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Abstract
Various inequivalent notions of attraction for autonomous dynamical systems have been pro-
posed, each of them useful to understand specific aspects of attraction. Milnor’s notion of
a measure attractor considers invariant sets with positive measure basin of attraction, while
Ilyashenko’s weaker notion of a statistical attractor considers positive measure points that
approach the invariant set in terms of averages. In this paper we propose generalisations of
these notions to nonautonomous evolution processes in continuous time.We demonstrate that
pullback/forward measure/statistical attractors can be defined in an analogous manner and
relate these to the respective autonomous notions when an autonomous system is considered
as nonautonomous. There are some subtleties even in this special case–we illustrate an exam-
ple of a two-dimensional flow with a one-dimensional measure attractor containing a single
point statistical attractor. We show that the single point can be a pullback measure attrac-
tor for this system. Finally, for the particular case of an asymptotically autonomous system
(where there are autonomous future and past limit systems) we relate pullback (respectively,
forward) attractors to the past (respectively, future) limit systems.
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1 Introduction

Dissipative dynamical systems are remarkable in that they allow one to gain a clear picture
of the asymptotic (long time behaviour) by considering the typically much smaller subset of
phase space that is repeatedly visited over a long timescale. These comprise the “attractors”
for the system. It is well known that such attractorsmay not only be chaotic but also “strange”,
namely they can be highly anisotropic in structure and fractional in dimension [23].

There is however no universally agreed definition of an attractor, even for an autonomous
system. The most commonly considered definition is the topological notion of an asymp-
totically stable invariant set due to Lyapunov. However, weaker measure based notions (that
allow one to ignore exceptional sets of initial conditions) are probably closer to what is
needed in many applications. This motivated Milnor’s definition of a measure attractor [19]
as well as Ilyashenko’s even weaker notion of a statistical attractor [13]. A succession of
successively weaker notions of attraction for autonomous systems can be summarised in the
implications:

measure attractor ⇒ weak measure attractor ⇒ statistical attractor.

Non autonomous dynamical systems with an explicit time dependence, pose many chal-
lenges. A notion of a measure attractor for random dynamical systems was presented in [3]
where it was related to measure attractors for the corresponding skew product system. More
generally, there are several inequivalent notions of time limit corresponding to different ways
of choosing start and end times such that the time between these becomes unbounded; the
pullback limit fixes the end time and compares forward trajectories starting further in the
past, while the forward limit fixes a start time and considers forward trajectories from there.
The monograph [16] discusses this in some detail and in various contexts, and gives various
topological notions of attraction.

In this paper we propose notions of measure and statistical attractor that are suitable for
general non autonomous dynamical systems.We relate these to each otherwith various results
and examples, and look at special cases. In particular, we give some nontrivial examples of
nonautonomous measure attractors that are not topological attractors. Using the pullback
(pb) notion we define notions of attraction with implications:

pb measure attractor ⇒ pb weak measure attractor ⇒ pb statistical attractor.
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while for the forward (fw) notion we define notions of attraction with implications:

fw measure attractor ⇒ fw weak measure attractor ⇒ fw statistical attractor.

We review some important definitions and results concerning autonomous attractors in
Sect. 1.1 and nonautonomous attractors in Sect. 1.2.

We propose and investigate a definition for measure attractors in a nonautonomous system
in Sect. 2, in both the forward (Sect. 2.1) and pullback (Sect. 2.2) senses before discussing
their properties in more depth in Sect. 2.3. In Sect. 2.4 we present some more subtle results
(Theorems 2.20 and 2.19) that relate measure attractors for autonomous systems to pullback
and forward measure attractors respectively, when they are viewed as nonautonomous.

In Sect. 3 we propose definitions for statistical attractors for nonautonomous systems in
the pullback and forward senses (Sect. 3.1) before relating pullback statistical attractors to
autonomous statistical attractors in Sect. 3.2: in particular we show in Theorem 3.6 that a
statistical attractor for an autonomous system is a pullback and forward statistical attractor if
the system is viewed as nonautonomous. Sect. 3.3 presents an explicit example to show that
an autonomous statistical attractor that is not a measure attractor can be a pullback measure
attractor in the nonautonomous sense. This is proven for our example in Proposition 3.8
which furthermore shows that an autonomous measure attractor may only be a pullback
weak measure attractor when viewed in the nonautonomous setting.

In general, pullback and forward notions of attraction are independent of each other, but
there are cases where they can be related. We discuss the case of asymptotically autonomous
systems in Sect. 4where these notions relate to properties of the limiting autonomous systems.
Finally, we discuss outlook and various remaining issues in Sect. 5.

1.1 Autonomous Attractors

We consider a dynamical system given by a flow φt : R
d → R

d for t ∈ R, which satisfies
the initial value property φ0 = Id and the group property φt+s = φt ◦ φs for all t, s ∈ R. We
assume throughout the paper that φt (x) is continuously differentiable in t ∈ R and x ∈ R

d ,
and note that sometimes, we consider flows that are only defined on compact subsets of R

d .
The omega limit set of a point x ∈ R

d is defined by

ω(x) :=
⋂

t>0

{φs(x) : s > t}.

Omega limit sets are invariant, i.e. φt (ω(x)) = ω(x) for all t ∈ R. The basin of attraction
of a compact and invariant set A ⊂ R

d is defined by

B(A) = {x ∈ R
d : ω(x) ⊂ A and ω(x) �= ∅}.

Note that invariance of A implies that A ⊂ B(A). The most important classical notion of
attractor is that of asymptotic stability. A nonempty, compact and invariant set A ⊂ R

d

is said to be an asymptotically stable attractor if B(A) is a neighbourhood of A, and A is
Lyapunov stable, i.e. for all neighbourhoods U of A, there is a neighbourhood V of A such
that φt (V ) ⊂ U for all t > 0. It follows that for an asymptotically stable attractor A, there
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exists an ε > 0 such that1 Bε(A) is attracted uniformly forward in time, i.e.

lim
t→∞ d(φt (Bε(A)), A) = 0 .

On the other hand, an attractor that attracts a neighbourhood uniformlywill be asymptotically
stable. One can distinguish a global attractor that attracts all sets, and local attractors that do
not attract all sets but are indecomposable in some way - for example one can assume that A
contains a dense orbit. We refer to [19, 22] for more of a discussion and references.

We deal with two important generalisations of these ideas in this paper: measure attractors
and statistical attractors.

Let � denote the Lebesguemeasure onR
d . A nonempty, compact and invariant set A ⊂ R

d

is said to be ameasure attractor if �(B(A)) > 0 and for any nonempty, compact and invariant
set A′

� A, we have �(B(A) \ B(A′)) > 0 [19]. A compact and invariant set A satisfying
only the first condition of a positive measure basin of attraction is called a weak measure
attractor [5]. The second condition ensures that all of A is necessary to attract all the basin
points, that is, A is minimal with respect to the basin.We note that a weakmeasure attractor is
not necessarily a measure attractor. However, existence of a weak measure attractor implies
existence of ameasure attractor [5, Lemma3.2],whereas any compact invariant set containing
a measure attractor is a weak measure attractor. If no proper subset of a measure attractor A
is a measure attractor, then we say A is a minimal measure attractor.

Ameasure attractor does not have to attract a neighbourhoodor beLyapunov stable. Instead
it is a weaker, point-wise notion of attraction that ensures there is a positive probability of
observing the attractor by randomly choosing an initial condition. A related concept is that
of the likely limit set, namely the smallest closed subset ΛM such that ω(x) ⊂ ΛM for a full
measure set of x . The likely limit set is then the maximal measure attractor for the flow.

More generally, following [5], we can define a likely limit set of a positive measure set
X ⊂ R

d , denoted as ΛM (X) as follows. Let

ΩM (X) :=
⋃

x∈X
ω(x) and ΛM (X) :=

⋂

Y=0X

ΩM (Y ) ,

where W =0 V means that W and V differ on a set of zero Lebesgue measure, i.e. �((W \
V )∪ (V \W )) = 0. As discussed in [5, 19], for a positive measure set X ⊂ R

d , compactness
of ΛM (X) implies that it is a measure attractor.

The following proposition states that (weak) measure attractors attract large measure sub-
sets of their basins uniformly.Wewill use this result later in our discussion of nonautonomous
generalisations of measure attraction, but we state and prove this result now as it is of more
general interest. Note that one can only expect a proper subset of B(A) to be attracted uni-
formly: there will be points in B(A) starting arbitrarily close to the boundary that is also an
invariant set.

Proposition 1.1 Suppose that φt is a smooth flow defined on some compact2 X ⊂ R
d with

0 < �(X) < ∞. Suppose that A is a weak measure attractor for φt , i.e.

�(B(A)) > 0.

1 We write d(x, A) := infa∈A ‖x − a‖ for the distance of a point x to a set A. For two sets A, B ⊂
R
d , we define the Hausdorff semi-distance by d(A, B) := supa∈A d(a, B) and the Hausdorff distance by

dH (A, B) := max(d(A, B), d(B, A)). The open η-neighbourhood of A is denoted by Bη(A).
2 Note that it is easy to generalise to non compact space if we replace, in the statement of the theorem, the
basin of attraction B(A) with some finite measure subset of it.
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Then for all ε > 0 there exists a closed set Uε ⊂ B(A) with �(Uε) > �(B(A)) − ε that is
uniformly attracted to A, namely

lim
t→∞ d(φt (Uε), A) = 0.

Proof Consider the set of measurable functions ft (x) := d(φt (x), A) and note that for �-
almost all x ∈ B(A) we have limt→∞ ft (x) = 0. Because B(A) has finite measure and the
limit is finite, we can apply Egorov’s theorem [24, Theorem 4.17] to deduce that there is a
closed Uε ⊂ B(A) with �(B(A) \Uε) < ε where ft (x) converges uniformly to 0. Hence

lim
t→∞ d(φt (Uε), A) = 0,

as required. 
�
An even weaker notion of attractor was formulated by Ilyashenko in [13] (for compact

spaces)3, which requires only almost all in time convergence of almost all orbits. Define

L(x,U , s) := 1

s
� ({0 ≤ t ≤ s; φt (x) ∈ U }) . (1)

Let A be a nonempty, compact invariant set. We define the statistical basin of attraction of
A

Bstat (A) = {x : L(x, Bε(A), s) → 1 as s → ∞ for all ε > 0}.
We call A a statistical attractor4 if �(Bstat (A)) > 0.

Note that there is an equivalent definition of a statistical attractor which is analogous to
the measure attractor definition above, that is, in terms of statistical ω-limit sets (see5 [14]).

There is a further way to characterise a statistical attractor; in a form that makes clear the
almost all in time property and that is closer to the familiar way of defining the attractivity
property. We say that a measurable set M ⊂ R has full density at −∞ if lims→∞ 1

s �(M ∩
[−s, 0]) = 1, and M ⊂ R has full density at ∞ if lims→∞ 1

s �(M ∩ [0, s]) = 1.

Proposition 1.2 Let A be a statistical attractor. Then for every x ∈ Bstat (A), there exists a
set T∞ of full density at ∞ such that

lim
t→∞, t∈T∞

d(φt (x), A) = 0 .

Before proving Proposition 1.2, we require a lemma to show we can construct a suitable
T∞ set.

3 Ilyashenko defined the statistical attractor ΛS to be the smallest closed set such that almost all orbits spend
almost all time in any open neighbourhoodU of ΛS . Note that Ilyashenko’s definition does not have a notion
of a local or weak statistical attractor. The definition given in this paper is a more general one, which allows
for potentially ‘weak’ statistical attractors.
4 One could also distinguish between “weak” and “strong” notions statistical attractor, as in the case of
measure attractor. A suitable strong definition would be that A is unique with respect the basin of statistical
attraction, up to a Lebesgue null set. We do not do this in this paper, for the sake of simplicity.
5 In [14] the essential omega limit set is defined as ωess (x) := {y : lim sups→∞ L(x, Bε(y), s) >

0, for all ε > 0} and the statistical limit set of X ⊂ R
d of positive measure as ΩS(X) := ∪x∈Xωess (x) and

ΛS(X) := ∩Y=0KΩS(Y ). If A = ΛS(X) is compact, A is referred to as the statistical attractor with basin
of attraction

Bstat (A) = {x : ωess (x) ⊂ A and ωess (x) �= ∅}.
See [14] for proof that this definition is equivalent to Ilyashenko’s definition.
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Lemma 1.3 Let {Tn}n∈N be a sequence of sets, Tn ⊂ R such that Tn has full density at ∞.
Then, there exists an increasing sequence of times {sn}n∈N such that the set defined by

T∞ :=
∞⋃

N=1

T̄N

where

T̄N :=
(
N−1⋃

n=1

Tn ∩ [sn, sn+1]
)

has full density at ∞.

