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Abstract

We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped
systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the
system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally
emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools
to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how
these results can be used to analyze cases in which the experimental control over the system is partial.

1. Introduction

The minimisation of dissipation is a central goal in finite-time thermodynamics [ 1-3]. In most applications, one
is interested in finding the optimal time variation of some control parameters, e.g., magnetic or electric fields, in
order to achieve a desired task while minimising the amount of energy dissipated to the environment. Such tasks
could range from the design of a cycle for a thermal engine [4, 5] to the erasure of information in an information
processing device [6-8]. Finding optimal protocols in finite time is however often a very challenging task, as it
requires a functional optimisation over all possible paths in the control parameter space, as well as a perfect
understanding of the non-equilibrium dynamics resulting from such control. In the regime of small mesoscopic
systems, remarkable progress on this topic has been achieved in the last decades with the development of the
field of stochastic thermodynamics [4, 9-14]. Optimal drivings are nowadays known for overdamped [15-20]
and underdamped systems [21-23], as well as driven single-level quantum dots [24]. However, such explicit
solutions only exist for one-dimensional systems and are, in general, computationally hard to scale up.

Other solutions are known for situations in which the control parameter varies slowly compared to the
system relaxation time, as the optimisation admits a geometric formulation [25-32] and the problem
considerably simplifies. Indeed, the space of control parameters can be endowed with a Riemannian metric in
such a way that geodesic paths correspond to minimally dissipative thermodynamic processes. While the
geodesic equations might be hard to solve, the important realisation is that the number of coupled equations is
given by the number of control parameters, and independent of the size of the system of interest (by comparison,
a full out-of-equilibrium solution of the dynamics needs a number of equations that scales exponentially with
the number of components of the system). This has enabled finding optimal driving protocols in such regime for
complex systems such as a two dimensional Ising model [33, 34], nanomagnets [35], and quantum spin chains
[36]. Optimal protocols for different classes of slowly driven heat engines have also been developed by such a
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geometric approach [32, 37-44]. Besides the slow driving regime, the optimization problem can also be
simplified in the opposite, fast-driving, regime [45-48].

Beyond the slow or fast driving limits, a general connection has been established between optimal transport
and minimally-dissipative thermodynamic protocols in the overdamped limit [49, 50]. This connection was
recently exploited to show that the minimal dissipation in any process governed by a Langevin equation is
directly related to the L2-Wasserstein distance between initial and final states [51, 52] (see also [53-55]).
However in general full control on the system’s Hamiltonian is needed to saturate this bound. To address the
relevant case of partial experimental control, one therefore requires a different approach, that is able to quantify
dissipation on non-optimal trajectories.

In this paper, we study thermodynamic transformations for many-body quadratic overdamped systems. We
derive general expressions for the flux of work and heat, and we show that the dissipation is governed by the
Bures-Wasserstein (BW) distance between covariance matrices, which coincides with the L>-Wasserstein
distance between Gaussian distributions of [51-55]. Our derivation allows for a direct generalisation of the well-
known single-body case, studied by Schmiedl and Seifert for a single-particle overdamped system [15], as well as
new insights on the form of optimal drivings. In particular, we provide an integral analytic expression for the
dissipation valid for any response trajectory of the system, not necessarily minimally dissipating. This also
naturally enables the study of partial control. That is, the situation where the limited number of control
parameters does not allow for exploring the whole space of states, so that the fundamental lower bounds of
[49, 51] might not be reachable. This is a common scenario in complex systems, where experimentally only a few
degrees of freedom are controllable. In order to illustrate the applicability of our results, and to show the
difference between partial and global control, we analyse a system of two interacting particles and a particle
confined in a 2-dimensional squeezing potential with different control limitations.

2. Model: Many-body overdamped spring

We consider a system of N overdamped Brownian particles described by the position vector x and mutually
interacting via the time-dependent potential

Vix, t) = % K (H)x, 1)

or, equivalently, via the force field F(x) = — VV(x) = — Kx (when possible, we omit writing the time argument
from now on). Each particle i = 1,...,N might have a different number of degrees of freedom d;, i.e., x € RM,
where M = Zfi 1 di. The potential (1) accounts for both self-energy of the individual particles and interactions
between the particles. The stiffness matrix K is symmetric and positive definite K > 0 (that is, the potential is
confining). Assuming that all the particles have the same friction coefficient v, the system dynamics obeys the set
of Langevin equations [56]

v% = —Kx + 27k Tn, 2

where the Gaussian noise 77 obeys (1) = 0, its components (7, () Uk (t")) = 6;6(t — t'),and Tis the
temperature of the thermal environment, which we assume is fixed throughout (isothermal). From now on, we
will use natural units in which v = 1, kg = 1. For the general case in which different particles have different
friction coefficients, see section 4.

