), consider that the variationS = S + Sd r

   can be divided into a diagonal
contribution and a non-diagonal, rotating contribution. That is, given the covariancematrix expressed in its
diagonal basisΣ=∑iωi|i〉〈i|, the diagonal part of its variation is wS = å ñái id i i

  ∣ ∣and the rotating part is
wS = å ñá + ñái i i ir i i

  (∣ ∣ ∣ ∣). From equations (9)and (10)we know that = S SSW g ,irr  ( ). It is easy to check that
S S =Sg , 0d r
 ( ) which implies that the irreversible work naturally decouples into a diagonal and a rotating

contribution:

= S S + S S º +S SW g g W W, , . 15d d r r
d r

irr irr irr
      ( ) ( ) ( )( ) ( )

BothW
d

irr
 ( )

andW
r

irr
 ( )

are positive, whichmeans that the dissipation generated in a non-commuting

transformation forΣ ( >W 0
r

irr
 ( ) ) is always larger than the commuting case ( =W 0

r
irr
 ( ) ). (A similar phenomenon

occurs for quantum systems, described by their densitymatrices [32]). At the same time, for any transformation
Σ(t)=∑iωi(t)|i(t)〉〈i(t)|, the change in system entropyµD Slogdet[ ]and energyµD SKTr[ [ ]] can also be
achieved by a similar transformationΣ*(t)=∑iωi(t)|i(0)〉〈i(0)| (whereωi(t) varies with time as inΣ(t), while the
basis isfixed) inwhich the covariancematrix commutes with itself at all times S S ¢ =* *t t, 0[ ( ) ( )] , and

=W 0r
irr
( ) .Moreover, it is easy to verify that such transformation has the same value ofW

d
irr
 ( )

, which leads to the
following observation:

Observation 1. If the restrictions on the control parametersK(t) allow and tS S =0 , 0[ ( ) ( )] , rotation of the
covariancematrix should be avoided in order tominimize dissipation.

In fact, it is clear that the BW-geodesic (14) is diagonal in the same basis at all times, if and only if [Σ(0),
Σ(τ)]= 0. If that is not the case, one cannot useΣ*(t) to reduce the dissipation, unless the endpoint of the
trajectory is itself unconstrained. In the fully commuting case, it is easy to see that equations (6)–(9) simplify and
we recover (K being diagonal in the same basis ofΣ, with eigenvalues ki)

ò

w w

w
w t

w t w

= å D = å D

= å å -
t



E k S

W dt

1

2
,

1

2
log ,

1

4

1
0 . 16

i i i i i

i
i

i
i i iirr

0

2
2

[ ]

( ( ) ( ) ) ( )

When reduced to a singlemode, this is exactly the result found by Schmiedl and Seifert in [15], whichwe thus see
being extensive in the eigenmodesωi ofΣ: that is, all themodes {ωi, ki} can be treated as effectively independent in
the commuting case. As an instance of a transformationwithfixed boundaries that force non-commutation, see
Example 5.2.
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Asmentioned above, controlling the potential (1) in time defines the evolution of the state via the dynamical
equation (4). Conversely, a given response trajectoryΣ(t) is translated to its generating controlK(t) through
equation (5). Thismeans that fixing the boundary values ofΣ is non-trivially related tofixing boundary controls.
The results of optimisation thus strongly depend on the imposed constraints [65, 66, 67]. At the same time, for
the purpose of typical applications to isothermal processes (cf section 5), inwhich the goal is tominimizework
dissipation, we can consider the slow-driving limit of the dynamics [68]. In this limit the potentialK(t) is
modified slowly,more precisely we assume t~K 1 with τmuch larger than the relaxation timescale of the
system τ? γ/|K|, and it is sufficient to solve the dynamical equation (4) up to thefirst order in 1/τ. The zeroth
order corresponds to the quasistatic limit τ→∞ . This allows to expand any state-dependent quantity
around its equilibrium value 0( ), keeping only the leading correction term t~  11 ( )( ) . In our specific
setting, the covariancematrix can be expanded as

tS = S + S + t t t 1 170 1 2( ) ( ) ( ) ( ) ( )( ) ( )

withΣ(0)= TK−1 and ò nS = - n n¥ - - -T d e K eK d

dt
K1

0
1( )( ) (cf equations (4) and (5)). However, the

irreversible work (9) is already of order t 1( ). To express the dissipation in the slow regime, it is therefore
sufficient to substituteΣ(0) in (9). In other words, we observe that