Proof See Appendix A. 
�

Proof of Proposition 1.2 Let x ∈ Bstat (A). Let Tn = {t ∈ [0,∞) : φt (x) ∈ B1/n(A)} for
some n ∈ N. Then by definition, Tn has full density at ∞ for each n ∈ N.

Let T∞ be as defined in Lemma 1.3, and note that it has full density at ∞. Let tk ∈ T∞
be an increasing sequence of times, then for each k ∈ N, tk ∈ [snk , snk+1] for some nk ∈ N

so that tk ∈ Tnk . By definition of Tnk we have that

d(φtk (x), A) ≤ 1

nk
→ 0,

as k → ∞, which completes the proof. 
�

1.2 Nonautonomous Attractors

In contrast to (autonomous) dynamical systems, where the time evolution φt depends on the
elapsed time t ∈ R, for nonautonomous dynamical systems, the time evolution Φt,s depends
explicitly on initial time s ∈ R and final time t ∈ R. Such a Φt,s is called a process [16], and
we require that a process satisfies the initial value and cocycle property

Φs,s = Id and Φt,s = Φt,u ◦ Φu,s for all t, u, s ∈ R .

Note that for simplicity, we assume that the process is invertible, even though many results in
this paper generalise easily to non-invertible processes Φt,s that are defined only for t ≥ s.
We also assume that Φt,s is continuously differentiable in all arguments.

There is an extensive literature that generalises various notion of attractors to a nonau-
tonomous setting. However, there is a significant problem in that “basin” and “attractor”
need to be considered at different time-points where the systemmay behave quite differently.
Hence, in the nonautonomous case, there aremore notions of attractor depending on precisely
which limiting process is considered.

The concepts of nonautonomous attractor that have been most successfully applied are
based on the ideas of forward and pullback attraction. Analogously to the autonomous case,
we can define both global and local concepts. We proceed to define local notions, following
[16, Chapter 3]. Firstly, we introduce the concept of a nonautonomous set A = {A(t)}t∈R,
which is a family of sets A(t) ⊂ R

d , the so-called fibers of A. A nonautonomous set A is
said to be compact if A(t) is compact for all t ∈ R, and invariant if Φt,s(A(s)) = A(t) for
all t, s ∈ R.
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We say that a nonempty, compact, nonautonomous set A is a local forward attractor if
there is an η > 0 such that

lim
t→∞ d

(
Φt,t0(Bη(A(t0)), A(t)

) = 0 for all t0 ≥ 0 .

A is said to be a local pullback attractor if there exists an η > 0 such that

lim
t0→−∞ d

(
Φt,t0(Bη(A(t0)), A(t)

) = 0 for all t ≤ 0.

Amore general definition can bemadewith respect to an attraction universe. This includes
both local and global types of attractors. See [16] for precise definitions.

It is known, (Lemma 2.15 of [16]), that invariant nonautonomous sets of processes are
composed of entire solutions, defined as a mapping ξ : R → R

d such that

ξ(t) = Φt,s(ξ(s))

for all t ≥ s. Hence, all attractors must be composed of such trajectories.
Since forward attraction corresponds to the future and pullback attraction corresponds to

the past, these notions are not equivalent [15].While future asymptotic behaviour depends on
the present state, pullback attractors give us the likely present state of a system that has started
in some distant past.We note that both types of convergence are important to fully understand
the dynamics. This is exemplified in rate-induced tipping, which can be associated with a
scenario where a local pullback attractor limits to a repeller depending on the future only [4].

While both notions of attraction are meaningful to understand the dynamics, in some
sense, the pullback attractor can be seen as closer to a generalisation of the autonomous
attractor [8]. In particular, forward attracting trajectories are typically time-varying, whilst
pullback attractors are fixed sets in phase space for any given end-time. In addition, they can
be shown to have properties more in line with those of autonomous attractors, for example,
uniqueness (see e.g. [16, Proposition 3.8]) and existence given an absorbing set (see e.g. [16,
Proposition 3.27]). In contrast, forward attractors are generally not unique, see e.g. [15].

Any autonomous system can be thought of as a trivial nonautonomous system and so any
notions for nonautonomous systems can be applied to autonomous systems. It might seem
strange to use notions of attraction developed for nonautonomous systems on these trivial
cases, but we argue that this can be productive as a way of understanding the properties and
limitations of these notions.

2 Measure Attractors for Nonautonomous Dynamical Systems

Generalisation of the notion of measure attractor to pullback or forward attraction in nonau-
tonomous systems is not trivial, in particular as the measure of an invariant set may vary
significantly from one fibre to the next. In this section, we propose a way of doing this.

2.1 ForwardMeasure Attractors

Consider a nonempty, compact and invariant nonautonomous setA = {A(t)}t∈R of a nonau-
tonomous dynamical system Φt,s . The basin of forward measure attraction is defined to be
the nonautonomous set B+(A) with fibres

B+(A)(t0) =
{
x ∈ R

d : lim
t→∞ d(Φt,t0(x), A(t)) = 0

}
for all t0 ≥ 0.
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Note that A ⊂ B+(A) and A is a local forward attractor if B+(A) contains an open neigh-
bourhood that is attracted uniformly.

Definition 2.1 (Forward measure attractor) We say that a nonempty, compact, invariant
nonautonomous set A is a weak forward measure attractor if there exists a t0 ≥ 0 such
that

�(B+(A)(t)) > 0 for all t ≥ t0 .

If, in addition, for any weak forward measure attractor A′
� A, we have

�(B+(A)(t) \ B+(A′)(t)) > 0 for all t ≥ t0 ,

we say A is a forward measure attractor.

Remark 2.2 Since in this paper we are in the differentiable setting (that is, we assume Φt,s

is a diffeomorphism) we only need to verify that the conditions of Definition 2.1 hold for
one time t0 ∈ R

+. We note that Φt1,t0B+(A)(t0) ⊆ B+(A)(t1) for all t1 > t0, however
the condition in the definition of a weak forward measure attractor is nonetheless required
for all t ≥ t0 in the more general case where Φt,s is not a diffeomorphism, as we cannot
guarantee that Φt1,t0 does not map sets of positive measure to zero measure sets (there are
homeomorphisms that map positive measure sets to zero measure sets, see e.g. [11]).

We discuss some immediate properties of forward measure attractors. If x ∈ A(t0) then,
by the invariance of A, Φt,t0 x ∈ A(t) for all t ∈ R. In particular, this means that

A(t) ⊂ B+(A)(t),

for all t ∈ R. It follows that if �(A(t)) > 0 then �(B+(A)(t)) > 0 and hence we can have
that �(B+(A)(t) \ A(t)) = 0. That is,A is not attracting points (of positive measure) outside
of itself (the same holds in the autonomous situation), in fact it could be repelling points.

Any forward measure attractor must also be composed of entire solutions. It follows from
the definition of the forwardmeasure attractor above, that every entire solution having positive
measure forward basin of attraction (i.e. an entire solution that is a weak forward measure
attractor) is a forward measure attractor.

Local forward attractors (as defined in Sect. 1.2) are intrinsically non-unique [16, Exam-
ple 3.6], and we demonstrate this below with a forward measure attractor example.

Example 2.3 Consider the ordinary differential equation

ẋ = x2(x − 1) ,

which has two equilibria: a saddle x = 0, and a repeller x = 1. All solutions starting in
[0, 1) converge to 0, while solutions starting in (−∞, 0) diverge to −∞. The equilibrium
point x = 0 corresponds to an invariant nonautonomous setA with A(t) = {0} for all t ∈ R.
We note that A is not a local forward attractor because negative solutions diverge to −∞.
However,A is a forward measure attractor, and its basin is given by B(A)(t) = [0, 1) for all
t ∈ R.

A nonautonomous forward attractor is inherently non-unique, which is illustrated by this
autonomous situation. Under the definition, the attractor must be a nonautonomous invariant
set and hence any entire solution that converges to the attractor in the future can be added to
get another attractor. Thus, in the above example, we can take any trajectory passing through
the basin. That is, any trajectory such that x(t0) ∈ [0, 1), will be a forward measure attractor
as well, with basin [0, 1).
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The following example is inspired by the nonautonomous logistic equation [8].

Example 2.4 Consider the ordinary differential equation

ẋ = −e−t2 x2 ,

whose process is given by

Φt,t0(x0) = 1
1
x0

+ ∫ t
t0
e−s2 ds

,

and note that we have
∫ t
t0
e−s2 ds = 1

2

√
π(erf(t) − erf(t0)), where erf(t) is the Gauss error

function. For each x0 ∈ R, the pullback limit is given by

ξ(t, x0) = lim
t0→−∞ Φt,t0(x0) = x0

1 + 1
2 x0

√
π(erf(t) + 1)

.

Note that x0 �→ ξ(t, x0) is bijective for all t ∈ R, and for each fixed x0 ∈ R, the mapping
t �→ ξ(t, x0) is a solution to the above differential equation (and these are all solutions). The
forward limit

lim
t→∞ ξ(t, x0) = x0

1 + x0
√

π
,

is also bijective in x0, and thus, the distance of any two solutions ξ(t, x0) and ξ(t, x1) for
x0 �= x1 is bounded away from 0 uniformly in t ∈ R. This means that no solution attracts
another solution in the sense of both (classical, i.e. non-measure) pullback and forward
attraction. However, for a fixed x0 > 0, the invariant nonautonomous set A = {A(t)}t∈R,
defined by

A(t) = [
ξ(t,−x0), ξ(t, x0)

]

is a forwardmeasure attractor, since its fibers havepositiveLebesguemeasure.Moreprecisely,
�(B+(A)(t)) = ξ(t, x0) − ξ(t,−x0) > 0.

We saw two examples of nonautonomous flows for which the standard definition of a for-
ward attractor does not apply, even though the dynamics clearly exhibits attractive behaviour.
The next example illustrates that basins for attracting behaviour can be even more compli-
cated, illustratingwhat have been named ‘riddled’ basins of attraction (see e.g. [2, 21]), where
around every point in the basin there is a point arbitrarily close by that is not in the basin.

Example 2.5 We consider the following system of differential equations composed of a scalar
system with a subcritical pitchfork coupled to the Lorenz ’84 model [18].

ẋ = −y2 − z2 − ax + aF
ẏ = xy − bxz − y + G
ż = bxy + xz − z
ẇ = (x − λ)w + w3 − cw5

(2)

with a = 0.25, b = 4, F = 8 andG = 1, which are standard parameter values for Lorenz ’84
with chaotic variability (e.g. [18, Fig. 5]). We set c = 0.1 and note that w = 0 is an invariant
subspace for all parameter values, but whether it is attracting or repelling depends on the
parameter λ. Figure 1 illustrates the basin of attraction for the invariant subspace w = 0, for
two different values of λ.
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Fig. 1 Solutions of (2) starting on a grid of 300 × 300 uniformly space points in (x, w) ∈ [0, 1]2 with
y = z = 1 is integrated forward to time t = 100 via Python’s Scipy module using the Odeint solver for
ordinary differential equations. If the solution is deemed to converge to w = 0 (that is, |w| < 0.01) then the
initial condition is coloured purple, otherwise it is coloured yellow; left: λ = 1.20 illustrates an asymptotically
stable basin of attraction for w = 0; right: λ = 1.05 shows an approximation of the riddled basin of attraction
for the w = 0 attractor

Next we consider the question of uniqueness and minimality of measure attractors. In the
autonomous case, a measure attractor A is unique in the sense that there isn’t another measure
attractor A′ with almost surely the same basin of attraction.6 Thus, in Example 2.3, {0} is
the unique autonomous measure attractor. However, when considered as a nonautonomous
attractor it is clearly not unique, as already discussed. However, in Example 2.3, the attractor
is minimal. In [19], a measure attractor is defined to be minimal if no proper subset of it is a
measure attractor. In Example 2.4, the attractors are unique for a given basin, but there is no
minimal one.