Departing from an arbitrary normalized initial distribution, the state of the system at time ¢is represented by
a Gaussian probability density function (PDF) [56]°.

B xTZl(t)x). 3)

1
(6 1) = 1 ex (
P JCmN det S P 2

Here X(t) = (xx')(t) denotes the covariance matrix at time . The PDF (3) has zero mean (x) (t) = 0 (see
section 4 and appendix B for the more general case).

The distribution p(x, £) is therefore defined by its covariance matrix, whose dynamics > = (xx ') + (xx")
can be obtained from equation (2) and reads [56]

() = —K@®Z() — DOK (@) + 2T, (4)

where implicitly T = T1. In case the response dynamics (¢) is given, and one wants to drive the potential K(¢)
accordingly (i.e., K(#) is the control protocol generating the response dynamics X.(¢)), the above equation has to
be solved for K(#). This is a standard Lyapunov equation that is commonly used in the context of quantum

8 The PDF describing the state under the dynamics (2) is always Gaussian given Gaussian initial conditions, or after an initial transient (of
order 7/|K]) [56] which is negligible for standard time-asymptotic cycling scenarios, or in the regime of slow driving.

2
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metrology (see e.g., [57]), having solution
K= f dv e ?2QT — Y)e = = TY ! — f dv e "5 VE. (5)
0 0

Notice that instantaneous quenches of K(#) can be added at the beginning and at the end of the protocol, without
affecting the dynamics of X(f). For example, to end the transformation in equilibrium, one can add a final
quenchto K =T

Remark. We stress here that the explicit evaluation of equation (5) can be performed analytically. To be
consistent with the notation, throughout the text we use the operator Z(A, B) = fo * dv e "ABe A expressed

in its integral matrix form; at the same time, in the basis that diagonalizes A, i.e., A;; = §;;a; the components of
B,j

a; + a;

this operator can be easily expressed as Z(A, B);; =

3. Thermodynamics of quadratic systems

The average energy of a system described by a multidimensional probability distribution (3) in the potential (1)
reads
1 Tr[K (1) 2(1)]

E@) = [ dx px, 0V 1) = T, K0 b (0) = =0, ©)
where Tr[AB] = Y i AiiBji- The variation of energy is split canonically in a work contribution, originating in the
variation of the external potential, and a heat contribution, stemming from the evolution of the system induced
by the dissipative environment [4, 58]. I.e. the work (W) and heat (Q) fluxes entering the system are defined as

Tr[KE] . Tr[KY]

W= S Q= S )

In a similar fashion to the seminal work by Schmiedl and Seifert [15] we can write the work input of a finite
time transformation of duration 7 as

1 .
W*EIO dt Tr[KY]

1
= —Tr[KX
5 [KX]

0 — glogdetZ‘.

+ lf dt Tr [f dv e"’ZZe‘”EZ], (8)
N 2Jo 0

where in the second equality we integrated by parts and used equation (5). In the following we will indicate as
(1) — Q(0) := AQ thevariation of any quantity Q during a transformation. Given that

%logdetZlg =— f dxpInp |; = ASisthevariation of Von Neumann entropy of the system (3), it is possible to
rewrite equation (8) as

. _ il T o0 —VvEN ,—UEY — 4
W — (AE TAS)fzj; dtTr[fO dv e="=Se E]me. ©)

This expression identifies the dissipated work, Wj,,, of an arbitrary response trajectory ¥(t). This is our first main
result. The above derivation represents a natural multidimensional generalisation of the one-dimensional result
of [15].

The irreversible work (9) turns out to be the integral in time of a quadratic form that coincides with the
Bures-Wasserstein (BW) metric on positive-definite matrices [59, 60]. Thatis Wi, = fo T dt gE(Z, ), where

g, B = > [ dv Trle e B, (10)

85(d%, d¥) = Dpw (%, ¥ + dX)%, (11)

with the latter being the infinitesimal BW squared distance. This metric has been intensely studied as it appears
in problems of statistical inference and metrology in quantum information [57, 59, 61, 62], as well as in the
theory of optimal transport [60, 63].

For fixed endpoints, the lower bound for Wj,, is obtained for the response trajectory ¥(¢) that minimizes the
integral of the quadratic form in equation (9). That is

Dgw (X1, 3,)?
T bl

Wiy 2 (12)

where the BW-geodesic length between the initial and final points 3(0) = ¥, 3(7) = 3,, is given by (see
appendix A, or [59, 60])
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Diw (1, $2)° = Tr[S1] + Tr[2] — 2Tr[y {3 22451 1. (13)
The corresponding geodesic, i.e., the minimally dissipating response trajectory, is given by (cfappendix A)

B(m) = (1 — )28 + 525, 4+ s(1 — (Y212 + VX220), (14)

with s = t/7and thus 0 < s < 1 independently on the total duration ¢ of the protocol.

