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Abstract

Permanent magnetic materials are of fundamental importance to the modern

world, utilised in fields as broad as computers, cars, and MRI machines. Their im-

portance is set to increase as the world move towards sustainable energy and away

from fossil fuels. A seamless switch requires an increase in magnet production,

and an improvement in performance. Rare-earth reduced permanent magnets are

considered a solution to these two problems.

This thesis investigates the impact of chemical and morphological changes

on the phase stability of rare-earth reduced hard permanent magnets. New

methodologies for investigating the position preference of atomic substitutions

and dopants have been applied to the RT12 (R = Rare-Earth, T = Transition

metal) phase group. This work demonstrates that substitution of the transition

metal for titanium in NdFe12, SmFe12, and SmCo12, decreases the cohesive energy,

and therefore increases the stability of the structure up to 8Ti at.%. Through

analysis of substitution positions it is demonstrated this is tied to a structural ef-

fect, derived from a switch in the symmetry of preferential substitution positions.

To gauge the manufacturing feasibility of one of these phases, computational

investigations of the melting temperature of NdFe12 at various pressures were

performed using a Solid Liquid coexistence methodology applied in Molecular

Dynamics. Pair potentials used for this work were generated by a genetic algo-

rithm potential fitting methodology, which has application beyond the RT12 phase

group.

Finally, a new methodology for understanding grain morphology is presented,

which takes into consideration the shape, surfaces, and interfaces of cyrstalline

grain structures. This methodology is tested on the FePt L10 structure, which is

able to produce stable magnetic grains at nanometer sizes, due to it’s magnetic

anisotropy of Ha = 6-10 MJ/m3. This work shows that at grain sizes between

3-9nm, the morphology of the grains is dominated by surface energy, and will

result in structures with {111} planes as their primary faces. This result has

implications for the design of next generation hard drives.

3



Contents

1 Introduction 1

1.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Classification of Magnetic Materials . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Types of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 3

Diamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Antiferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . 7

Ferrimagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Characterising Ferromagnets and Ferrimagnets . . . . . . . . . . 8

Soft Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . 10

Hard Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Development of Permanent Magnets . . . . . . . . . . . . . . . . . . . 11

1.4.1 Pre Rare-Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Carbon Steels . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Tungsten and KS Steels . . . . . . . . . . . . . . . . . . . . . . 13

Alnico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Ferrites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4



1.4.2 Rare-Earth Magnets . . . . . . . . . . . . . . . . . . . . . . . . 17

Samarium Cobalt based magnets . . . . . . . . . . . . . . . . . 17

Nd2Fe14B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

RT12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Atomistic Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Numerical Methods 26

2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Pair Potentials and Force Calculations . . . . . . . . . . . . . . 29

Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 34

Time Integration of Particle Positions . . . . . . . . . . . . . . . 37

Thermostats and Barostats . . . . . . . . . . . . . . . . . . . . 38

2.1.2 Pair Potential Development . . . . . . . . . . . . . . . . . . . . 41

Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1.3 Solid-Liquid Coexistence Method . . . . . . . . . . . . . . . . . 50

2.2 Structural Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.1 Newton-Raphson . . . . . . . . . . . . . . . . . . . . . . . . . . 55

The Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Derivation from Taylor Series in 1D . . . . . . . . . . . . . . . . 56

5



Multivariable Newton-Raphson . . . . . . . . . . . . . . . . . . 58

Quasi-Newton Methods . . . . . . . . . . . . . . . . . . . . . . 59

Implementation of the Algorithm in GULP . . . . . . . . . . . . 60

2.3 Boltzmann Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.1 Cascading Probabilities . . . . . . . . . . . . . . . . . . . . . . 62

3 Site Preference and Structural E�ects of Titanium Substitution in SmFe12,

SmCo12 and NdFe12 68

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Study Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Method Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Stabilisation of RT12 Structures . . . . . . . . . . . . . . . . . . 77

Wycko� Position Subset Preference . . . . . . . . . . . . . . . . 79

Structural Changes from Titanium Substitution . . . . . . . . . . 82

Substitution Patterns . . . . . . . . . . . . . . . . . . . . . . . 83

Energy Density Changes in the Second Substitution Pattern . . . 87

Summed Comparative Probability . . . . . . . . . . . . . . . . . 88

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6



4 E�ect of Pressure on the melting point of NdFe12 93

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 Study Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Methodology specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Two Phase Solid-Liquid Coexistence . . . . . . . . . . . . . . . . 99

4.3 Method Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Modelling Grain Growth 106

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Study Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Methodology Specifics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Grain Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Grain Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Composition Matching . . . . . . . . . . . . . . . . . . . . . . . 112

FePt Grain Morphologies . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . 117

7



5.4 Method Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . 118

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions 124

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2.1 Tool Development . . . . . . . . . . . . . . . . . . . . . . . . . 125

8



List of Figures

1 Characteristic atomic spin alignment for a) Diamagnetism, b) Param-

agnetism, c) Ferromagnetism, d) Antiferromagnetism, and e) Ferrimag-

netism. Where the blue circles represent atoms and the red arrows rep-

resent the atom’s total magnetic moment. . . . . . . . . . . . . . . . . 4

2 Movement of a domain wall through a grain with applied field, showing

the magnetic states of the grain when a) There is no field applied, b)

A small field applied (direction shown by blue arrow), and c) A large

field applied (direction shown by blue arrow). The di�erent greys in each

grain represent separate magnetic domains and the red arrows represent

the magnetisation direction of those domains. . . . . . . . . . . . . . . 6

3 Hysteresis Loop with all the parts of interest indicated on the figure.

The y axis is Flux Density (B), and the x axis is applied magnetic field

strength (H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Microscope image of Martensite showing the thin crystals within pre-

existing austenite grain boundaries. Credit: Melancholia-itwiki, under

license https://creativecommons.org/licenses/by-sa/4.0/deed.en . . . . . 12

5 Diagram of a material which has gone through spinodal decomposition.

Red and blue represent the two distinct phases. (Note: this does not

represent Alnico) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Spinel crystal structure of Fe3O4, with iron atoms in gold/yellow, and

oxygen atoms in red. The arrows in the picture indicate the crystal’s

lattice directions a, b, and c. . . . . . . . . . . . . . . . . . . . . . . . 17

7 Crystal structure of SmCo5, with samarium atoms in blue, and cobalt

atoms in pink. The arrows in the picture indicate the crystal’s lattice

directions a, b, and c. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9



8 Crystal structure of Nd2Fe14B, with neodymium atoms in yellow, iron

atoms in grey, and boron atoms in green. The arrows in the picture

indicate the crystal’s lattice directions a, b, and c. . . . . . . . . . . . . 19

9 Temperature vs normalised Magnetisation for Nd2Fe14B. . . . . . . . . . 21

10 Crystal structure of RT12 phase, with rare-earth atoms in yellow, and

transition metal atoms in grey. The arrows in the picture indicate the

crystal’s lattice directions a, b, and c. . . . . . . . . . . . . . . . . . . . 23

11 Example Lennard Jones potential, with the e�ect of each of the poten-

tial’s constants indicated, please see Equation 2.7 to view these constants

in the equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

12 Morse potential of the iron-iron interaction used for work in this thesis.

D0 and r0 are indicated on the graph. . . . . . . . . . . . . . . . . . . . 31

13 2D visualisation of periodic boundary conditions. The main simulation

region is outlined in black, surrounded by numerous identical virtual sim-

ulation regions outlined in grey. The red circle shows the interaction cut

o� point for one particle in the simulation, and the red arrows indicate

the particles it interacts with. The arrows indicate that further virtual

simulation regions can be created if necessary. . . . . . . . . . . . . . . 35

14 Two dimensional representation of particles crossing from the original

simulation region into virtual simulation regions, with the corresponding

virtual particle from the opposite virtual region crossing into the original

simulation region. Three transfers are shown, one in which the particle

crosses the x boundary, another which crosses the y boundary, and a final

transfer which shows a particle crossing the x and y boundary. The x and

y directions are indicated in the bottom left corner. . . . . . . . . . . . . 36

15 Morse potentials for Fe-Fe, Fe-Nd, and Nd-Nd. . . . . . . . . . . . . . . 41

10



16 Visual representation of the Genetic algorithm process. . . . . . . . . . . 42

17 An illustration of a simple 2D parameter space with parameters A, and

B. A hypothetical probable parameter space is circled in the first quadrant. 45

18 Various states of a system in a solid-liquid coexistence simulation, show-

ing: a) A system directly after the interface has been stabilised, b) Move-

ment of a system’s interface into the solid phase, indicating T > TM , c)

Stable interface between a crystalline solid and amorphous glass solid, ar-

rows show atoms are bounded to specific regions, indicating T < TM , d)

Stable interface between crystalline solid and liquid, arrows show atoms

are not bounded to specific regions, T = TM + —t for —t æ 0. . . . . . 52

19 Illustration of the optimisation process for a 2D lattice. a) Shows a 2D

lattice input, where blue circles represent atoms and black lines represent

the lattice boundary, b) Shows an example of atomic movement that min-

imises the cohesive energy of the structure, where the atomic movement

is shown by the black arrows and red atoms are the new atomic positions,

c) The final optimised structure, where red circles represent atoms that

moved during optimisation and the single blue atom represents an atom

that remained in the same position during the minimisation. . . . . . . . 54

20 Geometric visualisation of the Newton-Raphson algorithm and how it

converges to some root of a function f(x). . . . . . . . . . . . . . . . . 55

11



21 Simple visualisation of the how the probability compounds at each stage.

S1, S2 etc. represent the stage’s configuration microstates, where each

colour corresponds to a di�erent stage. Large yellow circles indicate the

chosen minimum energy microstate for a stage and arrows represent this

configurational microstate being carried forward into the next stage. The

column of compounded probability shows the pathway’s probability, WP

(from Equation 2.69), up to that stage. P (Sx) is the probability of

microstate x at the relevant stage. The probabilities are ordered by their

stage, left to right, with lower stages on the left. . . . . . . . . . . . . . 65

22 Rare-earth Morse potentials used during the structural optimisations,

showing a) neodymium, and b) samarium. . . . . . . . . . . . . . . . . 71

23 Probability comparison of the three Wycko� position subsets in the RT12

structure at 300K, along with a visualisation of the general RT12 struc-

ture. Wycko� position subsets are labelled, atoms which share the same

colour as the labelled atom are in that subset. Probabilities are all nor-

malised by the summed total of all the comparison ratios. . . . . . . . . 74

24 Total configurational probability graph with temperature for the 2◊2◊1

RT12–xTix supercell structures. . . . . . . . . . . . . . . . . . . . . . . . 75

25 Selection Criteria comparison for a) NdFe12–xTix, b) SmCo12–xTix, c)

SmFe12–xTix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

26 Cohesive energy with increasing titanium substitution for a) all 2◊2◊1

supercell structures, and b) all 3◊3◊2 supercell strucutures. The e�ect

of substitution is shown up to 17Ti at.% . . . . . . . . . . . . . . . . . 78

27 Lattice parameter changes for the NdFe12–xTix 3x3x2 supercell structure,

showing a) the absolute length of the a and b lattice parameters against

titanium substitution, and b) the percentage change in all the lattice

parameters from the crystal structure of the previous stage. . . . . . . . 80

12



28 Diagram of plane connecting a titanium substitution with its nearest rare-

earth in RT12, the plane normal gives the direction of greatest expansion 82

29 RT12–xTix structure filling pattern for a) NdFe12–xTix, b) SmFe12–xTix,

and c) SmCo12–xTix, up to ≥8Ti at.%. Across all the structures, the

large yellow atoms are neodymium, the small yellow atoms are iron, the

large pink atoms are samarium, the small dark blue atoms are cobalt,

and the small light blue atoms are titanium. . . . . . . . . . . . . . . . 84

30 Visual illustration of the rule dictating the overarching pattern for SmFe12–xTix

at 8Ti at.% (or 36 titanium substitutions for a 3◊3◊2 structure). The

same rule can be decuded from the pattern of any of the RT12–xTix struc-

tures. Here the pink atoms are samarium, the yellow atoms are iron, and

the light blue atoms are titanium. . . . . . . . . . . . . . . . . . . . . . 85

31 Secondary substitution pattern for the NdFe12–xTix 3◊3◊2 structure,

showing a) The first substitution in the secondary pattern - indicated

in the figure, and b) the complete pattern after all the secondary pat-

tern’s substitutions at ≥15.5Ti at.%. The red arrow between the two

neighbouring titanium atoms is used to indicate there is a distance d

between them. Both structures are shown looking down the c axis. . . . 86

32 Side view of NdFe12–xTix with the c lattice parameter horizontally across

the page. The red arrows indicate the new titanium substitution’s inter-

action with its two titanium neighbours. . . . . . . . . . . . . . . . . . 87

33 C lattice parameter expansion against titanium atom percentage for NdFe12–xTix,

SmCo12–xTix, and SmFe12–xTix. . . . . . . . . . . . . . . . . . . . . . . 88

34 Energy density against titanium atom percentage (Ti at.%) for all the

investigated supercell structures, showing a) the energy density trend for

NdFe12–xTix, and SmFe12–xTix, and b) SmCo12–xTix. . . . . . . . . . . . 89

13



35 Total comparative probability against titanium atom percentage for a)

NdFe12–xTix, b) SmFe12–xTix, and c) SmCo12–xTix. . . . . . . . . . . . . 91

36 Refit Morse potentials used for the NdFe12 melting point simulations. . . 96

37 Visualisation of the simulation stages used in the methodology for NdFe12,

showing a) Initialisation , b) Equilibration of structure to desired pres-

sure and temperature, c) Freezing of the lower half, and catastrophic

melting of the upper half, d) Equilibration at the desired pressure and

temperature with extra spring constants, and e) System evolution at the

desired pressure and temperature - in this case, interface movement into

the solid half of the system indicated T > TM . . . . . . . . . . . . . . . 100

38 a) Unscaled melting temperatures for –-Fe, and –-Nd at 1 Bar, and

NdFe12 with pressure, b) Scaled melting temperatures for NdFe12 with

pressure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

39 Ordered and disordered FePt grains, showing a) Disorderd FCC A1 FePt,

and b) Ordered FCT L10 FePt. . . . . . . . . . . . . . . . . . . . . . . 107

40 Comparison of a 20,000 atom Truncated Octahedron Minor in its a) As

built, and b) Compositionally matched, states. . . . . . . . . . . . . . . 113

41 Compositionally matched grain morhpologies at the size of 10,000 atoms.

Showing a) Octahedron, b) Truncated Octahedron Major, c) Truncated

Octahedron Minor, d) Cuboid, and e) Sphere. . . . . . . . . . . . . . . 115

14



42 2D example of how point placement a�ects grain morphology when cuts

are made along the {11} plane set. The blue cube represents the orig-

inal cubic supercell and the coloured diamonds represent the area left

untouched by the {11} cuts. The final grain shape is given by the area

of the blue cube that is covered by the coloured diamond. The points

which define the placement of cuts are noted in each diagram. The figure

shows: a) The 2D representation of the Octahedron shape, b) The 2D

representation of the Truncated Octahedron Minor shape, and c) The 2D

representation of the Truncated Octahedron Major shape. . . . . . . . . 116

43 Percentage of minimum energy reached vs the number of initial NPT

simulation time steps, for a) Octahedron, b) Truncated Octahedron Mi-

nor, and c) Truncated Octahedron Major at 1,000, 8,000, and 15,000

atoms. The value above the y-axis (=99.999) should be added to each

y tick. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

44 Normalised probabilities based on the structures’ Boltzmann factor ratios

over a range of 1,000 - 15,000 atoms. . . . . . . . . . . . . . . . . . . . 120

45 Left) Atomistic visualisation of an FePt L10 Truncated Octahedron Minor

grain, Right) Surface of the grain extracted by PyVista, arrows out of

the surfaces indicating the plane normals. . . . . . . . . . . . . . . . . . 121

46 Normalised surface energies of the investigated grains, across the range

1,000-15,000 atoms. The normalisation is di�erent at each atom size,

with the normalising value being the grain with the lowest surface energy

at each point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

15



List of Tables

1 Table of all values used for the Morse potentials in the following study. . 72

2 Table of calculated and expected lattice constants, values annotated with

ú are from [48], values annotated with † are from [94]. . . . . . . . . . . 73

3 Proximity of the three Wycko� position subsets to rare-earth atoms in

NdFe12. Proximity is shown in three ways, firstly, through the number

of Nd atoms within the first 25 nearest neighbours (one whole unit cell)

of each position, secondly the average distance to each neighbour, and

thirdly the summed reciprocal (SR) of the distance to each neighbour.

For the summed reciprocal a larger value means greater proximity to

rare-earths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Refit Morse potential parameters used in the NdFe12 melting point sim-

ulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Material constants used for the Fitness function (Equation 2.32) in the

neodymium and iron potential fittings, alongside the weightings, wi, each

is given in the fitness function. Where a, b, c are lattice parameters a,

b, and c, –, —, and “ are the angles between the lattice vectors, E is the

cohesive energy of structure, B is the Bulk Modulus, c11, c12, and c44 are

elastic constants, and P is the longitudinal sound wave speed. . . . . . . 97

6 Material constants found in the literature for –-neodymium and –-Iron.

Superscripts [1, 2, 3, 4, 5] represent citations [102, 103, 104, 105, 106].

An explanation of the meaning of each material constant can be found

in Table 5 above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

16



7 Material constants found in the literature for Nd2Fe17 and NdFe12. Su-

perscripts [1, 2, 3] represent citations [107, 49, 108]. An explanation

of all material constants can be found in Table 5, apart from the final

constant Y (GPa) which represents the Young’s modulus. . . . . . . . . 99

8 Comparison of the calculated and expected material constants for –-

Neodymium and –-Iron. Superscripts [1, 2, 3, 4, 5] represent citations

[102, 103, 104, 105, 106]. . . . . . . . . . . . . . . . . . . . . . . . . . 101

9 Comparison of the calculated and expected material constants for Nd2Fe17

and NdFe12. Superscripts [1, 2, 3] represent citations [107, 49, 108]. . . . 102

10 Fundamental MEAM potential parameters for iron and platinum. Ec

is the reference structure cohesive energy, Re is the reference structure

equilibrium bond distance, B is the Bulk modulus, A is a model parameter

that scales the screening functions, —(l) l=0-3 are scaling parameters

controlling the form of the original EAM partial electron density functions:

fla(l)
i , and t(l) which scales the contribution of each of the MEAM partial

electron densities: fl(l)
i l=0-3. . . . . . . . . . . . . . . . . . . . . . . . 109

11 The MEAM potential constants governing interactions between iron and

platinum. The Cmin and Cmax constants are the maximum and minimum

values for the screening functions when atoms are screened by an in-

tervening atom, for example Cmin(Pt-Fe-Pt) is the maximum screening

function due to an iron atom screening the interaction of two platinum

interactions. Ec(Fe, Pt) is the energy of the iron - platinum reference

structure, and Re(Fe, Pt) is the equlibirum bond distance of the iron -

platinum reference structure. . . . . . . . . . . . . . . . . . . . . . . . 110

12 Surface Energies of low index FePt L10 planes, taken from Kim et al.[126].114

13 Surface Energies of low index FePt L10 planes, taken from Kim et

al.[126], and the values calculated with the potentials used in this work. . 117

17



Declaration

The majority of this work is based on three publications for which I am the first
author[1, 2, 3]. The work from these papers covers Chapters 3 and 4 and is my own
unless otherwise stated in the text.

The remaining work in Chapter 5 has been submitted to the MMM/Intermag 2022
joint conference as an oral submission and will be used in the future as the basis of a
paper for which I will be first author. Unless otherwise stated in the text, this work is
my own also.

18



1 Introduction

1.1 Aims and Motivation

The aim of this work is to investigate the impact of chemical and morphological changes

on the phase stability of magnetic materials, beginning with rare-earth reduced per-

manent magnets and ending with high anisotropy magnets for magnetic hard drives.

Molecular Dynamics was used to investigate the impact of chemical changes on RT12

systems by calculating each system’s cohesive energy as a function of the number of

elemental substitutions in the lattice. Morphological changes such as lattice expansion

and melting are described using Molecular Dynamics and Genetic Algorithm derived pair

potentials. Both these methodologies produced guidelines on how to fabricate rare-earth

reduced stable magnetic crystal structures.

The preceding work fed into the development of a grain growth model, which uses

calculated surface energies to explain grain morphology as a function of the number of

atoms in the crystal phase. The model itself is completely generalised and could be used

on any crystal structure, but here is tested on FePt L10.

This work was motivated by the pressing needs[4] of industry and government that

are together driving a rapid shift to a renewable energy economy. A shift that cannot

occur without access to high performance permanent magnets. Undertaken with and

funded by our industrial partners: Toyota and the MagHEM[5] consortium, this research

is focused on permanent magnets with fewer critical elements, lower costs, and improved

performance. Solving these three issues is critical, if manufacturers are to avoid costly

supply chain bottlenecks and continue producing high performance magnetic materials

at the pace demanded by industry.

From a scientific perspective, this work was motivated by a drive to understand

materials and their behaviour so completely that it becomes possible to design, test, and

setup manufacturing protocols for a brand new material without leaving the confines

of a silicon chip. To reach that end, this thesis contains a number of newly developed
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general methods for modelling and solving material science problems. The collection of

which form the basis of Python package which will be the beginning of a decades long

open source project devoted to understanding and modelling solid state materials.

1.2 Introduction Layout

In case the reader requires it, the thesis begins with an overview of the coarse classifica-

tion of magnetic materials, followed by an in depth classification of permanent magnetic

materials, which are of primary interest in this work. This is followed by an abridged

history of the development of permanent magnetic materials, which clarifies the rea-

soning behind investigating chemical and morphological changes. The history focuses

primarily on the major advances in chemical and morphological investigation that led

to practices such as substitution, and grain boundary engineering, that are considered

common today. A final section is included on the development of atomistic simulations,

again, highlighting the most important steps in the methodology, which have allowed it

to be used so extensively in this work.

1.3 Classification of Magnetic Materials

Every material contains electrons, the fundamental particle which is the primary cause

of magnetic behaviour[6], and are therefore magnetic to some degree. Electrons create

magnetic fields in two ways: orbital motion around their parent nucleus, and magnetic

spin. Orbital motion is analogous to a charge in motion around a circuit, and magnetic

spin is an intrinsic property of an electron. The magnetic fields allow electrons to

magnetically interact with one another, and it is their interaction which governs the

magnetic properties of a material. The resulting di�erences between the macroscopic

magnetic properties of materials is what allows us to characterise them.

There are two measures generally used for characterising magnetic materials: mag-

netic susceptibility ‰, and saturation magnetisation M s. Magnetic susceptibility is the
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ratio of a materials magnetisation, M , to the external field being applied to it H , and is

given by ‰ = M/H . Magnetic susceptibility measures how susceptible a material is to

becoming magnetised in the presence of an external field. The saturation magnetisation

of a material, M s, is a measure of the maximum magnetic field a material is capable

of producing. It is defined as the point at which all the magnetic dipoles of a material

are aligned with some applied field H , such that further increases in the applied field

cannot produce a significant increase in the magnetic moment per unit volume of the

structure.

These two values are used because they are independent of the size or shape of the

magnetic material being investigated. The result being a horse shoe magnet made of

some material A will have the same magnetic susceptibility and magnetic saturation

as a tiny grain of A on the order of a few micrometers. These values will be used

to introduce the various types of magnetism and how they are characterised. A final

section will discuss the further characterisation of Ferro and Ferrimagnetism, the forms

of magnetism most interesting for the development of permanent magnetic materials.

