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Abstract – Modelling of an open quantum system requires knowledge of parameters that specify
how it couples to its environment. However, beyond relaxation rates, realistic parameters for
specific environments and materials are rarely known. Here we present a method of inferring
the coupling between a generic system and its bosonic (e.g., phononic) environment from the
experimentally measurable density of states (DOS). With it we confirm that the DOS of the well-
known Debye model for three-dimensional solids is physically equivalent to choosing an Ohmic
bath. We further match a real phonon DOS to a series of Lorentzian coupling functions, allowing us
to determine coupling parameters for gold, yttrium iron garnet (YIG) and iron as examples. The
results illustrate how to obtain material-specific dynamical properties, such as memory kernels.
The proposed method opens the door to more accurate modelling of relaxation dynamics, for
example for phonon-dominated spin damping in magnetic materials.
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Introduction. – Quantum technologies face many
challenges, often arising due to the unavoidable coupling
of any system to its environment. The prediction of their
dynamics requires open quantum system methods that
include such coupling effects, for example the Caldeira-
Leggett model [1] and the spin-boson model [2]. These
methods are successfully employed in many physical con-
texts, e.g., quantum optics [3–5], condensed matter [6–11],
quantum computation [12–14], nuclear physics [15] and
quantum chemistry [16]. For instance, modelling cir-
cuit quantum electrodynamics with the spin-boson model
shows that the heat transport of a superconducting qubit
within a hybrid environment changes significantly, de-
pending on the qubit-resonator and resonator-reservoir
couplings [6].

In the mathematical treatment of an open quantum sys-
tem, a coupling function Cω is typically introduced that
describes how strongly the system interacts with bath de-
grees of freedom (DoF). Its functional form determines
the temporal memory of the bath and whether the noise
is coloured or not [1,2,17], critically affecting the system
dynamics [8,18,19]. A large body of theoretical results ex-
ist for various toy models that make specific assumptions
on the coupling function Cω [1,2,20]. However, a major

(a)E-mail: nemati@uni-potsdam.de (corresponding author)

drawback is a somewhat lacking connection to system- or
material-specific characteristics to which these methods
could be applied: for a given DoF, in a given material,
which coupling function Cω should one choose to model
its dynamics?

An alternative approach is taken in the condensed mat-
ter literature, where open quantum systems are usually
characterized by the density of states (DOS) of their en-
vironment [21]. Measurement of, for example, the phonon
DOS is well-established using different inelastic scatter-
ing techniques [22,23]. Modes in the environment typi-
cally couple to the system with a wave-vector–dependent
strength gk [2,24,25], which in many cases can be captured
by a frequency-dependent gω.

In this paper, we present a useful relation that translates
the coupling function Cω of an open quantum system into
an experimentally measurable DOS Dω, and vice versa.
While a similar relation has previously been reported for
one-dimensional quantum spin impurities [26,27], the rela-
tion obtained here is valid for a generic system coupled to
a bosonic bath, capturing dimensionality and anisotropy.
It paves the way to parametrizing realistic coupling func-
tions for a range of applications, for example, for spins
in a magnetic material that experience damping through
the coupling to the crystal lattice [17,28] or for nitrogen
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vacancy centers, a solid-state analogue of trapped atoms,
whose coherence lifetime in optical transitions is also lim-
ited by interaction with phonons [29,30]. The link is
explicitly established for a generic quantum system that
couples locally to a bosonic environment. Extensions to
other environments, such as fermionic environments, will
be possible using similar arguments.

The paper is organised as follows: we first introduce the
two approaches involving Dω and Cω, respectively. Setting
up the dynamics of the environment, we evaluate its mem-
ory kernel and establish the link between Dω and Cω, al-
lowing for general gω. In the second part of the paper, we
choose a flat g for simplicity, and illustrate the application
of the relation with a few examples. We demonstrate that
the widely used Debye approximation is equivalent to the
well-known Ohmic coupling function. While this approxi-
mation suffices at low frequencies, experimental DOS show
peaks at higher frequencies, leading to non-trivial dissi-
pation regimes. We parametrize two measured phonon
DOS, those of gold and iron (see the Supplementary Ma-
terial Supplementarymaterial.pdf (SM)), and one the-
oretically computed phonon DOS of yttrium iron garnet
(YIG) and extract key parameters for the corresponding
coupling functions Cω. These give direct insight into the
impact of memory for any phonon-damped dynamics in
these materials.