2.2 Pullback Measure Attractors

This subsection dealswith the definition of pullbackmeasure attractors.A nonautonomous set
N = {N (t)}t∈R is said to be pullback attracted to an invariant and compact nonautonomous
set A if

lim
t0→−∞ d(Φt,t0N (t0), A(t)) = 0 for all t ≤ 0

and we write

N −→
pb

A.

We define the basin of pullback measure attraction B−(A) as the family of nonautonomous
sets that are pullback attracted to A, i.e.

B−(A) :=
{
N : N −→

pb
A
}

. (3)

Definition 2.6 (Pullback measure attractor) A nonempty, compact and invariant nonau-
tonomous setA is called a weak pullback measure attractor if there exists a nonautonomous

6 Suppose A is a measure attractor with basin of attraction B(A) and let A′ be another measure attractor with
B(A′) = B(A) almost surely. Then A∩ A′ is a closed proper subset of A and �(B(A)\B(A∩ A′)) = 0 which
is a contradiction becauseA is a measure attractor. Hence, there can be only one measure attractor with basin
of attraction equal to B(A) almost surely.
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set N ∈ B−(A) such that

lim inf
t→−∞ �(N (t)) > 0 . (4)

A weak pullback measure attractor A is called a pullback measure attractor if for any weak
pullback measure attractorA′

� A, there exists a nonautonomous setN ∈ B−(A) such that
for all N ′ ∈ B−(A′) with N ′ ⊂ N , we have

lim inf
t→−∞ �(N (t) \ N ′(t)) > 0 .

Remark 2.7 In the definitions above, the conditions on pullback attracted nonautonomous
sets are statements about limits as t → −∞. Note that the finite time structure of the
nonautonomous set does not play a role in their pullback attracting behaviour.

Remark 2.8 Using the differential equation ẋ = x , we demonstrate that (4) should not be
replaced by the weaker condition �(N (t)) > 0 for all t ≤ 0. This differential equation has
a repelling equilibrium at 0. We can find a nonautonomous set N , satisfying this weaker
condition and defined by N (t) = [0, e2t ] for all t ∈ R, which is attracted by the nonau-
tonomous setR = {0}t∈R that corresponds to the repelling equilibrium. Fix ε > 0 and using
Φt,t0(x0) = x0et−t0 , we get

d(Φt,t0(N (t0)), R(t)) = d([0, et+t0 ], 0) < ε whenever t0 < ln(ε) − t .

However, limt→−∞ �(N (t)) = 0, and therefore, R does not satisfy (4).

Remark 2.9 As in the case of forward measure attractors, pullback measure attractors must
also be composed of entire solutions. It follows that an entire solution that is a weak pullback
measure attractor must be a pullback measure attractor.

We define the deterministic basin of pullback attraction to be the nonautonomous set
B−
d (A) with fibres

B−
d (A)(t) =

{
x ∈ R

d : lim
t0→−∞ d(Φt,t0(x), A(t)) = 0

}
.

The deterministic basin of pullback attraction consists of fibres B−
d (A)(t) of points that

converge to A(t), however the points in the fibre actually ‘live’ in the infinite past. Note that
in the case of an invertible process, B−

d (A)(t) = B−
d (A)(s) for all t, s ∈ R, that is, the basin

does not depend on time.
Using the above deterministic basin of attraction we could have defined the pullback

measure attractor analogously to the forward one. That is, by requiring that, for a compact
invariant set A,

�(B−
d (A))(t)) > 0

for all t and in addition, for any invariant A′ ⊂ A, that we have

�(B−
d (A))(t) \ B−

d (A)(t)) > 0

for all t . However, as wewill see in Example 2.11 below; in the nonautonomous case it is pos-
sible that the deterministic basin of pullback attraction is empty, while there are well defined
non autonomous sets that are pullback attracted. First we give an example where both deter-
ministic and nonautonomous basins exist, followed by an example where the deterministic
basin is empty.
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Example 2.10 We consider the autonomous Bernoulli equation

ẋ = x3 − x (5)

with three equilibrium points; an attracting one at x = 0 and two repellers at x = ±1. The
flow is given by

φt (x) = sign(x)√
1 + (x−2 − 1)e2t

.

Consider for the t ∈ R the homeomorphism

ht (x) = (sin2(t) + 1)−1x ,

and define a processΦt,s via the nonautonomous coordinate transformation ht , i.e. for x > 0

Φt,t0(x) := ht ◦ φt−t0 ◦ h−1
t0 (x)

= (sin2(t) + 1)−1
√
1 + ((sin2(t0) + 1)x)−2 − 1)e2(t−t0)

.

The function Φt,s is a process since Φt0,t0 x = x and

Φt,s ◦ Φs,t0 = ht ◦ φt−s ◦ h−1
s ◦ hs ◦ φs−t0 ◦ h−1

t0

= ht ◦ φt−t0 ◦ h−1
t0 = Φt,t0 .

We note that if ((sin2(t0) + 1)x)−2 > 1 for all t0, i.e. x ∈ (− 1
2 ,

1
2 ), then Φt,t0 x → 0 as

t0 → −∞. Therefore (− 1
2 ,

1
2 ) is the deterministic pullback basin of attractor A0(t) = 0 for

all t ∈ R.
However, there are also nonautonomous sets that are pullback attracted. For example,

N (t) = (− 1
4 ,

1
4 ) for all t ∈ R is pullback attracted to A0. However, more interesting

nonautonomous sets are as well. Fix some 0 < δ << 1 and let

N (t0) =
{
x : |x | ≤ 1

sin2(t0) + 1
− δ

}
,

which is pullback attracted to A0(t) = 0. To see this, note that if x ∈ N (t0) then

|x(sin2(t0) + 1)| ≤ 1 − δ.

Let y := x(sin2(t0) + 1) = h−1
t0 (x) ∈ [−1+ δ, 1− δ]. Fix any ε > 0. Since φt is a flow and

{0} is an attracting fixed point with (−1, 1) as the basin of attraction, there exists a T0 < 0
such that for all t0 < T0 it holds that

d(φt−t0([−1 + δ, 1 − δ]), {0}) < ε.

Then it is clear that also d(ht ◦ φt−t0 ◦ h−1
t0 (N (t0))) < ε, since ht is contracting. It is

straightforward to see that �(N (t)) > 0 for all t ∈ R and therefore that A0(t) satisfies the
conditions of a pullback measure attractor as per Definition 2.6.

Example 2.11 We consider again the Bernoulli Eq. (5) from Example 2.10, with the nonau-
tonomous coordinate transformation

ht (x) = x − a sin t ,
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Fig. 2 Left: Trajectories of (6) with a = 1, starting at t0 = −8π and integrated forward to time 0, for initial
conditions in the range [−1, 1]. All trajectories, apart from those with initial conditions x0 = ±1 converge to
−a sin t . Starting at different initial times would change the range of initial conditions that converge. This is
shown in the second plot (right). Initial conditions at different starting times t0 ∈ [−16π,−8π ] are integrated
forward to t0 + 8π . Initial points that converge to −a sin t are coloured in purple, while those that diverge
are yellow. Note that there is no deterministic basin of attraction, i.e. there is no set of starting points that is
attracted to −a sin t for all t0

where a > 0, and this transforms the flow of (5) into the process

Φt,t0(x) := sign(x + a sin t0)√
1 + ((x + a sin t0)−2 − 1)e2(t−t0)

− a sin t . (6)

For φt−t0h
−1
t0 (x) to converge we require

−1 − a sin t0 < x < 1 − a sin t0.

If a < 1 then the set (−1 + a, 1 − a) is a deterministic basin of pullback attraction. If
a ≥ 1 then there is no deterministic set of values of x which satisfies the above for all t0,
however, the nonautonomous set D(t0) = {x : |x + a sin t0| ≤ 1 − δ} is pullback attracted
to A(t) = −a sin t for all a > 0 and any 1 > δ > 0, as illustrated in Fig. 2.

Lemma 2.12 Let A be a pullback measure attractor that attracts N = {N (t)}t∈R for the
process Φt,s , and let B−

d (A) denote the deterministic basin of pullback attraction. Then

B−
d (A)(t) =

⋃

N∈B−(A)

⋂

t0≤t

N (t0),

for all t ≤ 0.

Proof Let N̂ (t) := ⋃
N∈B−(A)

⋂
t0≤t N (t0). Suppose that x ∈ B−

d (A)(t). We can define

a nonautonomous set Ñ := {{x}}t∈R. Clearly Ñ ∈ B−(A) and x ∈ Ñ (t) for all t0 ≤ t

so that x ∈ ∩t0≤t Ñ (t0). Hence, B−
d (A)(t) ⊂ N̂ (t). Suppose next that x ∈ N̂ (t) so that

x ∈ ∩t0≤t N (t0) for someN ∈ B−(A). Then x ∈ N (t0) for all t0 ≤ t . By definition it follows
that,

d(Φt,t0 x, A(t)) ≤ d(Φt,t0N (t0), A(t)) → 0,

as t0 → −∞. 
�
We remark that the proof of Lemma 2.12 does not require the processΦt,s to be invertible.
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Remark 2.13 It follows from the proof of the above lemma that
⋃

N∈B−(A)

⋂

t0≤t

N (t0) =
⋃

N∈B−(A)

⋂

t0≤t

N (t0) ,

since if x ∈ ⋂
t0≤t N (t0), then the nonautonomous set N ′ defined by N ′(t) = N (t) ∪ {x}

belongs to the basin of pullback attraction B−(A).

2.3 Properties of Forward and Pullback Measure Attractors

In this section, we state some results giving properties of pullback measure attractors. The
next result applies both to forward and pullback attractors.

Proposition 2.14 LetΦt,s be a process with a weak pullback (resp. forward) measure attrac-
tor A and let ht : R

d → R
d be a homeomorphism on R

d for all t ∈ R such that the maps
(t, x) �→ ht (x) and (t, x) �→ h−1

t (x) are continuous. Furthermore, suppose that h−1
t is

Lipschitz continuous for all t ∈ R, with a Lipschitz constant K > 0 that does not depend on
t ∈ R. Then the process Ψt,t0 , given by

Ψt,t0 := ht ◦ Φt,t0 ◦ h−1
t0 , (7)

has a weak pullback (resp. forward) measure attractor Ah = {Ah(t)}t∈R given by Ah(t) =
ht (A(t)).

Proof As seen in Example 2.10, Ψt,t0 is a process, and continuity in (t, t0, x) follows from
the continuity assumptions on (t, x) → ht (x) and (t, x) → h−1

t (x). Note thatAh is compact
since continuous functions preserve compactness. Ah is invariant for Ψ since Ψt,t0 Ah(t0) =
ht ◦ Φt,t0 ◦ A(t0) = ht ◦ A(t) = Ah(t).

Let N be a nonautonomous set in B−(A), the basin of pullback measure attraction of A
and let Nh(t) := ht N (t). We note that

Φt,t0 ◦ h−1
t0 Nh(t0) = Φt,t0N (t0),

so that, since limt0→−∞ d(Φt,t0N (t0), A(t)) = 0 for all t ≤ 0, it follows that

lim
t0→−∞ d(Ψt,t0Nh(t0), Ah(t)) = lim

t0−∞ d(ht ◦ Φt,t0 ◦ h−1
t0 Nh(t0), ht A(t)) = 0,

where we have used the continuity of ht in the state space variable.
By [12, Prop 2.2], it holds that

�(h−1
t (Nh(t))) ≤ Kd�(Nh(t)),

so that

K−d�(N (t)) ≤ �(Nh(t)).