1.3.1 Types of Magnetism

There are five main types of magnetism: Diamagnetism, Paramagnetism, Ferromag-

netism, Antiferromagnetism, and Ferrimagnetism. The first three were discovered first,

and can be clearly demarcated by susceptibility, the latter two were discovered later as

their e�ects are slightly more subtle and can be confused for one of the first three. A

brief explanation of each phenomena along with the method of characterisation is given

below. For reference Figure 1 shows the characteristic spin alignment for each type of

magnetism.

Diamagnetism

Diamagnetism is the result of all the electrons in a material aligning so that neigh-

bouring electrons have their spins aligned anti-parallel to one another. For an atom, this
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c d

e

Figure 1: Characteristic atomic spin alignment for a) Diamagnetism, b) Paramagnetism,
c) Ferromagnetism, d) Antiferromagnetism, and e) Ferrimagnetism. Where the blue
circles represent atoms and the red arrows represent the atom’s total magnetic moment.
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equates to all the electron orbitals having paired shells, making inert gases like neon and

argon diamagnetic. This pairing cancels out the magnetic moment of every electron due

to spin and e�ectively renders the material un-magnetic. The susceptibilities of diamag-

netic materials are typically on the order of ‰ ¥ ≠10≠5[7]. The negative sign indicates

that diamagnets produce a small magnetic field ,M , in the opposite direction to any

applied field H . All materials have a diamagnetic e�ect, however in a large number of

materials this is masked by dominant e�ects of paramagnetism or ferromagnetism.

Paramagnetism

Paramagnetism arises from atoms in a material having unpaired electrons in their

outer orbitals, resulting in uncancelled spin and orbital magnetic moment contributions.

This means that under an applied field H there is tendency for these moments to

align along the direction of H . In pure paramagnetism the moments in the material are

completely isolated from one another, and without any interaction between the electrons

the applied field H has a minimal e�ect on the overall magnetisation of the material.

The minimal e�ect of the field is caused by random thermal fluctuations constantly

misaligning magnetic moments, so that at any one time only a fraction of the total

moments are aligned in the field direction. In reality most paramagnetic materials do

have some interaction between neighbouring magnetic moments, but these are small

enough or random enough that they have little e�ect on the magnetic behaviour of the

material. The result of this is that paramagnetic materials generally have susceptibilities

of the order ‰ ¥ 10≠5 to 10≠3[7].

Ferromagnetism

Ferromagnetism similarly to paramagnetism requires unpaired electrons, but unlike

paramagnetism has none neglible neighbour interactions which reinforce the e�ect of

the applied field H . In ferromagnets it is energetically preferable that spins align in the

same direction. Thus re-alignment of any single spin into the direction of the applied

magnetic field has a knock on e�ect on its surrounding spins, quickly causing all the
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c

Figure 2: Movement of a domain wall through a grain with applied field, showing the
magnetic states of the grain when a) There is no field applied, b) A small field applied
(direction shown by blue arrow), and c) A large field applied (direction shown by blue
arrow). The di�erent greys in each grain represent separate magnetic domains and the
red arrows represent the magnetisation direction of those domains.

spins in the material to magnetically align along the applied field direction to lower their

energy. Ferromagnetic materials spontaneously form magnetic domains, separate regions

within their volume which have locally aligned magnetic moments. An applied field can

quickly magnetise the entire structure by growing the size of domains close to its applied

direction, and causing the remaining domains to shrink as their spins join the growing

domains[8]. An example of this is shown in Figure 2 This gives ferromagnetic materials

a large susceptibility on the order of ‰ ¥ 50 to 10, 000[7].
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Antiferromagnetism

Antiferromagnetism is similar to ferromagnetism in that it requires unpaired electrons

and none trivial neighbour interactions. The major di�erence is that for antiferromag-

nets it is energetically preferable for spins in neighbouring atoms to align anti-parallel to

one another[9]. This e�ectively cancels out the spins and makes antiferromagnets ap-

pear none magnetic. In this sense they appear similar to diamagnets, however in reality

they can be thought of as two sublattices of ferromagnetic spins perfectly aligned up

to magnetic saturation in their opposite directions. Above their Néel temperature they

exhibit paramagnetic behaviour, below this temperature they spontaneously order into

the alternating antiferromagnetic domains explained above. They have small positive

susceptibilities at all temperatures, but the change in their magnetic susceptibility di�ers

above and below this characteristic temperature. In the paramagentic region their sus-

ceptibility is small and increases with decreasing temperature. This trend of increasing

susceptibility peaks at the Néel temperature and decreases again as the magnetic mo-

ments align anti-parallel, analysis of a susceptibility graph is often used to characterise

antiferromagnetic materials.

Ferrimagnetism

Ferrimagnetism is similar to both ferromagnetism and antiferromagnetism. Out-

wardly ferrimagnetic materials appear ferromagnetic, and display the same qualities of

spontaneous magnetisation and domain formation, however on an atomic level their

spins align antiparallel similarly to those in antiferromagnetic materials[10]. The di�er-

ence between antiferromagnetic and ferrimagnetic materials is the size of the magnetic

moments on the spins of the alternate layers. In antiferromagnetic materials they’re

exactly the same resulting in a total moment of zero, but in ferrimagnetic materials one

spin is larger than the other, resulting in a net magnetic moment in one of the directions.

The di�erence between ferromagnetic and ferrimagnetic materials is noticed by calculat-

ing a material’s expected saturation magnetisation, based on its constituent elements,

and comparing that to experimental results. If the experimental value is significantly
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below the theoretical maximum then it’s safe to assume some of the moments are not

all aligned parallel, and the material is ferrimagnetic not ferromagnetic.

1.3.2 Characterising Ferromagnets and Ferrimagnets

Ferromagnets and Ferrimagnets are the most practically relevant classes of magnetic

material, and have received significant research attention. This has led to them being

split further into two major categories: magnetically soft, and magnetically hard. The

names arose from the large number of experiments performed on iron and carbon steels

that occurred in the late 19th and early 20th century, which found a correlation between

a material’s magnetic properties and its mechanical hardness[11, 12, 13]. Through use,

these terms became part of the lexicon of the field, and are used to separate permanent

magnetic materials into magnetically soft or hard. To understand the separation between

these two it’s necessary to understand the development of the idea of magnetic hysteresis.

In the later part of the 19th century Alfred Ewing coined the term magnetic hysteresis,

giving a name to the phenomena of changes in the magnetic field of a material lagging

behind external changes in an applied field. The word hysteresis is derived from Greek

and means to ”lag behind” or ”come second”. The hysteresis behaviour of a magnetic

material gives rise to several properties which are used to define soft and hard magnetic

materials.

Investigations of hysteresis have the following methodology, apply a known magnetic

field H to a material and take measurement of the resulting flux density B. Repeat

these measurements over a range of positive and negative values for the field H and plot

the result on a graph. A typical example of such a graph is shown in Figure 3, all such

graphs are known as hysteresis loops. Points on the graph are marked to indicate the

key values used for characterisation. Magnetic saturation, discussed previously, occurs

at the point when further increases in the applied field H have a negligible e�ect on the

measured flux density B. The remaining constants are the magnetic remenance Mr, the

maximum Energy Product BHmax, and the coercivity Hc. Magnetic remenance is the

magnetisation M of a material that remains when the applied field H is removed, the
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Figure 3: Hysteresis Loop with all the parts of interest indicated on the figure. The y
axis is Flux Density (B), and the x axis is applied magnetic field strength (H)

graph shows that it is the point on the hysteresis curve that passes through the y-axis.

Coercivity is the magnitude of applied field H that is required to take a magnetised

material to a magnetisation of zero, as the graph shows this is the point at which the

hysteresis curve passes through the x-axis. The maximum Energy Product is a measure

of the maximum amount of magnetic energy that can be stored in a unit volume of the

material of interest, and is represented by the area of the largest rectangle that can be

drawn within the hysteresis line in the second quadrant.

Magnetically soft and magnetically hard materials can be split by their coercivities:

soft magnetic materials have coercivities < 1kAm≠1, and hard magnetic materials have

coercivities > 10kAm≠1[14]. Therefore, larger magnetic fields are required to demagne-

tise hard magnetic materials. A further property that is worth considering is magnetic

permeability µ, a similar term to the susceptibility ‰, which measures the magnetisation

a material obtains in response to a field H . Below is a brief overview of how these five

terms are used to judge the performance of soft and hard magnetic materials.
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Soft Magnetic Materials

Soft magnetic materials have applications in DC and AC circuits, in which they are

used to enhance the magnetic field H generated by an electric current. Hence, in both

scenarios, having a high permeability µ is a desirable property[15]. DC applications cover

shielding and electromagnets both of which require high permeability over all properties,

and in the case of electromagnets a high magnetic saturation. AC applications cover

electric transformers, generators and motors[16], for which a high flux density and a low

core loss are essential for keeping weight down and energy losses low. Materials of this

kind are often selected not just for their permeability, but also for their low coercivity,

with the ideal material having a coercivity of zero. Although these are not the primary

interest of this thesis, it is likely the techniques developed in this work will be applied to

them in the future.

Hard Magnetic Materials

Hard magnetic materials are typically known as permanent magnets, and have appli-

cations in electric motors, speaker systems, and data storage. As their name implies they

generate a permanent magnetic field, which makes them indispensable for small scale

electromechanical devices that require a magnetic field but are too small to practically

produce one with electric current.

For electric motors and other forms of power/ motion related applications the most

important property is their maximum Energy Product, the total amount of magnetic

energy they’re capable of storing per unit volume. A high BHmax translates into a high

level of power transfer. For other applications, such as data storage, a finer balance must

be struck between a high coercivity for data stability and integrity and the capability of

hard drive write head to reliably flip bits from one to zero using a finite field H .

For both of these applications a further parameter: the curie temperature Tc must be

taken into consideration. The Curie temperature is similar to the Néel temperature, and

is the point above which a ferromagnetic or ferrimagnetic material becomes paramagentic
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due to the disorder induced by random thermal fluctuations. Materials with a high curie

temperature and BHmax are sort after in high energy applications, such as electric motors,

where the production of heat is unavoidable and degradation of magnetic properties due

to an increase in temperature must be minimised to save performance.

The final property to consider is closely tied to coercivity and is known as magnetic

anisotropy, or the preference for the magnetic moment of a material to lie in one direction

over another. A high magnetic anisotropy is not just associated with a high coercivity,

it is also associated with what’s known as the squareness of the hysteresis loop. In an

ideal hard permanent magnet the loop would be completely rectangular, indicating that

in order to flip the magnetisation direction of the material, it’s necessary to overcome

all its stabilising magnetic energy in one step. This never happens as there are other

modes of magnetic reversal, such as domain wall movement, which require significantly

less energy, however the higher the anisotropy of the material, the closer it gets to this

ideal scenario.

1.4 Development of Permanent Magnets

The development of permanent magnets is one of the most significant endeavours in

science. The e�ect this single field has had on the development of humanity is incalcula-

ble, and it’s not an exaggeration to say that without the permanent magnetic materials

we have today, the world as we know it would not exist. From computers, to electrical

motors, to MRI machines, the applicability of these materials is only growing with time.

In the current day, there is an extremely wide array of capabilities for investigating

magnetic materials and a number of tried and tested techniques for improving magnetic

properties. However, this wasn’t always the case, and to build motivation for the mor-

phological and chemical investigations undertaken for this thesis the key developments

in permanent magnetic materials, which led to the current set of methodologies, will be

highlighted below. The development is split into two sections, pre-rare-earth magnets,

and rare-earth magnets, the latter of which are of chief interest to this thesis.
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Figure 4: Microscope image of Martensite showing the thin crystals within pre-
existing austenite grain boundaries. Credit: Melancholia-itwiki, under license
https://creativecommons.org/licenses/by-sa/4.0/deed.en

1.4.1 Pre Rare-Earth

Carbon Steels

In the pre-modern era there were only two types of permanent magnet: lodestone

and carbon steels, both of which had a single practical use in compasses. Lodestones are

natural Magnetite, found in the region of Magnesia in Greece, and whilst they sparked

the initial curiosity in magnetism, they were not deliberately manufactured so will not

be treated here.

Carbon steels were the first magnets to be mass produced by smelting iron with small

amounts of carbon to produce a mechanically hard steel. The magnetic properties of

these steels are derived from their martenistic microstructure[17] which can be seen in

Figure 4. Martensite is formed via heating and quenching austenite which causes the

nucleation of many thin martensite crystals via a di�usionless shear transformation[18].
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Because the transformation is di�usionless the martensite crystals inherit the carbon

atom positions from the austenite, along with the granular boundaries of the original

structure. As Figure 4 shows, the result is a highly heterogeneous microstructure, with

a non-uniform distribution of grain shape, size, and orientation accompanied by a non-

uniform distribution of interstitial carbon atoms. This combination gives rise to many

domain wall pinning sites which impede domain wall movement, the main mode of

magnetic reversal. This gives them a coercivity of Hc = 4kAm≠1 resulting in a BHmax =

2kJm≠3. The addition of carbon to iron is the world’s first example of a manufacturing

technique which controls magnetic properties by changing a material’s microstructure

through the addition of an interstitial element. However, as the addition of carbon in the

pre-modern era was primarily focused on improving the mechanical properties of iron,

its magnetic significance went unnoticed.

Tungsten and KS Steels

Carbon steels were improved empirically over time, first with the introduction of

Tungsten steels in the mid 19th century, which improved the properties of carbon steels

via the addition of 5-6% tungsten. The addition increases the heterogeneity of the

structure by preventing some of the base austenite grains from following the martensite

formation process. The added heterogeneity increases the coercivity of the microstruc-

ture to about Hc = 5.2kA/m[19] (converted to SI), which leads to a BHmax of

2.4kJm≠3, a modest but significant increase of 20%. Tungsten steels represent a highly

significant step forward in the development of permanent magnets, as they were the

first material which had their magnetic properties controlled by microstructural changes

induced by a tertiary element, highlighting the unnoticed e�ect carbon had previously.

This step forward led to various groups around the world attempting further elemental

additions, leading to the discovery of KS steel by Honda and Saito in 1920[20]. They

showed that alloying together: carbon 0.4-0.8%, cobalt 30-40%, tungsten 5-9%, and

chromium 1.5-3%, with an iron base, produced a steel with a coercivity of Hc = 10 ≠

20kA/m[21]. This was three times that which had been achieved from the very best
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Tungsten steels, giving a BHmax = 8kJm≠3. This is attributed to the addition of cobalt,

which allowed for greater di�erences in the localised magnetic saturation, increasing

magnetic heterogeneity. Making KS steel the first magnetic material to control magnetic

properties by the addition of an element for its intrinsic properties alone. A technique

carried forward into modern day rare-earth magnets.

Alnico

Two further steels followed on from this MK Steel in 1930, and NKS Steel in 1934

with BHmax = 9.6kJm≠3 and 16kJm≠3 respectively[22]. Both of these magnets are alloys

containing mainly Fe, Al, Ni, Co, Cu, and Ti[23].

The manufacturing process required these materials to be heated to 1520K at which

point a homogenous BCC lattice of the constituent elements would form. Cooling this

phase down at a rate of 30K/s and then tempering at 920K, results in what’s known as a

spinodal decomposition, a spontaneous separation of a previously homogenous material

into two separate phases. For a general example of the end result of this process please

see Figure 5, which is a diagram of a previously homogenous phase separated into

di�erent phases given by the blue and red parts of the image. Work by Bradley et

al.[24] showed that this decomposition results in two phases a magnetic Fe-Co rich, and

an unmagnetic Ni-Al rich phase, with both phases forming grain elongated in one of

the È100Í directions. The resulting structure in Alnico alloys is magnetic Fe-Co grains

embedded in an unmagnetic Ni-Al matrix.

This structure increases coercivity by impeding domain wall movement through the

separation of magnetic grains with regions of unmagnetic, or less magnetic material.

Significantly, it was the first example of controlling the separation of the magnetic grains

to improve a materials magnetic properties. A combination of shape anisotropy, and the

magnetic heterogeneity described above gave MK steel a coercive field of Hc ¥ 40kA/m,

and NKS steel Hc ¥ 70kA/m[25].

MK steels were developed into the Alnico series of permanent magnets[25], which
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Figure 5: Diagram of a material which has gone through spinodal decomposition. Red
and blue represent the two distinct phases. (Note: this does not represent Alnico)

were the first series of magnetic materials to be separated into the groups: isotropic,

and anisotropic. Isotropic magnets have no preferred magnetic orientation. In the case

of Alnico the best magnetic properties achieved by this kind of magnet were found in

Alnico 2, with Hc = 60 ≠ 70kA/m, and BHmax = 14-16kJm≠3[26].

In contrast, anisotropic magnets do have a preferred magnetic orientation. The dis-

tinction was first reported in work by Oliver and Shedden in 1938[27], which showed that

the application of a magnetic field during the initial cooling phase of Alnico significantly

improved the magnetic properties. It was later found that a field applied along one of

the È100Í directions caused preferential grain growth and increased grain elongation in

the direction of the field. The resulting grains are columnar, and on average 30nm in

diameter and 600nm long[28], giving them a very significant shape anisotropy and a low

enough volume to be considered single domain. The result of these microstructural im-

provements, plus the forced alignment of each grain’s magnetic moment during cooling,

led to Alnico 5 which has a Hc = 46-52kAm≠1 and BHmax = 40-44kJm≠3[29].
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This method was extended into the directed grain method, a pre-manufacturing

step that aligned grains in the as cast alloy using a magnetic field, so that the alloy’s

grains shared an axis[30]. Magnetising the material along this shared axis produced

a strong anisotropic magnet Alnico 8DG (Directed Grain), with the properties Hc =

110-140kAm≠1 and BHmax = 60-75kJm≠3.

The application of a magnetic field during cooling and pre-manufacturing was a sig-

nificant step forward in the field’s development as it demonstrated clearly the importance

of grain morphology and crystal structure. In the first case demonstrating the impor-

tance grain shape and size could have on overall magnetic properties, and in the second

case demonstrating crystal alignment produced aligned and therefore increased magnetic

fields.

Ferrites

Ferrites began to recieve major research attention in the 1950s when it was found their

cost per unit of magnetic energy stored was an improvement on Alnico[31]. Significantly,

these were the first magnetic materials to have their properties controlled by deliberate

substitutions for atoms in their crystal.

Ferrites form in the spinel and inverse spinel crystal structures, shown in Figure 6,

both of which have anti parallel magnetic sublattices holding atoms of di�erent oxidation

states giving them ferrimagnetic properties. The sublattice positions can be separated

by their local coordinations. One sublattice has tetrahedral symmetry, whilst the other

has octahedral symmetry. For an example of how this works, take the ferrite Fe3O4,

for which all the tetrahedral positions are occupied by Fe(III) atoms which form one

of the ferromagnetic sublattices, the remaining octahedral positions are filled by half

Fe(III) atoms and half Fe(II) atoms, which form the second sublattice[32]. There are 8

atoms total in the tetrahedral sites, and 16 total in the octahedral[33]. The resulting

mis-balance in magnetic moment results in ferrimagnetic behaviour.

Substitution of some of the iron atoms with an element M = Mn, Fe, Co, Ni, Cu,
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Figure 6: Spinel crystal structure of Fe3O4, with iron atoms in gold/yellow, and oxygen
atoms in red. The arrows in the picture indicate the crystal’s lattice directions a, b, and
c.

Zn, Mg, or Cd, allowed researchers to control the total magnetic moment on each of

the sublattices. By studying the site preference of the elements in the crystal structure

it became possible to tailor material properties on the level of the crystalline unit cell

and predict from first principles the expected magnetic behaviour. The site preference of

various substiutional elements or interstitial dopants has only increased in significance,

as will be shown throughout this thesis.

1.4.2 Rare-Earth Magnets

Samarium Cobalt based magnets

The first indication of the impressive magnetic properties of Rare-Earth alloys was a

short publication by Droina and Janus in 1935[34], in which they reported a neodymium-

iron alloy with 7% iron had a coercivity Hc = 340 kAm≠3, and remanence ratio Jr/Js =

0.7. Although interesting from a scientific standpoint, at the time the di�culty extracting

singular rare-earth metals meant it wasn’t until the 1960’s that research into this range

of materials continued. The interest restarted with a paper by Hubbard et al. on the
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Figure 7: Crystal structure of SmCo5, with samarium atoms in blue, and cobalt atoms
in pink. The arrows in the picture indicate the crystal’s lattice directions a, b, and c.

properties of gadolinium and various transition metals[35]. This was expanded upon by

Strnat et al. in a 1967[36] publication which investigated a range of RCo5 (R= Y, Ce,

Pr, Sm, Y rich and Ce-rich mischmetals). This work revealed the hexagonal structure

of the crystal, shown in Figure 7, and its magnetic moment’s strong preference to align

with the c lattice direction. Of the investigated structures SmCo5 was singled out as the

most promising, and in 1970 Benz and Martin[37] published a paper that demonstrated

that the addition of Co-Sm(60% wt.) grains to SmCo5 grains allowed the combination

to be densified by liquid phase sintering without excessive void formation. The resulting

magnets had coercivities of Hc = 1.2MAm≠3, and a maximum energy product of BHmax

= 125kJm≠3, over twice the energy product of anything that had come before it.

The impressive magnetic properties of this structure are derived from its strong pref-

erence for the c direction, known as uni-axial magnetocrystalline anisotropy. Buschow

et al.[38] showed that this anisotropy is provided by the Sm3+ ions[38], which derive

this preference from interaction with the crystalline electric field. Although microstruc-

ture does play a role, the most significant contributing factor is this magnetocrystalline

anisotropy, which made SmCo5 the first in a range of structures that derived almost all

their anisotropy from crystal structure alone.

It is di�cult to produce SmCo5 materials without the crystallisation of related ter-

tiary phases. One of these phases is Sm2Co17, with the crystal structure Th2Ni17, inves-

tigations into this phase showed that it too possessed impressive magnetic properties,

having a saturation induction in the range Js = 1.2-1.6T, compared to SmCo5’s Js =
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Figure 8: Crystal structure of Nd2Fe14B, with neodymium atoms in yellow, iron atoms in
grey, and boron atoms in green. The arrows in the picture indicate the crystal’s lattice
directions a, b, and c.

0.2-1.2T[39]. The addition of iron to get Sm2(Co,Fe)17 further improved the magnetic

properties, with crystal grains demonstrating a high uni-axial crystalline anisotropy along

the c direction, derived from the samarium ions as in SmCo5. Manufacturing compli-

cations meant a single phase Sm2(Co,Fe)17 magnet wasn’t achieved, however copper

addition allowed the production of a number of alloys of the form Sm(Co100–x–yFexCuy)7,

which are a combination of the SmCo5 and SmCo17 type phases. The best of these

Sm(Co74Fe10Cu14)7 was made by Senno and Tawara[40] and had a coercivity of Hc =

490kAm≠1 and a maximum energy product of BHmax = 210kJm≠3.

Nd2Fe14B

Research into SmCo17 type phases, opened research avenues into a much wider

spectrum of possible rare-earth intermetallic compounds, all of which can be derived from

stacking SmCo5 lattices in the c lattice direction[41] (shown in Figure 7). In a bid to lower

material costs by using higher abundance elements, researchers began investigating the

R-Fe binary alloy phases. This research led to the discovery of Nd2Fe14B by Sagawa et

al. in 1984[42], a ternary compound forming in a tetragonal crystal structure elongated

along the c axis, which can be seen in Figure 8. The initial publication[42] reported

remarkable magnetic properties of Hc = 960kAm≠1 and a BHmax = 290kJm≠3, which
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were improved in the space of a few years to give a BHmax = 400kJm≠3[43].