Two approaches. – The Hamiltonian of a quantum
system in contact with a bath is

Ĥtot = ĤS + ĤB + ĤSB, (1)

where the bath Hamiltonian ĤB and the system Hamilto-
nian ĤS may contain the internal interactions among their
own components. The system-bath interaction is assumed
to be of product form,

ĤSB = −Ŝ · B̂ , (2)

where Ŝ is a (Hermitian) system operator and B̂ is a bath
operator, each with ds components. The form of the bath
Hamiltonian ĤB and of the bath operator B̂ depends on
the context. We consider here a bosonic bath, i.e., an infi-
nite set of harmonic oscillators. In the literature, one can
broadly distinguish two representations of the bath, work-
ing either in wave vector (WV) or frequency (F) space,
as illustrated in fig. 1.

The wave vector approach is common in condensed mat-
ter physics [2,21] where the bath Hamiltonian is expressed
as a sum over all possible modes k,

ĤWV
B =

∑
k

h̄ωk

(
b̂†
kb̂k +

1
2

)
. (3)

Here ω = ωk gives the dispersion relation of a normal
mode with wave vector k and b̂k (b̂†

k) are bosonic anni-
hilation (creation) operators of a mode excitation with
commutation relations [b̂k, b̂†

k′ ] = δkk′ . Usually one con-
siders a three-dimensional (3D) structure with wave vec-
tors k = (kx, ky, kz). For example, in a cubic 3D lattice

Fig. 1: Schematic picture of two equivalent approaches to mod-
elling the open quantum systems. (a) Wave vector approach:
each bath frequency ω includes several wave vectors {k} where
each bath wave vector k couples to the system with strength
gk. (b) Frequency approach: every bath frequency ω couples
to the system with a strength given by Cω.

with number of lattice sites N , lattice constant a and vol-
ume V = Na3, each component of k runs through the
range

( − 3√
N−1
2 , . . . , 0, . . . ,

3√
N−1
2

)
2π
3√

Na
. For large N and

V , and for any function f(ωk) that only depends on the
frequency ωk, one can approximate sums over the wave
vectors as

1
V

∑
k

f(ωk) ∼=
∫

d3k

(2π)3
f(ωk) =:

∫
dωDω f(ω). (4)

This equation defines Dω as the DOS per unit volume of
bath modes at frequency ω [21].

For bosonic baths, we choose the standard interac-
tion [2] where the bath operator B̂ is linear in the bosonic
mode operators (single phonon processes),

B̂WV =
1√
V

∑
k

ξk b̂k + h.c., (5)

where ξk = εk

(
h̄g2

k/(2ωk)
)1/2 with εk a ds-dimensional

unit polarisation vector [1] and gk the wave-vector–
dependent coupling, see fig. 1. Equation (2) may be
generalized to the situation that several system compo-
nents Ŝm are located at different positions Rm, and sum
over interaction terms, i.e., ĤSB = − ∑

m Ŝm · B̂(Rm).
The field operators would then be R-dependent, i.e.,
B̂WV (R) = 1√

V

∑
k ξk b̂k eik·R + h.c. For simplicity, we

will concentrate in the following on just one system site
and drop summation over m again.