Taking lim inf in t on both sides shows that lim inf t→−∞ �(Nh(t)) > 0. This shows that Ah

is a weak pullback measure attractor for ψt,s .
Next we show that it is a weak forward measure attractor as well. Let x ∈ hs ◦ B+(A)(s)

for some s ∈ R. Then, y = h−1
s (x) ∈ B+(A)(s) so that

d(Ψt,s x, Ah(t)) = d(ht ◦ Φt,s y, ht ◦ A(t)) → 0,

as t → ∞ and hence hs ◦ B+(A)(s) ⊂ B+(Ah)(s).
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It remains to show that �(hs ◦ B+(A)(s)) > 0. By [12], Proposition 2.2, it holds that

�(h−1
s (hs ◦ B+(A)(s))) ≤ Kd�(hs ◦ B+(A)(s)),

so that

0 < K−d�(B+(A)(s)) ≤ �(hs ◦ B+(A)(s)).

Hence Ah is a weak forward measure attractor for ψt,s . 
�
We can use Proposition 2.14 to show there is an equivalence between attractors under

suitable nonautonomous coordinate changes.

Corollary 2.15 LetΦt,s be a process and let ht : R
d → R

d be a bi-Lipschitz homeomorphism
on R

d for all t ∈ R with a Lipschitz constant K > 0 that does not depend on t ∈ R, such that
themaps t → ht (x) and t → h−1

t (x) are continuous for all x ∈ R
d . Then the nonautonomous

set Ah, given by Ah(t) := ht A(t), is a weak pullback (forward, resp.) measure attractor for
Ψ , defined by (7)) if and only if A is weak pullback (forward, resp.) measure attractor for
Φt,s .

Proof Note that Φt,t0 = h−1
t ◦ Ψt,t0 ◦ ht0 and the result follows from Proposition 2.14. 
�

Definition 2.16 (Measure pullback absorbing set)A nonempty, compact nonautonomous set
B = {B(t)}t∈R with fibres in R

d is called measure pullback absorbing if there exists a
nonautonomous setN = {N (t)}t∈R with lim inf t→−∞ �(N (t)) > 0 such that for each t ∈ R

there exists a T = T (t,N ) > 0 such that Φt,t0N (t0) ⊂ B(t) for all t0 ≤ t − T .

Theorem 2.17 Let B = {B(t)} be measure pullback absorbing and forward invariant for
Φt,s . Then there exists a unique weak pullback measure attractor A determined by

A(t) :=
⋂

t0≤t

Φt,t0 B(t0),

for all t ≤ 0.

Proof It can be shown (see proof of [16, Lemma 2.20]) that the nonautonomous set defined
by

A(t) :=
⋂

t0≤t

Φt,t0 B(t0),

is non-empty, compact and Φt,s invariant. Note that A(t) ⊂ B(t) so we can assume that
A(t) ⊂ N (t) for all t ∈ R. If not, we can replace N (t) with N (t) ∪ B(t).

We just have to show thatN is pullback attracted toA. Fix any t . By the forward invariance
and compactness of B it is easy to show that limt0→−∞ d(Φt,t0 B(t0), A(t)) = 0 (see e.g.
[17, Thm 7.1]). Hence, for all ε > 0, there exists a time Tt,ε ≥ 0 such that for all t0 < −Tt,ε
we have

d(Φt,t0 B(t0), A(t)) < ε.

Since B is absorbing, there exists a T (t0,N ) such that Φt0,s0N (s0) ⊂ B(t0) for all s0 ≤
t0 − Tt0,N . Since Φt,s is a process, by the evolution property it holds that

Φt,s0N (s0) = Φt,t0Φt0,s0N (s0) ⊂ Φt,t0 B(t0),
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hence

d(Φt,s0N (s0), A(t)) ≤ d(Φt,t0 B(t0), A(t)) ≤ ε,

and hence A is a weak pullback measure attractor.
Suppose A′ is another weak measure attractor that attracts the same nonautonomous set

with A′(t) ⊂ N (t). Then

d(A′(t), A(t)) = lim
t0→−∞ d(Φt,t0 A

′(t0), A(t)) ≤ lim
t0→−∞ d(Φt,t0N (t0), A(t)) = 0

and similarly d(A(t), A′(t)) = 0, hence A′ = A. 
�
Remark 2.18 If Φt,s is a continuous, invertible process on a compact space X , then a weak
pullback measure attractor always exists, but may be the whole space. To see this, consider
any I ⊂ X , a non-empty set with positive measure and define a nonautonomous set A :=
{A(t)}t∈R by

A(t) :=
⋂

τ>0

⋃

s≤−τ

Φt,s I ,

for all t ∈ R. Since X is compact, it is easy to see thatA is compact and non-empty. Invariance
follows by continuity and invertibility.

Let Bτ,t = ⋃
k≤−τ Φt,k I and note that A(t) = ⋂

τ>0 Bτ,t and Bs,t ⊂ Bτ,t for any τ < s,
so that Bτ,t is a non-increasing sequence of sets. Hence d(Bτ,t , A(t)) → 0 as τ → ∞. Note
that Φt,s I ⊂ Bτ,t for all s ≤ −τ . Hence,

lim
s→−∞ d(Φt,s I , A(t)) = 0, (8)

and hence A is a weak pullback attractor with {I }t∈R ∈ B−(A).

2.4 AutonomousMeasure Attractors as Forward and Pullback Measure Attractors

Processes generalise flows in the following sense. Given a flow φ, there is a correspond-
ing process Φ, defined by Φt,s(x) = φt−s(x). In this subsection, we consider processes
corresponding to flows that have a measure attractor, and we analyse consequences for the
existence of forward and pullback measure attractors.

Let A be a nonautonomous set. We define the limit inferior and limit superior of A at ∞
(see e.g. [6, Definition 1.1.1]) as

lim inf
t→∞ A(t) :=

{
x : lim

t→∞ d(x, A(t)) = 0
}

and

lim sup
t→∞

A(t) :=
{
x : lim inf

t→∞ d(x, A(t)) = 0
}

,

respectively.

Theorem 2.19 Letφ be a flow, and consider the corresponding processΦ. Then the following
statements hold.

(i) A is a weak measure attractor if and only if A = {A}t∈R is weak forward measure
attractor.

(ii) If A = {A}t∈R is a forward measure attractor, then A is a measure attractor.
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(iii) Let A be a measure attractor, and assume that for all weak forward measure attractors
A′ with A′

� A = {A}t∈R, the set
⋃

t>t0 A
′(t) is a proper subset of A. Then A is a

forward measure attractor.
(iv) Let A be a measure attractor such thatA = {A}t∈R is a forward measure attractor. Then

for any weak forward measure attractorA′ = {A′(t)}t∈R � A, the set lim inf t→∞ A′(t)
is a proper subset of A.

Proof (i) The definition of the basin of forward measure attraction of A implies

B+(A)(t0) =
{
x ∈ R

d : lim
t→∞ d(Φt,t0(x), A(t0)) = 0

}

=
{
x ∈ R

d : lim
t→∞ d(φt−t0(x), A) = 0

}
= B(A) ,

and hence �(B+(A)(t0)) = �(B(A)) > 0 for all t0 ∈ R.
(ii) Suppose that A is a forward measure attractor. Let A′ ⊂ A be a proper invariant subset

of A with respect to φ. ThenA′ = {A′}t∈R is a proper invariant subset ofA with respect
to Φt,s . Then it follows using the proof of (i) above that for any t ∈ R, we have

0 < �(B+(A)(t) \ B+(A′)(t)) = �(B(A) \ B(A′)),

and this means that A is a measure attractor.
(iii) Let A′

� A be a weak forward measure attractor. By assumption we have that Ã :=⋃
t≥t0 A

′(t) is a proper subset of A and we can see that it is compact and invariant with

respect to φ. Since A is a measure attractor, we get �(B(A) \ B( Ã)) > 0. Note that
A′(t) ⊂ Ã for all t ≥ t0 and consequently B+(A′)(t) ⊂ B( Ã) so that

�(B+(A)(t) \ B+(A′)(t)) = �(B(A) \ B+(A′)(t)) > 0

for all t ≥ t0. This implies that A is a forward measure attractor.
(iv) Suppose Â := lim inf t→∞ A′(t) is not a proper subset of A, that is, Â = A. Note that Â

is closed.
Since A is a measure attractor, we have

lim
t→∞ d(φt−t0 x, A) = 0

for all x ∈ B(A) and hence,
⋂

t>0

⋃

s>t

φt−t0 x ⊂ A = Â.

It follows that,

lim
t→∞ d(y, A′(t)) = 0,

for all y ∈ ⋂
t>0

⋃
s>t φt−t0 x and hence, since y belongs to a compact set it follows that7

lim
t→∞ d

(
φt−t0 x, A

′(t)
)

= 0.

This means that x ∈ B(A′)(t0). It follows that �(B+(A)(t0) \ (B+(A′)(t0)) = 0 and
hence A is not a forward measure attractor. 
�

Next, we compare autonomous and nonautonomous pullback measure definitions.

7 d(φt−t0 x, A
′(t)) ≤ d(φt−t0 x, ω(x)) + d(ω(x), A′(t)), where ω(x) is the ω-limit set of x .
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Theorem 2.20 SupposeΦt,t0 = φt−t0 is a process induced by the flow φt on a compact space
X ⊂ R

d .

(i) Suppose that A is a weakmeasure attractor forφt . ThenA = {A}t∈R is a nonautonomous
weak pullback measure attractor.

(ii) Suppose thatA = {A}t∈R is aweakpullbackmeasureattractor such that�(
⋂

t0<t N (t0)) >

0 for some N ∈ B−(A). Then A is a weak measure attractor.

Proof (i) Fix some ε > 0. Let Uε ⊂ B(A) be as in Proposition 1.1 and let N (t) = Uε for
all t ≤ 0. Recall that l(Uε) ≥ �(B(A)) − ε so that we have lim inf t→−∞ �(N (t)) > 0.
Furthermore d(Φt,t0N (t0), A(t)) = d(φt−t0Uε, A) → 0 as t0 → −∞. Hence A is a
weak pullback measure attractor.

(ii) Note that B(A) = B−
d (A). Since ∩t0<t N (t0) ⊂ B−

d (A), by Lemma 2.12, we have that
�(B(A)) > 0 and hence A is a weak measure attractor.


�

Example 2.21 Consider the flow φt generated by the differential equation

θ̇ = ω

ẏ = −y

on (θ, y) ∈ S1 ×[−1, 1], where ω > 0. This differential equation has a hyperbolic attracting
limit cycle A = S1 × {0} that is the only measure attractor for the flow on this space.
Although this is therefore a minimal measure attractor, we claim that it contains infinitely
many nonautonomous pullback measure attractors. To verify this claim, consider any proper
compact subset A′ ⊂ A that has positive measure. Denote by φt the solution flow for the
dynamics on S1 and note that φt (θ0) = ωt + θ0 preserves Lebesgue measure on S1. Then
the nonautonomous set

Ã(t) = {(θ, 0) : θ − ωt ∈ A′} = {θ ∈ φ−1
t (A′)} × {0}

is compact and invariant and pullback attracts the nonautonomous set

N (t) = Ã(t) × [−1, 1].
Note that

lim inf
t→−∞ �(N (t)) = 2�(A′) > 0,

since φt preserves Lebesgue measure. Moreover any proper compact subset A′′ ⊂ A′ can
only pullback attract nonautonomous sets whose Lebesgue measure is strictly smaller than
this in the limit. Hence { Ã(t)}t∈R is a nonautonomous pullback measure attractor.

3 Statistical Attractors for Nonautonomous Dynamical Systems

In this section, we propose notions of statistical attraction for nonautonomous dynamical
systems. Similarly to the autonomous situation (cf. Proposition 1.2), we require that points
in the basin of attraction converge to the attractor only on a relatively dense subset of times.
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3.1 Forward and Pullback Statistical Attractors

Let Φ be a process andA = {A(t)}t∈R be an invariant nonautonomous set. Motivated by the
autonomous quantity L introduced in Sect. 1.1, we consider

L̃(t0, x, Bε(A), s) := 1

s
�
({
t ∈ [0, s] : Φt+t0,t0(x) ∈ Bε(A(t + t0))

})
,

for t0 ∈ R, s ∈ R
+ and we define the basin of forward statistical attraction of A as the

nonautonomous set

B+
stat (A)(t0) =

{
x ∈ R

d : lim
s→∞ L̃(t0, x, Bε(A), s) = 1 for all ε > 0

}
.