The appearance of the distance (13) in (12) is no coincidence: it was realised recently [51, 52] that the optimal
transport problem is connected to the irreversible entropy production in diffusive dynamics, and its value is
minimized by the L>-Wasserstein distance between the initial and final distributions [49, 51, 52, 64]. In the case
of Gaussian distributions, the L2-Wasserstein distance coincides with the above BW distance between the
covariance matrices (13).

Besides it being straightforward, one key advantage of our derivation is that expression (9) is valid for any
response trajectory and allows to compute W;,, also when the transformation does not saturate the lower bound
(12). In particular, it can be used for the realistic case of partial experimental control, when the system is
constrained to explore only a subset of the distributions space (see the following paragraph and examples in
section 5).

3.1. Total control versus partial control

In experiments, the system is typically controlled by varying K(t). The optimal control parameter protocol K
corresponding to the geodesic (14) is determined by substituting 3 into (5). Perfect implementation of K would
then saturate the minimal dissipation bound (13). However, this assumes that K is experimentally feasible. This
might not be the case in general. Performing the minimization over a restricted region of control parameters
limits the system response to a submanifold of allowed states. In general, this results in a case-dependent
minimum value strictly larger than the global minimum, W, > Dgy /7, e.g., see Example 5.1 below.

In other cases, the initial and final point of the transformation might not even be fixed (e.g., when optimizing
the strokes of a thermal cycle to increase its performance as a heat engine). To show the consequences of fixed/
unfixed boundary states 3(0) and X(7), consider that the variation > = ¥; + 3, can be divided into a diagonal
contribution and a non-diagonal, rotating contribution. That is, given the covariance matrix expressed in its
diagonal basis ¥ = Y ww,|i) (i, the diagonal part of its variation is ¥; = 3, &j|i) (i| and the rotating part is
N, =3 wi(|i> (i + 13) <.i|). From equations (9)and (10) we know that Wy, = g(3, %). Itis easy to check that
2= (X4, ;) = 0which implies that the irreversible work naturally decouples into a diagonal and a rotating
contribution:

‘/Virr = gz‘(zd) Ed) + gz(zh Zr) = ‘/Vl(rf) + Wl(rrr) (15)

Both W.? and W.” are positive, which means that the dissipation generated in a non-commuting

irr irr

transformation for (Wl-(r? > 0) is always larger than the commuting case (Wi(r? = 0). (A similar phenomenon
occurs for quantum systems, described by their density matrices [32]). At the same time, for any transformation
Y0 = Y wi®)|i(0) (i(¥)], the change in system entropy <A [logdetY] and energy o« A[Tr[K3:]] can also be
achieved by a similar transformation X*(#) = Y w(1)]i(0)) (i(0)| (where w;(¥) varies with time as in 3(¢), while the
basis is fixed) in which the covariance matrix commutes with itself at all times [X*(¢), X*(¢+')] = 0,and

W{" = 0. Moreover, it is easy to verify that such transformation has the same value of Wi(r‘f), which leads to the
following observation:

Observation 1. If the restrictions on the control parameters K(¢) allow and [X(0), >(7)] = 0, rotation of the
covariance matrix should be avoided in order to minimize dissipation.

In fact, it is clear that the BW-geodesic (14) is diagonal in the same basis at all times, if and only if [>(0),
Y(7)] = 0.If that is not the case, one cannot use 3*(¢) to reduce the dissipation, unless the endpoint of the
trajectory is itself unconstrained. In the fully commuting case, it is easy to see that equations (6)—(9) simplify and
we recover (K being diagonal in the same basis of 3, with eigenvalues k;)

E= %Zi kiwi, AS= %Zi Allogw;l,
g 1wf _ 1 s
W= [*dr 5,250 > =5 (@ — V)2, (16)
0 4 w; T

When reduced to a single mode, this is exactly the result found by Schmiedl and Seifert in [15], which we thus see
being extensive in the eigenmodes w; of X: that is, all the modes {w;, k;} can be treated as effectively independent in
the commuting case. As an instance of a transformation with fixed boundaries that force non-commutation, see
Example 5.2.
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As mentioned above, controlling the potential (1) in time defines the evolution of the state via the dynamical
equation (4). Conversely, a given response trajectory >(¢) is translated to its generating control K(¢) through
equation (5). This means that fixing the boundary values of ¥ is non-trivially related to fixing boundary controls.
The results of optimisation thus strongly depend on the imposed constraints [65, 66, 67]. At the same time, for
the purpose of typical applications to isothermal processes (cf section 5), in which the goal is to minimize work
dissipation, we can consider the slow-driving limit of the dynamics [68]. In this limit the potential K(¢) is
modified slowly, more precisely we assume K ~ 1/7 with 7 much larger than the relaxation timescale of the
system 7 >> ~y/|K|, and it is sufficient to solve the dynamical equation (4) up to the first order in 1/7. The zeroth
order corresponds to the quasistatic limit 7 — oo . This allows to expand any state-dependent quantity Q
around its equilibrium value Q©, keeping only the leading correction term Q) ~ (O(1/7). In our specific
setting, the covariance matrix can be expanded as