Observation 2. In the slow-driving limit, controlling the inverse stiffnessmatrix -TK t1( ) of the potential is
equivalent to directly steering the covariancematrixS t( ). The irreversible work in the slow-driving limit
therefore reads

ò=
t

- --W
T

dt g
d

dt
K

d

dt
K

2
, . 18Kirr

slow

0

1 1
1⎛
⎝

⎞
⎠

( ) ( ) ( )

4.Generalizations

In the previous section, we have focused on the paradigmatic case of the potential (1) and density distributions
(3) centered around x= 0, and a particle-independent friction coefficient. Nevertheless, the obtained results are
fully extendable alsowhen removing such assumptions.

First, in appendix Bwe solve the general case of a quadratic potential with time-dependent center z(t), i.e.,
= - -x x z x zV t t K t t, 1

2
( ) ( ( )) ( )( ( )). As the system is in general driven out of equilibrium, the center of the

potential does not necessarily coincide with the average particle position, 〈x〉≡ ξ(t)≠ z(t), and the irreversible
work gains an additional contribution (see details in appendix B). Focusing on the limit of slow driving, it can be
expressed as

ò x= + S S
t

SW dt g , . 19irr
slow

0

2  (∣ ∣ ( )) ( )

Similarly to (13), the lower bound forWirr
slow is in this case

x x
t

- + S SW D
1

, . 20BWirr
slow

1 2
2

1 2
2(∣ ∣ ( ) ) ( )

Observations 1 and 2 from section 3 remain valid: if possible, rotations of the covariancematrix thus should be
avoided; the state variables in the expression (19) can be substituted by their equilibrium values (ξ,Σ)=
(z,TK−1).Moreover, in the same limit, x t- ~ -zt t 1( ) ( ) ( )while the associated correction to quasistatic
ΔE andΔS is negligible t- 2( ) (cf appendix B). This implies thatmoving the trap x ¹ 0 only contributes to the
dissipation (20) and should therefore be avoidedwhen possible, in the same spirit asObservation 1.

Second, we comment on the generalization to systemswhere different particles have different friction
coefficients γi. In such a case, the Langevin equations (2) become, in components,

g g h= -å +x K x k T2 . 21i i j ij j i B i ( )

Notice that some of the γimight refer to different degrees of freedomof the same particle. Thewhite noises ηi are
mutually uncorrelated.We define gºy xi i i and rewrite the Langevin equations as

h= - ¢ +y yK k T2 , 22B ( )

where the transformed stiffnessmatrix ¢ =
g g

Kij
Kij

i j

is still symmetric and positive definite. At the same time, the

covariancematrix of the y variable,S¢ = á ñyy , satisfies g gS¢ = S .ij i ij i Finally the energy of the system is
given by

= S = S¢ ¢E K K
1

2
Tr

1

2
Tr , 23[ ] [ ] ( )
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and similarly = S¢ ¢Q KTr1

2
 [ ]and = S¢ ¢W KTr1

2
 [ ]. Given the formal equivalence between equations (2), (6),

(7) and (22), (23) above, we see that the problem is equivalentlymapped to the case withfixed γi= γ,∀i.
Finally, throughout the paperwe assumed afixed temperatureT. At the same time, the expressions for

energy (6), heat andwork (7), as well asD = D SS logdet1

2
do not intrinsically depend on the temperatureT.We

can therefore relax such assumption and admit a time-dependent temperatureT(t) [69, 70]. In such case the
definition of irreversible work becomes

ò ò ò= - D - = - + =
t t t

W W E dt TS Q dt TS dt TS , 24irr
0 0 0

irr  ⎛
⎝

⎞
⎠

( )

Sirr
 being the irreversible entropy production. From the derivation in section 3we get the same expression

ò= S S
t

SW dt g ,irr
1

2 0
 ( ), as well as the validity of all the above observations and generalizations.