Unlike the simpler SmCo5, the uni-axial anisotropy of Nd2Fe14B is slightly compli-

cated. Whilst still derived from the anisotropy of R3+ ions, two possible subsets for Nd

atoms in the lattice 4g and 4f present significantly di�erent crystalline electric fields. The

result being that atoms in the 4g subset have a strong preference for uni-axial alignment

in the c direction, whereas 4f atoms have a weak preference for alignment in the a,b

plane[44]. The strong preference for uni-axial alignment in the 4g atoms is mediated to

the 4f atoms by iron, forcing the 4f atoms to align along the c axis also. This magnetic

ordering persists at low temperatures, however, at higher temperatures atoms in the 4f

position subset start to realign into their preferred in plane positions which plays a role

in the demagnetisation of the structure. This lowers the material’s curie temperature

and is a significant problem for its use in high temperature applications.

The electrical motors in cars and wind turbines are two of the most important ap-

plications, generally operating at temperature of 435-455K. As Nd2Fe14B’s base curie

temperature is Tc = 585K this operating range puts it at ≥75% of the way to losing its

permanent magnetism. As can be seen in Figure 9, operating at this temperature results

in a significant degradation of the materials magnetic properties, damaging performance.

Currently, the direct chemical solution to this is to substitute 12% of the neodymium

in the structure with dysprosium as suggested by Sagawa et al.[43]. Dysprosium atoms

have a higher anisotropy than their neodymium counterparts, and are thus less a�ected by

temperature. The problems with this solution are two fold. Firstly, dysprosium prefers

antiferromagetic ordering and thus lowers the overall magnetisation of the material.

Secondly, dysprosium is significantly more scarce than neodymium and has a prohibitively

high material cost, add to that the potential political cost of its supply chain being

centred in China and it’s not clear this particular solution will be cost e�ective far into

the future.

Although there is currently no direct microstructural solution for raising curie tem-
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Figure 9: Temperature vs normalised Magnetisation for Nd2Fe14B.

perature, significant e�orts have been made to improve the microstructure and hence

the magnetic properties of the material. Improved magnetic properties ameliorate the

loss of magnetic order by raising the curve seen in Figure 9 and giving it a squarer shape.

Nd2Fe14B is manufactured by milling powder into small particles and hot press sintering

the mix to achieve densification. Particular attempts have been made to increase the co-

ercivity by controlling the orientation, size, and intergranular phase of the grains. Work

by Bance et al.[45] showed that grain size plays an important role in magnetic domain

reversal, with larger sizes increasing the e�ect of the demagnetising field at the grain’s

edge, and thus lowering coercivity. A recent patent from Sakuma et al.(US9520230B2)

outlines a method for controlling the size as well as the orientation. By coating 100-

500nm particles of Nd2Fe14B with a high melting point metal (such as Nb, V, Ti, Cr,

Mo, Ta, W, Zr or Hf) grains can be prevented from growing into one another and coars-

ening. The orientation can be controlled by hot deformation techniques which cause the

grains to align along the preferred axis of magnetisation. The result is an anisotropic

Nd2Fe14B magnet.

21



The first thorough investigation of intergranular phases was undertaken by T. Wood-

cock et al.[46], who noted two possible phases: a rhombohedral oxide Nd2O3 with crystal

structure hp5, and an amorphous metallic Nd rich phase. Of the two it was suggested

that Nd2O3 would cause the greatest lattice distortion, and hence lower coercivity most

significantly. In contrast the amorphous Nd phases seemingly reduce the number of

defects on the surface, decreasing the number of domain nucleation sites, and keeping

the grains magnetically separate.

The development of these ideas relied significantly on both Molecular Dynamics, and

Micromagnetics. Marking the beginning of multiscale modelling, which uses a combina-

tion of computational simulation and experiment to e�ectively design and manufacture

materials.

RT12

Despite it’s impressive properties, the temperature issues of Nd2Fe14B outlined above,

coupled with the push towards a sustainable energy sector based on renewable energy

and electric cars, has led to a focus on new magnetic materials with zero or reduced rare-

earth elements. Particularly, focusing on low cost, low risk, and high strength magnets.

Sadly, there is currently no way to achieve high strength magnets without rare-earth

metals. However, just as Nd2Fe14B replaced the previous phase, SmCo5, it is thought

new but related phases could replace Nd2Fe14B.

One of these phases is known as the RT12 phase (R = rare-earth, T = transition

metal), whose crystal structure is shown in Figure 10. Previously investigated by De

Mooij and Buschow[47], who found the most promising of the ternary structures were

the RFe12-xMx phases (M = Si, Ti, V, Cr, Mo or W). Work by Yang et al.[48] found that

interstitial nitrogen addition improved these phases even further, particularly NdFe11TiN

which has a curie temperature of Tc ¥ 740K, and a predicted maximum energy product

of BHmax ¥ 445kJ/m≠3. Despite this, it fell out of favour owing to the intrinsic instability

of the binary Nd-Fe phase making it extremely di�cult to manufacture through the usual

methods of densification.
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Figure 10: Crystal structure of RT12 phase, with rare-earth atoms in yellow, and transition
metal atoms in grey. The arrows in the picture indicate the crystal’s lattice directions a,
b, and c.

As time has gone on however, market conditions and government programs have

overcome this initial hurdle and interest in this phase has increased again. A lot of

this interest has been driven by a paper from Miyake et al.[49], which studied the mag-

netic properties of NdFe12, NdFe11Ti, and NdFe11TiN from first principles. This work

found that the reduction of titanium and interstitial nitrogen addition could improve the

material’s magnetisation, curie temperature, and the strength of its uni-axial magne-

tocrystalline anisotropy. To test this result, Hiriyama et al. grew NdFe12, NdFe12N, and

SmFe0.8Co0.2 epitaxially via sputtering[50, 51] and found that thin film NdFe12N had

superior magnetic properties to Nd2Fe14B with a magnetic saturation µ0Ms ¥ 1.78T,

anisotropy field of µ0Ha ¥ 8T, and curie temperature TC ¥ 823K. A significant propor-

tion of the work in this thesis is directly dedicated to understanding and stabilising this

phase specifically, using the techniques of element substitution[1], interstitial element

addition[2], and grain morphology control.

1.5 Atomistic Simulations

Atomistic simulations were first performed in the Los Alamos laboratory. Work on

this subject, published in 1949 by Metropolis and Ulam, introduced the Monte Carlo

Method[52]. Making use of newly established computational resources, this statistical

method allowed for the investigation of complex problems in classical dynamics and
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quantum mechanics by a random sampling approach. In 1955 Fermi et al.[53] used

these techniques to study the equipartition of energy between the degrees of freedom in

a 1D crystal structure consisting of 64 particles on the MANIAC I electronic computing

system. The use of electronic computing systems opened up a new avenue for solving

complex problems numerically.

Within the next four years Wainwright and Alder developed these ideas into a method-

ology which solved classical dynamics’ many body problem by integrating a solution over

a series of time steps. The paper published in 1959 established the basics of Molecular

Dynamics[54]. The idea behind the theory was to parameterise interatomic interactions

using potentials, and allow them to evolve dynamically by integrating their equations

of motion in successive timesteps. As this does not rely on the same random sam-

pling used by Monte Carlo simulations, they can be considered fundamentally separate

methodologies. Owing to its dynamical nature, Molecular Dynamics allowed researchers

to study previously impractical phenomena such as molecular transport, and fluid dy-

namics[55]. Over time the methodology has developed into one of the principle tools

in the computational scientists toolbox, finding applications in a broad array of fields,

such as molecular biology and nuclear physics. It is the principle methodology used in

this work, and a thorough discussion of its methods is given in the following chapter on

numerical methods.

Another predominant theory used for atomistic simulation is Density Functional The-

ory (DFT). The idea was established in two papers, one by L. H. Thomas[56], and the

other by Fermi which developed a method for calculating the electric field in an atom

from first principles. Hohenberg and Kohn[57] expanded on these theories in 1964, al-

lowing the precise functional of an atom to be calculated in the presence of a static or

slowly varying field. The theory was finally generalised in 1979 by Levy[58].

The most recent development in the field came in 1985 when Car and Parinello[59]

combined the main results of both theories to produce the Ab-initio Molecular Dynam-

ics theory of computational simulation. This combination uses the precise electronic

structure calculations from density functional theory as the pair potentials in Molec-

24



ular Dynamics. Modelling in this manner allows the theory to deal with previously

unapproachable problems such as covalent bonding in metals. Ab initio simulations are

still used to this day, and are considered the current pinnacle of atomistic simulations.

However, owing to their extremely high computational cost, previous theories with less

computational work, such as Molecular Dynamics, persist also.
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2 Numerical Methods

This section contains a summary of the numerical methods used throughout the thesis,

beginning with the principles underlying molecular dynamics, the development of pair

potentials through genetic algorithms, and the more specific use of molecular dynamics in

temperature simulations. Followed by a section on the structural optimisation of crystals,

an explanation of Boltzmann probabilities and how they can be used to produce Boltz-

mann Factors, and finally their specific use in the present work to produce ”cascading

probabilities”, a method for the deeper analysis of substitution position probability.

2.1 Molecular Dynamics

Molecular dynamics evolved from the need for a solution to the so called ”many body

problem”, formulated in the 17th century by Newton when it was found that his predic-

tions for planetary motion were flawed[60]. Newton realised the flaw in his predictions

was derived from the cross interaction of all the planets with one another, but it was

not possible to produce analytical equations to predict this interaction and the subse-

quent motion. To this day it is not possible to produce e�cient analytical solutions

for the evolution of a system of N bodies - in this case particles/ atoms. Therefore,

in order to understand interactions involving many particles, a solution is calculated via

numerical methods. Molecular Dynamics is one such method that uses Newton’s second

law to formulate equations of motion, which can sequentially solve for the movement

of many particles in discrete time steps. The integration of these equations makes the

method deterministic and allows it to mirror the dynamics of a real system. Numerous

simulation codes use this general methodology, however, in this work one code has been

used: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)[61]. The

general methodology underlying this code will be elucidated, then a further section will

detail how LAMMPS can be used to perform melting point calculations. Although there

are a number of references on the basics of molecular dynamics, the three main ones

used here are [62], [63], and [64]. The first two o�er a general overview and the final
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one a more specific overview of LAMMPS.

2.1.1 Methodology

Initialisation

The beginning of any molecular dynamics simulation is initialisation, during which

ubiquitous simulation properties are set. The most important of these are: atomic

masses, time step length, number of particles, boundary conditions, units, and pair

potential equations[65].

Time step length is particularly important in molecular dynamics simulations, and is

typically chosen so that it represents a fraction of the period of the structure’s highest

frequency vibrational mode. Calculating these modes can be done experimentally using

vibrational spectroscopy[66], the most accurate method being neutron scattering. A

common choice is 1fs as this is generally significantly smaller than the time period of

the highest vibrational frequency in most materials. Choosing a timestep which is too

large will inevitably fail to capture parts of the material’s dynamics, causing particles to

drift away from their ”True” trajectories - the expected trajectories in the real world.

Deviation from realistic trajectories can produce unphysical particle positions that cause

atoms to repel each other with extremely large forces and hence steadily increase the

energy of the system as a whole, an e�ect known as ”energy drift”.

Initial particle positions are defined on a 3D axis, whose origin can be set arbitrarily

by defining the boundary placement of the simulation box. Initial particle positions must

be defined so that the system either evolves into the state of interest (in the case of

liquids or gasses), or already represents the structure of interest (in the case of crystalline

or amorphous solids). In either case the particles must be positioned in a structure that

does not result in an unphysical overlap, as this would cause large forces to accelerate

particles away from one another destroying the system in the process. To avoid this, a

system should be initialised in the crystal lattice of the simulated structure, or in the case

of a liquid a cubic lattice of arbitrary dimensions as suits the simulation’s requirements.
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Once in position particle velocities can be initialised, this is done by assigning a

velocity to each atom at random on the interval [≠0.5, 0.5] ms–1[62] and then altering

each velocity slightly so that the total momentum of the whole system is zero. To do

this the momentum of each particle can be summed, giving:

P T =
Nÿ

i=1
pi (2.1)

where P T represents the total system momentum, pi is the momentum of particle i,

and N is the total number of particles in the system. In order to zero the momentum of

the entire system each atom’s momentum should be shifted by the momentum vector

ps = P T
N , where ps is the individual momentum shift for each particle.

To get the velocity vector shift for each particle that achieves this the following is

calculated:

vi,s = ps

mi
(2.2)

where vi,s is the shifted velocity of particle i due to ps and mi is the mass of particle i.

Giving a new velocity vector for each particle:

v
Õ

i = vi ≠ vi,s (2.3)

where v
Õ

i is the shifted velocity of particle i and vi is the original velocity of particle i.

Time is not included in this equation because all of the velocities are at t = 0. Once

the system’s velocities have been shifted to give it zero average momentum the velocity

vectors can be rescaled to match a given initial temperature. To find the rescaling factor,

first, the system’s instantaneous temperature is calculated using the following relation

from statistical mechanics for each degree of freedom of each particle[67]:

=1
2miv

2
i,(x,y,z)

>
= 1

2kBT (2.4)

where the È. . . Í angle brackets on the left hand side represent the average of the enclosed

quantity, mi is mass of particle i, vi,(x,y,z) is the magnitude of the particle i’s velocity
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along either the x, y, or z axis, kB is the Boltzmann constant, and T is temperature.

Summing over all the particles and all their degrees of freedom leads to the following

equation for the instantaneous temperature of the system:

T (t) =
Nÿ

i=1

miv2
i (t)

kBNf
(2.5)

where mi is the mass of particle i, vi(t) is the velocity of particle i at time t, T (t) is the

instantaneous temperature at time t, Nf is the degrees of freedom of the system, and

N is the total number of particles[65]. Time is included in this equation, because this

general expression can be used to calculate the instantaneous temperature at any time

t. Using the instantaneous temperature the following factor can be calculated and used

to rescale each particles velocity vector:

Sf =
A

T

T (t)

B 1
2

(2.6)

where Sf is the rescaling factor, T is the desired temperature, and T (t) is the instan-

taneous temperature. With the system momentum at zero and the temperature at the

desired level, the simulation can proceed to the general simulation loop, the first part of

this loop is described below.

Pair Potentials and Force Calculations

Mathematically, Molecular Dynamics simulations all represent atoms as point masses

which interact through some potential set which collectively defines the interactions

between the elements present in the simulation. The potentials are repulsive at short

range, maximally attractive at some equilibrium distance, and tail o� to zero as the

distance between the atoms grows. An example Lennard Jones potential[68] is shown

in Figure 11 to illustrate this characteristic shape. In general potentials have a cut o�

beyond which it’s assumed the interaction energy between two atoms is negligible enough

to exclude its calculation. For a Lennard Jones potential this gives the mathematical
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Figure 11: Example Lennard Jones potential, with the e�ect of each of the potential’s
constants indicated, please see Equation 2.7 to view these constants in the equation.

form shown in Equation 2.7.

u(rij) =

Y
___]

___[

4‘
51

‡
rij

212
≠

1
‡

rij

266
if rij Æ rc

0 if rij > rc

(2.7)

where u(rij) is the potential energy between atoms i and j, rij is the magnitude of the

vector rij between atoms i and j, ‘ is a scaling constant which controls the depth of the

potential well, rc is the potential’s cut o� point, and ‡ defines the point at which the

energy between the two atoms is zero, therefore, this point defines at what proximity

the two atoms begin to repel one another - ‡ also controls the width of the potential

well. The Lennard Jones potential is an example of a pair potential, the simplest kind of

potential that takes into account pair wise interactions only. For some potentials there

are further three body or four body interactions, both types are used in this thesis. The

work in this thesis is centred on metallic structures, which use Morse potentials[69]. For

applicability these will be used to derive the equation for force calculations, to see a

similar derivation for the Lennard Jones potential please see[70]. Morse potentials have
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Figure 12: Morse potential of the iron-iron interaction used for work in this thesis. D0
and r0 are indicated on the graph.

the form shown in Equation 2.8:

u(rij) =

Y
___]

___[

D0
Ë
e≠2–(rij≠r0)

≠ 2e≠–(rij≠r0)
È

if rij Æ rc

0 if rij > rc

(2.8)

where D0 is a scaling constant which controls the depth of the potential well, – is a

scaling constant that controls the width of the potential well, r0 is a constant that

defines the energy minimum of the well and is the distance at which the interaction

is at equilibrium, rc is the potential cut o� distance, and rij is the magnitude of the

vector between two atoms i and j. Figure 12 shows the form graphically for the Fe-

Fe interactions used in this thesis. Taking the vector gradient of Equation 2.8 where

rij Æ rc results in the force vector between atoms i and j:

f ij = ≠Òu(rij)

= ≠ÒD0
Ë
e≠2–(rij≠r0)

≠ 2e≠–(rij≠r0)
È

if rij Æ rc

(2.9)
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where Ò represents the vector gradient equation which has the form given below:

Ò = ˆ

ˆx
î + ˆ

ˆy
ĵ + ˆ

ˆz
k̂ (2.10)

subbing u(rij) into Equation 2.9 leads to:

Òu(rij) = ˆu(rij)
ˆx

î + ˆu(rij)
ˆy

ĵ + ˆu(rij)
ˆz

k̂ (2.11)

Using the chain rule each of these terms can be separated out to get the following:

ˆu(rij)
ˆx

= ˆrij

ˆx

ˆu(rij)
ˆrij

ˆu(rij)
ˆy

= ˆrij

ˆy

ˆu(rij)
ˆrij

ˆu(rij)
ˆz

= ˆrij

ˆz

ˆu(rij)
ˆrij

(2.12)

As rij is a vector magnitude it’s form can be given as:

rij = |rij| =
Ò

x2 + y2 + z2 =
1
x2 + y2 + z2

2 1
2 (2.13)

since

rij = xî + yĵ + zk̂ (2.14)

The form given in Equation 2.13 can be di�erentiated to give:

ˆrij

ˆx
= x

rij
(2.15)

ˆrij

ˆy
= y

rij
(2.16)

ˆrij

ˆz
= z

rij
(2.17)
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Substituting Equations 2.15, 2.16, and 2.17 back in to Equation 2.12, and performing

the partial di�erential, ˆu(rij)
ˆrij

, gives the following equations:

ˆu(rij)
ˆx

= x

rij
D0

Ë
(≠2–) e≠2–(rij≠r0)

≠ (≠2–)e≠–(rij≠r0)
È

ˆu(rij)
ˆy

= y

rij
D0

Ë
(≠2–) e≠2–(rij≠r0)

≠ (≠2–)e≠–(rij≠r0)
È

ˆu(rij)
ˆz

= z

rij
D0

Ë
(≠2–) e≠2–(rij≠r0)

≠ (≠2–)e≠–(rij≠r0)
È

(2.18)

Substituting the equations from 2.18 back in to Equation 2.11 results in:

Òu(rij) = D0
Ë
(≠2–) e≠2–(rij≠r0)

≠ (≠2–)e≠–(rij≠r0)
È A

1
rij

B 1
xî + yĵ + zk̂

2

= (≠2–)D0
Ë
e≠2–(rij≠r0)

≠ e≠–(rij≠r0)
È

r̂ij

(2.19)

where:

r̂ij = rij

rij
=

A
1
rij

B 1
xî + yĵ + zk̂

2
(2.20)

Substituting 2.19 into Equation 2.9 gives:

f ij = (2–)D0
Ë
e≠2–(rij≠r0)

≠ e≠–(rij≠r0)
È

r̂ij (2.21)

Equation 2.21 can be used to calculate the force on every atom i due to its interaction

with neighbouring atoms j by Newton’s Second Law of motion:

mr̈i = f i =
Nÿ

j=1
(j ”=i)

f ij

r̈i = 1
m

Nÿ

j=1
(j ”=i)

f ij

(2.22)

Calculating the force on each atom and the associated acceleration is the preliminary

step of the algorithm which updates atomic positions. The process of updating positions

is known as time integration, and is explained in a separate section.
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Boundary Conditions

Every simulation takes place within a defined region, depending on the simulation

type this region can di�er. Simulations in the Canonical Ensemble (NVT simulations),

which occur at constant volume and temperature, have their region defined at the start of

the simulation. Whilst Isothermal-Isobaric (NPT simulations), which occur at constant

pressure and temperature, alter their regions as the system evolves to achieve the correct

pressure.

The interaction of particles with the simulation region boundaries are known collec-

tively as ”boundary conditions”. These boundary conditions generally come in two main

types, fixed boundary conditions and periodic boundary conditions.

Fixed boundary conditions define the limit of the simulation cell, acting as hard

boundaries to further atomic movement. This method is limited by the fact that simu-

lation breakdown will occur if an atom moves beyond these boundaries. To prevent this,

it’s possible to add repulsive potentials to the boundaries that cause particles to reflect

as they approach. However, because most Molecular Dynamics simulations are quite

small, on the order of 104 or 106 atoms, particles which are a�ected by this potential

can grow to be a significant minority and even a majority of the simulation. As these

particles cease to accurately represent particles in the bulk, fixed boundary conditions will

have an e�ect on the macroscopic properties of a system beneath the thermodynamic

limit[71]. To avoid this, and still represent macroscopic systems in microscopic form,

periodic boundary conditions can be used in place of fixed ones. The periodic boundary

method creates virtual copies of the simulation environment in all directions, treating the

original simulation region as a primitive unit cell. The virtual simulation regions provide

virtual particles, which interact with particles in the original simulation region. A two

dimensional example of this is shown in Figure 13. As can be seen, interactions occur

between the simulation particle and virtual particles across the boundary.

Further, particles that cross a periodic boundary re-emerge through the opposite

one. Computationally this is achieved by a momentum preserving coordinate alteration,
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Figure 13: 2D visualisation of periodic boundary conditions. The main simulation region
is outlined in black, surrounded by numerous identical virtual simulation regions outlined
in grey. The red circle shows the interaction cut o� point for one particle in the simu-
lation, and the red arrows indicate the particles it interacts with. The arrows indicate
that further virtual simulation regions can be created if necessary.

but conceptually it can be thought of as an exchange of particles between the original

simulation and a pair of virtual simulations. Two such particle exchanges are illustrated

in Figure 14, which shows the paths of two particles passing from the original simulation

region into a virtual simulation region. As can be seen, the particle behaviour is mirrored

by a secondary virtual simulation region opposite the first, which passes its virtual version

of the particle back into the original simulation region.

These boundary conditions are achieved mathematically/ programmatically by: A)

including all virtual particles in the extended particle list used for finding nearest neigh-

bour pairs in force calculations, and B) Using an operator to shift particle positions

when they leave the simulation region[72]. An example of a shift operator, assuming a
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Figure 14: Two dimensional representation of particles crossing from the original simu-
lation region into virtual simulation regions, with the corresponding virtual particle from
the opposite virtual region crossing into the original simulation region. Three transfers
are shown, one in which the particle crosses the x boundary, another which crosses the
y boundary, and a final transfer which shows a particle crossing the x and y boundary.
The x and y directions are indicated in the bottom left corner.

rectangular simulation region, is shown in Equation 2.23:

S(x,y,z)(ri,(x,y,z)) =

Y
________]

________[

ri,(x,y,z) if 0 < ri,(x,y,z) Æ L(x,y,z)

ri,(x,y,z) ≠ L(x,y,z) if ri,(x,y,z) > L(x,y,z)

ri,(x,y,z) + L(x,y,z) if ri,(x,y,z) < 0

(2.23)

where the notation (x, y, z) indicates any of the three axes can be used in the equation,

S(x,y,z) is the shift operator for one of the three axes x, y, z, ri,(x,y,z) is the coordinate

of particle i along one of the x, y, z axes, and L(x,y,z) is the length of the simulation box

along one of the x, y, z axes. At every time step this operator can be applied to each

particle and change its coordinates if necessary without altering its momentum.