Y1) =XO0) + 300 + O /7Y (17)

with2@ =TK 'and ¥® = —T fo * dy e /K %(K‘l)e"’/ K (cfequations (4) and (5)). However, the
irreversible work (9) is already of order O(1/7). To express the dissipation in the slow regime, it is therefore
sufficient to substitute @ in (9). In other words, we observe that

Observation 2. In the slow-driving limit, controlling the inverse stiffness matrix TK~!() of the potential is
equivalent to directly steering the covariance matrix > (¢). The irreversible work in the slow-driving limit
therefore reads

T 7 d d
wilow — Z I gt g | —(KY, —(K Y |. 18
=2 ) e (dt< ) o€ >) (18)
4, Generalizations

In the previous section, we have focused on the paradigmatic case of the potential (1) and density distributions
(3) centered around x = 0, and a particle-independent friction coefficient. Nevertheless, the obtained results are
fully extendable also when removing such assumptions.

First, in appendix B we solve the general case of a quadratic potential with time-dependent center z(t), i.e.,
Vix, t) = %(x — z(#))K (t)(x — z(t)). Asthe system is in general driven out of equilibrium, the center of the
potential does not necessarily coincide with the average particle position, (x) = &(t) = z(f), and the irreversible
work gains an additional contribution (see details in appendix B). Focusing on the limit of slow driving, it can be
expressed as

wie = [ T At (ER + g (5, D). (19)

Similarly to (13), the lower bound for W is in this case

1
Wi > —(1& - &2 + Dpw (D1, T0)2). (20)

Observations 1 and 2 from section 3 remain valid: if possible, rotations of the covariance matrix thus should be
avoided; the state variables in the expression (19) can be substituted by their equilibrium values (§, ) =
(z, TK"). Moreover, in the same limit, & (t) — z(t) ~ O(7~!) while the associated correction to quasistatic
AE and AS is negligible O(72) (cf appendix B). This implies that moving the trap & = 0 only contributes to the
dissipation (20) and should therefore be avoided when possible, in the same spirit as Observation 1.

Second, we comment on the generalization to systems where different particles have different friction
coefficients «y;. In such a case, the Langevin equations (2) become, in components,

Yiki = —32; Kijxj + 27iks T'n;. 21

Notice that some of the ; might refer to different degrees of freedom of the same particle. The white noises 7, are
mutually uncorrelated. We define y; = _/7;x; and rewrite the Langevin equations as

y =—K'y + J2ks T, (22)

K
7

Cf)varil;mce matrix of the y variable, X/ = (yy "), satisfies E,’j = %2 /7 Finally the energy of the system is
given by

where the transformed stiffness matrix Kl-; = is still symmetric and positive definite. At the same time, the

E= %Tr[EK] = %Tr[Z’K’], (23)
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Figure 1. (a) Two particles, each locally confined in a harmonic potential, with stiffnesses k, = k,, and an additional harmonic
interaction, ki,., between them. A transformation is performed to modify the local traps stiffnesses. (b) Plots show the minimum
values of the dissipated work W, for transformations from k,(0) = k,(0) = k; to k() = k(7) = k; asa function of k,, and for various
values of k;. WEC is the minimum work dissipation attainable with partial control, i.e., when modifying only k, and k, between the end

ur
points. WEC is always larger than its corresponding total control counterpart, Wi'C. The latter is attainable when controlling also ki,

and a during the transformation, while returning them to their initial values, ki, (7) = kiy(0) and a(7) = a(0). Both k; and k, are given
in units of k;;,(0) = 1. The remaining parameters, T, a(0) and 7, are set to 1.

and similarly Q = % Tr[¥/K'land W = % Tr[X/K’]. Given the formal equivalence between equations (2), (6),
(7)and (22), (23) above, we see that the problem is equivalently mapped to the case with fixed y; = =, Vi.

Finally, throughout the paper we assumed a fixed temperature T. At the same time, the expressions for
energy (6), heatand work (7), aswellas AS = %AlogdetZ do not intrinsically depend on the temperature T. We
can therefore relax such assumption and admit a time-dependent temperature T(t) [69, 70]. In such case the
definition of irreversible work becomes

mrr:W—(AE—LTdtTS):—Q+j;T dth':j: dt TS, (24)

Sir being the irreversible entropy production. From the derivation in section 3 we get the same expression
Wy = % j(; dt g (X, X)), as well as the validity of all the above observations and generalizations.