Analogously to Proposition 1.2, one can show that x ∈ B+
stat (A)(t) if and only if there exists

a set Tx,t ⊂ R
+ of full density at ∞ such that

lim
s→∞, s∈Tx,t

d(Φs,t (x), A(s)) = 0 .

Forward statistical attractors have the property that they attract a set of positive measure
statistically.

Definition 3.1 (Forward statistical attractor)We say that a nonempty, compact and invariant
nonautonomous set A is a forward statistical attractor if there exists a t0 ≥ 0 such that for
all t ≥ t0, �(B+

stat (A)(t)) > 0.

Definition 3.2 (Pullback statistical attractor)We say that a nonempty, compact and invariant
nonautonomous set A is a pullback statistical attractor if there is a nonautonomous set
N = {N (t)}t∈R and a set T of full density at −∞ such that for all t ≤ 0

(i) lim infs→−∞
s∈T

�(N (s)) > 0,

(ii) and

lim
t0→−∞
t0∈T

d(Φt,t0N (t0), A(t)) = 0.

Analogously to the basin of pullbackmeasure attractionwe can define the basin of pullback
statistical attraction, B−

stat (A) as a family of all nonautonomous sets that satisfy conditions
(i) and (ii) of Definition 3.2.

Remark 3.3 It is clear that B−(A) ⊂ B−
stat (A) and B+(A) ⊂ B+

stat (A), hence it follows that
nonautonomous measure attractors are nonautonomous statistical attractors.

Remark 3.4 Note that to show A is a weak pullback statistical attractor, it is enough to
construct a sequence of sets Tεn ,t , with εn → 0 as n → ∞, such that d(φt,t0N (t0), A(t)) < εn
for all t0 ∈ Tεn ,t . This is because we can use Lemma 1.3 to find a set Tt , of full density at
−∞, on which

lim
t0→−∞
t0∈Tt

d(Φt,t0N (t0), A(t)) = 0.

Example 3.5 We give an example of a statistical pullback attractor which is not a measure
pullback attractor. We consider the linear differential equation

ẋ = a(t)x,
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Fig. 3 A schematic of the intervals Ik , Jk and Īk . Any positive s is in the interval [2n−1, 2n ] for some n ∈ N.
If we want to bound the quantity 1

s �(T ∩ [−s, 0]) from below we can note that this will be smallest when

−s = −2n−1 − 2n, since no measure from Īn is entering the measure of �(T ∩ [−s, 0])

where

a(t) =
{

−1 t ∈ Ik
2k−1 t ∈ Jk,

with sequences of intervals {Ik}k∈Z+ and {Jk}k∈Z+
0
of the form

Ik = [−2k + 1,−2k−1) and Jk = [−2k,−2k + 1) ,

and let Φt,t0 denote the associated process. Then for all k ∈ N and x0 ∈ R, we have

Φ0,−2k (x0) = x0e
∫ 0
−2k a(s) ds = x0e

∑k
i=1

∫
Ii

−1 ds+∑k
i=0

∫
Ji
2i−1 ds

= x0e
∑k

i=1 1−2i−1+∑k
i=0 2

i−1 = x0e
k−(2k−1)+2k− 1

2 = x0e
k+ 1

2 .

Now define Īk = [−2k + 1,−2k−1 − 2k] for k ≥ 5. Suppose that tk ∈ Īk . Then there exists
λk ∈ [0, 1) such that the representation tk = (1 − λk)(−2k + 1) + λk(−2k−1 − 2k) holds.
Then

Φ0,tk (x0) = x0e
∫ 0
−2k−1 a(s) ds+∫ −2k−1

tk
a(s) ds

= x0e
k− 1

2+2k−1+tk

= x0e
k− 1

2+(1−λk )(1−2k−1)−2kλk

→ 0,

as k → ∞.

Let T = ⋃∞
i=5 Īi and note that this set has full density at −∞, since, for any s ∈ R

+,
there is a n ∈ N such that −s ∈ [−2n,−2n−1], so that

1

s
�(T ∩ [−s, 0]) ≥ 1

2n + 2(n + 1)

n∑

k=5

−2k−1 − 2k − (−2k + 1)

= 1

2n + 2(n + 1)

n∑

k=5

2k−1 − 2k − 1

= −n2 − 2n + 2n + 8

2n + 2(n + 1)
→ 1,

as n → ∞. See Fig. 3 for an illustration of the intervals Ik, Jk and Īk which helps to see the
inequality above holds.
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From the above calculation it follows that for any fixed x0 ∈ R, if tk ∈ T and tk → −∞
as k → ∞, then Φ0,tk (x0) → 0. In fact, we can see that any bounded nonautonomous set
will be statistically pullback attracted to 0.

However, we can pick a sequence of times not in T , e.g. t j = −2 j so that no bounded set
converges to 0.

3.2 Properties of Forward and Pullback Statistical Attractors

Next we establish that a statistical attractor of an autonomous dynamical system is also a
pullback statistical attractor. We return to this via an example in Sect. 3.3.

Theorem 3.6 (Statistical attractors are pullback and forward statistical attractors) Suppose
that Φt,t0 = φt−t0 is a process that is induced by flow φt defined on a compact set X ⊂ R

d .
Let A be a statistical attractor of φt . Then the following statements hold.

(i) A = {A}t∈R is a pullback statistical attractor
(ii) A = {A}t∈R is a forward statistical attractor.

Proof (i) Since A is a statistical attractor, we have b := �(Bstat (A)) > 0. For any s > 0 and
η > 0, we define

τ(x, s, η) := {t ∈ [0, s] : φt (x) ∈ Bη(A)}.
Since A is a statistical attractor, we have

lim
s→∞

�(τ(x, s, η))

s
= 1 for all x ∈ Bstat (A) and η > 0 , (9)

i.e. the proportion of the time orbits spent away from any neighbourhood of A goes to zero.
Let

Mη(t) := {
x ∈ Bstat (A) : φt (x) ∈ Bη(A)

}

and note that �(Mη(t)) ≤ b.
We have that

∫ s

0
�(Mη(t)) dt =

∫ s

0

∫

Bstat (A)

1τ(x,s,η)(t) dx dt

=
∫

Bstat (A)

∫ s

0
1τ(x,s,η)(t) dt dx

=
∫

Bstat (A)

�(τ (x, s, η)) dx,

and hence, using Fatou’s lemma and (9), we get

lim inf
s→∞

1

s

∫ s

0
�(Mη(t)) dt ≥

∫

Bstat (A)

lim inf
s→∞

�(τ(x, s, η))

s
dx

= �(Bstat (A)) = b,

and since �(Mη(t)) ≤ b, this implies

lim
s→∞

1

s

∫ s

0
�(Mη(t)) dt = b.
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Hence, for all ε > 0, there exists a time S̃(ε) such that for all s ≥ S̃(ε), 1
s

∫ s
0 �(Mε(t)) dt ≥

b−ε. We can choose S̃ to be strictly monotonically decreasing in ε and such that S̃(ε) → ∞
as ε → 0 8.

Define the function E(t) := S̃−1(t), and note that E(t) → 0 as t → ∞. Let M(t) =
ME(t)(t). Then,

lim inf
s→∞

1

s

∫ s

0
�(M(t)) dt ≥ lim inf

s→∞
1

s

∫ s

0
�(ME(s)(t)) dt

≥ lim inf
s→∞ (b − E(s)) = b. (10)

We consider the set Td = {t ≥ 0 : �(M(t)) > d} for some d ∈ (0, b) and show that Td is
a set of full density at∞, i.e. lims→∞ 1

s �(Td ∩[0, s]) = 1 . Suppose to obtain a contradiction
that lim sups→∞ 1

s �(T
c
d ∩ [0, s]) = ξ > 0 so that lim infs→∞ 1

s �(Td ∩ [0, s]) = 1 − ξ . Fix
ε = ξ(b − d). Then,

lim inf
s→∞

1

s

∫ s

0
�(M(t)) dt = lim inf

s→∞
1

s

( ∫

Td∩[0,s]
�(M(t)) dt +

∫

T c
d ∩[0,s]

�(M(t)) dt
)

≤ lim inf
s→∞

1

s

(
�(Td ∩ [0, s])b

)
+ lim sup

s→∞
1

s

(
�(T c

d ∩ [0, s])d
)

= (1 − ξ)b + ξd = b − ξ(b − d) = b − ε,

which is a contradiction of (10).
Let N (t) = M(−t). Then it holds that

lim inf
t→−∞,
t∈−Td

�(N (t)) > 0.

Finally, let T0 = −Td . We have that that

lim
t0→−∞
t0∈T0

d(Φ0,t0N (t0), A) = lim
t0→−∞
t0∈T0

d(φ−t0ME(−t0)(−t0), A) = lim
t0→−∞
t0∈T0

E(−t0) = 0.

It remains to show that the above holds for all t ∈ R, that is,

lim
t0→−∞
t0∈T0

d(Φt,t0N (t0), A) = 0. (11)

Let t ∈ R and fix some ε > 0; continuity of Φt,0 implies that there exists a δ > 0 such that

Φt,0Bδ(A(0)) ⊂ Bε(A(t)) . (12)

Since

lim
t0→−∞
t0∈T0

d(Φ0,t0N (t0), A(0)) = 0 ,

there exists a τ = τ(ε) < 0 with

d(Φ0,t0N (t0), A(0)) < δ ⇐⇒ Φ0,t0N (t0) ⊂ Bδ(A(0)) for all t0 ∈ T0 and t0 < τ

8 To see this, note that for ε′ > ε, it holds that 1
s
∫ s
0 �(Mε′ (t)) dt > 1

s
∫ s
0 �(Mε(t)) dt . Let S(ε) := inf{s >

0; 1
s̃

∫ s̃
0 �(Mε(t)) dt > b − ε ∀ s̃ ≥ s}. Then S(ε′) ≤ S(ε) so that S is monotone decreasing function. Note

that for some large enough ε̂, we must have S(ε̂) = 0. Let g(ε) be a strictly monotone decreasing function
such that g(ε̂) = 0 and define S̃(ε) = S(ε)+g(ε), so that S̃ is strictly monotone decreasing. Note furthermore
that S̃(ε) → ∞ as ε → 0.
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This implies using the cocycle property and (12) that

Φt,t0N (t0) ⊂ Bε(A(t)) for all t0 ∈ T0 and t0 < τ ,

and we get (11) as required.
(ii) We need to show that

B+
stat (A)(t0) =

{
x ∈ R

d : lim
s→∞ L̃(t0, x, Bε(A), s) = 1 for all ε > 0

}
,

has positive measure for all t0 ∈ R.

Let x ∈ Bstat (A). Then,

L̃(t0, x, Bε(A), s) := 1

s
�
({
t ∈ [0, s] : Φt+t0,t0(x) ∈ Bε(A(t + t0))

})

= 1

s
�
({
t ∈ [0, s] : φt (x) ∈ Bε(A))

})
,

and hence lims→∞ L̃(t0, x, Bε(A), s) = 1 by definition of Bstat (A). Hence, Bstat (A) ⊂
B+
stat (A)(t0) so that �(B+

stat (A)(t0)) > 0 for all t0 ∈ R, which completes the proof. 
�
Proposition 3.7 Let Φt,s be a process with a pullback (forward, resp.) statistical attractor
A and let ht : R

d → R
d be a homeomorphism on R

d for all t ∈ R such that the maps
(t, x) �→ ht (x) and (t, x) �→ h−1

t (x) are continuous. Furthermore, suppose that h−1
t is

Lipschitz continuous for all t ∈ R, with a Lipschitz constant K > 0 that does not depend
on t ∈ R. Then Ψ , given by the nonautonomous coordinate transformation (7) is a process
and has a pullback (forward, resp.) statistical attractor Ah = {Ah(t)}t∈R given by Ah(t) =
ht (A(t)).