5. Applications

Here, we present two examples of application of the formalism, results and observations introduced above.

5.1. Interacting particles in double trap
First, we showhowpartial control over a system can substantially increase the amount of dissipationwhen
compared to the optimal geodesics transformation. Consider the case of two particles on a line,Romeo and Juliet,
who are constrained to be located at two different places, separated by a distance a. That is, Romeo (Juliet) is at
position x (y) and subject to a confining harmonic potential of strength kx (ky) centered at -a a

2 2( ). At the same

time, the two particles feel a harmonic attraction of strength kint. The complete system is described by the
potential (cf figure 1)

= - + + + -V k x
a

k y
a

k x y
1

2 2

1

2 2

1

2
, 25x y

2 2

int
2⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

Figure 1. (a)Twoparticles, each locally confined in a harmonic potential, with stiffnesses kx = ky, and an additional harmonic
interaction, kint, between them.A transformation is performed tomodify the local traps stiffnesses. (b)Plots show theminimum
values of the dissipatedworkWirr for transformations from kx(0) = ky(0) = k1 to kx(τ) = ky(τ) = k2 as a function of k2, and for various
values of k1. Wirr

PC is theminimumwork dissipation attainablewith partial control, i.e., whenmodifying only kx and ky between the end
points. Wirr

PC is always larger than its corresponding total control counterpart, Wirr
TC. The latter is attainable when controlling also kint

and a during the transformation, while returning them to their initial values, kint(τ) = kint(0) and a(τ) = a(0). Both k1 and k2 are given
in units of kint(0) = 1. The remaining parameters,T, a(0) and τ, are set to 1.
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For two colloidal particles, such an interaction can be realized using optical tweezers [71] or an effective potential
induced by feedback control [72]. Besides, it qualitativelymimics the interaction of trapped active particles
studied in [72] or in a similarmodel [73].

Now imagine that an experimenter can operate a transformation of theHamiltonian parameters with the
goal to increase the strength of the local traps, butwith aminimal energetic cost. That is, the boundaries of the
transformation are kx(0)= ky(0)< kx(τ)= ky(τ)while a(0)= a(τ) and kint(0)= kint(τ).Wewant to know the
minimumdissipation that an experimenter can achieve for such a transformation. In the appendix C.1, we
derive and compare theminimumdissipation protocols in the slow-driving limit for two paradigmatic cases: i)
partial control inwhich the experimenter can only tune the values of kx and ky (while a and kint are both constant),
ii) total control inwhich the experimenter can control kint and a aswell. The comparison among the two
situations is presented infigure 1. As expected, the dissipation under partial control,Wirr

PC, is always larger than
that for total control,Wirr

TC. In particular we observe that having the possibility of controlling all the parameters
of the potential (25) allows, in general, substantial savings of up to; 50%of energy dissipationwith respect to
simply tuning the stiffnesses kx,y.

5.2. Rotating a 2-dimensional squeezed potential
As a second example, we consider the rotation of a two-dimensional Gaussian system in the xy plane.
Specifically, we consider aGaussian PDFwith a non-isotropic covariancematrix of the position coordinates
{x, y}

S = á ñ á ñ
á ñ á ñ

x xy

xy y
, 26

2

2⎜ ⎟
⎛

⎝

⎞

⎠
( )

which is squeezedwith themajor axis and the x-axis forming an angle θ in the xy plane. Denoting the eigenvalues
ofΣ asωa andωb, it can bewritten in the form

q w q w q q w w
q q w w q w q w

S =
+ -

- +
q w w

cos sin sin cos

sin cos sin cos
. 27a b a b

a b a b
, ,

2 2

2 2a b ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( )

Our goal is tofind aminimum-dissipation protocol that would overall rotate the system in the xy plane, by an
angle dq = p