5. Applications

Here, we present two examples of application of the formalism, results and observations introduced above.

5.1. Interacting particles in double trap
First, we show how partial control over a system can substantially increase the amount of dissipation when

compared to the optimal geodesics transformation. Consider the case of two particles on aline, Romeo and Juliet,
who are constrained to be located at two different places, separated by a distance a. That is, Romeo (Juliet) is at
position x (y) and subject to a confining harmonic potential of strength k, (k,) centered at %(— %) At the same
time, the two particles feel a harmonic attraction of strength k;,,. The complete system is described by the

potential (cf figure 1)

1 a1 A
V=—kfx— 2| + =k 2) 4 kimx — )2 25
2 (x 2)+2y(y+2)+2 &= (25)
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For two colloidal particles, such an interaction can be realized using optical tweezers [71] or an effective potential
induced by feedback control [72]. Besides, it qualitatively mimics the interaction of trapped active particles
studied in [72] or in a similar model [73].

Now imagine that an experimenter can operate a transformation of the Hamiltonian parameters with the
goal to increase the strength of the local traps, but with a minimal energetic cost. That is, the boundaries of the
transformation are k.(0) = k,(0) < k(7) = k,(7) while a(0) = a(r) and k;,(0) = ki,(7). We want to know the
minimum dissipation that an experimenter can achieve for such a transformation. In the appendix C.1, we
derive and compare the minimum dissipation protocols in the slow-driving limit for two paradigmatic cases: i)
partial controlin which the experimenter can only tune the values of k, and k,, (while a and k;,, are both constant),
ii) total control in which the experimenter can control k;,,; and a as well. The comparison among the two
situations is presented in figure 1. As expected, the dissipation under partial control, WC, is always larger than
that for total control, W,I°. In particular we observe that having the possibility of controlling all the parameters
of the potential (25) allows, in general, substantial savings of up to ~ 50% of energy dissipation with respect to
simply tuning the stiffnesses k..

5.2.Rotating a 2-dimensional squeezed potential
As asecond example, we consider the rotation of a two-dimensional Gaussian system in the xy plane.
Specifically, we consider a Gaussian PDF with a non-isotropic covariance matrix of the position coordinates

{xy}
= (x) {xy)
( () <y2>)’ 20

which is squeezed with the major axis and the x-axis forming an angle 8 in the xy plane. Denoting the eigenvalues
of ¥ as w, and wy, it can be written in the form

S (cosz(ﬂ)wa + sin?(Q)wyp, sin(8)cos(9)(w, — wh)). 27)

sin(0)cos(0) (w, — wp) sin?(@)w, + cos?(@)wy

Our goal is to find a minimum-dissipation protocol that would overall rotate the system in the xy plane, by an
angle 60 = %. We thus consider protocols startingat 3(0) = X, ., andendingat (1) = %= , , (cffigure2),
and compare three strategies for accomplishing this task: (i) Uniform rotation trajectory: the experimenter
simply rotates the system, i.e., fixes the variances w, , in ¥ and increases 6; (ii) Pseudo-commutative trajectory:
the experimenter tunes w,, ; to the same value at an intermediate time, thus making the distribution isotropic.
Afterwards, they re-stretch the distribution in the desired direction. Such protocol satisfies

[2(t), £(t)] = 0 Yt (notice however [£(0), X(7)] = 0, which implies Observation 1 cannot be applied in this
case). The intermediate point can be chosen optimally to minimize the dissipation; (iii) Optimal protocol: the
experimenter is able to control the system such that it follows the BW-geodesic 3(¢) in (14) between ¥, ., and
Y1 4w, Details of the calculations for each of the trajectories are given in appendix C.3 and the results are
depicted in figure 2. We find that the pseudo-commutative strategy is strongly non-optimal, and dissipates at
least twice as much as the geodesics trajectory. Notice that this is not in contradiction to Observation 1, as non-
commuting boundary condition induce, in general, non-commuting optimal trajectories. At the same time we
see that the uniform rotation of the system X is close to the optimal (geodesic) trajectory in terms of dissipation,
while being simpler to implement (it corresponds to a rotation of the experimental apparatus with fixed traps’
strength). Finally, no timescale approximation was used in this case, but we notice that in the slow-driving limit
the above strategies are equivalently translated to the stiffness matrix K = TS ' (cf Observation 2).