Another approach to setting up the bath Hamiltonian
ĤB and the interaction ĤSB is based on a frequency ex-
pansion often employed in the open quantum systems lit-
erature [1,2]. In contrast to eq. (3), here ĤB is written
directly as a sum or integral over frequencies,

ĤF
B =

1
2

∫ ∞

0

dω(P̂ 2
ω + ω2X̂2

ω), (6)
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where P̂ω and X̂ω are 3D (in general, d-dimensional (dD))
momentum and position operators, respectively, for the
bath oscillator with frequency ω. Their components obey
[X̂ω,j, P̂ω′,l] = ih̄ δjl δ(ω − ω′). In this approach, the bath
operator in eq. (2) is often chosen as [17]

B̂F =
∫ ∞

0

dω CωX̂ω, (7)

where the coupling function Cω (in general a ds × d ten-
sor) is weighting the system-bath coupling at frequency
ω. The system operators couple isotropically to the
bath if CωCT

ω = 1ds C2
ω. The scalar coupling function

Cω is related to the bath spectral density Jω, which
alternatively quantifies the effect of the environment on
the system as Jω ∝ C2

ω/ω [1,2]. The bath dynamics can be
categorised [2] based on the low-ω exponent of the spectral
density, Jω ∝ ωs, into three different classes, called Ohmic
(s = 1), sub-Ohmic (s < 1), and super-Ohmic (s > 1).

The difference between wave vector approach and fre-
quency approach is that at a fixed frequency ω, there is
in eq. (7) just one bath operator X̂ω that couples to the
system, while according to eq. (5), the interaction is dis-
tributed over several wave vector modes k with weighting
factors ξk, their number being set by the DOS Dω (see
fig. 1).

We now want to address the question of the connection
between the DOS Dω and the coupling function Cω. To
achieve this, we consider one relevant quantity in both
approaches and equate the corresponding formulas. In the
following, we choose the memory kernel K which encodes
the response of the bath to the system operator Ŝ. Note
that the choice of B̂ in eq. (5) restricts the discussion to
the linear response of the bath, as is reasonable for a bath
that is thermodynamically large [1,2].

Memory kernel in both approaches. – To find an
explicit relation in the wave vector approach for the dy-
namics of the bath operator B̂WV in eq. (5), the starting
point is the equation of motion for b̂k,

db̂k

dt
= −iωkb̂k +

i
h̄
√

V
ξ†

k · Ŝ, (8)

whose retarded solution contains two terms

b̂k(t) = b̂k(0) e−iωkt

+
i

h̄
√

V
ξ†

k ·
∫ t

0

dt′ Ŝ(t′) e−iωk(t−t′). (9)

Therefore, the time evolution of the bath operator can
be written as B̂WV (t) = B̂WV

induced(t) + B̂WV
response(t). The

first term represents the internally evolving bath which is
given by B̂WV

induced(t) = 1√
V

∑
k b̂k(0)e−iωtξk + h.c., while

B̂WV
response(t) contains information about the system’s past

trajectory,

B̂WV
response(t) =

∫ ∞

0

dt′KWV (t − t′) Ŝ(t′), (10)

where KWV (t − t′) is the memory kernel (a tensor),

KWV (t − t′) =
Θ(t − t′)

V

∑
k

g2
kεkε†

k

sinωk(t − t′)
ωk

. (11)

Here, the ξk have been expressed by the unit polarisation
vectors εk (see after eq. (5)) and Θ(t− t′) is the Heaviside
function, which ensures that the bath responds only to the
past state of the system, i.e., t′ < t.

For large volume V , the summation over k in eq. (11)
can be transformed into a frequency integration as in
eq. (4). The projection on polarization vectors, aver-
aged over an isofrequency surface Ω, is taken into ac-
count by a (ds × ds) positive Hermitian matrix g2

ωMω =
(Ω)−1

∫
dΩ g2

k εkε†
k, where the matrix Mω is normalized

to unit trace and g2
ω is a scalar. With these notations, the

memory tensor in the wave vector approach is

KWV (t − t′) = Θ(t − t′)
∫ ∞

0

dω g2
ωMωDω

sin ω(t − t′)
ω

.