4
.We thus consider protocols starting atS = S w w0 0, ,a b

( ) and ending at tS = S w wp , ,a b4
( ) (cffigure 2),

and compare three strategies for accomplishing this task: (i)Uniform rotation trajectory: the experimenter
simply rotates the system, i.e.,fixes the variancesωa,b inΣ and increases θ; (ii) Pseudo-commutative trajectory:
the experimenter tunesωa,b to the same value at an intermediate time, thusmaking the distribution isotropic.
Afterwards, they re-stretch the distribution in the desired direction. Such protocol satisfies
S S = "t t t, 0[ ( ) ( )] (notice however [Σ(0),Σ(τ)]≠ 0, which impliesObservation 1 cannot be applied in this
case). The intermediate point can be chosen optimally tominimize the dissipation; (iii)Optimal protocol: the
experimenter is able to control the system such that it follows the BW-geodesicS t¯ ( ) in (14) betweenS w w0, ,a b

and
S w wp ,a b4

. Details of the calculations for each of the trajectories are given in appendix C.3 and the results are
depicted infigure 2.Wefind that the pseudo-commutative strategy is strongly non-optimal, and dissipates at
least twice asmuch as the geodesics trajectory. Notice that this is not in contradiction toObservation 1, as non-
commuting boundary condition induce, in general, non-commuting optimal trajectories. At the same timewe
see that the uniform rotation of the systemΣ is close to the optimal (geodesic) trajectory in terms of dissipation,
while being simpler to implement (it corresponds to a rotation of the experimental apparatus withfixed traps’
strength). Finally, no timescale approximationwas used in this case, butwe notice that in the slow-driving limit
the above strategies are equivalently translated to the stiffnessmatrixK= TΣ−1 (cfObservation 2).

6.Discussion

In this paper, we have studied thework, heat exchange, and irreversible work dissipation of overdamped
multidimensional classical systems. Thesemay have an arbitrary number of degrees of freedomand are confined
by harmonic potentials whose parameters can be partially or totally controlled. Such systems are described by
multidimensional Gaussian probability distributions [56]. For uniform friction and non-moving trap centers,
we have derived a general analytic expression (9) for the irreversible work (proportional to the entropy
productionwhen the temperature isfixed). This expression is valid for any response trajectory, and allows
geometric optimisation based on the Bures-Wassersteinmetric for positivematrices.We also discussed
straightforward generalizations of these results to non-uniform friction values and nontrivial trap center
dynamics. Given that in the slow-driving limit there is a one-to-onemapping between the set of reachable states
Σ and the set of reachable controlsK, this further allows optimization of control protocols that incorporate
experimental constraints, i.e., partial control. Finally, we described general design principles for optimal
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parameter protocols thatminimise dissipation and illustrated them for two examples, increasing local
confinement of two interacting particles and rotating a squeezed potential.

The obtained results point towards themanageable optimization of control protocols in experimental
systemswithmany degrees of freedom [72, 73, 75–77], and they can be directly applied to optical tweezers setups
and electric circuits [71, 78, 79], that wish tominimise dissipation by choosing optimised control parameter
protocols.Moreover, ourfindings can be readily applied to the case of engines and refrigerators described in the
low-dissipation regime, characterized by the 1/τ scaling of dissipation [15, 32, 80–83]. Further extensions
include the analysis of underdamped classical systems, as well as that of quantumGaussian systems.
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Figure 2. (a) Strategies introduced in the text for the rotation of a 2-dimensional Gaussian system by the angle dq = p
4
: (i) uniform

rotation of the system (blue), (ii) commutatively squeezing the systemuntil it is isotropic and, subsequently, stretching it in the desired
direction (green), (iii) following the optimal BW-geodesics (red). (b)The continuous lines show theWirr in units ofωb/τ for the
different strategies. The dashed lines depict the normalised comparison between the different strategies. The pseudo-commutative
strategy (ii) is highly dissipative, while the rotation strategy (i) is comparable to the optimal protocol, dissipating just∼20%more
energy than (iii) formost values ofωa/ωb.
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AppendixA.On theBures-Wasserstein distance