6. Discussion

In this paper, we have studied the work, heat exchange, and irreversible work dissipation of overdamped
multidimensional classical systems. These may have an arbitrary number of degrees of freedom and are confined
by harmonic potentials whose parameters can be partially or totally controlled. Such systems are described by
multidimensional Gaussian probability distributions [56]. For uniform friction and non-moving trap centers,
we have derived a general analytic expression (9) for the irreversible work (proportional to the entropy
production when the temperature is fixed). This expression is valid for any response trajectory, and allows
geometric optimisation based on the Bures-Wasserstein metric for positive matrices. We also discussed
straightforward generalizations of these results to non-uniform friction values and nontrivial trap center
dynamics. Given that in the slow-driving limit there is a one-to-one mapping between the set of reachable states
3} and the set of reachable controls K, this further allows optimization of control protocols that incorporate
experimental constraints, i.e., partial control. Finally, we described general design principles for optimal
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. I — (iii) BW-geodesics T

Wa/Wh

Figure 2. (a) Strategies introduced in the text for the rotation of a 2-dimensional Gaussian system by the angle 66 = %: (i) uniform
rotation of the system (blue), (ii) commutatively squeezing the system until it is isotropic and, subsequently, stretching it in the desired
direction (green), (iii) following the optimal BW-geodesics (red). (b) The continuous lines show the Wj,, in units of wy,/7 for the
different strategies. The dashed lines depict the normalised comparison between the different strategies. The pseudo-commutative
strategy (ii) is highly dissipative, while the rotation strategy (i) is comparable to the optimal protocol, dissipating just ~20% more
energy than (iii) for most values of w,/w.

parameter protocols that minimise dissipation and illustrated them for two examples, increasing local
confinement of two interacting particles and rotating a squeezed potential.

The obtained results point towards the manageable optimization of control protocols in experimental
systems with many degrees of freedom [72, 73, 75-77], and they can be directly applied to optical tweezers setups
and electric circuits [71, 78, 79], that wish to minimise dissipation by choosing optimised control parameter
protocols. Moreover, our findings can be readily applied to the case of engines and refrigerators described in the
low-dissipation regime, characterized by the 1/7 scaling of dissipation [15, 32, 80-83]. Further extensions
include the analysis of underdamped classical systems, as well as that of quantum Gaussian systems.
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Appendix A. On the Bures-Wasserstein distance

The Bures-Wasserstein (BW) distance can be defined between positive semidefinite matrices 32 > 0, and its
infinitesimal value is given by the metrics g5,

Diw(E, $ + d%)? = g (d%, d%) = % [ " dy Trle "CdSe Pds). (A1)
0

When applied to complex positive matrices of unit trace (that is, states in the field of quantum information), such
metric represents a fundamental quantifier in problems of quantum statistical inference and metrology

[57,59, 61, 62]. At the same time it has its own relevance as a distance quantifier between positive real matrices or
multivariate distributions, in the context of optimal transport theory [60, 63]. The integrated geodesics length
between two points X3; and 3, if no constraints are imposed on the trace of the matrices, reads

Dw@m29:¢nmd+ﬁmﬂ—zﬂ[£§&$§] (A.2)

and the corresponding geodesics is

() =1 — t)221 + tzzz +t(1 — (VX125 + V2X220) (A.3)
where the square root
NN 51657538 3315 o (A4)

is the only matrix R satisfying R* = X, %, and having a positive spectrum (cf [60]).

Appendix B. General case and slow-driving solution

Here we consider the case in which also the first moment of the quadratic potential can be driven. We assume
[56] that the state is Gaussian with covariance matrix X(¢) and first moments £(#) (we avoid expliciting time
when possible)

— &Y —
”&ﬂzjifﬁiiﬂi_@ en;u Ou’ B.1)
while the potential is
Vix, t) = %(x —z(O))K (@) (x — z(1)), (B.2)
with € = zin general. The energy of the system is therefore
E(t) = fdx p(x, OV (%, 1)
= STHEK] + (€ - DK(E - 2) = S TrK], (8.3)
where Y, is the covariance matrix centered in z, that is
Yo={x-2)x-2)) =S+ E -2 —-2). (B.4)

The Langevin equation (2) becomes accordingly x = —K (x — z) + +/2Tn in natural units, which is translated
on the Gaussian moments as

€=-K(E-2), (B.5)
Y, = —K%, — %,K + 2T, (B.6)
where the partial derivative in time is due to the fact that 3, depends as well on z, i.e.