(12)

Turning now to the frequency approach, the dynamics of
the bath operator X̂ω in eq. (7) follows a driven oscillator
equation

d2X̂ω

dt2
+ ω2X̂ω = CT

ω Ŝ. (13)

Its exact solution is

X̂ω(t) = X̂ω(0) cosωt + P̂ω(0) sin ωt

+
∫ ∞

−∞
dt′ Gω(t − t′) CT

ω Ŝ(t′) , (14)

where Gω(t − t′) = Θ(t − t′) sin ω(t − t′)/ω is the
retarded Green’s function. Inserting this solution in
eq. (7) leads again to induced and response evolu-
tion parts given, respectively, by B̂F

induced(t) =
∫ ∞
0 dω ·

(X̂ω(0) cosωt + P̂ω(0) sin ωt) and

B̂F
response(t) =

∫ ∞

0

dω

∫ ∞

0

dt′ Gω(t − t′) CωCT
ω Ŝ(t′) . (15)

Comparing with eq. (10) one can identify the memory ker-
nel tensor in the frequency approach as

KF (t − t′) =
∫ ∞

0

dω CωCT
ω Gω(t − t′) . (16)

Coupling function Cω vs. DOS Dω. – Since eqs. (12)
and (16) describe the same memory effects, we may set
them equal, leading to

CωCT
ω = g2

ω MωDω. (17)

This relation links the system-bath couplings in the two
approaches, i.e., the DOS Dω is proportional to the Her-
mitian “square” of the coupling function Cω. This is the
first result of the paper.
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The result (17) may be applied to any quantum system
that interacts linearly with a bosonic bath. For instance,
magnetic materials in which spins Ŝ relax in contact with
a phonon reservoir have been studied extensively [13,17,
31]. The noise-affected occupation of fermionic modes in a
double quantum dot [32], and the behaviour of an impurity
in a Bose-Einstein condensate environment [33] are other
examples.

Note that in eq. (17) the dimension of the system is
either smaller than or equal to the dimension of the bath,
i.e., ds ≤ d. A rectangular (ds × d) coupling matrix Cω

may model a graphene-on-substrate structure, where the
electronic system (ds = 2) is in contact with a 3D phononic
bath [34]. An example for equal dimensions is a 3D spin
vector that couples to a 3D phononic environment [17].

Specific examples. – In this second part of the pa-
per, we wish to use eq. (17) to obtain coupling function
estimates from experimentally measurable quantities. To
do so we have to drop generality and make a number of
simplifying assumptions.

First, we assume isotropic coupling to an isotropic bath,
and set Cω = 1ds Cω with scalar Cω , and Mω = 1ds/ds.
Second, for simplicity, we assume a frequency-independent
g so that the frequency-dependent impact of the coupling
is captured by Dω alone. This is a common approxima-
tion for quantum optics systems [35,36], while examples of
condensed matter systems where this approximation holds
over a range of frequencies are limited [2]. Whenever a
non-trivial gω is known for a specific context, such as a
power-law behaviour ∝ ωp, this can be included in eq. (17)
separately from the DOS’ ω-dependence. To establish
such gω requires microscopic models for specific physical
situations, which make several approximation steps. For
example, a derivation of the electron-phonon interactions
in quantum dots [25] was given in [24].

These assumptions reduce eq. (17) to the scalar equation

C2
ω =

g2

ds
Dω, (18)

with system dimension ds. We will base the following
discussion of examples for the coupling functions Cω on
this simpler scalar form.

Debye approximation. – In condensed matter
physics, the Debye model is used to describe the phonon
contribution to a crystal’s thermodynamic properties. It
assumes an acoustic dispersion, i.e., ω = c|k| with an av-
eraged sound speed c, resulting in 3D in [21]

DDeb
ω =

3 ω2

2π2c3
Θ(ωD − ω). (19)

Here ωD is the Debye frequency, i.e., the maximum bath
frequency, which in practice is taken to be near the edge
of the Brillouin zone. For example, for gold, see fig. 2(a),
the Debye model fits the DOS data reasonably well in
frequency region I up to ≈ 1.4 THz.