The Bures-Wasserstein (BW) distance can be defined between positive semidefinitematricesΣ� 0, and its
infinitesimal value is given by themetrics gΣ

ò nS S + S = S S = S Sn n
S

¥
- S - SD d g d d d e d e d, ,

1

2
Tr . A.1BW

2

0
( ) ( ) [ ] ( )

When applied to complex positivematrices of unit trace (that is, states in thefield of quantum information), such
metric represents a fundamental quantifier in problems of quantum statistical inference andmetrology
[57, 59, 61, 62]. At the same time it has its own relevance as a distance quantifier between positive realmatrices or
multivariate distributions, in the context of optimal transport theory [60, 63]. The integrated geodesics length
between two pointsΣ1 andΣ2, if no constraints are imposed on the trace of thematrices, reads

S S = S + S - S S SD , Tr Tr 2 Tr A.2BW 1 2 1 2 1 2 1( ) [ ] [ ] [ ] ( )

and the corresponding geodesics is

S = - S + S + - S S + S St t t t t1 1 A.32
1

2
2 1 2 2 1( ) ( ) ( )( ) ( )

where the square root

S S = S S S S S- A.41 2 1 1 2 1 1

1
2

1
2

1
2

1
2

1
2( ) ( )

is the onlymatrixR satisfyingR2=Σ1Σ2 and having a positive spectrum (cf [60]).

Appendix B.General case and slow-driving solution

Herewe consider the case inwhich also the firstmoment of the quadratic potential can be driven.We assume
[56] that the state is Gaussianwith covariancematrixΣ(t) andfirstmoments ξ(t) (we avoid expliciting time
when possible)

x x

p
=

S
-

- S --
x

x x
p t,

1

2 det
exp

2
, B.1

N

1
⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( ) ( )) ( )

while the potential is

= - -x x z x zV t t K t t,
1

2
, B.2( ) ( ( )) ( )( ( )) ( )

with ξ≠ z in general. The energy of the system is therefore

ò
x x

=

= S + - - = S

x x x

z z

E t d p t V t

K K K

, ,

1

2
Tr

1

2

1

2
Tr , B.3z

( ) ( ) ( )

[ ] ( ) ( ) [ ] ( )

whereΣz is the covariancematrix centered in z, that is

x xS = á - - ñ = S + - - x z x z z z . B.4z ( )( ) ( )( ) ( )

The Langevin equation (2) becomes accordingly h= - - +x x zK T2 ( ) in natural units, which is translated
on theGaussianmoments as

x x= - - zK , B.5 ( ) ( )

¶ S = - S - S +K K T2 , B.6t z z z ( )
where the partial derivative in time is due to the fact thatΣz depends as well on z, i.e.

x xS = ¶ S - - - - z z z z . B.7z t z
  ( ) ( ) ( )

Thework and heat can be computed by simply taking the derivative w.r.t. the driving parametersK, z (for the
work), and the dynamical parametersΣ, ξ (for the heat), i.e.
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ò

ò

ò

= S + ¶ S

= S - S - ¶ S

= S - ¶ S

t

t t
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z

z

W dt K K

K dt K K

K dt K

1

2
Tr Tr

1

2
Tr

1

2
Tr Tr

1

2
Tr

1

2
Tr . B.8

z

z

z z

z z z

z t z

0

0 0

0 0

 
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( [ ] [ ] )

[ ] ( [ ] [ ] )

[ ] [ ] ( )

Using the same steps as in themain text (integration by parts and equation (B.6)), this expression translates to

ò

ò ò n

= S + S ¶ S

- ¶ S ¶ S

t t

t
n n

-

¥
- S - S

W K
T

dt

dt d e e

1

2
Tr

2
Tr

1

2
Tr , B.9

z z t z

t z t z

0 0

1

0 0

z z⎡
⎣

⎤
⎦

[ ] [ ]