The wrap around e�ect produced by periodic boundaries allows a very small region to
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approximate an infinite space, and thus simulate the behaviour of particles in the bulk.

However, if the interaction length of the pair potentials is over half the smallest region

size, particles can interact with multiple copies of the same atom producing spurious

e�ects[73]. Less directly, if particle behaviour is correlated over long ranges, particles

can interact with themselves through their neighbours, producing oddities such as infinite

travelling waves. The possibility of these finite size e�ects should always be taken into

account when defining the simulation region.

Time Integration of Particle Positions

Once the simulation has been initialised the program enters its main loop, calculating

particle positions at successive time steps. This process requires the force calculations

from Equation 2.21 and the position of the particles at the previous two time steps. These

are combined into an equation which calculates the next particle position. The equation

used to find the next position varies, but the most common methods are variations

of Verlet integration. The derivation of this method can be found in Understanding

Molecular Simulation[74], and is presented below.

Taking the Taylor expansion of one of a particle’s coordinates (x, y, z) gives the

following form:

r(t + —t) = r(t)
0! + —t

1!
dr(t)

dt
+ —t2

2!
d2r(t)

dt2 + —t3

3!
d3r(t)

dt3 + O

1
—t4

2

r(t ≠ —t) = r(t)
0! ≠

—t

1!
dr(t)

dt
+ —t2

2!
d2r(t)

dt2 ≠
—t3

3!
d3r(t)

dt3 + O

1
—t4

2
(2.24)

where, r(t) is the position coordinate for a particle in x, y, or z, —t is the time step, and

the O (—t4) is big O notation for: some function on the order of —t4. Adding together

the equations in 2.24 gives the following:

r(t + —t) + r(t ≠ —t) = 2r(t)
0! + 2—t2

2!
d2r(t)

dt2 + O

1
—t4

2

= 2r(t) + —t2 d2r(t)
dt2 + O

1
—t4

2
(2.25)
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As d2r(t)
dt2 (t) = a(t) and f(t) = ma(t), a(t) = f(t)

m can be substituted into the Equation

2.25 to get the following:

r(t + —t) + r(t ≠ —t) = 2r(t) + —t2 f(t)
m

+ O

1
—t4

2

r(t + —t) = 2r(t) ≠ r(t ≠ —t) + —t2 f(t)
m

+ O

1
—t4

2
(2.26)

By choosing a very small time step, the O (—t4) term can be disregarded and the

equation simplified to:

r(t + —t) ¥ 2r(t) ≠ r(t ≠ —t) + —t2 f(t)
m

(2.27)

This produces a compounding error on the order of —t4 but as this value is very small

compared to the remainder of the equation it’s safe to omit. Equation 2.27 shows that

calculating a particle’s next position requires its position at the current and preceding

time step, along with its total force calculation at the current time step.

Algorithms like Equation 2.27 are used because they preserve the accessible area of

the particle system’s phase space. This means that at some given energy E, the states

which the system can reach remains roughly the same and there is no long term drift in

total system energy.

Whilst there are higher order integration methods which can give greater accuracy

in particle position, all methods will su�er from numerical instability at some point,

and deviate from the true particle trajectory sooner or later. Therefore, it is far more

important to preserve the macroscopic quantities of the system, such as total energy. For

this purpose the algorithm with the lowest computational cost, above a certain accuracy,

is preferred. Equation 2.27 fits these criteria.

Thermostats and Barostats

Alone, the above methodology can only produce systems in the Microcanonical

(NVE) ensemble, for which energy, volume and particle number are conserved. This
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restricts the states the system can reach to a single energy, which makes it hard to com-

pare computed results with real world experiments, as most real world experiments occur

at constant temperature, particle number, and volume (NVT), or constant temperature,

particle number, and pressure (NPT). The NVT ensemble is known as the Canonical

ensemble, and the NPT ensemble as the Isothermal-Isobaric ensemble.

Two methodologies are used to replicate these ensembles in Molecular Dynamics.

The first, stochastically couples the system to a known ensemble through a quasi Monte

Carlo method[75]. The second, couples the system to a given ensemble by the addition

of an extra term to each particles equation of motion, the term serves to constrain the

system as a whole to the chosen ensemble[76].

An example of the former case is the Andersen Thermostat[75], which models

stochastic collisions between the system and a theoretical heat bath by selecting parti-

cles and giving them a momentum from the Maxwell-Boltzmann distribution, shown in

Equation 2.28.

P(p) =
A

—

2fim

B3/2

exp
C

≠—p2

2m

D

(2.28)

where p is momentum magnitude, P(p) is the probability of momentum magnitude p,

— = 1/kBT where kB is the Boltzmann constant and T is temperature, and m is mass.

As the choice of momentum matches this distribution, the Andersen Thermostat can

e�ectively put the system in the Canonical ensemble at temperature T .

The strength of coupling to the heat bath is defined by the frequency at which these

collisions occur v, so that for each timestep —t there should be v—t collisions. The

main problem with this method, is that it destroys the time reversibility of the system,

making it impossible to study dynamic properties.

An improvement on this method, and an example of the latter case is the Nose-

Hoover thermostat[76]. In this method an extra term is added to the equation of

motion for every particle, which adds a positive or negative friction to the particle’s

motion. This term acts to either speed up or slow down each particle depending on the

whole systems deviation from, for example, a desired temperature TD. The modified
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equations of motion take the following form:

mi
d2

ri

dt2 = F (ri) ≠ ’

A

ri,
dri

dt

B
dri

dt
(2.29)

where d2
ri

dt2 is the acceleration of particle i, mi is the mass of particle i, F (ri) is the

force on particle i, ’(ri,
dri
dt ) is the frictional term that scales particle velocity, and dri

dt is

the velocity of particle i. For the Nose-Hoover thermostat ’ is defined by its di�erential

with respect to time, which is given in the following equation:

d’

dt
= (q

i miv2
i ) ≠ 3NkBTD

Q
(2.30)

where v2
i is the velocity of particle i squared, N is the number of particles, kB is the

Boltzmann constant, TD is the desired temperature, and Q is an adjustable parame-

ter that defines the coupling strength between the system and the heat bath[77]. The

numerator in this equation represents the system’s deviation from the average kinetic

energy it’s expected to have in the Canonical ensemble. The expected average velocity

can be calculated from each of the system’s velocity component averages using Equa-

tion 2.4[67]. Taking into account the system’s three degrees of freedom results in the

following average square velocity for each particle:

1
2mi

e
v2

i,x

f
+ 1

2mi

e
v2

i,y

f
+ 1

2mi

e
v2

i,z

f
= 3

2kBT

1
2mi

e
v2

i

f
= 3

2kBT

(2.31)

This can be used to demonstrate that the kinetic energies of the particles in a system in

the Canonical Ensemble should sum to equal N times 3
2kBT . In Equation 2.30 the factor

of 1
2 has been taken into the denominator Q. The result of Equation 2.30 is that any

deviation from the desired temperature TD will cause a change in the friction constant ’,

which over time will damp the system into the Canonical ensemble. The speed at which

the system changes to match the desired distribution is governed by Q. This parameter

must be chosen carefully, otherwise unphysical oscillations in energy cause the system

to leave the canonical ensemble.
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Figure 15: Morse potentials for Fe-Fe, Fe-Nd, and Nd-Nd.

Similar to the above thermostat, system dynamics can have volume built into them

to produce a barostat. In this way volume can be altered to keep the pressure at some

constant value.

2.1.2 Pair Potential Development

Pair potentials are an approximation to an underlying truth. In molecular dynamics

they’re based on a physically motivated functional form that has been empirically de-

rived to reproduce some properties of reality - in this case macroscopic and microscopic

crystal properties. Each functional form is defined by a finite number of constants. By

varying the constants, a pair potential can be fit to macroscopic properties obtained from

experimental data, or macroscopic and microscopic properties obtained from ab initio

data. Whilst the amount of data available from ab initio methods is significantly higher,

it is based on calculations at 0K and thus may not be appropriate for all purposes.

To examine the process of pair potential development, we will use the Morse func-

tional form from the previous section. Figure 15 shows three of these Morse potentials,

which were refit to match experimental data.
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Figure 16: Visual representation of the Genetic algorithm process.

There are four constants in this potential: D0 for controlling the potential well depth,

– for controlling the potential well width, r0 for controlling the minimum energy distance,

and rc for controlling the potential’s cut o� distance.

Fitting a potential to match experimental data is an old idea, and was alluded to by

Morse in his own 1929 paper[69], in which he introduced the potential as an approxi-

mation to the potential energy between two nuclei in a diatomic molecule. He suggests

that as the precise expression for this potential cannot be known, that an approximation

should be used and its constants adjusted to match experimental data. The following

section discusses one method for fitting a functional form to experimental data.
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Genetic Algorithms

Genetic Algorithms are a nature inspired computational method[78, 79]. Typically,

they are used when a problem needs to optimise an undi�erentiable function or when

a problem is likely to have multiple local optima. They are also useful when good

solutions to a problem are sparsely spread across a search space, or when the parameters

of a problem are likely to be interconnected[79]. In this thesis, Genetic Algorithms are

used to solve an optimisation problem which matches all of the above criteria. They

make use of data structures that represent short sequences of genetic code (genes),

where each gene contains all the information required to form a solution to some posed

problem. For example, in the case of a Morse potential, the posed problem could be

finding the potential that most accurately produces known cohesive energies for a given

structure - making the genes a parameter set that define a Morse potential.

In the above scenario, the steps comprising a basic implementation of the algorithm

are given below:

1. Generate a population of genes, in which all the parameters forming the Morse

potential are completely random.

2. Using each gene in the population calculate cohesive energy.

3. Rank order the genes by their proximity to the correct cohesive energy, high rank

or ”good” genes are those which are closest to the energy.

4. Remove the low rank genes from the population and repopulate with more genes,

using Crossover and Mutation operators (explained later).

5. Move to step 2 and repeat the process with the new population of genes.

Although simple, this example contains the basics of the Genetic Algorithm method.

The steps are shown graphically in Figure 16. A detailed explanation of each step is

given below, along with the implementation specifics of the Genetic Algorithm used in

Chapter 4 of this thesis - a custom code written in Python that follows conventional

Genetic Algorithm practices using real numbers for the parameters.
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Step 1: Generating a Population

The first step in the above algorithm is an initialisation step, occurring only once at

the start of the problem. This initial step produces an initial set of genes which broadly

cover most of the probable parameter space - a mathematical abstraction that represents

all possible combinations of gene parameters. The probable parameter space is a subsec-

tion of all the possible combinations that past experience or outside considerations have

shown are likely to hold the correct answer. The broadness of this space will di�er from

problem to problem, and is dependent on the foreknowledge of the problem at hand.

A simplified example of this is: ”How many people should you invite for dinner when

you have 10 steaks, 2kg of potatoes, and 5kg of assorted green vegetables?”. You could

probably guess the answer is around 10, based on your foreknowledge of how much peo-

ple eat. The answer is certainly not 1,000,000, even though the algorithm would deem

this an acceptable number of people to invite. To avoid unrealistic answers, the initial

choice of the probable parameter space should reflect this. Figure 17 illustrates a simple

parameter space and the region in which a genetic algorithm might start.

Taking any possible foreknowledge into account, genes are created at random by

selecting from the range of parameter combinations that fall within the acceptable region.

It is assumed that choosing the parameters at random will give a reasonable coverage

of the parameter space. The first set of genes is deemed the first generation.

To ensure good coverage of the probable parameter space, the work in this thesis

centred the initial parameter space around pre-existing potentials, which were already

capable of producing reasonable results. The Morse potential methodology uses four

parameters, making the optimisation’s parameter space 4D. Trial and Error showed that

a parameter variation > ±20% resulted in a completely deformed or un-computable

structure. Therefore, initial parameter sets were created to have values in the range

[-20%, -10%, 0%, +10%, +20%] of the original parameter. Creating the set in this way

produced 625 parameter combinations which became the optimisation’s first generation.
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Figure 17: An illustration of a simple 2D parameter space with parameters A, and B. A
hypothetical probable parameter space is circled in the first quadrant.

Step 2: Evaluating Genes

In the basic implementation this is simply written as ”calculate cohesive energy”,

however in general this step is known as the evaluation step[79]. Evaluation allows the

algorithm to quantify which genes are the fittest, and therefore which of them should

reproduce. In none genetic terms, the algorithm decides how well each parameter set

produces a desired result, and uses this to decide which sets propagate into the next

iteration of the algorithm.

The evaluation step is governed by an Evaluation Function which is defined prior to

the beginning of the algorithm. The Evaluation Function can in principle be anything

whose results are reliant on the parameters in the genes. For example, to calculate

cohesive energy the parameter set could be fed into a molecular dynamics simulation

and used to perform an energy minimisation calculation. In this scenario the minimisation

calculation is the Evaluation Function, and the cohesive energy is its output.
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For the work in this thesis, cohesive energy, elastic constants, lattice parameters, bulk

modulus, and Young’s modulus were calculated using an energy minimisation calculation.

In this case the Evaluation Function’s output consists of multiple values, each of which

needs to be considered when evaluating fitness, which is discussed in the next step.

Step 3: Assigning Fitness

A Fitness Function is some method of taking the output of the Evaluation Function

and turning it into a measure of fitness for each gene. The ability to reproduce and

propagate through the next iteration of the algorithm is dependent on this fitness.

In the simple case given in step 2, it su�ces to rank the genes by their proximity or

percentage deviation from the desired cohesive energy. The highest ranking or fittest

genes being those that produce the least deviation.

For a complicated case with multiple outputs, the Fitness Function must take into

account each of the Evaluation Function’s outputs and combine them to produce a

fitness for each gene. This can be done by weighting the importance of each output,

so that the accuracy of the most important outputs has a larger e�ect on the Fitness

Function. Such a Fitness Function can be written as follows:

F (Og) =
Nÿ

i

wi
|Og,i ≠ Ei|

Ei
(2.32)

where F (Og) is the Fitness Function for the outputs of gene g, Og is the Evaluation

Function’s outputs for gene g, N is the number of outputs, wi is the weighting factor for

output i, Og,i is the value of gene g’s output i, and Ei is the expected value of output i.

As Equation 2.32 shows, a good fitness is associated with a low value, with optimal fitness

being a value of 0. The weighting factors wi determine the importance of each output,

and are defined at the start of the algorithm. To determine the weightings, consideration

is given to which of the Evaluation Function’s outputs are of greatest importance to the

algorithm’s success. For example, for Chapter 4 of this thesis, potentials were refit

to get a closer approximation to melting temperature. In this case the reproduction
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of the correct cohesive energy is of primary importance, and other constants, such as

lattice parameters, are secondary. To reflect their relative importance, a weighting of

w1 was assigned to cohesive energy, and a weighting of w2 to each lattice parameter,

where w1 ∫ w2. Assigning a larger weighting to the most important outputs amplified

their relevance, ensuring that genes that were optimised to accurately produce important

outputs were consistently ranked as the fittest.

Over successive generations this caused the genetic algorithm to converge on Morse

potential parameters that produced solutions with high accuracy in cohesive energy and

poorer accuracy in lattice parameters. To ensure the accuracy of the less important

outputs is maintained, the relative weightings should be set so that one output doesn’t

erroneously dominate the Fitness Function.

Step 4: Selective Reproduction

Once every gene has been given a fitness value, the next step is the formation

of an intermediate population. In the original text outlining Genetic Algorithms[78] the

intermediate population is formed by calculating the average fitness across the population

and using it to normalise all fitness values. The result is a collection of values of

the form fi/f̄ , where fi is the fitness of gene i, and f̄ is the average fitness for the

generation. This normalised value is then proportional to the probability a gene is

selected to move into the intermediate population. However, there are many appropriate

ways to select genes, for example, the same normalised fitness values could be rounded

down to the nearest whole number and have that many copies of themselves placed into

the intermediate population. The remainder of every gene’s normalised fitness could

then be used in the same proportional probability selection as before. For example, a

gene with a normalised fitness value of 1.5 would have one copy automatically placed in

the intermediate population, with the chance of a second placement being proportional

to 0.5.

To form the intermediate population, the Genetic Algorithm used in this work follows

two selection criteria. Firstly, any genes that produce an error in the energy minimisation
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calculation are discarded, and secondly, any genes with a fitness one standard deviation

lower than the previous generations average fitness are discarded. All the remaining

genes are carried forward into the intermediate population.

Once the intermediate population has been selected, Recombination can occur. Re-

combination is performed by Crossover and Mutation operators, which are the iteration

elements of Genetic Algorithms that generate new genes to be tested against the prob-

lem. A Crossover operator takes two genes from the intermediate population as an input,

and with a probability PC swaps over each part of their parameter set, as an example

consider the two genes defined below:

G1 = [1, 3, 5, 2]

G2 = [2, 4, 1, 0]
(2.33)

where Gi is a gene and i = 1, 2, and [p1, p2, p3, p4] represents a morse potential with

parameters p1, p2, p3, p4. Placing both these genes into a Crossover operator with a swap

probability PC gives:

C(G1, G2, PC) = (G3, G4) (2.34)

where C(G1, G2, PC) is a Crossover operator producing two new genes from G1 and G2

by swapping their parameters with probability PC , and G3, G4 are the two new genes

resulting from the Crossover operator. As an example if PC = 0.5 , G3 and G4 might

have the following forms:

G3 = [2, 3, 1, 2]

G4 = [1, 4, 5, 0]
(2.35)

where the first and third indexes of the original genes G1 and G2 have been swapped.

This behaviour is expected as the probability of a swap, PC = 0.5, indicates that on

average the Crossover operator should swap two of the gene’s parameters. However, this

doesn’t have to be the case, for example, using the same two genes, G1, G2 as before
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with PC = 0.75 could give the following:

G3= [1, 3, 1, 0]

G4= [2, 4, 5, 2]
(2.36)

where the third and fourth indexes of the original genes G1 and G2 have been swapped.

This behaviour is still possible, although with a PC = 0.75 on average the Crossover

operator should swap three of the four parameters.

After the Crossover operations, the resulting genes go through Mutation operations.

Mutation operators take a gene, and with probability PM , alter each of its parameters

by some percentage to produce a new gene. For example, a reasonable range for the

percentage change of pair potential’s parameters is ±1≠5%. This process is represented

mathematically below, following on from one of the results of the Crossover operation

in Equation 2.35:

M(G3, PM) = GÕ
3 = [2.1, 2.97, 1, 2] (2.37)

where G3 is one of the Crossover genes in Equation 2.35, M(G3, PM) is a Mutation

operator acting on each parameter of G3 with probability PM , PM is the probability of

a mutation occurring, and GÕ
3 is the mutated form of G3. The two operators together

comprise the Recombination stage of the Genetic Algorithm process and are used on

the intermediate population to produce the next generation. The next generation’s

population size matches that of previous generations. Once the new generation has

been produced the algorithm loops, beginning again at step 2.

For the work in this thesis, PC = 0.05 throughout the entire algorithm, as trial and

error showed that larger PC hindered convergence on a solution. In contrast, PM was

altered as the algorithm progressed, its magnitude following a sinusoidal pattern encased

in an exponential envelope set to go to zero at a predefined number of generations.

Letting PM vary in this manner has two e�ects, firstly, it allows the algorithm to peri-

odically explore a wider search space before honing in on the local optima of that space,
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and secondly, it guarantees the algorithm’s convergence onto a global minimum of the

explored local optima at a set number of generations. Although this method doesn’t

guarantee convergence on a true global minimum, it is a useful heuristic model that

showed good results through trial and error in Chapter 4.

2.1.3 Solid-Liquid Coexistence Method

The solid-liquid coexistence method is a Molecular Dynamics technique for finding the

melting point of a structure[80, 81, 82].

Beginning from a single solid crystal in a periodic simulation, a solid-liquid interface

is created by zeroing the force interactions and velocity of atoms on one half of the

crystal. The atoms in the remaining half of the crystal are superheated until the original

crystal structure degenerates into a liquid. In this work, a liquid is defined as a system in

which no atom is tied to a bounded region within the system. Once liquified the melted

system is brought back into contact with the solid system at a constant temperature

and pressure and allowed to equilibrate.

To do this, the frozen half of the system has its force interactions and velocity

switched back on, before both halves are run under the same statistical ensemble. Be-

cause they had greater energy in the melting stage, atoms in the liquid half of the system

can occupy positions that are unphysically close to the solid half at the new temperature

and pressure. Therefore, instantaneously bringing the two halves into direct contact pro-

duces shock waves as the system responds to the unphysically large force interactions.

To avoid these shock waves one of two methods is used:

1. Minimisation calculations, first, on the liquid half of the simulation only, followed

by the system as a whole.

2. Spring forces, attached to all the atoms within some distance d of the interface.

The goal of either method is to prevent disturbance of the generated interface. In the

first case, the liquid only minimisation allows the liquid atoms to move into positions of
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low energy relative to the solid which prevents unphysical forces disturbing the interface

on the secondary minimisation. The secondary minimisation allows the whole interface

system to form a low energy and therefore stable structure.

In the second case, interface disturbance is prevented by the spring forces, which

simultaneously hold the interface in place and damp out the vibrations caused by the

shock waves. Spring forces can be released in stages as the vibrations are damped out

of the system. Release rate should be proportional to the percentage of unphysical

vibrations that have been damped out of the system. Once removed entirely a stable

interface remains.

As mentioned above, once the system’s interface has been stabilised, the whole

system is equilibrated at a given temperature and pressure. The evolution of the system

during this equilibration phase indicates whether the temperature is above, below, or at

the melting temperature for the selected pressure.

If the temperature, T , is above the melting temperature: T > TM , the interface of

the system will move into the solid phase and the liquid phase will grow. If T < TM

the liquid phase will remain the same size but freeze into a glass like amorphous state,

leaving the interface completely fixed. If T = TM + —t for —t æ 0, both phases

will remain in their previous states and the interface will demonstrate no net movement

into either phase. Figure 18 shows these three cases visually, along with the system’s

interface directly after stabilisation.

Visual inspection can be used to establish the state of the system. In the cases where

such inspection would be time prohibitive, a radial distribution function can be used to

measure the density of atoms at a distance d from a central atom. Density is calculated

by finding the number of points in a spherical shell of thickness �d, a distance d from a

central atom, and dividing this number by the shell’s volume - giving a function of the

following form:

g(d) = N
4
3fi

1
(d + �d)3 ≠ (d)32 (2.38)

where g(d) is the radial distribution about some atom, N is the number of atoms found
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Figure 18: Various states of a system in a solid-liquid coexistence simulation, showing: a)
A system directly after the interface has been stabilised, b) Movement of a system’s in-
terface into the solid phase, indicating T > TM , c) Stable interface between a crystalline
solid and amorphous glass solid, arrows show atoms are bounded to specific regions,
indicating T < TM , d) Stable interface between crystalline solid and liquid, arrows show
atoms are not bounded to specific regions, T = TM + —t for —t æ 0.

at distance d, and �d is the thickness of the shell. Ordered crystal structures have

very distinct radial distribution functions, whilst liquids have slightly less distinct but

characteristic distributions. By measuring each atom’s order parameter at consecutive

time intervals, the movement of the interface can be quantified over time.
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2.2 Structural Optimisation

Structural optimisation is a collection of static lattice methods which optimise the atomic

positions of a given input lattice. Using pair potentials and potential energy calculations,

the methods can calculate cohesive energy and use it as a figure of merit for the lattice.