Fig. 2: (a) Debye DOS (pink solid line, eq. (19)) and two-peak
Lorentzian DOS (blue solid line, eq. (22)) fitted to a measured
phonon DOS for gold (red dots) reported as in ref. [37]. The
Debye frequency for gold is ωD/2π = 3.54 THz given in ref. [21].
Fit specified peak frequencies ω0,j , widths Γj and peak ratios
Aj/A1 are given in table 1. The grey dashed lines separate
three frequency regimes discussed in the main text. (b) Mem-
ory kernels K(t−t′) corresponding to Debye DOS and two-peak
Lorentzian DOS.

For the Debye DOS, our relation eq. (18) implies the
coupling function (setting ds = d = 3)

CDeb
ω =

g ω√
2π2c3

Θ(ωD − ω). (20)

The scaling of CDeb
ω implies that the spectral density

J(ω) ∝ C2
ω/ω is Ohmic, i.e., J(ω) ∝ ω. Hence, the 3D

Debye model with constant coupling g in the wave vec-
tor approach captures the same relaxation dynamics as
an Ohmic bath in the frequency approach.

Beyond 3D cubic lattices, Dω will depend on the di-
mensionality and lattice symmetry. What happens if the
lattice is effectively two- or one-dimensional? To answer
this, let us imagine a dD isotropic lattice with volume
V = Nad. The volume element of such a lattice in k-space
corresponds to ddk = Ωdk

d−1dk where Ωd = 2, 2π, 4π is
the dD solid angle for d = 1, 2, 3, respectively.

Analogously to the 3D lattice, using the acoustic dis-
persion with an averaged sound speed c, one finds the dD
Debye DOS

D(d)
ω =

Ωd ωd−1

(2πc)d
Θ(ωD − ω). (21)

Via eq. (18) we obtain the power-law Cω ∝ ω(d−1)/2 for the
corresponding coupling functions which implies spectral
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Table 1: Fit parameters of two-peak Lorentzian DOS, see
eq. (22), matched to the experimentally measured DOS for
gold reported in ref. [37] (see fig. 2(a)).

Peak Frequency Width Ratio
j ω0,j/2π [THz] Γj/2π [THz] Aj/A1

1 2.11 1.3 1
2 4.05 0.56 0.15

densities J(ω) ∝ ωd−2. Thus, isotropic baths in 2D or 1D
behave in a distinctly sub-Ohmic way.

Inferring coupling functions from DOS data. –
Here we wish to go beyond the conceptually useful Debye
model, and fully specify the functional form of Cω , given
experimentally accessible DOS data that characterise the
phononic environment.

A generic feature of real materials is a structured DOS,
which shows several peaks [37,38]. Sums of Lorentzian
or Gaussian functions are two convenient candidates to
approximate such peaky shaped densities [39]. Here, we fit
experimentally measured DOS for gold [37] (and iron [38]
in the SM) and theoretically computed DOS for YIG [40]
to a function consisting of multiple Lorentzians,

DLor
ω =

6 A1

g2π

ν∑
j=1

AjΓj

A1

ω2

(ω2
0,j − ω2)2 + Γ2

jω
2
. (22)

The fits, see figs. 2(a), 3 and figure in the SM, reveal
the material specific peak frequencies ω0,j, peak widths
Γj and peak ratios Aj/A1, see table 1 and tables in the
SM, while the first peak amplitude A1 remains undeter-
mined. Fixing A1 would require information additional to
the DOS, such as the system’s relaxation rate due to inter-
action with the phonon bath. Note that phonon DOS are
generally slightly temperature dependent [38]. Hence the
fit parameters in eq. (22) will be (usually weak) functions
of temperature, a dependence that only matters when a
large range of temperatures is considered.

The peak widths in eq. (22) determine a characteristic
memory time 1/Γj. However, beyond this single timescale
number, the functional dependence of the memory is fully
determined by the kernel eq. (12), which for multi-peak
Lorentzians is proportional to

KLor(t − t′) ∝
ν∑
j

Aje
− Γj(t−t′)

2
sin(ω1,j(t − t′))

ω1,j
Θ(t − t′),

(23)
with ω1,j =

√
ω2

0,j − Γ2
j/4. The degree of memory intro-

duced by this kernel into a system’s dynamics could be
quantified in terms of several non-Markovianity measures,
see, e.g., [41–44].