( )

which can be rewritten as

ò ò

- D - D S

= S S - ¶ S + ¶ S ¶ S
t t

-
S

W E
T

T
dt dt g

2
det

2
Tr , , B.10

z

z z t z t z t z
0

1

0
z

[ ( )] ( ) ( )

with the BWmetrics (10) g. Notice that in general D S ¹ D S = DSdet detz
1

2

1

2
and therefore the expression

above cannot be identified as the irreversible work. At the same time,minimizing dissipation requires using
finite time protocols inwhich the system ends in equilibriumwith the thermal bath, so that no dissipation
follows the end of the protocol. This is automatically satisfied in the case of slow-protocols (see below). For
general transformations, it is sufficient to add afinal quench of the controls, xt t t t= S-zK T, ,z

1( ( ) ( )) ( ( ) ( )).
The condition ξ(τ)= z(τ) is sufficient to rewrite (B.10) as

ò ò= S S - ¶ S + ¶ S ¶ S
t t

-
SW

T
dt dt g

2
Tr , , B.11z z t z t z t zirr

0

1

0
z

[ ( )] ( ) ( )

which can be computed explicitly using x x¶ S - S = - + - z z z zt z z
  ( ) ( ) .

B.1. The slow case
In the slow-driving regime afirst order expansion is performed around

t
01  [68]. For example in the

quasistatic limit of τ→∞ the solution for the dynamics (B.5, B.6) is clearly ξ(0)= z andS = S = -TKz
0 0 1( ) ( ) .

Thefinite time expansion leads to

x x x x x
x x

t= + + + + ~
= = -

-

-


z zK

...

, . B.12

i i0 1 2

0 1 1
( )

( )

( ) ( ) ( ) ( )

( ) ( )

As x t- = - +- -z zK 1 2 ( ), we also get

tS = S + +- -z zK , B.13z
2 3  ( ) ( )

xxt tS - ¶ S = + = +- - - -  
zz K K, , . B.14z t z

1 3 1 3    { } ( ) { } ( ) ( )

Using the above expressions, the irreversible work reads

ò x t= + S S +
t

S
-W dt g , B.15irr

0

2 2  (∣ ∣ ( )) ( ) ( )

ò t= + +
t

- - -- zdt Tg K K, . B.16K
0

2 1 1 2
1  (∣ ∣ ( )) ( ) ( )

AppendixC.Detailed and solved examples

C.1.Double trap
Consider the potential

= - + + + -V k x
a

k y
a

k x y
1

2 2

1

2 2

1

2
, C.1x y int

2 2
2⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

which can be rewritten inmatrix form as

= - - + x a x a x xV K K
1

2

1

2
C.2int( ) ( ) ( )
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with

= =
-

= =
-

-
x a

x
y

a

a
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k k

k k
,
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0
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Touse equation (19), we rewrite the potential in the ‘canonical form’

= - ¢ + - ¢

- ¢ + ¢ +



 

x a x a

a a a a

V K K

K K K

1

2
1

2
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2
, C.4

int
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where

¢ = + -a aK K K C.5int
1( ) ( )

is the effective center of the potential. The scalar- ¢ + ¢ + a a a aK K K1

2 int
1

2
( ) is just a global shift in energy that

does not depend on the dynamics of the system and vanishes for cyclic protocols.

C.2. Confining the particles—Irreversibility parameter
Wecompute the irreversible work using the slow-driving approximation equation (19), inwhich the center of
the distribution can be substituted by the center of the potential, and the covariancematrix can be substituted by
the inverse stiffnessmatrix (cf appendix B), leading to

ò= ¢ + S S S = +
t

S
-aW dt g T K K, with . C.6irr

0

2
int

1  (∣ ∣ ( )) ( ) ( )