Cohesive energy represents the energy required to completely separate the atoms that

compose a lattice into a vapour. Therefore, lattice’s that have negative cohesive energies

represent atomic arrangements that are energetically preferable to the same atoms in a

vapour state. For arrangements of the same group of atoms, the arrangement with the

lowest (most negative) cohesive energy is the most stable and therefore most probable

structure. Lattice’s that have a positive cohesive energy are completely unstable and will

either not form or spontaneously degenerate into the vapour state/ a Lattice structure

with a negative cohesive energy. Using cohesive energy as a metric allows for the creation

of a potential energy surface which represents all the possible configurations of atoms

in the lattice. On this surface a local minimum or maximum corresponds to the most

preferable or least preferable set of atomic positions in the locality of interest.

With a link established between atomic positions and cohesive energy, structural

optimisation can be defined as the search for a local energy minimum. As the energy

search finds a local minimum, the configurations searched in atomic position space must

also be local and thus are unlikely to deviate significantly from the original lattice.

Therefore, structural optimisation methods are lattice preserving and find the lowest

possible energy for a given lattice with the minimal possible structural change. Figure

19 gives an example of structural change that preserves structure.

One of the predominant software packages used in academia to perform these cal-

culations is the General Utility Lattice Program (GULP)[83, 84]. This is the software

package used throughout this work and therefore will be the focus of this section.

The default GULP optimiser uses a form of Newton-Raphson method, known as the

Quasi-Newton method given in the following paper by Shanno[85]. The method is used

throughout this thesis, and its derivation and explanation is given below.
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Figure 19: Illustration of the optimisation process for a 2D lattice. a) Shows a 2D lattice
input, where blue circles represent atoms and black lines represent the lattice boundary,
b) Shows an example of atomic movement that minimises the cohesive energy of the
structure, where the atomic movement is shown by the black arrows and red atoms are
the new atomic positions, c) The final optimised structure, where red circles represent
atoms that moved during optimisation and the single blue atom represents an atom that
remained in the same position during the minimisation.

54



Figure 20: Geometric visualisation of the Newton-Raphson algorithm and how it con-
verges to some root of a function f(x).

2.2.1 Newton-Raphson

The Basic Idea

Newton-Raphson methods iteratively produce closer and closer approximations to a

root of a function, f(x), using an equation of the form:

xn+1 = xn ≠
f(xn)
f Õ(xn) (2.39)

where xn is the method’s nth approximation of the root of f(x), xn+1 is the method’s

n + 1th approximation of the root of f(x), f(xn) is the value of f(x) at xn, and f Õ(xn)

is the value of the first derivative of f(x) at xn. This equation is based on a method

for finding the root of function, f(x), by taking its tangent at a point xn, calculating

the tangent’s x intercept, and using that as the value of xn+1. The process is shown

visually in Figure 20. Given a point on the line (x1, f(x1)) its tangent can be found by

using the point slope equation:
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f(x) ≠ f(x1) = f Õ(x1)(x ≠ x1) (2.40)

Setting x1 = xn, and f(x) = y gives the following:

y ≠ f(xn) = f Õ(xn)(x ≠ xn) (2.41)

y = f Õ(xn)(x ≠ xn) + f(xn) (2.42)

To get the root of this tangent line, y is set to 0 and the equation is rearranged:

f Õ(xn)(x ≠ xn) + f(xn) = 0 (2.43)

f Õ(xn)(x ≠ xn) = ≠f(xn) (2.44)

x ≠ xn = ≠
f(xn)
f Õ(xn) (2.45)

x = xn ≠
f(xn)
f Õ(xn) (2.46)

The calculated root x is the next approximation, so setting xn+1 = x gives us Equation

2.39 above. This can be extended to find a minimum or maximum point of a twice

di�erentiable function by finding the roots of its gradient g(x) = f Õ(x). This changes

Equation 2.39 to the modified form:

xn+1 = xn ≠
g(xn)
gÕ(xn) = xn ≠

f Õ(xn)
f ÕÕ(xn) (2.47)

Derivation from Taylor Series in 1D

A function relating atomic positions to energy is an example of an unconstrained,

convex function. Unconstrained because there are no constraints on the atomic positions,

and convex because the function’s initial parameters, the atomic positions, situate the

function around a local minimum. This kind of function is known as a special function and

is amenable to the Newton-Raphson method[86]. The function, f , is a multi-variable,

scalar valued function, which accepts every atom’s position coordinates as arguments

and returns a single cohesive energy value. Deriving the Newton-Raphson method for a

multivariable function requires a di�erent approach using Taylor series. This approach
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will be outlined here, starting from the derivation in 1D which begins with the following

definition for the Newton-Raphson equation:

xn+1 = xn + �x (2.48)

where �x is the change required to make xn a root of f(x), xn is the nth approximation

for a root of f(x), and xn+1 is the n+1th approximation for a root of f(x). To find �x

we take the Taylor series expansion of the function f(xn + �x) about xn:

f(xn + �x) = f(xn) + f Õ(xn)((xn + �x) ≠ xn) + ...

= f(xn) + f Õ(xn)�x + ...
(2.49)

by definition �x brings xn to a root of f(x) so the left hand side of Equation 2.49 can

be set to zero. Rearranging the equation so that zero appears on the right hand side for

notation’s sake gives:

f(xn) + f Õ(xn)�x + ... = 0 (2.50)

Assuming the initial guess was close to the root, the terms can be truncated at the

first order and the following equation can be used to find an approximation of the �x

required to reach a root of f(x):

f(xn) + f Õ(xn)�x ¥ 0 (2.51)

Rearranging this gives the following:

�x ¥ ≠
f(xn)
f Õ(xn) (2.52)

Subbing this approximate value for �x back into Equation 2.48 reproduces Equation

2.39:

xn+1 = xn ≠
f(xn)
f Õ(xn) (2.53)
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Multivariable Newton-Raphson

Extending this to a multivariable function, f(x), where f is a scalar valued func-

tion, x is a vector in RN , and N is the equal to the total number of atomic position

coordinates, Equation 2.48 can be redefined to give:

xn+1 = xn + �x (2.54)

where xn+1, xn, and �x are all vectors in RN that reside within function f ’s parameter

space. Using a similar process to that outlined in the 1D case, �x becomes:

�x ¥
f(xn)
f Õ(xn) = f(xn)

Òf(xn) (2.55)

where Òf(xn) = f Õ(xn) = g(x) and is the gradient of f(x). To find the minimum

and maximum points of a function, �x from Equation 2.47 for finding the points in 1D

becomes the following:

�x = ≠H
≠1g(x) (2.56)

where H is the Hessian of the function f(x), the multivariable equivalent of f ÕÕ(xn) in

Equation 2.47, and g(x) is the gradient of f(x) the multivariable equivalent of f Õ(xn).

The two are defined as follows:

H =

S

WWWWWWWWWWU

ˆ2f
ˆx2

1

ˆ2f
ˆx1ˆx2

. . . ˆ2f
ˆx1ˆxn

ˆ2f
ˆx2ˆx1

ˆ2f
ˆx2

2
. . . ˆ2f

ˆx2ˆxn

... ... . . . ...
ˆ2f

ˆxnˆx1
ˆ2f

ˆxnˆx2
. . . ˆ2f

ˆx2
n

T

XXXXXXXXXXV

(2.57)

g = Òf(x) =
C

ˆf

ˆx1
,

ˆf

ˆx2
, . . . ,

ˆf

ˆxn

D

(2.58)

where the Hessian H is a matrix of all the possible second partial derivatives of f(x),

and the gradient g(x) is a vector of all the possible first partial derivatives of f(x).
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To turn this into an iterative algorithm, Shanno gives the following[85]:

xn+1 = xn ≠ snH
≠1
n g(x)n (2.59)

where sn is a scalar chosen at each step to minimise f(xn+1) in the direction of

≠H
≠1
n g(x)n, H

≠1
n is the inverse Hessian at the nth approximation, and g(x)n is the

gradient at the nth approximation. Iteratively solving this moves x towards a local

minimum of f(x).

Quasi-Newton Methods

Because of the computational cost of calculating the exact inverse Hessian at ev-

ery step, methods have been developed which use an approximate inverse Hessian in

its place, and update it as the algorithm progresses. Because they don’t use the ex-

act Hessian, these methods are known as ”Quasi-Newton”. There are two main update

schemes that are generally employed Davidon–Fletcher–Powell (DFP) [87] and Broy-

den–Fletcher–Goldfarb– Shanno (BFGS) [85], of the two BFGS converges on solutions

faster and is the most computationally e�cient.

Both methods begin with either the exact inverse Hessian, or some other positive

definite matrix, often the unit matrix. This matrix is then updated as the algorithm pro-

gresses. Positive definiteness is a necessary condition, as the Hessian must approximate

a well shape for which it is possible to find a minimum.

The advantage of a Quasi-Newton method, is that it can use the curvature of the

energy space to converge to a solution faster, without the computational overhead of

calculating the inverse Hessian at every iteration.

The method’s initial point must be chosen carefully[88], as it’s possible that the

algorithm will converge to some other critical point, such as a saddle, if the local potential

energy surface isn’t a well. Fortunately this isn’t a problem for structural optimisations,

as the initial atomic positions provided to the algorithm are based on known crystal
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structures. Therefore, as long as the potentials are a good approximation of the atomic

interactions, the system is by definition within a local potential energy well, as a stable

crystal system is an example of a real world local potential energy well.

Implementation of the Algorithm in GULP

To implement the algorithm it’s necessary to consider: A) when the updated inverse

Hessian has drifted too far from the real inverse Hessian, and B) when the algorithm

has reached an appropriate minimum.

In the first case, although the methodology updates the inverse Hessian, the approx-

imation can become further from the real Hessian over successive time steps through

compounding error or the inability to predict significant changes in the function’s local

curvature. If the approximation drifts too far from reality, and no longer accurately

represents the function’s local curvature, it must be recalculated to prevent the algo-

rithm using erroneous gradients and converging to an incorrect point. In the General

Utility Lattice Program(GULP) Hessian recalculation is triggered by one of the following

events[84]:

1. The maximum number of iterative cycles between exact inverse Hessian compu-

tations is exceeded (user defined).

2. The angle between the gradient vector calculated for the current step and its search

direction vector �x exceeds some user defined value.

3. The energy drops by more than some user defined value in one iteration of the

minimisation cycle, indicating a change to the local curvature of the function.

4. Line minimisation along the current search vector �x does not minimise f(x).

This equates to no value of sn in Equation 2.59 being able to decrease the value

of f(x).

Apart from the final condition, these conditions are user defined and must be chosen

carefully to avoid an erroneous convergence.
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In the second case, GULP’s stopping point for the algorithm is given by one of

following conditions:

1. The gradient norm of the function calculated at iteration n is below some user

defined value.

2. The maximum component of the function’s gradient is below some user defined

value.

3. The estimated displacement vector norm is below some user defined value.

4. The change in energy between successive iterations falls below some user defined

value.

5. The change in the variables contained in x falls below some user defined value

between successive iterations.

All of these conditions are user defined. It is therefore up to the user to decide at what

point they consider the system su�ciently converged. Good stopping conditions prevent

the optimisation ending prematurely or continuing indefinitely.

2.3 Boltzmann Factors

Boltzmann factors are a useful tool from statistical mechanics that can be used to

compare the probabilities of two microstates in a system without knowing the systems

partition function Z. They have been used extensively in this thesis to compare the

probability of di�erent structural configurations.

They are derived from the Canonical ensemble, and measure the probability of a mi-

crostate of energy ‘ at temperature T [89]. The Boltzmann factor for a single microstate

is:

ps(‘s) Ã exp
3

≠
‘s

kBT

4
(2.60)
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where ps(‘s) is the probability of a microstate s with energy ‘s, kB is the Boltzmann

constant, and T is the temperature. The exact probability of a state can be found by

normalising it by the system’s canonical partition function Z:

ps(‘s) =
exp

1
≠

‘s
kBT

2

Z
(2.61)

where Z is given by:

Z =
Nÿ

i=1
pi =

Nÿ

i=1
exp

3
≠

‘i

kBT

4
(2.62)

where pi is the probability associated with microstate i, ‘i is the energy of microstate i,

and N is the number of accessible microstates. Therefore, Z is the summation of every

possible microstate i’s probability. This makes it a constant of the system which can be

factored out when taking the ratio of two states:

pi

pj
=

Q

a
exp

1
≠

‘i
kBT

2

Z

R

b

Q

a Z

exp
1
≠

‘j

kBT

2

R

b (2.63)

=
exp

1
≠

‘i
kBT

2

exp
1
≠

‘j

kBT

2 (2.64)

= exp
3

‘j ≠ ‘i

kBT

4
(2.65)

where pi, pj are the probabilities of microstates i, j respectively, ‘i, ‘j are the energies of

microstates i, j respectively, kB is the Boltzmann constant, and T is the temperature.

Calculating these ratios makes it possible to decide on the most likely microstate out of

a subset of all those available to the system. The next section details an application of

these comparisons, which was developed for work in this thesis.

2.3.1 Cascading Probabilities

This method stems from work performed for this thesis, which was published in IEEE

Transactions on Magnetics[1, 2], that established the most probable substitution po-

sitions of titanium in RT12 structures through substitution permutation and structural
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optimisation. The method is based on the following idea, for M substitution positions,

and m substitutions the number of possible substitution configurations is:

Cm(M) = M !
m!(M ≠ m)! (2.66)

where Cm(M) represents the number of possible substitution configurations in the crystal

lattice. To compare the probability of the di�erent configurations, the probability of

each configuration’s minimum energy microstate is used as a proxy for its probability as

a whole. This adds the assumption that the probability of a configuration’s minimum

energy microstate is representative of its probability as a whole. Based on the structural

optimisation algorithm’s requirement of a well like potential energy surface near the

minimum energy point, it is reasonable to accept this assumption.

For a small system it’s possible to calculate every possible configuration of substitu-

tions, but as system size increases this becomes computationally prohibitive. Although

doing so can unambiguously provide the globally optimal substitution configuration, for

any system of a reasonable size the computational e�ort is impractical. Therefore, it is

preferable to avoid this computational e�ort by applying an algorithm that narrows the

choice of configurations to a practical number. Cascading Probabilities achieves this by

making some assumptions about how substitutions enter the crystal lattice.

The first assumption is that every substitution is discrete, which means that each

substitution enters the crystal on a separate occasion. Making this assumption allows

substitution events to be modelled as stages. The second assumption is that the time

between substitutions is su�cient for each substitution to occupy the minimum energy

position. Making this assumption provides a selection criteria that can be used to

select the most probable configuration at each stage. The final assumption is that once

substitutions have occurred they do not change from one stage to the next. Making

this assumption means that the minimum energy configuration of the preceding stage

informs the available configurations of the stage directly after it.

Taken together these assumptions provide a framework for permutating substitutions
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into the crystal. To illustrate this, consider the following example, at stage one of the

algorithm the crystal has M available positions which are substituted in turn, providing

M possible configurations. Structural optimisation is performed on each of the M

configurations and the minimum energy configuration for a single substitution is found

- the substitution’s position in this configuration is the minimum energy position. This

configuration is passed on to the second stage of the algorithm. Because the first

substitution cannot switch position, the second substitution only has M ≠ 1 available

positions, resulting in M ≠ 1 configurations for the two substitutions. Compared to the

number of possible configurations given in Equation 2.66 for m = 2, this is already a

significant reduction of complexity.

Making these assumptions limits the investigated configurations to those which follow

a substitution path of greatest energetic favourability. As energetic favourability is tied

to probability, this method can be defined as a selection criteria that follows the most

probable substitution pathway.

Because structural optimisation is performed on every configuration in a stage, the

minimised energy of all a stage’s configurations are known. This means Equation 2.60 can

be used to get a Boltzmann factor for every configuration. Summing these Boltzmann

factors gives the following:

PS =
Mÿ

i=1
pi (2.67)

where PS is the summed probability of all the Boltzmann factors (pi) associated with

the stage’s configurations, M is the number of configurations associated with the stage,

and pi is the relative Boltzmann factor of configuration i. Normalising the Boltzmann

factors of every configuration in the stage with Equation 2.67 produces their relative

probability of being selected at that stage:

pi,R = pi

PS
(2.68)

where pi,R is the relative probability of configuration i. Using this as a measure, the

probability of a particular substitution pathway can be calculated by compounding the
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Figure 21: Simple visualisation of the how the probability compounds at each stage. S1,
S2 etc. represent the stage’s configuration microstates, where each colour corresponds
to a di�erent stage. Large yellow circles indicate the chosen minimum energy microstate
for a stage and arrows represent this configurational microstate being carried forward into
the next stage. The column of compounded probability shows the pathway’s probability,
WP (from Equation 2.69), up to that stage. P (Sx) is the probability of microstate x at
the relevant stage. The probabilities are ordered by their stage, left to right, with lower
stages on the left.

relative probability of the chosen configuration at each stage:

WP =
mŸ

j=1
pj (2.69)

where WP is the probability of pathway P , m is the number of substitutions along

pathway P , j is the substitution stage, and pj is the relative probability of the chosen

configuration at stage j.

Figure 21 shows this process visually, as can be seen, in the first stage, each configura-

tion (S1, S2, S3, ..., SM) is structurally optimised and the minimum energy configuration,

S2, is selected to move forward to the next stage. At this initial stage the compounded

probability of the pathway is one, as the relative probability of stage zero (no substitu-

tions) is one. Stage two carries the probability of the first stage, P (S2), forward making
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the compounded probability of the substitution pathway P (S2) at this stage. As the fig-

ure shows, this process continues and probability of each stage’s configuration cascades

down the pathway. This process is what gives the algorithm its name.

Although not shown on Figure 21, due to crystal symmetry, at many stages there are

multiple minimum energy positions. This means that there are many possible substitu-

tion pathways, WP , through the structure. Summing the probability of these pathways

provides a measure of the selection criteria’s ability to capture the most probable sub-

stitution configurations:

TP =
Aÿ

i=1
Wi (2.70)

where TP is the Total Configurational Probability and is the summation of each path

Wi’s probability, A (for ’All’) is the total number of substitution pathways, and Wi is

the compounded probability for substitution pathway i. A high value of TP indicates the

selection criteria has a good coverage of the probable substitution configurations, with

the maximum possible value being one - typically this is only seen for a very predictable

structure at low temperature. A low value of TP indicates that the selection criteria

has poor coverage of the probable substitution configurations with a minimum value of

zero - this value can only be reached when using a very poor selection criteria at low

temperature.

Beyond measuring the configurational coverage of a selection criteria, TP has an-

other use as a measure of the predictability of a structure. For the standard choice of

selection criteria: minimum energy, high values of TP indicate that substitutions in the

structure have high predictability, and low values of TP indicate that substitutions in the

structure have low predictability. Further, as TP is based on Boltzmann factors, which

are dependent on temperature, TP is temperature dependent, making it possible to as-

sess structural predictability with temperature. TP is used in Chapter 3 of this thesis to

assess the applicability of selection criteria and to analyse structural predictability with

temperature.

If required, the selection criteria can be narrowed or broadened to suit the problem
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at hand. In some cases, for example selection criteria validation, it can be swapped for

a di�erent metric e.g. maximum energy. Because of this, when this method is used in

this work, the specific selection criteria is outlined.

67



3 Site Preference and Structural E�ects of Titanium

Substitution in SmFe12, SmCo12 and NdFe12

3.1 Introduction

Permanent magnetic materials are necessary for the continuation of the modern world,

and are used in everything from cars to computers. In cars they find their main use in elec-

trical engines, which require very powerful permanent magnets if they are to be maximally

e�cient. The most powerful permanent magnets have the crystal structure Nd2Fe14B,

first discovered by Sagawa et al.[42]. Whilst impressive they are limited by their low

curie temperature and require the addition of dysprosium[90], to give (Nd,Dy)2Fe14B,

if they are being used in high temperature applications. Dysprosium addition degrades

magnetic properties by aligning anti-parallel to the general spin direction, whilst also

adding significant cost to the structures base materials. Couple this with the scarcity

of both Rare-Earth elements and the fact that most of the rare-earth material supply

chain is focused in China[91], and the case for new materials composed of less critical

elements becomes clear.

Numerous nations and organisations around the world are seeking new materials,

and through the collaboration of a number of them in Japan the ”Technology Research

Association of Magnetic Materials for High Performance Motors” (MagHEM)[5] was

formed, with a stated aim of developing:

”. . . innovative high-performance magnets without rare-earth materials which

exceeds current magnets with rare-earth materials in performance, high-

e�ciency soft magnetic materials (Iron core) for internal loss reduction, and

compact high-e�ciency motors.”

One of the stated aims of the project is to produce magnetic materials that rival

(Nd,Dy)2Fe14B but contain reduced or no rare-earth materials. Currently, there are

no discovered or proposed rare-earth free magnetic materials with a similar performance
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to (Nd,Dy)2Fe14B, a fact which has lead the MagHEM consortium to focus on improving

the current market leading magnets Nd2Fe14B, and on developing new rare-earth based

magnets which exceed it. The work presented in this chapter is focused on the latter

goal.

In collaboration with MagHEM and the Toyota Motor Corporation, this work inves-

tigated the phase stabilisation of a previously unstable set of crystal structures forming

in the ThMn12 type structure. Their discovery was fueled by the excitement surrounding

Nd2Fe14B in the 1980s, which was preceded by SmCo5 another rare-earth containing

compound. Numerous research groups at the time were attempting to create new high

performance ternary structures by using composition ranges based on Nd2Fe14B, and

working with rare-earths, transition metals, and tertiary dopants. One set of structures

that arose from this were the ThMn12 structural types, with a generic chemical formula

of RT12–xMx, where R © (Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu, Y), T © (Fe, Co)[92],

and M © ( Si, Ti, V, Cr, Mo, W)[47]. The primary work undertaken on these struc-

tures was performed by D. Mooij and Buschow[92, 47], but as the ThMn12 compounds

proved harder to stabilise than Nd2Fe14B they faded into the background. D. Mooij

and Buschow focused on RFe12–xMx type structures, as the large magnetic moment of

the iron atoms makes them suitable for magnetic applications. During their work, they

noted that of the possible M substitutional elements, titanium (Ti) and tungsten (W)

could form ternary structures with the lowest atom content, an important property for

minimising magnetic degradation.

Although interest waned for some decades after their initial discovery, the study of the

structures was given new impetus by a paper from Miyake et al.[49], which studied the

magnetic properties of NdFe12, NdFe11Ti, and NdFe11TiN from first principles. In this

paper they found that reduction of the ternary M element, in this case Ti, could improve

the magnetic properties of the structure. Following on from this paper, Hiriyama et al.

grew NdFe12, NdFe12N, and Sm(Fe0.8Co0.2)12 epitaxially via sputtering[50, 51]. Analysing

their magnetic properties they found that the NdFe12N thin film had superior magnetic

properties to Nd2Fe14B, with values of µ0Ms ¥ 1.78T, µ0Ha ¥ 8T, and TC ¥ 823K,
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and that the Sm(Fe0.8Co0.2)12 thin film had superior magnetic properties also, with values

of µ0Ms = 1.78T, µ0Ha = 12T, and TC = 859K, all higher or roughly the same as

Nd2Fe14B’s values of µ0Ms ¥ 1.61T, µ0Ha ¥ 8.7T, and TC ¥ 586K.