For gold, fig. 2(a) shows the phonon DOS measured by
Muñoz et al. [37], together with our two-peak Lorentzian

Fig. 3: Illustration of eighteen-peak Lorentzian DOS, eq. (22),
(orange curve) fitted to the theoretically predicted phonon
DOS Dω for YIG (cyan curve) reported in ref. [40]. The grey
dashed line shows a single-peak Lorentzian fit. The fitted peak
frequencies ω0,j , widths Γj and amplitude ratios Aj/A1 can be
found in table 2 in the SM.

fit. The fit gives good agreement in all frequency regimes,
with a slightly slower decay in region III than the mea-
sured DOS. For a system coupled to phonons in gold, the
peak widths (see table 1) immediately imply a charac-
teristic memory time in the picosecond range. The rele-
vant kernel is shown (blue) in fig. 2(b) for the two-peak
fitted DOS of gold shown in fig. 2(a). Using the De-
bye model instead would give a qualitatively different be-
haviour: the pink curve shows a distinctly slower long-
time tail, due to the sharp cutoff at the Debye frequency.
Note also that without any cutoff, the kernel would be
K(t − t′) ∝ ∂t′δ(t − t′), implying no memory [17]. In con-
trast, the Lorentzian fit (blue) provides a quantitatively
accurate memory kernel.

Our approach may provide a more realistic picture of the
magnetization dynamics based on actual material data.
YIG [45,46] is a typical magnetic insulator in which the
relaxation of a spin DoF Ŝ is dominated by the coupling
to phonons [47], similar to magnetic alloys like Co-Fe [48],
while in metallic materials, the coupling to electrons is
more relevant [49]. Figure 3 illustrates a theoretically com-
puted DOS for YIG [40] with a fit that contains eighteen
Lorentzians. (Parameters are displayed in table 2 in the
SM.) In this fit, a few negative amplitudes Aj in eq. (22)
are needed to reproduce the gap near 16 THz, however, the
total Dω remains positive. Using additional information
of the typical Gilbert damping parameter for this mate-
rial [50], also the peak amplitude A1 can be determined
(see the SM).

More generally, via eq. (18) the parameters of the multi-
peak DOS (22) immediately specify the functional form of
the coupling Cω of a system to a phononic bath in real
materials. This second result of the paper will be useful
for modelling the Brownian motion of spins [17,51] and in
applications such as quantum information processing with
solid-state spin systems [52].
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Conclusion. – We have derived the general rela-
tion (17) that translates the function Cω, determining the
coupling of a generic system to a bosonic bath at various
frequencies, into the density of states Dω of the latter.
This was achieved by evaluating the memory kernel of dy-
namical bath variables in two equivalent approaches. Sev-
eral applications of the relation were then discussed. We
demonstrated how for systems damped by phonons in 3D
with a frequency-independent g, Debye’s quadratic DOS
captures the same physics as a linear coupling function
Cω which corresponds to an Ohmic spectral density. Sec-
ondly, we have established how to infer Cω from the mea-
sured DOS of a material, such that it reflects the specific
properties of the material. Given that real materials have
densities of states with multiple peaks, the typical picture
which emerges from our general relation (17) is that the
coupling function is non-Ohmic and memory effects in the
system dynamics become important. The corresponding
time scales (in the ps range, e.g., for gold in fig. 2(b)) can
be conveniently determined by fitting multiple Lorentzians
to the bath DOS.

Future work could address how to extend relation (17)
to systems interacting with multiple independent baths.
This should be suitable for non-equilibrium settings in-
volving different temperatures [53], as used in heat
transport [54]. The impact of memory may also change
the behaviour of systems like superconducting qubits
or two-level systems that are in contact with two
baths [55,56].
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