Proof The proof is very similar to Proposition 2.14. 
�
We note that A = {A} from Theorem 2.20 (i) may not be a pullback measure attractor

even if A is a measure attractor (that is, we can only be sure that A is a weak pullback
attractor). This is because it is possible to find examples of measure attractors that contain a
proper subset A′ which is a statistical attractor such that B(A) =0 Bstat (A′) and for which
it is possible to construct nonautonomous sets which are pullback attracted to A′. This is
illustrated in the next subsection.

3.3 Example Illustrating Pullback Measure Attraction of an Autonomous Statistical
Attractor

Theorem 3.6 demonstrates that a statistical attractor for an autonomous system on a compact
subset of R

d is in fact a pullback statistical attractor when considered as a nonautonomous
system. It is our conjecture that it is in fact a pullback measure attractor as well. In this
section we present an explicit example that illustrates how a suitable nonautonomous basin
of pullback measure attraction can be constructed: its geometry is quite subtle as different
points need to be avoided in different past fibres.

We identify the unit circle S1 with the unit interval [0, 1] and consider the piecewise
smooth autonomous differential equation

θ̇ =
{
y3 : θ ≤ y

1 : θ > y

ẏ = −y2 ,

⎫
⎪⎪⎬

⎪⎪⎭
(13)
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defined on the compact phase space (θ, y) ∈ S1 × [0, 1]. See Fig. 4 for an illustration of
trajectories of the system described by (13).

The y component of the solution to this autonomous differential equation is decaying
with time (y → 0 as t → ∞), so that the θ component is getting slower in the region on
the left of the line y = θ , while to the right of it, the change it θ is remaining constant.
This means that solutions spend longer and longer time near to {(0, 0)}. Each individual
trajectory will always leave any neighbourhood of {(0, 0)} eventually (that is, its limit points
are S1 × {0}, however the proportion of time spent outside any neighbourhood of {(0, 0)}
tends to 0. Hence, A = S1 × {0}, is an (autonomous) measure attractor which contains
a singleton set A′ = {(0, 0)}, a saddle-node equilibrium, that is an (autonomous) statistical
attractor, for which the statistical basin of attraction is the whole phase space.

Recall that Theorem 2.20, (i) implies that the (autonomous) measure attractor A is a weak
pullbackmeasure attractorA = {A}t∈R.Wenowdemonstrate thatA is not a pullbackmeasure
attractor, since it turns out that A′ = {A′}t∈R is a pullback measure attractor that attracts
nonautonomous sets of maximal measure. This is formulated in Proposition 3.8 below.

Proposition 3.8 For the flow generated by (13)A′ is a pullback measure attractor. Moreover
for all

N = {N (t)}t∈R ∈ B−(A),

there exists N ′ = {N ′(t)}t∈R ∈ B−(A′) with N ′ ⊂ N and

lim inf
t→−∞ �

(
N (t) \ N ′(t)

) = 0.

This means in particular that A is a weak pullback measure attractor but not a pullback
measure attractor.

Before starting the proof, we explain the strategy briefly. We construct the nonautonomous
set N ′ by taking N ′(t) to contain the preimage of sets of points closer and closer to (0, 0)
as t → −∞. The structure of the differential equation, with a skew product structure and
an order-preserving property, allows us to make explicit estimates. It turns out convenient to
take as the sets of points close to (0, 0), the points above the line y = θ where the solution
trajectories are slowing down as y → 0 for some small (and decreasingwith time) y = α > 0
(see Fig. 4; the green intervals illustrate the compliment of the set we consider). We can then
show that N (t) has full measure in the limit t → −∞. Crucially, this does not only hold for
sub-sequences of times in a set of full density at −∞.

Proof Denote by φt (θ, y) = (ψt (θ, y), ϕt (y)) the flow of (13), and define Ly : = [0, 1] ×
{y}. Note that φt (Ly) = Lϕt (y) since the time evolution of y does not depend on θ . In fact,
this part of the system can be solved explicitly using separation of variables, and we get

ϕt (y) = 1
1
y + t

for all y ∈ [0, 1] and t > 1 − 1

y
. (14)

For given 1 ≥ α > β > 0, there exists a time Tα,β > 0 with ϕTα,β (α) = β. It follows from

(14) that Tα,β = 1
β

− 1
α
.

We consider for a given α > 0 the set

Mα(t) = {
θ ∈ [0, 1] : ψ−t (θ, α) ∈ [0, ϕ−t (α)]} for all t ≤ 0 ,

which is the θ -part of the preimage of [0, ϕ−t (α)] × {ϕ−t (α)} under φ−t , and concerns the
slow part of the piecewise-defined differential equation. See Fig. 4, which shows, in green,
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Fig. 4 Schematic of Step 2. Red lines denotes the trajectory through the point (1, β3), while the blue is the
trajectory through (β3, β3). The green interval shows the preimage of the interval [1, β3] × {β3} as it travels
back to δ3. Step 2 of the proof shows that the length of this green interval goes to zero as k → ∞ (and
Fk−1(α) = βk → 0)

the preimage of the compliment of such an interval. It follows that

Mϕτ (α)(t + τ) = ψτ (Mα(t) × {α}) for all α > 0, t ≤ 0 and τ ∈ [0,−t] .
Now it is natural to consider for a given N = {N (t)}t∈R ∈ B−(A), the nonautonomous set
N ′ = {N ′(t)}t∈R, defined by

N ′(t) := N (t) ∩
⋃

α∈(0,1]
Mα(t) × {α} for all t ≤ 0

and N ′(t) = N (t) for all t > 0. It follows that N ′ ∈ B−(A′), and we show in the following
that

lim
t→−∞

∫ 1

0
�1(Mα(t)) dα = 1 ,

where �1 denotes the one-dimensional Lebesgue measure in the fiber {y = α}, which implies
lim inf t→−∞ �

(
N (t) \ N ′(t)

) = 0.
The remaining proof is divided in four steps.
Step 1. The return map F : (0, 1] → (0, 1) of the flow φt to the section {0} × (0, 1] can

be approximated by

F(x) = x2

2
− 3x4

8
+ O(x6) for x → 0 . (15)

Wefirst note that in the region {y ≥ θ}, we have θ̇ = y3, and this leads to dθ
dy = y3

−y2
= −y,

which implies that trajectories in this region satisfy

θ(y) = − y2

2
+ K1 (16)
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for some K1 ∈ R. Similarly, one can see that trajectories staying in the region {y < θ} satisfy

θ(y) = 1

y
+ K2 (17)

for some constant K2 ∈ R.
We now aim at representing the return map F as a composition of two mappings r and s.

For a given x ∈ (0, 1], the trajectory starting in (0, x) will eventually cross the identity line

{y = θ} line, say at (u, u) for some u ∈ (0, 1), which, by (16) satisfies u2
2 + u = K1, so that

θ(y) = − y2

2 + u2
2 + u. At (0, x), we have x2

2 = u2
2 + u, which implies u = √

1 + x2 − 1 =:
r(x). Using the binomial theorem, we get

r(x) = x2

2
− x4

8
+ O(x6) . (18)

For the next part of the return map, starting at (u, u) = (r(x), r(x)), we use (17). We quickly
see that K2 = u − 1

u and for the y-component at the return to the section {0}× (0, 1], we get
s(u) = 1

1+u−1−u
, which satisfies the approximation

s(u) = u − u2 + 2u3 + O(u4) . (19)

Combining both leads to the approximation (15). In summary, the trajectory starting in (0, x)
until reaching (0, F(x)) is given by

{
θ(y) = 1

2 (x
2 − y2) : y ∈ [r(x), x] ,

θ(y) = 1
y − r(x)−1 + r(x) : y ∈ [s(r(x)), r(x)] . (20)

Step 2. There exists α0 > 0 such that for all α ∈ (0, α0], the following holds: With
βk = Fk−1(α) for k ∈ N, we show that there exists a k0 ∈ N such that for all k > k0, there
exists δk ∈ (β2, β1) with

φ−Tk

([βk, 1] × {βk}
) = [

0, 1
2 (α

2 − δ2k )
] × {δk} ,

where Tk > 0 is chosen such that ϕTk (δk) = βk . In addition, limk→∞ δk = α = β1.

Note that F ′(0) = 0, and (15) implies that F ′′(x) = 1− 9x2
2 +O(x4), and thus F ′′(x) > 0

in a neighbourhood of 0, whichmeans that F is strictly convex in a neighbourhood of 0. Since
F is strictlymonotonically increasing, the inverse F−1 is strictly concave (in a neighbourhood
of 0), and so are iterates of F−1. We choose α0 > 0 such that F−1 is strictly concave on
[0, α0]. We make use of the fact that for strictly concave functions g : [0, α0] → R and
0 < a < b < c < α0, we have9

g(c) − g(a)

c − a
>

g(c) − g(b)

c − b
. (21)

Choose α ∈ (0, α0) and note that then the sequence (βk)n∈N is defined as above, and we
have α = β1. For k ∈ N, define δk := F−k+1(s(βk)) ∈ (β2, β1).

For any k ∈ N, we can apply the inequality (21) for the (−k + 1)-th iterate of F−1,
g = F−k+1, with a := βk+1, b := s(βk) and c := βk , and we get

F−k+1(βk) − F−k+1(βk+1)

βk − βk+1
>

F−k+1(βk) − F−k+1(s(βk))

βk − s(βk)
,

9 The definition of strict concavity implies g(b) > b−c
a−c g(a)+ a−b

a−c g(c), from which elementary calculations
lead to the above inequality.
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which is equivalent to

β1 − β2

βk − βk+1
>

β1 − γ
(k)
1

βk − s(βk)
.

We get

β1 − δk < (β1 − β2)
βk − s(βk)

βk − βk+1

= (β1 − β2)
β2
k − 2β3

k + O(β4
k )

βk − 1
2β

2
k + 3

8β
4
k + O(β6

k )
→ 0 as k → ∞ , (22)

where we used (15) and (19).
This implies that there exists a k0 ∈ N such that δk ≥ r(α) for all k > k0 (note that

α = β1). For k > k0, choose Tk > 0 such that ϕTk (δk) = βk . It follows that

φ−Tk (βk, βk) = (0, δk) ,

and we get that

φ−Tk (1, βk) = ( 12 (α
2 − δ2k ), δk) .

Here, we have applied (20) on the interval (β1, β2), i.e. for x = β1 = α, and the trajectory
starting at (1, βk) goes backwards in time through (1, β2), and intersects y = δk at θ(δk) =
1
2 (α

2 − δ2k ) due to (20) since δk ≥ r(α). This finishes this step of the proof.
Step 3. For all α ∈ (0, α0], we have

lim
t→∞ �1

(
φ−t ([ϕt (α), 1] × {ϕt (α)})) = 0 ,

where �1 denotes the one-dimensional Lebesgue measure in the fiber {y = α}.
Fix α ∈ (0, α0]. For each ᾱ ∈ (F(α), α], we consider the sequence (βᾱ

k )k∈N as in Step 2
with βᾱ

1 = ᾱ, and let δᾱ
k and T ᾱ

k be defined as in Step 2. Due to (22), we get that δᾱ
k → ᾱ as

k → ∞, uniformly10 in ᾱ ∈ (F(α), α]. Then Step 2 implies that

lim
k→∞ �1

(
φ−T ᾱ

k

([βᾱ
k , 1] × {βᾱ

k })) = 0 ,

uniformly in ᾱ ∈ (F(α), α].
On the compact set C := [0, 1] × [ 12 F(α), α], consider the continuously differentiable

mapping G : C → [0, 1]2, given by G(θ, y) := φ−S(y)(θ, y), where S(y) is taken to satisfy
ϕS(y)(α) = y. Note that continuous differentiability ofG implies that thismapping is globally
Lipschitz continuous on the compact set C , which yields11

lim
k→∞ �1

(
G
(
φ−T ᾱ

k

([βᾱ
k , 1] × {βᾱ

k })
︸ ︷︷ ︸

=φ−Sᾱ
k

([βᾱ
k ,1]×{βᾱ

k })⊂[0,1]×{α}

) = 0 ,

uniformly in ᾱ ∈ (F(α), α], for certain Sᾱ
k ≥ 0.