In the case of NdFe12N, it was deemed impossible to e�ectively manufacture the

material through common hot press sintering methods, as the structure decomposes at

873K. However, due to its reduced requirement for rare-earth elements it is still consid-

ered a cost e�ective replacement for Nd2Fe14B by MagHEM, along with SmFe12–xTix,

SmCo12–xTix, and NdFe12–xTix. This chapter focuses on the latter three compounds, the

structural and energetic e�ects of titanium substitution and how this a�ects stability and

cohesive energy, substitutional site preference, energy density, and the stability region of

the ternary structures.

3.2 Study Resources

The Morse potentials used in this work were derived from cohesive energy curves of the

three materials. Ab initio calculations provided the cohesive energy data and Chen’s

inversion Lattice technique[93] was used to fit each Morse potential. The shape of all

the potentials for neodymium and samarium interactions can be seen in Figure 22. The

constants of all the potentials used can be seen in Table 1, see Equation 2.8 for the

potential definition.

To analyse the energetic and structural changes, the GULP simulation software pack-

age’s structural optimisation methods[84], discussed in Chapter 2, were used, along with

the Cascading Probabilities method for Titanium substitution site selection.
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a

b

Figure 22: Rare-earth Morse potentials used during the structural optimisations, showing
a) neodymium, and b) samarium.
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Atom Pair D0 (eV) – (1/Å) r0 (Å) Cut O� (Å)

Fe-Fe 0.764 1.5995 2.7361 12

Fe-Ti 0.8162 1.448 2.914 12

Fe-Nd 0.6036 1.6458 3.188 12

Nd-Nd 0.312 0.945 4.092 12

Nd-Ti 0.4964 1.440118 3.4309 12

Ti-Ti 0.6540 1.2118 3.3476 12

Sm-Sm 0.2365 1.16433 3.8485 12

Sm-Ti 0.5219 1.98644 3.3129 12

Sm-Fe 0.5891 1.48848 3.1394 12

Sm-Co 0.5686 1.47399 3.1725 12

Ti-Co 0.7527 1.40291 2.9331 12

Co-Co 0.6774 1.64306 2.7093 12

Table 1: Table of all values used for the Morse potentials in the following study.

3.3 Method Validation

Potentials

All the potentials used in this work, see Table 1, were validated by structural opti-

misation calculations of known crystal structures that produced lattice parameters and

titanium site preferences that could be compared to values from the literature.

Structural optimisation was performed for SmFe11Ti, NdFe11Ti, and SmCo11Ti. The

calculated lattice parameters were in agreement with lattice parameters from the litera-

ture[48, 94] to within <2%, see Table 2 for a detailed comparison.

To examine the site preferences, structural optimisation calculations for each single

substitution configuration were performed, which showed titanium had the expected site

preference, set out by De Mooij and Buschow in 1988[47]. De Mooij and Buschow

showed there are three symmetry related Wycko� position subsets in the RT12 structure:

8i, 8j, and 8f with a preferability order of: 8i æ 8j æ 8f. Figure 23 demonstrates this

preference by plotting the relative probability of each position’s configuration.
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Calculated Expected % Di�erence

Structure a (Å) c (Å) a (Å) c (Å) a (%) c (%)

NdFe11Ti 8.554 4.853 8.574ú 4.907ú +0.23 +1.10

SmFe11Ti 8.488 4.814 8.557ú 4.800ú +0.81 -0.29

SmCo11Ti 8.510 4.821 8.426† 4.741† -1.00 -1.69

Table 2: Table of calculated and expected lattice constants, values annotated with ú are
from [48], values annotated with † are from [94].

As can be seen in Figure 23, there is a significant bias for configurations with a

substitution in an 8i position, as is expected from the literature. The exact probability

ratios are P(8j)/P(8i) ¥ 10≠19, P(8f)/P(8i) ¥ 10≠32, and P(8f)/P(8j) ¥ 10≠13 at 300K.

Due to symmetry, the probability of each of the subset’s configurations is identical.

Correct site preference is an important metric, as it demonstrates the potential’s

ability to choose realistic structures using structural optimisation. This indicates that

despite any inaccuracy between the calculated cohesive energy and the true cohesive

energy, the ratio between the di�erent positions should be accurate, as any error in

calculation is systematic and a�ects all calculations.

Selection Criteria

This chapter is based on the results of two separate studies which used di�erent

selection criteria and therefore have di�erent validation methods. Both studies used

supercells to model low percentage titanium substitution.

The first study used 2◊2◊1 supercells, where A◊B◊C represents: A unit cell repeats

in the a lattice direction, B unit cell repeats in the b lattice direction, and C unit cell

repeats in the c lattice direction. The study’s selection criteria was the following:

Substitute titanium atoms into the 8i position subset only. If the minimum

energy is shared by more than one position, calculate separate substitution

pathways for each minimum energy position.
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Figure 23: Probability comparison of the three Wycko� position subsets in the RT12
structure at 300K, along with a visualisation of the general RT12 structure. Wycko�
position subsets are labelled, atoms which share the same colour as the labelled atom
are in that subset. Probabilities are all normalised by the summed total of all the
comparison ratios.

Narrowing the selection criteria to 8i substitutions only was motivated by the subset

probability ratios given above and the need to avoid combinatorial explosions in the

required computational work. Every possible minimum energy path was followed to cap-

ture a broad picture of the possible titanium substitution configurations. The choice of

selection criteria can be verified by examining Figure 24 and seeing that at low tem-

perature the criteria captures as much as 100% of the Total Configurational Probability

defined in chapter 2.

The second study used 3◊3◊2 supercells, for which the selection criteria was the

following:

Substitute titanium atoms into the 8i positions. If the minimum energy is

shared by more than one position select the position with the lowest assigned

numbering only.

Curtailment of equally probable substitution pathways was necessary in this case for

two reasons, the Quasi-Newton methods have an N2 dependence on system size, and
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Figure 24: Total configurational probability graph with temperature for the 2◊2◊1
RT12–xTix supercell structures.

combinatorial explosion has a
1

N
C

2
! dependence on system size, where C is some constant

and C Ø 1.

As the 3◊3◊2 selection criteria limits the number of analysable position configu-

rations, it is not possible to use the total configurational probability as a measure of

how well this criteria captures likely structures. Instead, the criteria was validated by

comparison with others, the results of this can be seen in Figure 25. The alternative

criteria still only selected one path at each stage, and are given below:

1. 8i positions only, choosing the maximum energy position at each stage.

2. 8j positions only, choosing the minimum energy position at each stage.

3. 8f positions only, choosing the minimum energy position at each stage.

As Figure 25 shows, for all structures, the 8i minimum energy position selection criteria

produces significantly greater decreases in cohesive energy, giving a per substitution

decrease that is between 227% and 664% greater for NdFe12–xTix, between 158% and
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Figure 25: Selection Criteria comparison for a) NdFe12–xTix, b) SmCo12–xTix, c)
SmFe12–xTix.
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178% greater for SmCo12–xTix, and between 151% and 404% greater for SmFe12–xTix.

From this it can be inferred the selection criteria produces one of the most probable

substitution pathways.

3.4 Results

As titanium substitution occurs at low percentages and the goal is to minimise its in-

clusion to maintain magnetic properties, supercell models of the three crystal structures

were used to attain lower titanium atom percentages. Supercells were needed because

the RT12 unit cell only contains 26 atoms, meaning a single titanium substitution gives

the a unitcell ≥3.85% titanium atom percent. With such high jumps it would not

have been possible to investigate the lower percentages of titanium substitution, nor to

perform a deep analysis of structural behaviour.

As the stability range of titanium substitution found by De Mooij and Buschow [95]

in RT12–xTix structures is x ¥ 1, the present work only investigated titanium substitution

up to ≥16Ti at.%, which equates to x ¥ 2, or 4 titanium substitutions per unit cell.

The higher percentage was chosen to investigate whether structural changes caused by

titanium substitution above ≥8Ti at.% are responsible for the stability loss that results

in the range found by D Mooij and Buschow.

As mentioned in the validation step, this work consists of two studies that used two

di�erent supercell sizes: 2◊2◊1, and 3◊3◊2. Owing to its increased size the 3◊3◊2

supercell could reach lower titanium atom percentages and thus the majority of the

analysis focuses on this structure.

Stabilisation of RT12 Structures

Across all structures, increasing titanium substitution produces an associated de-

crease in cohesive energy. Figure 26 shows this trend for the 2◊2◊1 and the 3◊3◊2

supercell structures separately. Inspecting the lattice parameters indicates part of the
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Figure 26: Cohesive energy with increasing titanium substitution for a) all 2◊2◊1 su-
percell structures, and b) all 3◊3◊2 supercell strucutures. The e�ect of substitution is
shown up to 17Ti at.%
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reason for the decrease in cohesive energy, titanium substitution causes an asymmetric

expansion in the a, and b lattice parameters, an example of this can be seen in Fig-

ure 27 for NdFe12–xTix. The resultant symmetry breaking allows the structure to relax

anisotropically and therefore more e�ectively into a lower energy state.

The dominant factor lowering the cohesive energy of the structure is the preferential

bonds formed by titanium substitutions with their surrounding atoms. The minimum

energy reachable by the bond is indicated by the Morse potential constant D0 in Table

1. Taking the ratio of their D0’s shows that Fe-Ti interactions have a 6% lower minimum

energy than Fe-Fe interactions, and Ti-Co interactions have a 10% lower minimum energy

than Co-Co interactions. By the same analysis Nd-Ti interactions have an 18% higher

minimum energy than Nd-Fe interactions, and Sm-Ti interactions have an 11%, and 8%

higher minimum energy than Sm-Fe, and Sm-Co interactions respectively. Here a higher

minimum energy indicates a weaker bond, and thus lower structural stability, and vice

versa.

Therefore, in order to reach the minimum cohesive energy, titanium substitutions

should have as few rare-earth nearest neighbours as possible. To establish how their

proximity to rare-earths influences their preferability, the three Wycko� position subsets

were examined.

Wycko� Position Subset Preference

Following from above, it’s logical to assume that the 8i position subset has the lowest

level of interaction with rare-earths. To test this hypothesis, the number of neodymium

atoms that occur in the nearest 25 neighbours of all the possible Wycko� positions

were calculated. The first 25 nearest neighbours were chosen as this is equivalent to

the number of atoms in a single RT12 unit cell, less one (the position being checked).

Calculation confirmed that of all the subsets, 8i has the fewest rare-earth nearest neigh-

bours, only one out of 25, whereas 8j has two, and 8f has three. This was quantified

using two metrics, the average distance between the chosen position and its rare-earth

neighbours, and the summed reciprocal of the distances between the chosen position
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Figure 27: Lattice parameter changes for the NdFe12–xTix 3x3x2 supercell structure,
showing a) the absolute length of the a and b lattice parameters against titanium sub-
stitution, and b) the percentage change in all the lattice parameters from the crystal
structure of the previous stage.
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Wycko� Subset Nd Nearest
Neighbours Average Distance (Å) SR (1/Å)

8i 1 3.037 0.329

8j 2 3.099 0.645

8f 3 3.734 0.829

Table 3: Proximity of the three Wycko� position subsets to rare-earth atoms in NdFe12.
Proximity is shown in three ways, firstly, through the number of Nd atoms within the
first 25 nearest neighbours (one whole unit cell) of each position, secondly the average
distance to each neighbour, and thirdly the summed reciprocal (SR) of the distance to
each neighbour. For the summed reciprocal a larger value means greater proximity to
rare-earths

and its rare-earth neighbours. The equation giving the sum can be seen below:

SR =
Nÿ

i

1
Di

(3.1)

where SR is the sum of the reciprocal distances, N represents the number of rare-earth

nearest neighbours, and Di is the distance from rare-earth i to the chosen position.

Table 3 shows these metrics for NdFe12, calculations for SmFe12, and SmCo12 show the

exact same trend.

The summed reciprocal can measure the proximity of a position subset to any atom,

the energetic preferability of this proximity is dependent on the particular interatomic

interaction. For example, in the above case R-Ti interactions are unfavourable, so a

higher SR value indicates an energetically less favourable position. If the equation is

altered to check each subset’s proximity to iron atoms, it finds 8i has the largest SR

value and is therefore in the closest proximity to iron atoms. Thus, from calculation,

the 8i position subset is maximally proximal to iron atoms (energetically favourable)

and minimally proximal to rare-earth atoms (energetically unfavourable), resulting in the

strong preference for this position subset. Wycko� subsets 8j and 8f have very similar

proximities to iron atoms, although 8j is slightly closer. This explains the remainder of

the order preference, as the 8j position subset is the second most proximal to iron atoms

81



Figure 28: Diagram of plane connecting a titanium substitution with its nearest rare-
earth in RT12, the plane normal gives the direction of greatest expansion

(energetically favourable), and the second least proximal to rare-earths (energetically

unfavourable), giving it the second highest energetic favourability. Only the 8f subset is

left, which is least proximal to iron atoms, and most proximal to rare-earths, the worst

case scenario energetically and the least energetically favourable subset.

Structural Changes from Titanium Substitution

The asymmetry induced in the a, and b lattice parameters, discussed in Stabilisation

of RT12 Structures, is determined by substitution site. Maximum expansion occurs in

the lattice direction that is closest to parallel with the normal of a plane that is both per-

pendicular to the ab plane and cuts through the substitution and its nearest rare-earth.

Figure 28 shows a visual illustration of this plane, and the direction of maximum expan-

sion. At first glance this seems counter intuitive, as the R-Ti interatomic interactions

have a greater equilibrium distance, r0, than any of the R-Fe, and R-Co interactions,

which leads to the assumption that this interaction will cause maximum expansion in
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the lattice direction aligned in the plane. However, neodymium and samarium have ≥3

times the mass of titanium, and therefore, on relaxation, titanium moves the majority

of the distance required to reach equilibrium. To achieve this the titanium atom moves

directly away from the rare-earth within the aforementioned adjoining plane, forcing it

closer to some of its other nearest neighbours - iron atoms aligned parallel to the plane’s

normal. Because Iron is roughly the same mass as titanium, these interactions have

a more balanced e�ect, and the iron atoms are pushed out of their positions, along

the positive and negative of the plane normal respectively. Their movement induces

an asymmetrical expanding force on the lattice and drives the asymmetric expansion in

lattice parameter a or b. A general expansion of all lattice parameters occurs, as all of

titanium’s neighbour interactions have a greater equilibrium distance.

Substitution Patterns

In all structures the titanium substitutions up to ≥8Ti at.% follow a pattern which

maximally spreads them out across the structure. The pattern is most easily seen and

understood in the 3◊3◊2 supercells, which can be see in Figure 29. Although the

pattern is slightly di�erent for each structure there is an overarching rule to the the

titanium atom placement which can be seen in Figure 30. Drawing lines across the

supercell shows that titanium substitutions follow a pattern across the structure that

avoids close contact in the a and b lattice directions, and confines each substitution

within a surrounding cell of rare-earth atoms. As discussed previously these rare-earth

atoms act as a barrier to the lattice expanding e�ects of titanium, and as the Ti-Ti

interaction has the highest equilibrium distance of all the transition metal interactions,

≥3.35Å, this spread out pattern prevents Ti-Ti interactions causing large energetically

unfavourable lattice expansions.

One thing to note is that, whilst titanium substitutions appear to avoid close place-

ment in the a and b lattice directions, they do align vertically along the z axis or c lattice

direction. Along this axis, however, they are separated by ≥4.82Å, which puts them

right at the tail end of their morse potential interaction. Th energy gradient at this
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Figure 29: RT12–xTix structure filling pattern for a) NdFe12–xTix, b) SmFe12–xTix, and
c) SmCo12–xTix, up to ≥8Ti at.%. Across all the structures, the large yellow atoms are
neodymium, the small yellow atoms are iron, the large pink atoms are samarium, the
small dark blue atoms are cobalt, and the small light blue atoms are titanium.

point can be calculated using the di�erential of the Morse potential from Equation 2.8:

du(rij)
dr

= D0
Ë
≠2–e≠2–(rij≠r0) + 2–e≠–(rij≠r0)

È
(3.2)

where D0 scales well depth, – controls potential well width, r0 defines the energy min-

imum point of the well, and rij is the distance between two atoms i, and j. Subbing

in the values for the Ti-Ti interaction from Table 1 along with rij = 4.82Å gives 0.221
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Figure 30: Visual illustration of the rule dictating the overarching pattern for SmFe12–xTix
at 8Ti at.% (or 36 titanium substitutions for a 3◊3◊2 structure). The same rule can
be decuded from the pattern of any of the RT12–xTix structures. Here the pink atoms
are samarium, the yellow atoms are iron, and the light blue atoms are titanium.

eV/Å for the energy gradient, which equates to a minor force pulling the two atoms

closer together. As the force is so minor and causes lattice contraction not expansion,

these interactions are of little relevance to the overall stability of the crystal structure.

The pattern formed by titanium substitution up to ≥8Ti at.% is termed substitution

pattern one, or the primary substitution pattern.

Beyond ≥8Ti at.% the primary substitution pattern is curtailed by a lack of available

substitution positions, forcing the occurrence of a new substitution pattern, which is

termed substitution pattern two, or the secondary substitution pattern. The structural

changes caused by the secondary substitution pattern are key to understanding the

limited stability range of RT12–xTix.

Figure 31 shows the new substitution pattern’s first substitution, and a secondary

figure shows what the completed pattern would look like if it could be reached by
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Figure 31: Secondary substitution pattern for the NdFe12–xTix 3◊3◊2 structure, showing
a) The first substitution in the secondary pattern - indicated in the figure, and b) the
complete pattern after all the secondary pattern’s substitutions at ≥15.5Ti at.%. The
red arrow between the two neighbouring titanium atoms is used to indicate there is a
distance d between them. Both structures are shown looking down the c axis.

any of the investigated structures, which is doubtful due to stability. Figure 31 shows

that, in the new substitution pattern, titanium atoms must be in close proximity to

other titanium atoms. As discussed this is energetically unfavourable due to the Ti-Ti

interaction’s large equilibrium distance, which is ≥0.4Å more than its interaction with

any other transition metal element. In fact, due to the primary substitution pattern,

secondary substitution atoms are in close proximity to two titanium atoms, as is shown

in Figure 32. To illustrate why this is an issue, examine NdFe12–xTix. Before titanium

substitution, the soon to be substituted iron atom and the titanium atoms are 2.943Å

apart, which is nearly exactly their preferred equilibrium distance of 2.914Å. If a titanium

atom is placed directly into the same position as the iron atom, using Equation 3.2, we

get an energy gradient/force between a titanium atom pair of -1.64eV/Å, the negative

sign indicates this is an expanding force. As there are two titanium atoms in the vicinity

of this substitution this force is doubled and, due to geometry, acts mainly in the c lattice

direction.

Structurally this means every titanium substitution in the second substitution pattern

causes a significantly larger increase in the c lattice parameter. Figure 33 shows this
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Figure 32: Side view of NdFe12–xTix with the c lattice parameter horizontally across the
page. The red arrows indicate the new titanium substitution’s interaction with its two
titanium neighbours.

increase for all three structures. After ≥8Ti at.%, the percentage change in the c lattice

parameter with every substitution jumps to roughly double what it was previously. Even

after minimisation the distance between the two primary substitution titanium atoms and

the single secondary substitution titanium atom is still only 3.06Å roughly 0.3Å below the

equilibrium distance, making the force between them -0.936eV/Å. This is 10 times the

magnitude of the previous iron-titanium interactions which had a value of 0.0932eV/Å, a

small contractive force. Stress induced by titanium atoms in the structure, which cannot

be removed by relaxation, will eventually destabilise, warp, and transform the structure

into a lower energy state.

In short, the large structural changes caused by titanium substitutions in the sec-

ondary substitution pattern, accompanied by the stress they induce in the system, are

the cause of the unfavourability of further titanium substitution.

Energy Density Changes in the Second Substitution Pattern

An overall rubric combining cohesive energy with coarse structural changes is the

energy density, which divides a structure’s cohesive energy by its volume. Figure 34

shows energy density against Ti at.% for the three structures as 3◊3◊2 and 2◊2◊1
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Figure 33: C lattice parameter expansion against titanium atom percentage for
NdFe12–xTix, SmCo12–xTix, and SmFe12–xTix.

supercells. As the graphs show, for two of the structures NdFe12–xTix, and SmCo12–xTix

the energy density decreases with additional titanium over the first substitution pattern,

whilst for SmFe12–xTix it increases ever so slightly. Beyond 8Ti at.%, within the second

substitution pattern, all structures have a strong increase in energy density. Undoubtedly,

the change is due to, firstly, unfavourable titanium-titanium bonding in the secondary

substitution pattern and, secondly, a larger increase the c lattice parameter with every

substitution.

Lower energy density corresponds to structural instability, as its a measure of the

binding force keeping the crystal together divided by the volume of space the crystal

occupies. If the volume is expanding faster than the force binding the crystal together

eventually the expanding space will lower the activation energy for some form of structural

transformation.

Summed Comparative Probability

Because of the Cascading Probabilities method, the Boltzmann factor of each possible

position configuration is known at every stage. Working on a stage by stage basis, and

88



a

b

Figure 34: Energy density against titanium atom percentage (Ti at.%) for all the inves-
tigated supercell structures, showing a) the energy density trend for NdFe12–xTix, and
SmFe12–xTix, and b) SmCo12–xTix.

taking the ratio of each configuration’s Boltzmann factor with the minimum energy

configuration’s Boltzmann factor and summing them produces that stage’s Summed

Comparative Probability. This measure quantifies how close the positions’ energies are

to the minimum energy position at each stage of substitution. The larger the number,

89



the larger the number of positions that are close to the minimum energy and hence

of similar probability to the minimum energy position. Figure 35 shows a measure of

this for the 3◊3◊2 supercells of the three structures. The regular jumps in Summed

Comparative Probability are due to intermittent symmetries that occur as titanium is

substituted into the structure. High symmetry corresponds to large peaks, as it suggests

there are multiple positions with identical neighbour environments. That explains the

large peak at the start of every graph, where the titanium substitution has every possible

8i position to choose from, and the increased peak at the end of every graph, where

the titanium substitution is the first of the secondary substitution pattern. The trend of

every graph is a decrease in Summed Comparative Probability as titanium substitution

continues, indicating there are fewer positions at each stage which come close to the

minimum energy. This implies that as substitution increases each new titanium atom

must expend more energy reaching a desirable position, or else settle for a slightly less

favourable one. As shown in this chapter, unfavourable titanium substitutions have a

destabilising e�ect on the crystal structure. As unfavourable substitutions become more

likely with increasing Ti at.%, this is a further factor limiting the structural stability

range of RT12–xTix.

3.5 Discussion

Using ab initio derived Morse potentials, this chapter has investigated the structural and

energetic changes caused by titanium substitution and found that titanium stabilises the

RT12 structures by forming preferential bonds with minimum structural e�ects below

≥8Ti at.% in the Primary Substitution Pattern. Beyond ≥8Ti at.%, titanium goes

through a secondary substitution pattern that induces much larger changes in the crystal

structure that increase the destabilising stress within the crystal, likely causing it to

undergo a lattice transformation. This unfavourable secondary substitution pattern is

the reason it’s not possible to increase Ti at.% much beyond the Primary Substitution

Pattern.