Suppose the experimenter wants increase the strength of the local traps to increase the confinement of the two
particles. The endpoint of the transformationwill therefore be

t t t t= = = < =a a k k k k k k0 , 0 , 0 0 . C.7x y x yint int( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Wenotice that due to the symmetry of the potential at the boundary, the eigenvectors ofK+ Kint are always (1,
1) and (1,− 1), independently of the values of kint and kx=ky. That is, [(K+ Kint)(0), (K+ Kint)(τ)]= 0 andwe
can therefore assume that it commutes with itself at all times (cfObservation 1). In such case, the contribution of

S SSg , ( ) toWirr simplifies to (cf equation (16))
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whereωi are the eigenvalues ofS = + -T K Kint
1( ) , which are easily computed. In particular given kx= ky≡ k

wehave
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The contribution ¢a 2∣ ∣ toWirr follows from equation (C.5):
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The associated dissipation of the transformation can be computed from the expressions above for any slow
transformation.Wenow consider the partial control (PC) case inwhich the distance a and interaction strength
kint isfixed, and the experimenter can only control the local stiffnesses kx= ky≡ k. Substituting (C.10) and
(C.12)with = =a k 0int  , the irreversible work (C.6) then specifies to
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+
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Forfixed boundary values of k, it can be proven using theCauchy-Schwarz inequality that the dissipationwith
partial control (C.13) is lower-bounded by
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By comparison, in the case of total control (TC), the bound for the dissipation is given by (20), which, in our case,
reads

t
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C.3. Rotating a 2-dimensional system
In this section, we consider the rotation of a covariancematrixΣ in 2 dimensions by an angle q = p

4
.We thus

impose the boundary conditions

w
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w w w w
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Andweminimize the irreversible work (9) according to three possible strategies.

C.3.1. Simple rotation protocol. First, we consider the transformation fromΣin toΣfin to be performed by
uniformly rotating the experimental apparatus, withoutmodifying the squeezing {ωa,ωb} of the distribution.
This corresponds to an angle-parametrized protocol

q w q w q q w w
q q w w q w q w
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starting atΣ0≡Σin and ending atS º Sp fin4
. The irreversible work production (9) is in this case given by
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1

2 0 0
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. Given the rotational symmetry of the problem, it is obvious that the

optimal rotation of the systemwill have a constant speed q . Thus the integrand

ò n= S Sn n
¥

- S - SW d e e
1

2
Tr C.20irr

0

  ⎡
⎣

⎤
⎦

( )

will be constant in time and can be computed, e.g., for θ= 0, which yields
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Nowwe use the fact that the operator ò n= n n¥ - - A B e Be, d A A
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( ) can be easily expressed in components as
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( ) , in the basis that diagonalizesA, i.e.,Aij= δijai.We therefore get
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fromwhich it is easy to compute the value of (C.20):
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Theminimumvalue of ò=
t

W Wirr 0 irr for the uniform rotation over the total angle qD = p
4
is thus given by
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C.3.2. Pseudo-commutative protocol. One possible way to interpolate betweenΣin andΣfin (C.18) is to change
the values ofωa,b to reach an intermediate symmetric covariancematrix

w
w

S =
0

0
, C.25c

c
intermediate ⎛

⎝
⎞
⎠

( )

which is proportional to the identitymatrix, and later ‘re-stretch it’ in theπ/4 direction in the sameway. Such
protocol is locally commutative at all times, in the sense that S S = "t t t, 0[ ( ) ( )] , although thefinal and initial
covariancematrices do not commute. The total irreversible work for such a strategy is clearly twice the
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irreversible work obtained for the transformationΣin→Σintermediate, in a time τ/2.We therefore get, using the
commutative result (16),

t
w w w w= - + -W

4
. C.26a c b cirr

2 2(( ) ( ) ) ( )

ωc is a free parameter of the described protocol, which can be chosen tominimizeWirr. The optimal choice is

w = w w+
c 2

2
a b( ) , leading to theminimumdissipation for pseudo-commutative protocols

t
w w= -W

2
. C.27a birr

2( ) ( )

C.4.Optimal protocol
Theminimal value of dissipation for any protocol betweenΣin andΣfin is given by themain lower bound (12),
which is saturatedwhen performing the BW-geodesics (14). In our case, we obtain

t t
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