10 Observe that it follows from (22) thatβᾱ
1 −δᾱ

k < (ᾱ−F(ᾱ))q(ᾱ) < (α−F2(α))q(α), for all ᾱ ∈ (F(α), α]
where q is a monotone increasing function.
11 Note that for large enough k, the map φ−T ᾱk maps y = βᾱ

k very close to y = ᾱ and hence, since

ᾱ ∈ (F(α), α], maps it into the compact interval [ 12 F(α), α].
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Fig. 5 Schematic showing Step 3 in the Proof of Proposition 3.8. For some fixed α ≤ α0, the point φt (α) can
be expressed as some iterate of the return map F of some ᾱ, (which depends on t), with ᾱ ∈ (F(α), α]. The
figure illustrates two times s > t . Green line shows the mapping of φs (α) to ᾱs while the blue shows that of
φt (α) to ᾱt . The red line represents the trajectory starting at (0, α) at t = 0

For any sufficiently large12 t , ϕt (α) ∈ [Fn(α), Fn+1(α)] for some n ≥ 1 so that ϕt (α) =
βᾱ
k for some ᾱ ∈ (F(α), α] and some k ∈ N. See Fig. 5 for an illustration. Note that k and ᾱ

depend on t . Hence, we can write

φ−t ([ϕt (α), 1] × {ϕt (α)}) = G
(
φ−T ᾱ

k

([βᾱ
k , 1] × {βᾱ

k }),
so that Step 3 follows by Eq. (3.3).

Step 4. We have

lim
t→−∞

∫ 1

0
�1(Mα(t)) dα = 1 ,

and this implies lim inf t→−∞ �
(
N (t) \ N ′(t)

) = 0. Using a similar mapping to the mapping
G in Step 3, one sees that the statement in Step 3 holds for all α ∈ (0, 1], and note that this
is equivalent to

lim
t→∞ �1(Mα(t)) = 1 for all α ∈ (0, 1] ,

and the claimed limit in the statement of Step 4 follows from the dominated convergence
theorem.

This finishes the proof of this proposition. 
�

Remark 3.9 One may want to study the differential Eq. (13) on the non-compact phase space
S
1×[0,∞), andwedemonstrate now that in this situation, the nonautonomous setA′ (which is

still a pullbackmeasure attractor) attracts much less than the weak pullbackmeasure attractor

12 t > T α
2 is sufficient.
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Fig. 6 A grid of 300 × 300 initial points in the domain (θ, x) ∈ [0, 1]2 is integrated forward with 4th order
Runge–Kutta method. If the solution is found to be a distance less than 0.1 from (0, 0), the initial condition is
coloured purple, otherwise it is coloured yellow. The total integration time is (a) t = 1, (b) t = 7, (c) t = 10,
(d) t = 20. Note that the proportion of purple apparently increases to full measure with t but the set of points
that are yellow changes with time. This is consistent with Proposition 3.8, where N (t) is approximated by the
purple region

A. This means that the second statement of Proposition 3.8 can not be established in this
context.

Consider the set

Bt := [ 1
4 ,

3
4

] × [
0, 1

t

)
,

and note that with the notation from the proof of Proposition 3.8, one can verify that

�(φ−τ (Bt )) < ∞ for all τ ∈ [0, t) and �(φ−t (Bt )) = ∞ .

This follows, since the y-equation is expanding backward in time, and we have a finite escape
backward in time of the form limτ→t ψ−τ

( 1
t

) = ∞, see (14). Hence, for any t > 0, there
exists a Kt > 0 with

φ−t (Bt ) ∩ ([0, 1] × [0, Kt ]) = 1 .

Define the nonautonomous set N = {N (t)}t∈R via N (t) = [0, 1] × [0, K−t ] for t < 0
and N (t) = [0, 1]2 for t ≥ 0. Then N ∈ B−(A), and for any nonautonomous set N ′ =
(N ′(t))t∈R ∈ B−(A′), we have

lim inf
t→−∞ �

(
N (t) \ N ′(t)

) ≥ 1.
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4 Measure Attractors for Nonautonomous Systems with Autonomous
Past and Future Limits

Following [7, Definition 6.3], we define an asymptotically autonomous process as follows.

Definition 4.1 (Asymptotically autonomous process) Let Φt,s be a process and ϕt a flow. We
say Φt,s is asymptotically autonomous to ϕt in the past if for all t > 0,

lim
s→−∞ ‖Φt+s,s x0 − ϕt x0‖ = 0 uniformly for x0 in compact subsets .

It is asymptotically autonomous to ϕt in the future if for all t > 0,

lim
s→∞ ‖Φt+s,s x0 − ϕt x0‖ = 0 uniformly for x0 in compact subsets .

A special case is given by eventually autonomous processes.

Definition 4.2 (Eventually autonomous process) Let Φt,s be a process and ϕt a flow. We say
Φt,s is eventually autonomous to ϕt in the past if there exists a S < 0 such that

Φs,s−t x0 = ϕt x0

for all s ≤ S, for all t < 0 and all x0. It is eventually autonomous to ϕt in the future if there
exists an S > 0 such that

Φt+s,s x0 = ϕt x0

for all s ≥ S, for all t > 0 and all x0.

A switched system is a special case of a system that is eventually autonomous in past and
future: it is defined by

Φt,s =

⎧
⎪⎨

⎪⎩

ϕ−
t−s s < t ≤ τ

ϕ+
t−τ ◦ ϕ−

τ−s s < τ < t

ϕ+
t−s τ < s < t,

(23)

for some τ ∈ R, where ϕ±
t are flows.

A possible definition of a nonautonomous ω-limit set is

ω(x0, t0) := {x ∈ R
d : lim

n→∞ Φtn ,t0(x0) = x for some tn → ∞} (24)

However, such a nonautonomous ω limit set will typically lack invariance; for an example,
see [16, Chapter 3]. In the case of switched systems we have that, if t0 < τ , then

ω(x0, t0) = ω(ϕ−
τ−t0 x0)(τ ) = ω+(ϕ−

τ−t0 x0),

where ω+ is the limit set of the flow ϕ+
t . If t0 > τ , then ω(x0)(t0) = ω+(x0) which is

invariant under ϕ+
t and therefore invariant under Φt,s for all τ < s < t .

Let O(t0, x0) := {Φt,t0 x0 : t > t0}, the orbit of x0 under Φt,t0 . We say that the orbit is
pre-compact if it has compact closure. In the case ofmore general asymptotically autonomous
systems, we have the following result.

Proposition 4.3 Consider Ω = ω(x0, t0) for a process Φt,s that is asymptotically
autonomous to ϕt in the future. Suppose that the orbit O(t0, x0) is pre-compact. Then,
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(i) for any t > 0 we have

ϕtΩ = Ω

and,
(ii) for any t > 0 and ε > 0 there is a ρ such that

dH (Ω,Φt+s,sΩ) < ε

for any s > ρ.

Proof (i) Since the orbit O(t0, x0) is pre-compact, by [10], Proposition 3.2, we know that
the ω limit set is non-empty and compact.

Fix any positive time t and let y ∈ ϕtΩ . Then there exists an x ∈ Ω such that y = ϕt x .
Since x ∈ Ω , by definition, there exists a sequence of times {tn}n>0 such that tn → ∞ as
n → ∞ and limn→∞ Φtn ,t0 x0 = x . By the cocycle property

Φtn+t,t0 x0 = Φtn+t,tnΦtn ,t0 x0,

for any t > 0. Let xn = Φtn ,t0 x0. We have,

‖Φtn+t,tn xn − ϕt x‖ ≤ ‖Φtn+t,tn xn − ϕt xn‖ + ‖ϕt xn − ϕt x‖. (25)

Since xn ∈ O(t0, x0) for all n ≥ 0, which is a precompact set, we can apply the definition
of an asymptotically autonomous process (Definition 4.1) on the closure of this set. Then
for large enough n we can make the first term on the RHS of Eq. (25) as small as we like
uniformly for all times in interval [0,t].

Furthermore, since xn → x , by continuity of ϕt we know that ϕt xn → ϕt x . Fix ε > 0.
Then, there exists a N ε

2
∈ N and M ε

2
∈ N such that for all n ≥ max{N ε

2
, M ε

2
}, it holds that

‖Φtn+t,tn xn − ϕt xn‖ ≤ ε

2

and

‖ϕt xn − ϕt x‖ ≤ ε

2
.

We can therefore set τn = tn + t and it holds that limn→∞ Φτn ,t0 x0 = ϕt x, and hence
ϕt x ∈ Ω. This implies ϕtΩ ⊂ Ω .

Next we need to show that Ω ⊂ ϕtΩ . We need to show that for all x ∈ Ω , there
exists a y ∈ Ω such that x = ϕt y. Since x ∈ Ω , there exists a sequence {tn}n>0 such
that limn→∞ Φtn ,t0 x0 = x . Let τk = tn+k − t , k > 0, for some n sufficiently large so that
tn − t > t0. Then, suppose that limk→∞ Φτk ,t0 x0 exists and denote it by y ∈ Ω (if not we
can choose a convergent sub-sequence).

Using the forward asymptotically autonomous property and arguing as in the first part we
have that

x = lim
k→∞ Φτk+t,t0 x0 = lim

k→∞ Φτk+t,τkΦτk ,t0 x0 = lim
k→∞ ϕtΦτk ,t0 x0 = ϕt y, (26)

where we have also used continuity of ϕ.
(ii) Fix some t > 0 and ε > 0. Recall

dH (Ω,Φt+s,sΩ) := inf{δ > 0 : Ω ⊂ (Φt+s,sΩ)δ and Φt+s,sΩ ⊂ Ωδ},
where X δ := ∪x∈X {z ∈ M : ‖x − z‖ ≤ δ}.
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To show Ω ⊂ (Φt+s,sΩ)ε it suffices to show that for any x ∈ Ω , there exists a y ∈
Φt+s,sΩ such that ‖x − y‖ ≤ ε. By part (i), we know that there exists x ′ ∈ Ω such that
x = ϕt x ′. Take y = Φt+s,s x ′ then since Φt,s is asymptotically autonomous we have that for
large enough s

‖x − y‖ = ‖ϕt x
′ − Φt+s,s x

′‖ < ε. (27)

The other inclusion follows by similar argument.
To showΦt+s,sΩ ⊂ Ωε it suffices to show that for any x ∈ Φt+s,sΩ , there exists a y ∈ Ω

such that ‖x − y‖ ≤ ε. Let x = Φt+s,s z some z ∈ Ω . Let y = ϕt z ∈ Ω by part (i). Hence,
since Ω is compact,

‖x − y‖ = ‖ϕt z − Φt+s,s z‖ < ε, (28)

holds for z for same s. 
�
Theorem 4.4 Let Φt,s be an eventually autonomous process to ϕ+

t in the future.

(i) Let A+ be a weak measure attractor for ϕ+
t . Then there exists a weak forward measure

attractor Ā. Moreover, if A is any compact, Φt,s invariant nonautonomous set such that
A+ ⊂ lim inf t→∞ A(t), then A is a weak forward measure attractor.

(ii) Let A be a weak forward measure attractor. If A+ is a compact invariant set for ϕ+
t and

∅ �= lim supt→∞ A(t) ⊂ A+, then A+ is a weak measure attractor.

Proof (i) Since Φt,s is eventually autonomous in the future to a flow ϕ+
t , there exists a τ > 0

such that Φt+s,s x0 = ϕ+
t x0 for all s ≥ τ and for all x0, t ≥ 0. Define the nonautonomous

set Ā given by

Ā(s) =
{

Φs,τ A+ s < τ

A+ s ≥ τ.