Y, =05, —2(&—2) —(£—2)z. (B.7)

The work and heat can be computed by simply taking the derivative w.r.t. the driving parameters K, z (for the
work), and the dynamical parameters ¥, £ (for the heat), i.e.
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w=1l f " A (THKS,] + 8, Tr[KS,]2)
2Jo

1 S B . .
= S TrKE] 3 j; dt (Tr[KS,] — 0, Tr[KX,]2)
] T T
= S TrK3] 3 fo dt Tr[K8,%,]. (B.8)

Using the same steps as in the main text (integration by parts and equation (B.6)), this expression translates to

wz%nm&]

+ I f dt Tr[S19, %, ]
o 2 Jo

— lf dt Tr [f dv e"’ZZ&EZe‘”EZatZZ], (B.9)
2J0 0
which can be rewritten as

W_ AE — gAdeth

T r7 e T
=2 arms @ - ozor+ [ gy 0%, 05, (B.10)

with the BW metrics (10) g. Notice that in general %A det>, = %A det > = AS and therefore the expression
above cannot be identified as the irreversible work. At the same time, minimizing dissipation requires using
finite time protocols in which the system ends in equilibrium with the thermal bath, so that no dissipation
follows the end of the protocol. This is automatically satisfied in the case of slow-protocols (see below). For
general transformations, it is sufficient to add a final quench of the controls, (K (1), z(7)) = (TX; (1), £(1)).
The condition £(7) = z(7) is sufficient to rewrite (B.10) as

T T -~ . T
Wi, = Ef; At TS (S, — 9,5)] +f0 dt g, (0,5, %), (B.11)

which can be computed explicitly using 3,5, — ¥, = 2(€ — z) + (€ — 2)z .

B.1. The slow case
In the slow-driving regime a first order expansion is performed around % =~ 0 [68]. For example in the

quasistatic limit of 7 — oo the solution for the dynamics (B.5, B.6) is clearly ¢© = zand ¥ = ¥© = 7K,
The finite time expansion leads to

5 — 5(0) + 5(1) + 5(2)+ +£(i) ~ O(T_i)

EO =z 0= _Klz (B.12)
As€ — z= —K 'z + O(77%), wealso get

Y, =X +zK2%T + O3, (B.13)
S, — 9%, = {22, K} + O %) = (&€, K} + O ). (B.14)

Using the above expressions, the irreversible work reads
Wie = [ de(€R + go(5, £) + OG) (B.15)

0
_ f Cdr(EP + Tge (KL KY) + O (B.16)
0

Appendix C. Detailed and solved examples

C.1.Double trap

Consider the potential
1 a1 a)> 1
V:—k(x——)+—k( +—)+—ki x —y)?, C.1
Sk 5 Y4 A 5 (X — ¥) (C.1)
which can be rewritten in matrix form as
V= %(x —a))Kkx —a) + %xTKimx (C.2)

10



10P Publishing

J. Phys. Commun. 6 (2022) 063001 P Abiuso et al

with

X a/2 kx 0 kint _kint
= ,a= , K= , Kigt = . C3
* (}/) ? (—[1/2) (O k)’) ' (_kint kint ( )

To use equation (19), we rewrite the potential in the ‘canonical form’
1
V=—(x—a) K+ Kn)(x - a)
2
1 1
— Ea’T(K + Kipa' + EaTKa, (C.4)

where
a = (K + Kin) 'Ka (C.5)

is the effective center of the potential. The scalar — %a’ T(K + Kp)a' + %aTKa is just a global shift in energy that
does not depend on the dynamics of the system and vanishes for cyclic protocols.

C.2. Confining the particles—Irreversibility parameter

We compute the irreversible work using the slow-driving approximation equation (19), in which the center of
the distribution can be substituted by the center of the potential, and the covariance matrix can be substituted by
the inverse stiffness matrix (cf appendix B), leading to

Wi = [ dr(aP + g5 5) with ¥ = T(K + K™ (C.6)
0

Suppose the experimenter wants increase the strength of the local traps to increase the confinement of the two
particles. The endpoint of the transformation will therefore be

a(0) = a(7), kint(0) = kine(7), kx(0) = ky(0) < ke(7) = ky(7). (C.7)

We notice that due to the symmetry of the potential at the boundary, the eigenvectors of K 4 Kj,, are always (1,
1)and (1, — 1), independently of the values of ki, and k,=k;. That is, [(K + Kj,)(0), (K + Kjn)(7)] = 0 and we
can therefore assume that it commutes with itself at all times (cf Observation 1). In such case, the contribution of
& (2, ¥)to Wy, simplifies to (cf equation (16))

T o) A i .2 .2
(S, %) = lf dt Tr [f dv e‘”EZe"’EZ] = l(w—l + w_z)) (C.9)
2 Jo 0 4\ w; )

where w;are the eigenvalues of ¥ = T (K + Kin)~!, which are easily computed. In particular given k, = k, = k
we have

T T
= —, = C.9
I k 2 k + 2kint ©
and therefore
Woen  T(E (k+ 2kin)?
Y =~|—=+ —1 C.10
g2 =7 [k3 (k + 2kin)? 1
The contribution |@’[? to Wi, follows from equation (C.5):
ok 2(1 ) (C.11)
k + 2kint 2 —1
4 ) 2 ) 2
P =222 —k i(@) I LS (C.12)
k + 2kp ) \de\ k 2 \k + 2kin