For NdFe12–xTix based structures the stability range is roughly 6.1-9.2 Ti at.%, which
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Figure 35: Total comparative probability against titanium atom percentage for a)
NdFe12–xTix, b) SmFe12–xTix, and c) SmCo12–xTix.
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aligns reasonably well with its minimum energy density. However, for SmFe12–xTix the

energy density always increases despite its cohesive energy decreasing with increasing

titanium substitution. This is due to volume growth and indicates that the crystal

structure does not become more stable as a direct consequence of titanium substitu-

tion. However, it is possible that titanium’s presence in a bulk polycrystalline structure

may a�ect the presence of tertiary phases which increase stability, although this is not

investigated here.

In contrast to SmFe12–xTix, SmCo12–xTix has the largest decrease in energy density

of all the structures, and maintains its lower energy density over a wider Ti at.% range

than the iron based structures. Therefore, this work suggests a quarternary structure

of Sm(Fe,Co)11Ti could have the improved magnetic performance conveyed by the iron

atoms coupled with the stability provided by cobalt interactions. These structures are

currently being investigated by Hono et al.[96] as a possible replacement for Nd2Fe14B.

This work suggests that, when considering RT12–xTix single crystal structural in-

tegrity only, the titanium atom percentage be kept near the low end of the the primary

substitution pattern. This will allow improvements in stability from titanium bonding

without the destabilisation of the structure that is a result of titanium atoms falling into

the secondary substitution pattern. Keeping titanium substitution away from the upper

end of this scale will also avoid any unfavourable substitutions that occur due to the

decreasing number of primary substitution pattern positions. On a single crystal basis,

this work shows there is no benefit to increasing titanium substitution beyond this point

in any of the RT12–xTix structures.
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4 E�ect of Pressure on the melting point of NdFe12

Introduction

Papers by Miyake et al.[49], and Hirayama et al.[50] have shown the high performance

of NdFe12N. In the first case by first principles, and in the latter case by experimental

epitaxial growth. However, neither paper considers the possibility of a complete manu-

facturing route for NdFe12N.

This was partly addressed in Chapter 3 by investigating the e�ect of titanium substi-

tution on stability and structure in the RT12 family. Providing a range of optimal element

ratios for maximum structural stability, a key stage in initial ingot production[97]. Initial

ingots are turned into powder by pulverisation, jet milling, or some other comparable

method, before finally undergoing densification. Densification covers a range of pro-

cesses that turn intermediary magnetic powder into a solid magnet. Following one of

three common methods: polymer bonding, hot press deformation, and hot press sin-

tering. Polymer bonding uses a resin to bind together the original powder which can

be compressed into a variety of shapes and aligned along a magnetic field due to the

powders high anisotropy[98]. Hot press deformation compacts a magnetic powder in a

mold under high pressure and heats it until liquid grain boundaries can follow a solution-

precipitation creep process in which grains grow into one another along strain lines

densifying the compact. Hot press sintering follows a similar procedure but heats the

powder to higher temperatures than that used in hot press deformation. Higher temper-

atures cause partial liquefaction and the liquifidied sections of each part of the powder

melt into one another. This process is not as dependent on induced strain from the

pressing and thus performing an initial alignment of the powder under a magnetic field

and maintaining this throughout the process is e�ective at increasing the anisotropy of

the final magnet. Hot press sintering is the best method used today and has remained the

same since it was first used by Sagawa et al.[42] - the original discoverers of Nd2Fe14B.

Of the three processes, hot press sintering provides magnets with the highest energy

product, but also requires the highest temperatures, with typical sintering temperatures
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in Nd2Fe14B being ≥1400K[97]. As this requires the material to partially melt, it’s nec-

essary to have a firm understanding of the materials behaviour with temperature. As the

most investigated and most promising of the RT12 structures, this chapter investigates

the melting point of NdFe12, with a view towards future manufacturing.

The first attempt at this used the same ab initio derived pair potentials from the

preceding chapter and a simplistic methodology which heated a perfectly periodic crys-

tal, however, this had a number of issues. Firstly, the basic methodology resulted in

the modelled materials melting at temperatures significantly higher than expected, a

phenomena known as superheating[99]. Superheating occurs because melting is a dy-

namic process and must nucleate from some initial point, generally a discontinuity in

the lattice. In a perfect periodic crystal there is no obvious point of nucleation, and so

nucleation occurs at the mechanical melting point. The mechanical melting point cor-

responds to a phonon instability in the crystal, at this point the lattice vibrations cause

catastrophic melting across the whole crystal simultaneously without any specific point

of nucleation[99]. Experimentally this generally does not occur, owing to the presence

of extended defects, such as grain boundaries, which nucleate melting far more easily

than the bulk[100]. This is possible as high atom mobility is a requirement for melting

and grain boundaries have this property due to their imperfect atomic fits.

In order to provide areas of high atom mobility and thus avoid superheating, the

methodology was changed to the two phase coexistence methodology described in Sec-

tion 2.1.3 above. This lowered the melting temperatures but not to their true values,

which lead to a secondary problem, the inability of the original pair potentials to capture

structural behaviour at high temperature. This is a common problem, as empirical po-

tentials are an approximation to true interatomic interactions, and thus no method can

be considered wholly accurate. For example, due to silicon’s many technological uses,

numerous empirical potentials have been created and tested against one another[101] in

a drive to produce the most accurate simulations. Even potentials that are based on ab

initio calculations are biased by the environment from which they are derived. For the

original potentials, the ab initio data was calculated at 0K, and thus the potentials are
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Atom Pair D0 (eV) – (1/Å) r0 (Å) Cut O� (Å)

Fe-Fe 0.401 1.3086 2.9119 14.077

Fe-Nd 0.505403 1.28603 3.32096 10.99023

Nd-Nd 0.26148 0.78305 4.41936 12.7512

Table 4: Refit Morse potential parameters used in the NdFe12 melting point simulations.

only truly accurate at or near that temperature.

Testing the potentials at high temperature on the pure base-structures of neodymium

and iron showed that the potentials produced cohesive energies that were 5% lower

(neodymium), and 55% higher (iron) than those reported in the literature. Further

examination showed discrepancies in the elastic constants, the bulk modulus, the Young’s

modulus, and longitudinal wave speed.

To address this problem, constants from materials in the Nd-Fe phase diagram were

collected and used as the fitness parameters for a Genetic Algorithm, with the aim of

refitting the pre-existing ab initio potentials to accurate material constants. The material

constants are given in Tables 6 and 7. The specifics of the Genetic Algorithm method,

and the solid-liquid coexistence method are given below. For the non-specific aspects of

these methods please see Section 2.1.2, and Section 2.1.3 respectively.

4.1 Study Resources

The final parameters of the refit Morse potentials can be seen in Table 4 and are shown

visually in Figure 36.
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Figure 36: Refit Morse potentials used for the NdFe12 melting point simulations.

4.2 Methodology specifics

4.2.1 Genetic Algorithm

As a binary structure, NdFe12 interacts through three potentials Nd-Nd, Fe-Fe, and Fe-

Nd. Therefore, the genetic algorithms used in this work were targeted at these three

potentials. The ”gene” or parameter set used by the genetic algorithm was comprised

of all the Morse potential parameters plus cut o� radius. The fitness function summed

the percentage di�erences between the calculated and expected material properties - its

form can be seen in Equation 2.32. Weighting factors were chosen so that the most

important parameters to melting, for example cohesive energy, took primacy in directing

solutions. The material constants chosen for neodymium and iron can be seen in Table 5

alongside their respective weightings. As mentioned, the cohesive energy has the highest

weighting of 1,000 making it 20 times more significant than any other constant, and

overwhelmingly the most important, due to its strong influence on melting temperature.

The Lattice parameters were given a weighting of 50 because they are a fundamental

part of the crystal’s structure, which the potentials must capture to be considered a good

approximation of reality. Trial and error showed that without high weightings the lattice
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Material Constant Weighting

a (Å) 50

b (Å) 50

c (Å) 50

– (¶) 1

— (¶) 1

“ (¶) 1

E (eV) 1000

B (GPa) 8

c11 (GPa) 3

c12 (GPa) 3

c44 (GPa) 3

P (Km/s) 50

Table 5: Material constants used for the Fitness function (Equation 2.32) in the
neodymium and iron potential fittings, alongside the weightings, wi, each is given in
the fitness function. Where a, b, c are lattice parameters a, b, and c, –, —, and “ are
the angles between the lattice vectors, E is the cohesive energy of structure, B is the
Bulk Modulus, c11, c12, and c44 are elastic constants, and P is the longitudinal sound
wave speed.

parameters strayed from their expected values. In contrast, the angles of the crystal were

given the lowest weighting of 1 because trial and error showed that higher weightings

made little di�erence to structural accuracy. Longitudinal sound wave speed was given a

weighting of 50 as it is a proxy for all the elastic constants and has consistently measured

values across the literature. Every other constant was given a lower weighting as their

measured values di�er across sources.

The material constants used to fit the Nd-Nd and Fe-Fe potentials were taken from

the –-neodymium and –-iron structures respectively - the relevant material constants

can be seen in Table 6. Fitting the Nd-Fe potential was more complicated as no funda-

mental research into the material constants of Nd-Fe binary phase structures could be

found. Despite this, NdFe12[49], and Nd2Fe17[107] are well studied structures and could

provide some of the material constants. Unfortunately, the only constants available with

any certainty were lattice parameters, however, to provide more fitting points to the

97



Material Constant –-Neodymium –-Iron

a (Å) 3.6571 2.86651

b (Å) 3.6571 2.86651

c (Å) 5.9021 2.86651

– (¶) 901 901

— (¶) 901 901

“ (¶) 1201 901

E (eV) -6.82 -8.562

B (GPa) 32.72 170e

c11 (GPa) 54.83 239.265

c12 (GPa) 24.63 135.785

c44 (GPa) 15.03 120.725

P (Km/s) 2.334 4.914

Table 6: Material constants found in the literature for –-neodymium and –-Iron. Su-
perscripts [1, 2, 3, 4, 5] represent citations [102, 103, 104, 105, 106]. An explanation
of the meaning of each material constant can be found in Table 5 above

fitness function, it was estimated that both materials have a similar Young’s modulus

to Nd2Fe14B, and that their cohesive energies make Nd2Fe17 the more stable of the two

structures.

The expected cohesive energies were estimated by calculating the minimum cohesive

energy necessary for NdFe12 to have a formation energy of zero: -109.52eV. To ensure the

structure had a negative formation energy, the desired cohesive energy was set below this

at -111.3eV, a ≥1.6% decrease. To ensure the preferability of Nd2Fe17 was maintained,

the per atom cohesive energy was set 0.07eV lower, giving a the structure a desired

cohesive energy of -248.1eV. All the material constants used and their weightings can be

seen in Table 7. The weightings for the experimentally confirmed lattice parameters were

highest, followed by a slightly lesser weighting for the two structures’ assumed cohesive

energies, the speculative estimation of Young’s modulus was given the lowest weighting.

The fitness function used for all potential fits is Equation 2.32 given in Section 2.1.2,

which calculates the sum of all the weighted percentage di�erences.
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Material Constant Nd2Fe17 NdFe12 Weighting

a (Å) 8.5821 8.522 10

b (Å) 8.5821 8.522 10

c (Å) 12.4631 4.802 10

– (¶) 901 902 10

— (¶) 901 902 10

“ (¶) 1201 902 10

E (eV) -248.1 -111.3 8

Y (GPa) 1653 1653 3

Table 7: Material constants found in the literature for Nd2Fe17 and NdFe12. Superscripts
[1, 2, 3] represent citations [107, 49, 108]. An explanation of all material constants can
be found in Table 5, apart from the final constant Y (GPa) which represents the Young’s
modulus.

4.2.2 Two Phase Solid-Liquid Coexistence

LAMMPS was used for all the simulations, the units style was metal, the choice of

time step was 0.001ps, and the temperature and pressure damping constants were 100

time steps and 1,000 time steps respectively. All of the simulations used roughly 10,000

atoms, specifically: –-neodymium used 10,976, –-iron used 9,826, and NdFe12 used

9,360. The same methodology was followed in all simulations, which can be seen in the

diagram presented in Figure 37, the specifics of which are detailed below.

Firstly, the whole structure was raised to the desired temperature and pressure, and

allowed to equilibrate in an NPT ensemble for 80,000 time steps (80ps). One half of

the simulation was frozen and the other half instantly heated to 8000K in an NVT

ensemble for 20,000 time steps (20ps). Springs were applied to the solid liquid interface

regions. With the springs applied the frozen and heated part of the system came back

into contact and evolved in an NPT ensemble at the desired temperature and pressure.

Every 10,000 time steps, the spring constant value was reduced, sequentially taking the

following values: 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.3, 0.1, 0. In total the springs were in

place for 130,000 time steps (130ps). Finally, once the springs were fully removed the

system was left to evolve in an NPT ensemble at the desired temperature and pressure
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a b

c d

e

Figure 37: Visualisation of the simulation stages used in the methodology for NdFe12,
showing a) Initialisation , b) Equilibration of structure to desired pressure and tem-
perature, c) Freezing of the lower half, and catastrophic melting of the upper half, d)
Equilibration at the desired pressure and temperature with extra spring constants, and
e) System evolution at the desired pressure and temperature - in this case, interface
movement into the solid half of the system indicated T > TM .
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Material
Constant

–-Neodymium
(calc.)

–-Neodymium
(exp.)

–-Iron (calc.) –-Iron (exp.)

a (Å) 3.638 3.6571 2.86651 2.875

b (Å) 3.638 3.6571 2.86651 2.875

c (Å) 5.94 5.9021 2.86651 2.875

– (¶) 90 901 90 901

— (¶) 90 901 90 901

“ (¶) 120 1201 90 901

E (eV) -6.823 -6.82 -8.56 -8.562

B (GPa) 33.349 32.72 156.77 1705

c11 (GPa) 55.038 54.83 167.22 239.265

c12 (GPa) 31.41 24.63 151.53 135.785

c44 (GPa) 13.614 15.03 151.53 120.725

P (Km/s) 2.66 2.334 5.447 4.914

Table 8: Comparison of the calculated and expected material constants for –-Neodymium
and –-Iron. Superscripts [1, 2, 3, 4, 5] represent citations [102, 103, 104, 105, 106].

for 300,000 time steps (300ps).

To assess the interface’s movement and establish if the temperature was above, at,

or below TM , each simulation was inspected visually in OVITO[109].

4.3 Method Validation

Potentials

The calculated material constants that were generated by the refit potentials are

compared to their expected values in Table 8 and 9. Table 8 shows that the calculated

constants with the greatest weighting, lattice parameters and cohesive energy, fit the

expected constants very well. Further, it shows large discrepancies only occurred in the

elastic constants and associated properties such as the Bulk modulus and longitudinal

velocity. This validates the potentials and method, demonstrating both the Nd-Nd and

the Fe-Fe potential’s ability to reproduce realistic material constants.
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Material
Constant

Nd2Fe17 (calc.) Nd2Fe17 (exp.) NdFe12 (calc.) NdFe12 (exp.)

a (Å) 8.597 8.5821 8.52 8.522

b (Å) 8.597 8.5821 8.52 8.522

c (Å) 12.5536 12.4631 4.85 4.802

– (¶) 90 901 90 902

— (¶) 90 901 90 902

“ (¶) 120 1201 90 902

E (eV) -246.4 -248.1 -111.5 -111.3

E (GPa) 227 1653 260 1653

Table 9: Comparison of the calculated and expected material constants for Nd2Fe17 and
NdFe12. Superscripts [1, 2, 3] represent citations [107, 49, 108].

Similarly, Table 9 shows very little discrepancy between the calculated and expected

constants for Nd2Fe17 and NdFe12 in the lattice parameters and cohesive energy, but

demonstrates quite significant deviations in the Young’s modulus. However, as the ex-

pected Young’s modulus was chosen to be approximately similar to Nd2Fe14B, deviations

from the expected value are neither surprising nor disqualifying. Bearing this in mind,

the potential’s ability to reproduce known constants from the literature, along with its

correct energy preference order, validates its applicability to this study.

Simulation Methodology

To validate the melting simulation methodology it was tested using an Fe-Fe MEAM

potential from Etesami et al.[110], which was specifically designed for capturing melting

temperature. The methodology calculated the melting temperature to be 1820K±10K,

similar to the 1807K calculated by Etesami et al.[110] and close to the actual melting

temperature of 1811K at 1 Bar. This puts the methodology within ≥1% of the true

melting temperature and validates its applicability to this study.
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4.4 Results

Simulations were performed that searched for the melting temperature of the three struc-

tures –-Nd, –-Fe, and NdFe12. The temperature searches started broad moving over a

range of a few hundred kelvin in 50-100K steps, before narrowing down to ranges of 30-50

kelvin in 5-10K steps. The searches resulted in the following calculated melting temper-

atures at 1 Bar: –-Nd ≥1700K±10K, –-Fe ≥3000K±10K, and NdFe12 ≥2040K±10K.

Because the hot press sintering technique occurs at temperatures greater than 1 Bar,

calculations were also performed that found NdFe12’s melting temperature at increased

pressures - the results can be seen in Figure 38.

Compared to the melting points given by Kittel[111], the calculated melting temper-

atures for –-Nd and –-Fe are over estimations by a factor of 1.32, and 1.66 respectively.

It is therefore likely that the melting temperature of NdFe12 is similarly overestimated.

As can be seen from the potentials in Figure 36, the most influential interatomic inter-

actions occur under 7Å, beyond which the energy from interactions is almost negligible.

Using 7Å as a cut o� point, the number and type of interatomic interactions for each

atom in a 3x3x2 supercell of NdFe12 were calculated. Within 7 Angstroms Fe-Fe interac-

tions account for 90 times the number of Nd-Nd interactions, and 10 times the number

of Nd-Fe interactions. As the temperature over estimation due to the Nd-Fe interaction

is harder to quantify, and the Fe-Fe interactions are easily the most dominant, the 1.66

over estimation for –-Fe was used as a guide for the approximate over estimation of the

NdFe12 melting temperature. The re-scaled melting temperatures can be seen in Figure

38b, giving NdFe12 a re-scaled melting point of 1230K±10K at 1 Bar.

4.5 Discussion

Although the simulations were not capable of accurately producing known single melt

temperatures, the calculated melting temperature of 1230K compares well to the known

annealing temperature for NdFe11Ti which Zheleznyi et al. give as 1373K[112]. As

NdFe11Ti is a higher stability structure, it’s expected that the melting point of NdFe12
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b

Figure 38: a) Unscaled melting temperatures for –-Fe, and –-Nd at 1 Bar, and NdFe12
with pressure, b) Scaled melting temperatures for NdFe12 with pressure.

is lower. The calculations suggest that NdFe12 is kept below a maximum of 1250K

for pressures below 100MPa during the hot press sintering process. As the goal of hot

press sintering is to partially melt the material the recommended temperature should be

85-95% of the maximum melting temperature, or ≥1060-1190K. Ultimately further and

improved simulations along with experimental analysis will be required to understand the

best manufacturing method for NdFe12.
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It’s probable the inability of the simulations to reproduce single element melting

temperatures has two main causes. Firstly, the amount of data points that were used to

fit the potentials, and secondly the potential formalism itself. For the time being, the

solid-liquid coexistence methodology is not considered a factor, as it was able to correctly

simulate the melting temperature of iron when using the MEAM potential developed by

Etesami et al.

To address the first point, future genetic algorithms should rely on a broader range

of data points, including both ab initio and experimental results. This will require data

being drawn from a broader array of structures, which will prevent the potential being

over-fit to any single structure and, in the case of ab initio results, fit the potential to

substantially more detailed data - for example, cohesive energy curves.

Examining the di�erence in accuracy of the MEAM and Morse potentials used here,

it’s clear that potential formalism is the most likely reason for the poor reproduction

of melting temperature. However, this issue is harder to address, as currently there is

no best potential formalism within the material simulation community, and potentials

are typically changed to match both the material being simulated and the purpose of

the simulation. Although potentials such as MEAM are generally considered to be

accurate across a broad range of structures, there is significant e�ort directed towards

machine learning potential development [113], and entirely new formalisms. The future

of potential development lies in this direction, and future work should encompass one or

more of these emerging models.
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5 Modelling Grain Growth

5.1 Introduction

As alluded to in the previous chapter’s discussion, material science is a developing field.

There are tools that have been institutionally developed over the course of decades, for

example LAMMPS[61] and GULP[83], relative newcomers for example pymatgen[114],

and very recent additions such as the Atomistic Simulation Environment[115] released

in 2017. The longevity of the older tools, and the frequency of new releases shows

the lasting and increasing importance of computational material research for design and

development.

The work in this final chapter has required the development of a new tool, which can

o�er general solutions to the types of problems answered in this chapter. This means

the chapter discusses methodological development, as well as the fundamental research

it aided.

This chapter’s research question is the following: what drives the shape of grains in

bulk solids, what drives their interface pairings, and how can knowledge of these e�ects

be used to predict crystal structure and properties? Although there may be similarities

across materials sharing the same lattice structure, answering each of these questions

specifically for each material is crucial to understanding and utilising that material,

particularly in the case of magnetic materials whose magnetic properties depend heavily

on grain dynamics.

The idea for this tool stems from work on FePt L10 - Permalloy and CoPt L10 -

Permalloy exchange springs magnets[116]. Attempting to understand imprinted domain

structures in these materials led to an investigation into what e�ect their grain mor-

phology and polycrystalline texture have on the properties of the exchange spring. The

investigation began with a simple problem: how can Molecular Dynamics be used to cal-

culate the preferential grain morphologies of crystal structures. The work in this chapter

is centred around answering this question for a model material: FePt L10.
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Figure 39: Ordered and disordered FePt grains, showing a) Disorderd FCC A1 FePt, and
b) Ordered FCT L10 FePt.

There were two reasons for the choice of FePt L10. Firstly, it is a stable alloy in

the iron-platinum system that has an extremely high magnetic anisotropy - making it a

fantastic candidate for high density perpendicular magnetic recording. Secondly, previ-

ous work on exchange spring magnets meant the author already had knowledge of its

crystal structure and pair potentials. The structure itself is formed when a randomised

cubic (FCC), 50:50 iron and platinum atoms, is heated above a reordering temperature

of 600°C[117] causing the iron and platinum atoms to form repeating monolayers in the

c direction. This results in a shortening of the c lattice parameter, making it face cen-

tred tetragonal (FCT). The reordered crystal develops directionally dependent magnetic

properties, giving it a preferential magnetisation direction in its shortened c axis. Figure

39 shows the disordered and ordered state for one such grain.

FePt L10 has a curie temperature of ≥650K[118], a coercivity of ≥5kOe[119], and

most importantly for its applications in hard drive technology, a magnetic anisotropy of

Ku = 6.6≠10 MJ/m3. It’s high anisotropy allows the material to have stable magnetic

grains at single digit nanometre sizes (4-6nm), a necessary property for increasing the

information density of magnetic hard drives.

Most magnetic materials at these grain sizes are beyond their super-paramagetic limit

and thus are incredibly unstable, as random thermal fluctuations at room temperature
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are capable of flipping their spin orientation and corrupting data.