It can be checked that Ā is a compact and Φt,s invariant nonautonomous set. We can write
down the basin of forward measure attraction for Φt,s as

B+(Ā)(s) =
{

Φs,τ B(A+) s < τ

B(A+) s ≥ τ.

If x ∈ B+(Ā)(s) for some s < τ then x = Φs,τ y, for some y ∈ B(A+) so that

lim
t→∞ d(Φt,s x, Ā(t)) = lim

t→∞ d(ϕ+
t−τ y, A

+) = 0,

since y ∈ B(A+). Furthermore, since �(B(A+)) > 0 and Φs,τ is a diffeomorphism,
Φs,τ B(A+) must have positive measure. Hence, Ā is weak forward measure attractor.

Let A be any compact invariant nonautonomous set with

A+ ⊂ lim inf
t→∞ A(t).

This implies limt→∞ d(A+, A(t)) = 0 and henceA forward attracts all the points in B+(Ā)

by triangle inequality.
(ii) Since lim supt→∞ A(t) ⊂ A+ it implies that limt→∞ d(A(t), A+) = 0. Since Φt,s is

eventually autonomous for the future, there exists a s ∈ R such that Φt+s,s = ϕ+
t . It follows

that for all x ∈ B(A)(s), d(ϕ+
t x, A+) ≤ d(Φt+s,s x, A(t)) + d(A(t), A+) → 0 as t → ∞.


�
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Remark 4.5 For a given forward measure attractor of a process Φt,s that is asymptotically
autonomous in the future to a flow ϕ+, there does not necessarily exist a corresponding
measure attractor for ϕ+. For example, consider the differential equation

ẋ = x
(
x2 − 1

t

)
.

It can be checked readily that the nonautonomous set {A}t>0, defined by A(t) :=
[− 1√

2t
, 1√

2t
], is invariant for Φt,s and hence a weak forward measure attractor. However,

the limiting flow generated by ẋ = x3 does not have any attractors.

In the below theorem we relate pullback measure attractors to autonomous attractors of
the past limit system. We note that, it is not guaranteed, as is the case for when past limit
system attractor is asymptotically stable (see [9] and [1]), that the nonautonomous attractor
limits to the autonomous one in the past and we require a further condition in order for that
to be the case.

Theorem 4.6 Let X be compact and Φt,s an invertible process on X which is asymptotically
autonomous in the past to a flow ϕ−

t with an invariant set A−. Suppose A = {A(t)}t∈R is
a nonempty, compact, invariant nonautonomous set for Φt,s such that lim supt→−∞ A(t) is
uniformly attracted to A− under ϕ−

t . Then,

lim
t→−∞ d(A(t), A−) = 0.

In particular, the above holds if A− is a weak measure attractor for ϕ− and A is a weak
pullback measure attractor for Φt,s .

Proof Suppose to obtain a contradiction that d(A(t), A−) � 0 as t → −∞. That is, there
exists a ξ > 0 such that there exist a sequence of times tn → −∞ and a sequence of
xn ∈ A(tn) such that

d(A(tn), A
−) ≥ d(xn, A

−) > ξ. (29)

Let S := lim supt→−∞ A(t). By assumption, S ⊂ B(A−) is attracted uniformly. Hence,
there exists a Tξ > 0, such that for all t > Tξ

d(ϕ−
t S, A−) < ξ/2. (30)

Let B(s) = ⋃
t≤s A(t) and note that it is compact. By invariance of A it holds that

d(xn, A−) = d(Φtn ,tn−Tξ yn, A
−), with yn ∈ A(tn − Tξ ) ⊂ B(tk − Tξ ) for all k ≥ n. By

compactness of B(tn − Tξ ), there is a convergent sub-sequence, ynl → y0 as l → ∞.
Furthermore, we have that,

lim inf t→−∞ d(y0, A(t)) ≤ lim inf l→∞
(
d(y0, ynl ) + d(ynl , A(tnl − Tξ ))

)
= 0, and

hence it follows that y0 ∈ S by definition.
Since Φt,s is asymptotically autonomous in the past to ϕ−, by Definition 4.1 it holds that

‖Φtnk ,tnk −Tξ ynk − ϕ−
Tξ
y0‖ ≤ ‖Φtnk ,tnk −Tξ ynk − ϕ−

Tξ
ynk‖ + ‖ϕ−

Tξ
ynk − ϕ−

Tξ
y0‖

< ξ/2, (31)

for large enough k. Hence,

d(xnk , A
−) = d(Φtnk ,tnk −Tξ ynk , A

−)

≤ ‖Φtnk ,tnk −Tξ ynk − ϕ−
Tξ
y0‖ + d(ϕ−

Tξ
y0, A

−)
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< ξ,

by Inequalities (30) and (31), which is a contradiction of (29). 
�
We give an example that shows it is possible to have an attractor for a process that is

asymptotically autonomous in the past, which is unrelated to the attractors of the past limit
flow.

Example 4.7 Consider a differentiable function χ : R → R that satisfies

lim
t→−∞ χ(t) − √−t = lim

t→∞ χ(t) + √
t = 0 .

Then

Φt,s(x) = xeχ(t)−χ(s) for all t, s, x ∈ R

defines a process, and for any fixed t ∈ R, we have

lim
s→−∞ Φt+s,s(x) = lim

s→−∞ xeχ(t+s)−χ(s) = lim
s→∞ xe

√
t+s−√

s

= lim
s→∞ xet/(2

√
s) = x,

and hence Φt,s is an asymptotically autonomous process in the past to the identity. Note
that all positive measure compact sets are measure attractors for the identity flow. On the
other hand, {0}t∈R is an invariant nonautonomous set for Φt,s and lims→−∞ Φt,s x = 0 for
all x ∈ R, which implies that {B}t∈R is pullback attracted by {0}t∈R for any compact set
B ⊂ R. This implies that {0}t∈R is a pullback measure attractor. Similarly, one can show that
the process Φt,s is asymptotically autonomous in the future to the identity, and {0}t∈R is a
forward measure attractor, while 0 is not a measure attractor of the future limiting flow.

Theorem 4.8 Let X be compact and Φt,s an invertible process on X which is asymptotically
autonomous in the future to a flow ϕ+

t with an invariant set A+. Suppose A = {A(t)}t∈R is
a nonempty, compact, invariant nonautonomous set for Φt,s such that lim supt→∞ A(t) is
uniformly attracted to A+ under ϕ+

t . Then,

lim
t→∞ d(A(t), A+) = 0.

In particular, the above holds if A+ is a weak measure attractor for ϕ+ and A is any weak
forward measure attractor for Φt,s .

Proof The proof is very similar to Theorem 4.6. 
�

5 Discussion and Outlook

There are many inequivalent notions of attraction for autonomous dynamical systems. Two
of the weakest (but still useful) notions from a physical point of view are themeasure attractor
(which makes no assumption about the topology of the basin of attraction but requires it to
have positive measure) and the Ilyashenko statistical attractor (which makes no assumption
about pointwise convergence, but requires convergence of averaged observables). In this
paper, we state and prove some elementary properties of autonomous measure and statistical
attractors. In particular, Proposition 1.1 shows that measure attractors have a large degree of
uniformity within their basin, while Proposition 1.2 shows that an apparently stronger form
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of convergence follows from the definition of statistical attraction: these results inspire some
of the examples and results stated later in the paper.

In the paper we propose some natural generalisations of measure and statistical attractors
to nonautonomous dynamical systems, defined as continuous time processes. These notions
are complicated by the fact that convergence in the nonautonomous setting requires a choice
of pullback or forward notions, and we address this in our proposed definitions. To test the
definitions we consider autonomous systems in a nonautonomous viewpoint. In particular:

– In Theorems 2.19 and 2.20 we illustrate how our notions of weak forward measure and
weak pullback measure attraction can be related to autonomous notions.

– Theorem 3.6 relates forward and pullback notions of statistical attractor to the
autonomous notion.

– Probably the most surprising result is Proposition 3.8 which illustrates for a specific
example that a statistical attractor that is NOT a measure attractor in the autonomous
setting may be a pullback measure attractor in the nonautonomous setting. We suspect
this result may be true in a more general context, but are unable to prove this.

– In Sect. 4 we turn to asymptotically autonomous systems where in Theorem 4.4 we relate
the forward measure attractor to the measure attractor for the future limit system, and
Theorem 4.6 where we relate the pullback measure attractor to the measure attractor for
the past limit system.

Oneof the significant barriers to understandingnonautonomous systems is that fewdynam-
ical properties are invariant under general nonautonomous coordinate changes [20]: attractors
may even become repellers when subjected to an extreme time-dependent coordinate change.
Restricting to a suitably constrained set of coordinate changes can however preserve some
attraction properties. We give some results on these lines, for example Proposition 2.14 gives
sufficient conditions (Lipschitz uniform in t) that weak forwardmeasure attraction is retained
under coordinate change.

Although we test the proposed definitions in autonomous and asymptotically autonomous
contexts, it will be important to test and apply these definitions in more general contexts.
We have not addressed the question of when and whether nonautonomous measure attractors
can be decomposed, but there is clearly work to be done to clarify when nonautonomous
measure attractors are strong/weak and/or minimal. We have also not addressed questions of
how attractor structure changes at bifurcation on changing a parameter in a nonautonomous
system. In this context we expect various types of bifurcation that will depend on the notion of
nonautonomous attraction that is considered and this can be linked to bifurcation of past/future
limits in somecases. Therewill also be true nonautonomousbifurcations (such as rate-induced
tipping effects) where past and future limit systems are both involved. It will be a significant
challenge to generalise such results for asymptotically stable attractors [1, 4, 25] to weaker
notions of attraction.
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Appendix

A Proof of Lemma 1.3

Let δn = 1
2n , n ∈ N≥1 and define {τn}n≥1 as the sequence of times such that �(T c

n ∩[0, τ ]) <

δnτ, for all τ > τn .

Let s1 = 0 and s2 = max(τ1, τ2). Further, let ρ1 = (δ1 + δ2)/2 = 3
23
. Let T̃1 =

(T1 ∩ [0, s2]) ∪ (T2 ∩ [s2,∞)). Then,

�(T̃ c
2 ∩ [0, τ ]) = �(T̃ c

2 ∩ [0, t̃2]) + �(T̃ c
2 ∩ [s2, τ )) ≤ δ1s2 + δ2τ ≤ ρ1τ,

for all τ > S2 where S2 = δ1s2
ρ1−δ2

= 22s2.

Let s3 = max(S2, τ3) and let T̃2 = (T̃1 ∩ [0, s3]) ∪ (T3 ∩ [s3,∞)) so that

�(T̃ c
2 ∩ [0, τ ]) = �(T̃ c

2 ∩ [0, s3]) + �(T̃ c
2 ∩ [s3, τ )) ≤ δ2s3 + δ3τ ≤ ρ2τ,

for all τ > S3 where S3 = δ2s3
ρ2−δ3

and ρ2 = 3
24
.

Let T̃n = (T̃n−1∩[0, sn+1])∪(Tn+1∩[sn+1,∞])with sn = max(Sn−1, τn)where Sn−1 is
the time such that �(T̃ c

n−1∩[0, τ ]) ≤ ρn−1τ for all τ > Sn−1 and with ρn = (δn +δn+1)/2 =
3

2n+2 , so that

�(T̃ c
n ∩ [0, τ ]) = �(T̃ c

n ∩ [0, sn+1]) + �(T̃ c
n ∩ [sn+1, τ )) ≤ δnsn+1 + δn+1τ ≤ ρnτ,

for all τ ≥ Sn+1 where Sn+1 = δns3
ρn−δn+1

.
Note that

T̃N =
(
N−1⋃

n=1

Tn ∩ [sn, sn+1]
)

∪ (TN ∩ [sN ,∞])

and hence T̃N ∩[0, sN ] is a non-decreasing sequence of sets so that T∞ := ⋃∞
N=1 T̃N ∩[0, sN ]

is well defined. We have that for some large enough N

�((T∞)c ∩ [0, τ ]) ≤ �((T̃N )c ∩ [0, τ ]) ≤ ρN−1τ

and hence, since ρN → 0 as N → ∞, T∞ has full density at ∞.
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