The associated dissipation of the transformation can be computed from the expressions above for any slow
transformation. We now consider the partial control (PC) case in which the distance a and interaction strength
kint s fixed, and the experimenter can only control the local stiffnesses k, = k, = k. Substituting (C.10) and
(C.12) with a = ki, = 0, the irreversible work (C.6) then specifies to

W= DLy L Y e K p (C.13)
TR T (k4 2kin)? (k + 2kin)* '

For fixed boundary values of k, it can be proven using the Cauchy-Schwarz inequality that the dissipation with
partial control (C.13) islower-bounded by
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2
1 k2
PC 1 int
WEC > ( ) dk\/ k3 7(“2,(“)3) + 2a (k+2k‘m)4). (C.14)

By comparison, in the case of total control (TC), the bound for the dissipation is given by (20), which, in our case,
reads

W > Lilal - alf + Dpw(S1, %)), with (C.15)
T
b @ k k, .
la; — ay]* = — - , (C.16)
2 \ ki + 2kint ky + 2kint

2
Dpw (%, 27) 1 1 1 1
——— == - —| + - . (C.17)
T (JE N ] (Jkl + 2kie Ak + zkim]

C.3. Rotating a 2-dimensional system
In this section, we consider the rotation of a covariance matrix X in 2 dimensions by an angle 0 = %. We thus
impose the boundary conditions

_[wa O 7lwu+wb Wy — Wy
Sy = (0 Wb), S = 2(% te e Wb). (C.18)

And we minimize the irreversible work (9) according to three possible strategies.
C.3.1. Simple rotation protocol.  First, we consider the transformation from ¥;;, to 34, to be performed by

uniformly rotating the experimental apparatus, without modifying the squeezing {w,, w;,} of the distribution.
This corresponds to an angle-parametrized protocol

_ (cosz(ﬂ)wa + sin*(@)wy, sin(@)cos(0) (w, — wb))

. . (C.19)
sin(0)cos(0) (w, — wp) sin*(@)w, + cos?(@)wy

startingat 3y = ¥, and ending at 2= = Xg,. The irreversible work production (9) is in this case given by
W, = % j(; T dt Tr [ J; Fdy e TYe vty ] Given the rotational symmetry of the problem, it is obvious that the
optimal rotation of the system will have a constant speed #. Thus the integrand

W, = %Tr [ f dv efvzze%z] (C.20)
0

will be constant in time and can be computed, e.g., for § = 0, which yields

_fwa O - 40 Wy — Wy
so( ) sodft L e can

[e¢} . .
Now we use the fact that the operator Z(A, B) = fO dv e "ABe~"A can be easily expressed in components as

(A, B); =

B; . . . . .
- +] —,in the basis that diagonalizes A, i.e., A;; = 6ija,-. We therefore get
i j

f dv e VESe VS = pPa Wb (0 1), (C.22)
Wa + wpy\l 0
from which it is easy to compute the value of (C.20):
2
Wi, = QZM_ (C.23)

Wy + wyp
.. T . . . - .
The minimum value of Wi, = fo Wi, for the uniform rotation over the total angle Af = % is thus given by

17 (wa — wb)2

Wi = (C.24)

7'16 Wy + wyp

C.3.2. Pseudo-commutative protocol. One possible way to interpolate between ¥;,, and Xg, (C.18) is to change
the values of w, , to reach an intermediate symmetric covariance matrix

we 0
Yintermediate = (OC w )) (C.25)
c

which is proportional to the identity matrix, and later ‘re-stretch it” in the /4 direction in the same way. Such
protocol s locally commutative at all times, in the sense that [X(¢), ¥(¢)] = 0 V¢, although the final and initial
covariance matrices do not commute. The total irreversible work for such a strategy is clearly twice the
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irreversible work obtained for the transformation 3, — ¥ cermediate> in @ time 7/2. We therefore get, using the
commutative result (16),

Wiy = é(ww—a — JT + (JTT — @D, (C.26)

w,is a free parameter of the described protocol, which can be chosen to minimize Wj,,. The optimal choice is

VW VW 2 . .. . . . .
W = (%) ,leading to the minimum dissipation for pseudo-commutative protocols
Wi = E(\/ Wa — JWh )2- (C.27)
T
C.4. Optimal protocol

The minimal value of dissipation for any protocol between 3y, and X, is given by the main lower bound (12),
which is saturated when performing the BW-geodesics (14). In our case, we obtain
DBW(Eina Zﬁn)2 _ 1

= —(Tr[Zin] + Tr[Sgn] — 2Tr[y VS0 Sain v 1)
T T

- %(2(% +wp) — I 2@n + o) — (@ — w0)?). (C.28)
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