Although the high anisotropy of FePt L10 precludes it from this specific problem,

understanding the magnetic dynamics of such a large number of small grains is still

a challenging problem, that is currently addressed by microstructurally aware micro-

magnetics[120] and atomistic modelling[121]. Progressing beyond or improving these

methodologies requires new approaches that are capable of accurately capturing struc-

tural discontinuities such as surfaces and grain boundaries, because at such small sizes

these comprise a far larger percentage of the structures volume. Without proper consider-

ation of these defects, it is di�cult to model the grains magnetic behaviour, as magnetic

reversal is often nucleated from these discontinuities due to their reduced anisotropy.

Understanding the mechanisms of this process will prove key to reliable manufacturing.

As mentioned, it is possible to investigate these e�ects using continuum model ap-

proaches such as micromagnetics, but as grain sizes decrease and surfaces begin to play

more of a role a finer grained approach is required. Atomistic magnetic modelling[121]

is considered a closer and more accurate approach, focusing magnetic spin and inter-

actions on individual atoms. However, to be accurate, these models require accurate

reproductions of underlying atomic structure, a gap the work in this chapter can fill for

FePt L10 presently and any crystal structure in the future generally.

This chapter’s method is based on the selection of various grain morphologies, which

are used to produce compositionally identical grains. Matching the compostions allows

their energetic preferability, and thus their probability, to be compared using Boltzmann

factors. The resulting calculations allow for an energetic comparison of di�erent mor-

phologies. Repeating this process over a range of grain sizes gives an insight into the

shape anisotropy of particular crystal structure as its grains increase in size.

The study resources are given first, with an added section on the methodology used

for grain creation, followed by the details of the LAMMPS methodology used for sim-

ulating the grains. Methodology validation follows, with results and discussion at the

end.
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Parameter Fe Pt
Ec 4.29 5.77
Re 2.867 3.92
B 1.08 1.80
A 0.56 0.90

—(0) 4.15 4.92
—(1) 1.0 2.2
—(2) 1.0 6.0
—(3) 1.0 2.2
t(0) 1.0 1.0
t(1) 2.6 3.94
t(2) 1.8 -2.20
t(3) -7.2 3.84

Table 10: Fundamental MEAM potential parameters for iron and platinum. Ec is the ref-
erence structure cohesive energy, Re is the reference structure equilibrium bond distance,
B is the Bulk modulus, A is a model parameter that scales the screening functions, —(l)

l=0-3 are scaling parameters controlling the form of the original EAM partial electron
density functions: fla(l)

i , and t(l) which scales the contribution of each of the MEAM
partial electron densities: fl(l)

i l=0-3.

5.2 Study Resources

We used Modified Embedded Atom Model (MEAM) potentials taken from a paper by

Kim et al.[122]. The potential parameters are shown in Tables 10, and 11. The iron

platinum reference structure used for Table 10 was FePt3 of type L12. For a complete

understanding of the MEAM potential please see [123, 124, 125], a brief description

of the method, and its constants is given here. MEAM stands for Modified Embedded

Atom Model and is a semi-empirical potential model based on the success of Density

Functional Theory (DFT). The MEAM formalism treats is based on the EAM formalism

which preceded it. Within the EAM, and hence MEAM, methodology, an atom’s energy

is calculated using the following Equation:

Ei =Fk(fli) + 1
2

ÿ

(j ”=i)
�ij(rij) (5.1)

where Ei is the energy of the ith atom, Fk(fli) is the embedding energy for an atom

of type k when it is placed in site i with background electron density fli, fli is the
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Parameter Value
Cmin(Fe-Fe-Fe) 0.36
Cmax(Fe-Fe-Fe) 2.80
Cmin(Pt-Pt-Pt) 1.53
Cmax(Pt-Pt-Pt) 2.80
Cmin(Pt-Fe-Fe) 0.36
Cmax(Pt-Fe-Fe) 2.80
Cmin(Fe-Pt-Pt) 1.53
Cmax(Fe-Pt-Pt) 2.80
Cmin(Fe-Fe-Pt) 0.844
Cmax(Fe-Fe-Pt) 2.80
Cmin(Pt-Fe-Pt) 0.844
Cmax(Pt-Fe-Pt) 2.80

Ec(Fe, Pt) 5.86
Re(Fe, Pt) 2.781

Table 11: The MEAM potential constants governing interactions between iron and
platinum. The Cmin and Cmax constants are the maximum and minimum values for
the screening functions when atoms are screened by an intervening atom, for example
Cmin(Pt-Fe-Pt) is the maximum screening function due to an iron atom screening the
interaction of two platinum interactions. Ec(Fe, Pt) is the energy of the iron - platinum
reference structure, and Re(Fe, Pt) is the equlibirum bond distance of the iron - platinum
reference structure.

summation of spherically averaged atomic electron density functions, �ij is the pair

interaction between atoms i and j, and rij is the magnitude of the distance between

atoms i and j. Therefore, the energy of an atom is due to its interaction with the

background electron density and its neighbour interactions through a pair potential. This

formalism is termed semi-empirical as its atomic electron densities can be taken from ab

initio calculations. The brilliance of this approach is that it allows the formalism to take

into account neighbour coordination e�ects without much increase in computational

cost, as the atomic electron densities are a proxy for neighbour coordination. The pair

interaction �ij can take many di�erent forms and is the empirical part of the formalism

that is tailored to match physical constants. As a minimum, it adds the strong repulsion

required to prevent atoms getting unphysically close to one another[124].

The background electron density at site i, fli, is calculated by summing the partial

electron densities of atoms around the the site. The constants —(l), l=0-3, scale the

partial electron densities, and t(l), l=0-3, weight the contribution of each of the partial
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electron densities to the total atomic electron density. Cmin and Cmax are parameters for

a screening function that scales the contribution of an atom j’s electron density when

the vector between the site i and the atom j is partially or fully crossed by another atom

k. The screening constants are based on the atomic geometry of the atom, k, and scale

the contribution di�erently depending on how fully the vector is crossed by atom k.

5.3 Methodology Specifics

5.3.1 Grain Creation

Grain Definition

To generalise the grain creation process, a Python module was created that can be

used to define abstract grain morphologies. In this module, a grain morphology is defined

as the following: a unitcell, a set of cuts, and a repeat ratio. A description of each of

these follows:

Unit cell: Basis of the grain, defined by three lattice vectors a, b, c and a list of

constituent atoms in fractional coordinates.

Cuts: Each cut is defined by a plane normal and a plane point, both given in

fractional coordinates. For example the cut with normal [111] and plane point (0, 0,

1) would cut along the (111) plane that passes through the point given by the greatest

extent of the grain in the c direction.

Repeat Ratio: The repeat ratio defines the ratio between unitcell repeats in the

three available directions. For example a repeat ratio of [1, 2, 1] would repeat the unitcell

two times in the b direction for every single repeat in the a and c directions.

Taken together, cuts and repeat ratio define a general morphology which can be

arbitrarily scaled to any desirable size. To build a grain from this abstract definition an

integer scaling factor is used that defines the final size. The scaling factor works in the

following ways:
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1. Multiplies the repeat ratio to get the final number of unitcell repeats in each

direction. For example if the repeat ratio is [1, 2, 1] and you have a scaling factor

of 10, the final repetitions in each direction are [10, 20, 10].

2. Multiplies the repeat ratio, which scales the the plane point of each cut. For

example if a cut is defined by the plane normal [111] and the plane point (0, 0, 1)

and the final number of unitcell repeats is [10, 20, 10] the plane point is scaled to

(0, 0, 10).

The unitcell repeats are used to create a supercell of the underlying structure, and

the redefined cuts shape the grain into the final morphology.

Composition Matching

For a simple grain that would be the end of the process, but to compare grain

preferability by Boltzmann Factors the grains must have identical compositions. This

means each grain must consist of the exact same number of atoms, with the exact same

ratio of elements. This process requires two or more grain morphologies and starts with

the user selection of a target number of atoms. Each grain morphology is used to create

a grain using a scale factor that puts it as close as possible, but above, the target number

of atoms. Grains in this state are termed ”as built”.

The ratio of elements in each of the as built grains is calculated and used to define

an average composition, termed the best fit composition. For example, if the grains

were FePt L10 the ratios may be 49:51, 49.5:50.5, and 51:49 (Fe:Pt), the average of

these is 49.83:50.17, which is used to decide how many of each atom type should be

in the grains. Continuing the example, for grains with 10,000 atoms total, this would

equate to 4983 iron atoms, and 5017 platinum atoms, this is the best fit composition.

Once the best fit composition has been defined, atoms are progressively deleted from

the surface of each of the as built grains in turn until they match the desired composition.

Atom deletion has a physical basis and proceeds in rounds that remove atoms in the

least energetically favourable positions. Least favourable equates to atoms that have
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Figure 40: Comparison of a 20,000 atom Truncated Octahedron Minor in its a) As built,
and b) Compositionally matched, states.

the lowest number of nearest neighbours and thus the smallest bonding energy. Corner

atoms being the least favourable, followed by edge atoms, then general surface atoms,

and finally the bulk.

An example of an as built and a compositionally matched final grain can be seen in

Figure 40. As the figure shows the as built grain has clean surfaces with defined edges

that are due to the cuts used to make it. In contrast the compositionally matched grain

has far softer edges and although it maintains the same underlying morphology it is

noticeably rounder. Grains created in this manner are physically realistic, as atoms with

low binding energy are the first removed and last added.

FePt Grain Morphologies

To choose grain morphologies to test, the surface energies for L10 from a paper by

Kim et al.[126] were used to decide which surfaces would be likely to dominate. The

surface energies can be seen in Table 12.

{111} surfaces have the lowest energy, whilst the remaining low index planes have

roughly similar energies. This comes from the larger number of interplane bonds in

the {111} planes, which have 6 nearest neighbours instead of 4. From this Kim et al.

indicate that the {111} planes will predominantly feature on FePt L10 grains.
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Plane Surface Energy
(erg/cm2)

111 2198
101 2714
110 2650
100 2719
001 2740

Table 12: Surface Energies of low index FePt L10 planes, taken from Kim et al.[126].

Using this as a basis, all the grain morphologies were created using cuts along the

{111} planes to expose as much of this preferential surface as possible. As there is

little di�erence between the remaining surface energies the {100} and {001} planes,

which naturally accompany {111} plane cuts, were allowed to comprise the remaining

grain surfaces. This work looked at three types of grain created in this manner, which

were named: Octahedron, Truncated Octahedron Minor, and Truncated Octahedron

Major. Two further types of grain were included for comparison a Cuboid, and a Sphere.

Creating two extreme grain morphologies served as checks on the model’s behaviour,

as a cuboid morphology should never be a preferential grain shape and a sphere should

only become a preferential grain at sizes far above those simulated in this work - where

volume to surface ratio e�ects dominate. At single to double digit nanometer sizes,

energetic preferability should be dominated by surface e�ects, with volume to surface

ratio playing a lesser role. The five grain types can be seen in Figure 41.

An FePt L10 unitcell was used for each grain with the following parameters: a =

b = 3.83Å, c = 3.711Å, and – = — = “ = 90°[127], where a, b, c are the lattice

parameters, and –, —, “ are the angles between them. Every grain went through the

initial repeat process described above to create a base supercell. To create the first three

(none extreme) grain types the {111} plane points were positioned at di�erent distances

from the supercell centre. Each grain used two plane points, one in the positive and one

in the negative a direction, which represented the plane points for all the {111} surface

cuts. The points, P1, and P2 were chosen so that vectors to the points from the origin

had the following property: |P1| = |P2|. This assured that the as built grains had a

symmetrical structure. Figure 42 demonstrates how point placement a�ects the final
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Figure 41: Compositionally matched grain morhpologies at the size of 10,000 atoms.
Showing a) Octahedron, b) Truncated Octahedron Major, c) Truncated Octahedron
Minor, d) Cuboid, and e) Sphere.
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Figure 42: 2D example of how point placement a�ects grain morphology when cuts are
made along the {11} plane set. The blue cube represents the original cubic supercell
and the coloured diamonds represent the area left untouched by the {11} cuts. The final
grain shape is given by the area of the blue cube that is covered by the coloured diamond.
The points which define the placement of cuts are noted in each diagram. The figure
shows: a) The 2D representation of the Octahedron shape, b) The 2D representation of
the Truncated Octahedron Minor shape, and c) The 2D representation of the Truncated
Octahedron Major shape.

shape of the as built grain for a set of simplified 2D cases. As can be seen in Figure

42, the area of the cube covered by the diamond creates a similar grain shape to the

3D cases when projected onto a 2D plane down one of the primary axes. The edges

of the diamond passing through the plane points can be thought of as the {11} planes

associated with that particular point. In 2D there are only two planes associated with

each point, but for the 3D case each point has four {111} planes associated with it.
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Plane Expected Surface
Energy (erg/cm2)

Calculated Surface
Energy (erg/cm2)

Percentage
Di�erence (%)

111 2198 2200 +0.09
101 2714 2685 -1.06
110 2650 2756 +4.00
100 2719 2449 -9.93
001 2740 2919 +6.53

Table 13: Surface Energies of low index FePt L10 planes, taken from Kim et al.[126],
and the values calculated with the potentials used in this work.

5.3.2 Simulation Methodology

Final grain energies were gained by minimisation in LAMMPS, but in order to maximise

the chances the minimisation algorithm reached a global not local minimum, the system

underwent an initial equilibration phase in the isobaric-isothermal (NPT) ensemble. The

NPT ensemble was set at 1K with a pressure of 0Pa and evolved the system over 15,000

time steps, with a time step length of 0.001ps this phase lasted 15ps. This was followed

by minimisation, which occurred over a minimum of 10,000 time steps to ensure the

system converged on a global energy minimum. Generally, convergence was reached

much sooner.

5.4 Method Validation

Potentials

The accuracy of the potentials was validated by calculating the surface energies of

the same planes as Kim et al.[126]. The results of this can be seen in Table 13. The

potentials are in good agreement with the values reported by Kim et al. in the (111),

(101) and (110) planes, however they di�er more significantly in the (100) and (001)

planes. Kim et al. do not give their surface calculation methods, so it’s possible this

discrepancy is partially due to a di�erence in the surface calculation procedure. The

surface calculations performed in this work used two methodologies. The (001) and

(100) plane calculations used periodic boundary conditions and a supercell that was
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periodic across two of the lattice directions, with vacuum in the remaining direction.

The vacuum stopped interaction between the two sides of the slab and thus created two

surfaces. By comparing the energy of this structure to the expected energy in the bulk

and dividing by two the surface energy for a single side was gained. Dividing this energy

by the area of a side gave the surface energy of the slab.

For the remaining planes: (111), (101), and (110) supercells of L10 were created

and rotated so that the desired plane’s normal was in the cartesian z direction. The

rotated cuboid had a slab cut out of it. Cutting a large slab ensured that the centre of

the slab had the same energy as the crystal in bulk, and similarly that the surface above

it was una�ected by the edge e�ects that arise from a lack of periodicity. Calculating

the energy of this region only and comparing it to the bulk energy resulted in a surface

energy for this region.

Although the discrepancy between the expected and calculated results for (100) and

(001) raise questions of statistical significance, the overall trend of the surface energies

is similar to that given by Kim et al. Therefore, whilst paying careful attention to what

e�ect the (100) and (001) plane discrepancies might have, the potentials were deemed

appropriate for the calculations.

Simulation Methodology

To gauge how long the initial equilibration phase should be for optimal energy con-

vergence, tests were performed over a range of equilibration values. Figure 43 shows how

the minimum energy changes for the Octahedron, the Truncated Octahedron Major, and

the Truncated Octahedron Minor over a range of equilibration values. The figure shows

how initial equilibration length a�ected the final minimised energy of the structure as a

percentage of the minimum energy found across the range. For example, for the 1,000

atom Octahedron grain morphology the minimum energy is found at 10,000 time steps

(Figure 43a), and thus at this point the graph shows a y axis value of 100%, all other

energy values are given as a percentage of this value. The tests showed two things,

firstly, that in all cases the di�erence in final energy due to equilibration times is min-
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a

b

c

Figure 43: Percentage of minimum energy reached vs the number of initial NPT simula-
tion time steps, for a) Octahedron, b) Truncated Octahedron Minor, and c) Truncated
Octahedron Major at 1,000, 8,000, and 15,000 atoms. The value above the y-axis
(=99.999) should be added to each y tick.
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Figure 44: Normalised probabilities based on the structures’ Boltzmann factor ratios
over a range of 1,000 - 15,000 atoms.

imal, the maximum di�erence being 0.0004%. Secondly, that there is no trend across

the investigated range, which was extended to 400,000 time steps for some structures

- not shown in Figure 43. Therefore, 15,000 time steps was the chosen period for this

initial phase as a middle value that was likely to provide reasonable minimised energies

without large computational expense.

5.5 Results

A range of grain sizes were created for each morphology, ranging from 1,000 to 15,000

atoms in steps of 1,000, equating to grain diameter ranges of 3-9nm. As mentioned the

grains were compositionally matched at every stage, which allowed their probabilities

to be compared by their Boltzmann factors. Figure 44 shows the comparison between

the grains as they increase in size. The figure shows that two of the structures, the

Octahedron and the Truncated Octahedron Minor, have the highest probability. Visual

inspection of their surfaces shows they have the highest percentage of {111} surfaces,

the lowest energy plane. Being compositionally identical the surface of these structures

is the only thing which separates them from one another energetically. Therefore, prefer-
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Figure 45: Left) Atomistic visualisation of an FePt L10 Truncated Octahedron Minor
grain, Right) Surface of the grain extracted by PyVista, arrows out of the surfaces
indicating the plane normals.

able grain morphology can be understood by analysing the di�erences in their surface

structure.

The PyVista package[128], which is a wrapper around VTK[129], was used to build a

mesh of the surface of each of the grains. Figure 45 shows this process for a Truncated

Octahedron Minor. VTK’s Delaunay triangulation function[130] was used to tetrahe-

dralise the atomic point sets before extracting the surface from the resulting geometry.

The surfaces are collections of 2D simplexes, each composed of three points. By find-

ing the surface normal and the area of each of these simplexes, they were placed into

group corresponding to the surface plane they represented. This gave a total area for

each plane set that the structure was composed of. Multiplying the total area by the

calculated surface energies above meant the surface energy of each of the grains could

be calculated.

Figure 46 shows the surface energy of each grain across the investigated range nor-

malised by the lowest surface energy of the grains at each atomic size.

This graph shows the expected trend, the Octahedron and the Truncated Octahedron

Minor, in general, have significantly lower surface energy than the other structures. The

Cuboid has by far the most energy at all points, as expected from its lack of {111}
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Figure 46: Normalised surface energies of the investigated grains, across the range 1,000-
15,000 atoms. The normalisation is di�erent at each atom size, with the normalising
value being the grain with the lowest surface energy at each point.

surface planes, followed by the Sphere and the Truncated Octahedron Major which

generally have a similar surface energy also. The similarity of the surface energies of the

Sphere and the Truncated Octahedron Major is likely due to a di�erence in the total

surface area of the structures as oppose to a similarity in plane surfaces.

5.6 Discussion

The vacuum calculations and subsequent surface analysis demonstrate that grain mor-

phologies of FePt L10 at small sizes should be dominated by morphologies that incorpo-

rate the maximum amount of the {111} plane surfaces. Therefore, this plane, and the

corresponding grain morphologies it tends to create, should be investigated further to

judge its e�ect on the structure’s magnetic properties.

An issue with the methodology in its current formation is its inability to predict, from

surface energy alone, which compositionally matched grain is the most preferential.

Ideally the surface energy calculations should perfectly follow the preferability of the

grains, however, comparison of Figures 44 and 46 will demonstrates this isn’t the case,

122



despite the fact the only energetic di�erence between the grains in a vacuum should

be their surface energies. This is likely due to the surface extraction method, which

currently is unable to capture surface planes such as {101} and {110} accurately. This

short coming results in an over-inflation of the surface area of structures with a larger

amount of these planes. As the Truncated Octahedron Minor has a larger amount of

these than the Octahedron, that is probably the dominating factor preventing the surface

energy calculation following the pattern of preferential grain morphology shown in Figure

44.

Despite this shortcoming, with improvement, this methodology could be used gen-

erally to find the preferential grain morphologies of any crystal structure. In the future,

it will be used to produce a baseline understanding of grain morphology that allows for

the creation of accurate atomistic models of polycrystalline materials. This will involve

investigating not just the structure of interest, but tertiary structures of a similar phase

that often surround it - in the case of FePt L10 the FCC A1 structure. The end goal

of this project is to reproduce accurate atomistic polycrystalline models which could be

used as input to micromagnetics, or atomistic spin dynamics simulations.
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6 Conclusions

6.1 Summary

The work undertaken in this thesis all drives at a singular goal, developing generally

applicable methods for analysing magnetic crystal structures. The first results chapter

focuses on one of the most interesting sets of materials at the world’s present stage

of magnetic material development: RT12 structures. The fundamental insight of the

research is driven by a high throughput methodology which allows for investigation of the

preferential position of substitutions in crystal structures. The result of this methodology

was a large amount of high quality data, which could be anaylsed to explain physically

why titanium substitutions are energetically unfavourable above a set percentage, which

is governed by the symmetry of the crystal structure. This insight has led to a recent

talk at the IOP York Magnetism conference and will be the subject of a future paper on

the stability of the RT12 phases investigated in this work. Whilst an important result, of

equal importance is the applicability of the methodology to any other crystal structure.

In the second results chapter on the melting point of NdFe12, the most theoretically

promising of the three structures, genetic algorithms were used to refit Morse potentials

to material constants from the literature. Whilst this resulted in a decrease in the

calculated melting temperatures, it was also a first step into the methodology of potential

fitting. The work predicted an upper limit for the sintering temperature of NdFe12

grains of 1250K, below 100Mpa. But perhaps more importantly, it led to an interest

in potential morphologies beyond Morse and the methodologies required to make sure

models represent reality - for example, the machine learning potentials presented by

Mueller et al.[113].

The last two chapters lead up to the final results chapter, which focuses explicitly on

the early stages of the development of a set of methodologies for predicting crystal grain

morphology. The methodology showed that FePt L10 grains have a strong preference for

{111} surface planes, and will generally adopt morphologies that maximise this surface.
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Analysis of the total surface area of each grain, across a range of sizes as a function of

atomic number, showed that the order of morphological preference was tied to surface

energy. The work suggests that 3-9nm FePt L10 grains will have morphologies close to

an octrahedron or minorly truncated octahedron.

6.2 Future Work

6.2.1 Tool Development

Although Chapters 3 and 4 have resulted in several publications [1, 2, 3], it is the

authors belief that the final chapter and the continued development of the materials

science tool is where the future of this work lies. The plan for the tool is to tie together

the methodologies used in this work, making common work flows in materials science as

simple as writing a few lines of Python code.

Future work will look to incorporate generalised potential fitting methods, ab initio

calculations, realistic polycrystalline structures, high throughput surface and interface

calculations, and phase comparison models which predict the secondary and tertiary

phases in polycrystalline materials. These added features will make it quick and easy

to produce high quality models in minutes and are intended to provide a ”as few clicks

as possible” solution to a few of material science’s trickiest research problems - e.g.

physically accurate polycrystalline models, fast and general surface calculations, and fast

and general interface calculations. The tool’s goal is to provide useful abstraction to

those who need it and powerful e�ective scripting to those who want it. The tool has

recently been open-sourced and can be found on Github through the following link:

https://github.com/Connor56/Grain Modeller
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